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Astronomische Ortsbestimmung mit Hilfe des Computers

(Maschinengerechte Standlinienmethode)
von M. Frick und M. Henkel, Bremen

Die Standlinienmethode der astronomischen
Ortsbestimmung stützt sich darauf, dass man, wenn die
Zenitdistanz z-l eines Gestirns gemessen wurde, mit ihr
auch den Abstand des eigenen Standorts vom
sogenannten Projektionsort des Gestirns auf der Erdkugel
kennt. Dieser Projektionsort ist der Ort, von dem
aus man das Gestirn genau im Zenit sieht; das heisst,
die Breite dieses Ortes ist gleich der Deklination, die
Länge gleich dem Greenwicher Stundenwinkel des
Gestirns. Kennen wir so den Abstand unseres Standorts

vom Projektionsort, so wissen wir zunächst
nicht mehr, als dass sich unser Standort irgendwo auf
einem Kreis (der Höhengleiche) mit dem Radius "zx

um den Projektionsort befinden muss. Messen wir
nun noch die Zenitdistanz z2 eines zweiten Gestirns,
dann wissen wir, dass der Standort auch auf dem
Kreis mit dem Radius z2 um den Projektionsort dieses
(zweiten) Gestirns liegen muss, womit der Standort
als Schnitt der beiden Höhengleichen bestimmt ist.
Nun schneiden sich die beiden Kreise allerdings in
zwei Punkten - wenigstens in den für uns interessanten

Fällen -, so dass wir die Auswahl zwischen zwei
Möglichkeiten für unseren Standort haben; im
allgemeinen wird es aber ohne weiteres möglich sein,
zu entscheiden, welcher Standort der richtige ist.

Soweit die Theorie in aller Einfachheit. Blicken
wir in die Geschichte zurück, so stellen wir fest, dass
der amerikanische Segelschiffkapitän Thomas H.
Sumner 1837 die astronomische Standlinie per Zufall
entdeckte. Erst gegen Ende des 19. Jahrhunderts
erkannte der französische Admiral Marcq St. Hilaire
die volle Bedeutung dieser Standlinie als Teil der
Höhengleiche. Er führte die Methode auch tatsächlich

mit Zirkel und Globus aus, indem er die
Höhengleichen direkt auf den Globus zeichnete. Hierzu sei
bemerkt, dass ein Globus von ungefähr Im Durchmesser

eine Genauigkeit der Ortsbestimmung von
etwa 10 km liefert. Das ist für die Weite des Ozeans
und für die damalige Zeit, in der die Nautiker mehr
raten als rechnen mussten, gar nicht so schlecht.
Zudem ist dieses Verfahren sehr einfach und sinnfällig.

Im Laufe der Zeit ist jedoch eine erhebliche
Komplizierung der Standortsbestimmung eingetreten,
weil im Hinblick auf eine grössere Genauigkeit der
Globus durch die Seekarte ersetzt wurde. Für diese
war es unmöglich, die alte Methode durch eine
entsprechende Rechnung zu ersetzen, einfach deshalb,
weil diese Rechnung zu kompliziert geworden wäre.
Rechenarbeit, die unter den erschwerten Bedingungen

einer Reise ausgeführt werden muss, ist nur dann
zu bewältigen, wenn sie auf möglichst einfache Weise
durchgeführt werden kann: das Rechenschema muss
einfach sein und Tabellen müssen den grössten Teil

der Rechenarbeit vorwegnehmen. Diese Überlegungen
führten zur heute verwendeten Standlinienmethode:
von einem Näherungsstandort aus (dem Loggeort,
der aus Fahrtgeschwindigkeit und Fahrtrichtung
vorausberechnet wird) wird die Umgebung eines der
beiden Schnittpunkte der Höhengleichen in grossem
Maßstab auf die Karte gezeichnet, wobei die Kreise
durch Tangenten ersetzt werden.

Aber schon in naher Zukunft dürfte dieses
Verfahren durch ein neues, erheblich genaueres ersetzt
werden. Programmierbare Kleincomputer sind heute
erschwinglich geworden, so dass damit zu rechnen
ist, dass diese bald zur selbstverständlichen Ausrüstung

der Schiffe gehören werden. Rechnungen zur
Ortsbestimmung können dann diesem Computer
übertragen werden. Man mag zunächst daran denken,
die Standlinienmethode in ihrer bis heute benützten
Form für den Computer zu programmieren. Das
bedeutet aber nichts anderes, als dass die zur Ermöglichung

der Benützung von Tabellenwerken
eingeschlagenen Umwege nun durch weitere Umwege im
Hinblick auf die Rechenprozesse im Computer zu
ergänzen wären. Bei der hohen Rechengeschwindigkeit

und Rechengenauigkeit des Computers erscheint
es aber als viel zweckmässiger, den logisch einfachsten

Weg der Berechnung zu benützen*). Erinnern
wir uns also an die alten Segelschiffer und die
mathematischen Ursprünge unserer Methode.

Auf der Abbildung sind Pi und Pa die Projektionsorte
mit den Breiten <pi und 992, sowie den Längen Ai

und fa. Um Pi und P2 werden die entsprechenden
Höhengleichen (Kleinkreise!) mit den Radien zi
beziehungsweise Z2 geschlagen, die als mögliche Standorte

die Schnittpunkte Xi (99/A) und X2 (99'/A') liefern.
Für die folgende Formelableitung sind zu betrachten
(durchwegs Grosskreisbögen!): die Längenkreisbögen

Pj^ Pol (90 °—9^), Xj Pol (90 °-(p) beziehungsweise

X2 Pol (90 °—99'), P2 Pol (90°-9>2) mit den
dazwischen liegenden Längendifferenzen wie
eingezeichnet, die Bögen P1X1 beziehungsweise P1X2 und
P2X1 beziehungsweise P2X2 und schliesslich der
Abstand der Projektionsorte P1P2 p. Die sphärischen
Dreiecke P1X1P2 und P1X2P2 sind einander
spiegelbildlich ähnlich; man beachte œ und ß.

Im sphärischen Dreieck Pol P]P2 gilt der
Seitencosinussatz:

cos p sin991sin992 cosç91cos992cos(A1-A2), (1)
woraus p und sin p berechnet werden. Im gleichen
Dreieck liefert der Sinussatz :

sin a sin(A,-A2) cosya, (2)
sin p

womit a berechnet wird.
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COS

Im sphärischen Dreieck PjXjPg gilt:
cos z2 cos ZjCos p + sin Zjsin p cos ß, und (3)

COS Z2 - COS ZjCOS p
sin 21 sin p

womit ß berechnet wird.
a. — ß ergibt dann den Ort Xj^ und a ß den Ort X2.
Weiter wird cos (a i ß) benötigt. (4)

Dann gilt für die sphärischen Dreiecke Pol PjXj
(mit a-ß) beziehungsweise Pol PxX2 (mit a+ß):
siny (bzw. singp') sin^cos zx + cos «p-jsin ZjCos
(aTß)- (5)

Hieraus erhält man <p mit a.-ß und q>' mit a-\-ß. Im
gleichen Dreieck gilt ausserdem:

cos Zj sin^siny -)- cosçjjCosçcos^j-A) und (6)
cos z1 sinç>]Sinç>' + Cos^jcosy'cos^-A'), sowie

cos z, - siny.siny
cos(A.-A) 1 ——— und (6 a)

COSÇPjCOSÇ)

cos^-A ')
cos Zj - sinçjjSinç)

COSÇJjCOSiy

woraus Ax-A und At-A', sowie schliesslich A und A'
berechnet werden.

Für <p2<q>1 wird a> 90°. Da dann der Computer
statt mit 90° + y mit 90° - y weiterrechnen und
damit ein falsches Ergebnis liefern würde, ist ein
unterscheidender Programmschritt erforderlich:

Wenn a> 90° wird, ist a durch 180° - a zu ersetzen.

Eine logarithmische Durchführung dieser Rechnung

würde mindestens zwei Stunden Zeit erfordern,
während der Computer, dem das Programm (die
logische Folge der Rechenschritte) eingegeben wurde
(üblicherweise auf Band), dafür nur einige Sekunden
benötigt. Man gibt dann nur die gemessenen Höhen
oder Zenitdistanzen und die Projektions-Orte (per
Lochkarte oder Lochstreifen) ein und erhält nach
Sekunden zwei Werte des Standortes. Eine weitere
Erleichterung der Ortsbestimmung mit Hilfe des

Computers besteht darin, dass man in das Programm
auch die Korrekturen für Refraktion und Kimmtiefe
als Funktion der Höhen bzw. Zenitdistanzen aufnehmen

kann. Die Kenntnis eines Loggeorts ist nicht
mehr erforderlich, da das Ergebnis einer letzten
Ortsbestimmung hinreichen wird, um zwischen den beiden

errechneten Standorten richtig zu entscheiden.

*) Ein analoges Vorgehen hat sich schon vor längerer Zeit mit
der Einführung des Computers bei geometrisch-optischen
Berechnungen ergeben. Auch hier sind die früheren
Berechnungsweisen mit Hilfe von Tafelwerken durch eine logische
Folge von Rechenschritten nach M. Herzberger mit
durchschlagendem Erfolg ersetzt worden. (Anmerkung der
Redaktion).
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