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Astronomische Ortsbestimmung
bei Ortswechsel"")

von Martin Frick, Bremen

Für Astronomen und Geodäten ist es selbstverständlich,

dass sich der Standort, für den die Koordinaten
bestimmt werden sollen, während der Messungen
nicht verlagert. Für die Navigatoren von Verkehrsmitteln

wie Schiff und Flugzeug aber sieht die Sache
anders aus: man kann das Fahrzeug nicht der
Ortsbestimmung zuliebe anhalten. Der Navigator muss
also, wenn er beispielsweise eine Ortsbestimmung
nach der Standlinienmethode durchführt, berücksichtigen,

dass sich sein Fahrzeug zwischen der ersten und
der zweiten Gestirnsbeobachtung weiterbewegt hat.
Bei der hohen Geschwindigkeit der Flugzeuge ist
dieser Umstand auf jeden Fall zu berücksichtigen, bei
den langsameren Schiffen kann man da jedoch ein
Auge zudrücken, falls die Beobachtungen direkt
hintereinander durchgeführt werden können. Das ist
aber im allgemeinen nicht der Fall, denn aus
Kostengründen verwendet man in der zivilen Seefahrt heute
keine Libelleninstrumente, sondern den gewöhnlichen

Sextanten, für den man die Kimm braucht, und
diese sieht man nur bei Tag und in der Dämmerung.
Dies wiederum hat zur Folge, dass die beiden
Beobachtungen mehrere Stunden auseinanderliegen können,

was andererseits den Vorteil mit sich bringt, dass

man beide Male dasselbe Gestirn - zum Beispiel die
Sonne - verwenden kann.

Führt man die Standlinienmethode, wie bisher
üblich, durch eine Zeichnung auf der Karte aus, so
berücksichtigt man die «Versegelung» (so bezeichnet
der Seemann die Verschiebung des Orts zwischen der
ersten und der zweiten Beobachtung) einfach durch
eine Verschiebung einer der beiden Standlinien
(beispielsweise der älteren) in Fahrtrichtung (Kurs) um
die gefahrene Strecke (Distanz d).

Will man nun die Durchführung der Ortsbestimmung

einer Rechenmaschine überlassen, die unter
Verzicht auf jegliche Zeichenarbeit den Standort
einfach ausrechnet, dann erhebt sich die Frage, auf
welche Weise die Versegelung ins Rechenprogramm
einzubauen sei. Eine hierfür brauchbare Formel soll
im folgenden an Hand von Fig. 1 abgeleitet werden.

Bei der ersten Beobachtung, die zur Zeit t'
stattgefunden hat, sei Gestirn 1 beobachtet worden in der
Zenitdistanz z'1; was bedeutet, dass wir uns bei dieser
Beobachtung auf der Höhengleiche h\ befunden
haben müssen. Hätten wir gleichzeitig ein zweites
Gestirn beobachtet, das jetzt zur Zeit t' den selben
Projektionsort gehabt hätte, wie das später beobachtete

Gestirn 2, so hätte unser Standort auch auf dessen

Höhengleiche h'2 liegen müssen und der Schnitt von
h'j und h'2 hätte unseren Ort B ergeben. Anstatt
dessen haben wir später, nämlich zur Zeit t, Gestirn
2 beobachtet und als Höhengleiche h2 erhalten. Wür-

*) vergl. hierzu: ORION 32, 12 (1974) No. 140.

den wir nun die den beiden Beobachtungen
entsprechenden Höhengleichen h^ und h2 miteinander
schneiden, würden wir den falschen Ort A erhalten.
Berücksichtigen wir aber nun, dass, wenn wir zur
Zeit t ' schon in C gewesen wären (den Ort haben wir in
Wirklichkeit erst zur Zeit t erreicht), wir das Gestirn 1

eben in der kleineren Zenitdistanz zi (Höhengleiche
hj) beobachtet hätten. Wollen wir C berechnen, so
müssen wir h2 mit hx schneiden. Die - gar nicht
gemessene - Zenitdistanz zx müssen wir nun aus der

gemessenen z \ berechnen, indem wir ein Korrekturstück

k subtrahieren.
Dieses k taucht im sphärischen Dreieck BCD auf

und kann leicht berechnet werden. Der Winkel BDC
ist ein rechter, das Stück d BC kann aus der
Fahrtgeschwindigkeit und der Zeit t-t ' berechnet werden,
der Winkel r DBC ist die Differenz zwischen Kurs
und Azimut, wobei das Vorzeichen keine Rolle spielt,
da wir den cos t brauchen (Formel 2). Wird r > 90°,
so wird aus dem selben Grund cos r < 0, was, wie wir
an Formel (2) sehen werden, k < 0 ergibt und damit
eine Addition von 1kl.

Noch ein Wort zum Azimut. Dieses kann in
bekannter Weise errechnet werden aus der Breite des

Beobachtungsorts <pa, der Deklination des Gestirns Ô

und seinem Ortsstundenwinkel s gemäss:

N

Fig. 1 : Erläuterung (vergl. auch den Text): N: Nordrichtung;
Pi : Richtung zum Projektionsort des Gestirns 1.
Höhengleichen sind mit h bezeichnet, gestrichene Grössen
beziehen sich auf die (frühere) Zeit t', ungestrichene auf t.
A ist der wegen Nichtberücksichtigung der Versegelung
falsche Ort, B ist der Ort zur Zeit t ' und C ist der Ort
zur Zeit t.
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^ — • \ ysin s tg s

Wir brauchen also eigentlich die Koordinaten des

Beobachtungsorts schon jetzt, dabei wollen wir sie

ja erst bestimmen! Da wir das Azimut jedoch nicht
mit höchster Genauigkeit für die weitere Rechnung
brauchen, kann man zum Beispiel die Maschine erst
den falschen Ort A (?>0/A0) berechnen lassen, damit
man <p° in obige Formel einsetzen und aus Ac und
dem Greenwicher Stundenwinkel einen brauchbaren
Wert für den Ortsstundenwinkel s berechnen kann.

Mit dem rechten Winkel bei D, der Distanz d und
dem Winkel r liefert die aus der sphärischen Trigonometrie

bekannte Beziehung zwischen vier Stücken:
sin r cotg 90° cotg d sin k — cos k cos r.

Da cotg 900 0 ist, erhält man hieraus :

cotg d sin k cos k cos r,

oder

tg k cos t tg d. (2)
Das Rechenprogramm wird also ein erstes Durchlaufen

des Standlinienprogramms vorsehen, wobei
die gemessenen Zenitdistanzen eingegeben werden.
Mit dem so erhaltenen falschen Ort A (den man übrigens

durch den aus der Koppelrechnung bekannten
Loggeort ersetzen kann, der ja auch nur einen
Näherungsort darstellt) sowie den bekannten Werten für
Distanz und Kurs wird nach (1) das Azimut des
zuerst beobachteten Gestirns berechnet und daraus nach
(2) die Korrektur k berechnet. Nachdem diese anz)
angebracht worden ist, wird mit der korrigierten
Zenitdistanz Zi und dem unveränderten Wert Z2 das

Standlinienprogramm nochmals durchgespielt
(Iteration), was den Ort C (y/A) ergibt, dessen Genauigkeit

im wesentlichen nur noch von den Beobachtungsfehlern

abhängt.

Anschrift des Verfassers : Martin Frick, Hochschule für Nautik, Bremen, B.R.D.

Nicht-statische Weltmodelle

von Doris Wiedemann, Basel

Die Erforschung des Universums durch Physiker und
Astronomen ist wohl eines der grössten intellektuellen

Abenteuer unseres Jahrhunderts. Zur Zeit da

Einstein seine Allgemeine Relativitätstheorie
entwickelte, war der Glaube an die Beständigkeit des

Universums noch ein fester Bestandteil der westlichen
Philosophie. «Der Himmel dauert von Ewigkeit zu
Ewigkeit» nahm man an, und es war zunächst auch
kein Grund vorhanden, von dieser Vorstellung
abzuweichen. Damals war nämlich die systematische
Relativbewegung ferner Galaxien noch nicht entdeckt.
Einstein soll daher auch unglücklich darüber gewesen

sein, dass die Grundgleichungen der Allgemeinen
Relativitätstheorie kein statisches Universum beschrieben.

Sie machten vielmehr die phantastisch anmutende

Voraussage einer expandierenden Welt. Die Situation

änderte sich aber mit einem Schlag, als Hubble
im Jahre 1929 die vorausgesagte Expansion des Alls
nachwies. Diese HuBBLE'sche Entdeckung war
zugleich eine erste Bestätigung der Allgemeinen
Relativitätstheorie.

Wie lässt sich nun die Expansion des Universums
beschreiben? Die Allgemeine Relativitätstheorie
liefert hierfür die folgende einfache Differentialgleichung

:

Fig. 1 : E. P. Hubble 1889-1953

Hierin sind /( und k Konstante und unter R(t) wollen
wir uns - zunächst noch etwas unpräzis - den
«Weltradius» vorstellen. Die Theorie zeigt weiter, dass k
nur die Werte

k 0, ± 1

annehmen kann. Entsprechend diesen drei k-Werten,
die ein Mass für die Raumkrümmung sind, ergeben
sich auch drei verschiedene Weltmodelle, die hier
skizziert werden sollen.

Betrachtet man die obige Differentialgleichung, so
fällt die Ähnlichkeit mit einem einfachen Problem aus
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