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Wir brauchen also eigentlich die Koordinaten des

Beobachtungsorts schon jetzt, dabei wollen wir sie

ja erst bestimmen! Da wir das Azimut jedoch nicht
mit höchster Genauigkeit für die weitere Rechnung
brauchen, kann man zum Beispiel die Maschine erst
den falschen Ort A (?>0/A0) berechnen lassen, damit
man <p° in obige Formel einsetzen und aus Ac und
dem Greenwicher Stundenwinkel einen brauchbaren
Wert für den Ortsstundenwinkel s berechnen kann.

Mit dem rechten Winkel bei D, der Distanz d und
dem Winkel r liefert die aus der sphärischen Trigonometrie

bekannte Beziehung zwischen vier Stücken:
sin r cotg 90° cotg d sin k — cos k cos r.

Da cotg 900 0 ist, erhält man hieraus :

cotg d sin k cos k cos r,

oder

tg k cos t tg d. (2)
Das Rechenprogramm wird also ein erstes Durchlaufen

des Standlinienprogramms vorsehen, wobei
die gemessenen Zenitdistanzen eingegeben werden.
Mit dem so erhaltenen falschen Ort A (den man übrigens

durch den aus der Koppelrechnung bekannten
Loggeort ersetzen kann, der ja auch nur einen
Näherungsort darstellt) sowie den bekannten Werten für
Distanz und Kurs wird nach (1) das Azimut des
zuerst beobachteten Gestirns berechnet und daraus nach
(2) die Korrektur k berechnet. Nachdem diese anz)
angebracht worden ist, wird mit der korrigierten
Zenitdistanz Zi und dem unveränderten Wert Z2 das

Standlinienprogramm nochmals durchgespielt
(Iteration), was den Ort C (y/A) ergibt, dessen Genauigkeit

im wesentlichen nur noch von den Beobachtungsfehlern

abhängt.

Anschrift des Verfassers : Martin Frick, Hochschule für Nautik, Bremen, B.R.D.

Nicht-statische Weltmodelle

von Doris Wiedemann, Basel

Die Erforschung des Universums durch Physiker und
Astronomen ist wohl eines der grössten intellektuellen

Abenteuer unseres Jahrhunderts. Zur Zeit da

Einstein seine Allgemeine Relativitätstheorie
entwickelte, war der Glaube an die Beständigkeit des

Universums noch ein fester Bestandteil der westlichen
Philosophie. «Der Himmel dauert von Ewigkeit zu
Ewigkeit» nahm man an, und es war zunächst auch
kein Grund vorhanden, von dieser Vorstellung
abzuweichen. Damals war nämlich die systematische
Relativbewegung ferner Galaxien noch nicht entdeckt.
Einstein soll daher auch unglücklich darüber gewesen

sein, dass die Grundgleichungen der Allgemeinen
Relativitätstheorie kein statisches Universum beschrieben.

Sie machten vielmehr die phantastisch anmutende

Voraussage einer expandierenden Welt. Die Situation

änderte sich aber mit einem Schlag, als Hubble
im Jahre 1929 die vorausgesagte Expansion des Alls
nachwies. Diese HuBBLE'sche Entdeckung war
zugleich eine erste Bestätigung der Allgemeinen
Relativitätstheorie.

Wie lässt sich nun die Expansion des Universums
beschreiben? Die Allgemeine Relativitätstheorie
liefert hierfür die folgende einfache Differentialgleichung

:

Fig. 1 : E. P. Hubble 1889-1953

Hierin sind /( und k Konstante und unter R(t) wollen
wir uns - zunächst noch etwas unpräzis - den
«Weltradius» vorstellen. Die Theorie zeigt weiter, dass k
nur die Werte

k 0, ± 1

annehmen kann. Entsprechend diesen drei k-Werten,
die ein Mass für die Raumkrümmung sind, ergeben
sich auch drei verschiedene Weltmodelle, die hier
skizziert werden sollen.

Betrachtet man die obige Differentialgleichung, so
fällt die Ähnlichkeit mit einem einfachen Problem aus
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der NEWTON'schen Mechanik auf. Der erste Term
links hat nämlich den qualitativen Charakter einer
kinetischen Energie, der zweite den qualitativen
Charakter einer potentiellen Energie, und rechts steht
eine Konstante, die uns an die Gesamtenergie erinnert.

Aufgrund dieser Analogie könnte man sich

fragen, ob sich diese Gleichung nicht auch im Rahmen

Entfernung und Geschwindigkeit einer Galaxie, also
ein HuBBLE-Gesetz, feststellt:

r H(t)r *).

Die «HuBBLE-Ivonstante» H sei räumlich konstant,
darf aber von der Zeit abhängen. Ebenso wird aber
auch jeder andere nicht im Zentrum der Wolke
sitzende Beobachter ein solches Gesetz finden. Es ist
nämlich (vgl. Fig. 3):

(1 r2-ir H(r2-r1) H d.

Fig. 2:1. Newton 1642-1726, A. Einstein 1879-1955

der NEWTON'schen Mechanik verstehen lässt. In der
Tat haben 1934 E. A. Milne und W. H. McCrea
gezeigt, dass dies möglich ist. Sie gehen dabei von der
NEWTON'schen Beschreibung einer homogenen
Gaswolke aus, stecken aber noch die Annahme der
Isotropie hinein, um dem kosmologischen Prinzip zu
genügen. Diese NEWTON'sche Kosmologie ist
mathematisch viel einfacher und führt in vielen Teilen zu
im wesentlichen gleichen Ergebnissen wie die
relativistische. Wir wollen daher sie zum Ausgangspunkt
unserer Überlegungen machen.

Betrachten wir daher eine kugelförmige Gaswolke
im euklidischen Raum, in der die Galaxien die Rolle
der Massenpunkte spielen. Die Annahme der Isotropie

bedeutet dann, dass ein im Zentrum sitzender
Beobachter einen linearen Zusammenhang zwischen

Wenn wir uns die Wolke viel grösser vorstellen, als

irgend eine Distanz, die bis heute gemessen wurde,
so bietet das Weltall von jeder uns bekannten Galaxie
aus den gleichen Anblick, wenn man von lokalen
Unregelmässigkeiten absieht. In diesem Sinne soll unser
Modell das kosmologische Prinzip erfüllen.
Machen wir den Ansatz

r(t)=R(t)r0 mit r(t0)=r0, R(t0)=l,

so ist das HuBBLE-Gesetz erfüllt und es gilt

H
R

IT

Das kann man durch Einsetzen sogleich verifizieren.
Unter t0 wollen wir uns den Zeitpunkt «heute»
vorstellen.

Der Maßstabsfaktor R(t) ist offenbar proportional
zum Radius der Gaswolke. Versuchen wir jetzt das

Verhalten von R(t) aus dynamischen Überlegungen
zu gewinnen! Zu diesem Zweck betrachten wir
zunächst die Bewegungsgleichung eines Massenpunktes
im Abstand r vom Zentrum der Wolke **). Die Kraft
auf diesen Massenpunkt rührt dann von der Masse
innerhalb der Kugel vom Radius r her und das New-
TON'sche Gravitationsgesetz lautet

(4jr/3)gr3
(Bewegungsgleichung)

y bedeutet die Gravitationskonstante und q die Dichte
der Gaswolke zum betrachteten Zeitpunkt. Ausserdem

gilt die Erhaltung der Masse. Wir können sie bis
auf einen Faktor 4ir/3 in folgender Form schreiben:

r3 (>0t03 const. (Kontinuitätsgleichung)

Fig. 3 : NEWTON'sches Modell des Universums

Aus der Bewegungsgleichung, der Kontinuitätsgleichung
und mit r R r0 finden wir die gesuchte

Differentialgleichung für den Maßstabsfaktor R(t) :

*) Fettgedruckte Buchstaben bedeuten Vektoren

**) Der Druck des Gases ist dabei vernachlässigt. Er spielt nur
in der Geburtsphase des Universums eine gewisse Rolle.
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R
(1/2)/'

R2
0 mit p Y^-Qo-

Nach Multiplikation mit 2R lässt sie sich leicht einmal

integrieren. Man findet

R2-ir -k- (Energieintegral)

k ist Integrationskonstante. Es besteht also so etwas
wie ein Energieintegral für unseren Massenpunkt.

Unsere Überlegungen haben nun aber zu einer
Gleichung geführt, wie sie auch in der Allgemeinen
Relativitätstheorie auftritt. Dort hat k allerdings die
unterschiedliche Bedeutung der Raumkrümmung
und ist nur der Werte 0>zhl fähig. Bleiben wir noch
bei diesem unrelativistischen Bild! Drei Fälle sind
dann physikalisch zu unterscheiden: positive, negative

und verschwindende Gesamtenergie, das heisst
k 0, k § 0. Wie verhält sich das Universum in diesen

drei Fällen?

innen wir mit
1) k 0. Durch Trennung der Variablen lässt sich
das Energieintegral leicht integrieren und man erhält :

R (t) .2/3

Die Anfangsbedingung ist dabei so gewählt, dass

R und t gleichzeitig Null werden. In diesem Modell
dehnt sich die Welt ewig aus, mit der Zeit jedoch
immer langsamer, denn R ist proportional 1/t. In der
Relativitätstheorie ist dieses Modell unter dem
Namen Einstein-de SiTTER-Modell bekannt, k 0

bedeutet dort verschwindende Raumkrümmung, also
ein euklidisches Universum. Der zeitliche Verlauf von
R(t) ist in Figur 4 skizziert.

Fig. 4: Zeitlicher Verlauf von R und q für die Modelle
k 0,±1

Gehen wir nun über zum zweiten Fall
2) k > 0. Eine qualitative Aussage über das Verhalten

einer solchen Welt gewinnen wir, wenn wir das

Energieintegral in der Form

R fl i-R"k
schreiben. Da nur reelle Werte für R physikalisch
sinnvoll sind, muss der Wurzelausdruck für alle Zeiten

positiv sein, was bedeutet

R < R

Der Radius dieser Welt wird also endlich bleiben,
k > 0 bedeutet in die Sprache der Relativitätstheorie
übersetzt, der Raum besitzt überall eine konstante
positive Krümmung (k + 1). Man spricht von
einem elliptischen Raum. Zur Bestimmung des zeitlichen

Verlaufs von R(t) ist es hier nicht zweckmässig,
die Integration nach Trennung der Variablen
auszuführen. Man kommt eleganter durch Einführung
eines Parameters r zum Ziel, indem man setzt :

R R(t(r)) A
dr

R_

F
Bezeichnet man die Ableitung von R nach r mit

R', so ergibt sich damit für das Energieintegral die

sogenannte FRiEDMANN'sche Differentialgleichung:

R'2——pR
k + R2 0.

Fig. 5: A. A. Friedmann 1888-1925

Sie ist nach dem russischen Mathematiker Alexander

Alexandrovitch Friedmann benannt. Friedmann,

der 1888 in Petersburg geboren wurde, hatte
schon bevor Hubble seine Entdeckung gemacht hatte,

eine ganze Reihe expandierender Weltmodelle
aufgestellt, in denen jene von Einstein und de Sitter
als Grenzfälle enthalten waren. Man kann leicht
verifizieren, dass diese FRiEDMANN'sche Gleichung
durch

R ~ (1 - cos r)

gelöst wird. Setzt man dieses R in den Ausdruck für
dt/drein und integriert, so folgt

l/lkt=^ (r-sin r).
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Die Anfangsbedingung ist wiederum so gewählt,
dass R, t und r gleichzeitig verschwinden. Diese beiden

letzten Beziehungen geben die Parameterdarstellung

einer Zykloide. Sie ist die Bahnkurve eines Punktes

auf einem Kreis, der auf einer Geraden rollt; ihr
Bild ist in Figur 4 wiedergegeben. In unserem Fall
besitzt der Kreis den Radius /*/2k, und der Parameter
x hat die anschauliche Bedeutung des Rollwinkels. In
der Kosmologie spricht man auch vom
«Entwicklungswinkel» des Universums. Unser Modell liefert
also ein oszillierendes Universum, dessen grösster
Radius R max /t/k wird. Nach einer endlichen Zeit
wird die Welt in einer katastrophalen Implosion in
sich zusammenstürzen und es bleibt offen, ob sich
dann ein weiterer Zyklus anschliessen wird.

Es bleibt nun noch der dritte Fall
3) k < 0. Auch hier ergibt sich sehr einfach eine

Parameterdarstellung. Das obige Resultat lässt sich
verwenden, wenn man k - | k | setzt. Dann geht x
in ir, k in ij/|k| über, und wenn man noch den
Zusammenhang zwischen den hyperbolischen und den

trigonometrischen Funktionen benützt, ergibt sich:

R ifïj^COSh X~V>'

^1 üfj(sinh r " t)'

Dadurch wird wiederum ein ewig sich ausdehnendes

Weltall beschrieben. Der Verlauf von R(t) ist
ebenfalls in Figur 4 dargestellt. Nach sehr langer Zeit
wird die Expansionsgeschwindigkeit konstant werden,

denn aus dem Verhalten der hyperbolischen
Funktionen folgt, dass R für grosse Zeiten proportional

t wird. Relativistisch bedeutet dieses Modell
ein Universum, bei dem der Raum eine konstante
negative Krümmung besitzt (k - 1). Man spricht auch

von einem hyperbolischen Raum. Die hier auftretenden
hyperbolischen Funktionen mögen diese Bezeichnung
rechtfertigen.

Interessant ist, dass für die beiden Modelle k § 0

eine Reihenentwicklung

R ^

1/3
ti/3 + (t klein, k 0)

ergibt. Die beiden Modelle verhalten sich also für
kleine Zeiten wie das Modell für k 0, also wie ein
euklidisches Universum. Man wird daher erwarten,
dass es in einem frühen Stadium der Welt schwierig
sein wird, das Vorzeichen der Raumkrümmung aus

Beobachtungen zu ermitteln. Dies hat einen
physikalischen Grund: Das Licht, welches uns ja die
Information über die Struktur der Welt überbringt, ist
dann zu kurze Distanzen unterwegs, um eine even¬

tuell vorhandene Raumkrümmung genügend zu
verspüren und uns mitteilen zu können. Damit werden
wir fast automatisch auf die Frage gelenkt, ob es heute
möglich ist, sich für eines der drei Modelle zu
entscheiden und wie dieser Entscheid aufgrund von
Beobachtungen gefällt werden könnte.

Die HuBBLE-Konstante allein reicht nicht aus zur
Beantwortung dieser Frage. Neue Information erhalten

wir, wenn wir berücksichtigen, dass die Expansion

dieser drei Weltmodelle unterschiedlich stark
gebremst ist. Das Vorhandensein einer Bremsung können

wir im NEWTON'schen Modell einfach verstehen,
da die Gravitationskräfte der Expansion dauernd
entgegenwirken. Man sieht übrigens auch aus der
Bewegungsgleichung, dass R immer negativ ist. Diese
Bremsung wird erfasst durch den sogenannten

Bremsparameter q:
RR

q - —— > 0
R2

q lässt sich auch in einer etwas anderen Form darstellen,

wenn man ^/R aus dem Energieintegral und der
Bewegungsgleichung eliminiert :

_ JL _Ä_
q ~ 2 + 2R2'

Hieraus zeigt sich, dass sich unsere drei Modelle auch
durch verschiedene q-Werte unterscheiden lassen. Es
ist nämlich

1

q > — für k > 0,

1

q 2
für k 0,

1

q < — für k < 0.

Auf den ersten Blick scheint dadurch für die
Entscheidung über das tatsächlich realisierte Weltmodell
nichts gewonnen zu sein. Umso überraschender
klingt es, dass damit ein prinzipieller Weg gefunden
ist, über die Dichte im Universum auf die
Raumkrümmung zu schliessen. Man muss zu diesem Zweck
q mit Hilfe der Bewegungsgleichung so darstellen,
dass es die Massendichte enthält. Dann ist, wenn wir
uns an die Bedeutung für fi erinnern,

(V2> _(4W3)re0
q RR2 RR2

Beziehen wir alles auf den Zeitpunkt t0 «heute»,
so ist R(t0) 1 und R(t0) H0 und das Kriterium
lautet

__
(4jt/3)yg0 >

q° ~~
H02 < 2'
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Es lässt sich nun noch nach der Dichte auflösen:

>3H02
^ 0 < 8 7i y

Durch unabhängige Messung der beiden Grössen
q0 und H0 sollte sich also entscheiden lassen, welches
Vorzeichen gilt, mit anderen Worten, ob der Raum
positiv oder negativ gekrümmt ist oder ob er euklidisch

ist. Wenn wir als heutige Werte für g0
10-30g/cm3 und für H0 10_1° Jahre-1 nehmen, so
würden diese Werte für das < -Zeichen, also ein
hyperbolisches Universum sprechen. Leider sind die
Messungen aber noch zu ungenau, um hier mit einiger

Sicherheit eine Entscheidung treffen zu können.
Es bietet sich aber noch ein anderer Weg. Er hängt

mit einem Effekt zusammen, der sich erst bei den
entferntesten Nebeln bemerkbar macht, nämlich mit der
Laufzeit des Lichts. Wir sehen ja jeden Nebel in dem
Zustand, den er bei der Aussendung des Lichts hatte,
welches uns heute erreicht. Je weiter wir also in den
Raum hinausblicken, umso weiter blicken wir in die
Vergangenheit zurück. Ist die Expansion gebremst,
so müssen die beobachteten Geschwindigkeiten der
fernen Galaxien grösser sein als ihre heutigen. Das
bedeutet, dass die beobachteten Geschwindigkeiten
der fernsten Objekte etwas grösser sein sollten, als
es dem HuBBLE-Gesetz entspricht. Eine relativistische
Überlegung ergibt eine Korrektur des HuBBLE-Ge-
setzes, welche den Bremsparameter q enthält. Man
findet für die Rotverschiebung in Abhängigkeit der
Distanz d

A À 1
c H0d -j- — (1 -f q0) (H0d)a +

In Figur 6 ist z c (zD./ä) für ein festes H0 und
verschiedene q0-Werte dargestellt. Die Punkte stellen
Beobachtungen von Sandage dar; anstelle der Di¬

stanz ist in der Figur die scheinbare Helligkeit
angegeben. Auch hier sprechen die Beobachtungen nicht
eindeutig zugunsten des einen oder anderen Modells.
Dass wir so in Entscheidungsschwierigkeiten stecken,
deutet eben doch darauf hin, dass unsere Welt soweit
wir sie kennen, noch zu jung ist, uns ihre Struktur
zu verraten.

Fig. 6: Theoretische und beobachtete Rotverschiebung in Funk¬
tion der scheinbaren Helligkeit nach A. Sandage
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