Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 30 (1972) **Heft:** 130/131

Artikel: Venus-Dichotomie im April 1972

Autor: Alean, Jürg

DOI: https://doi.org/10.5169/seals-899757

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BBSAG Bulletin No. 2

Das BBSAG Bulletin No. 2 über veränderliche Sterne ist am 10. April 1972 erschienen und kann von Interessenten bei Herrn Kurt Locher, Rebrainstrasse, CH-8624 Grüt bei Wetzikon, angefordert werden.

Die Redaktion.

Aufruf an unsere Leser

Der Orion würde gerne in einer seiner nächsten Nummern ein Bild des auf dem Mond am 13. Mai 1972 neu entstandenen Meteoriten-Kraters im Fra Mauro-Gebiet bringen, wenn möglich, zusammen mit einer Aufnahme, die *vor* dem Meteoriten-Einschlag erhalten wurde. Ein gutes Bild würde honoriert werden.

Venus-Dichotomie im April 1972

von der Redaktion überarbeiteter und ergänzter Beitrag

von Jürg Alean, Sennwald

Es ist seit langem bekannt, dass die beobachteten *Venus-Phasen* ein wenig von den in den Ephemeriden berechneten verschieden sind. Man kann dies darauf zurückführen, dass die Strahlenbrechung in der Venus-Atmosphäre Überstrahlungen verursacht, wie sie unter anderem auch zum Phänomen der «übergreifenden Hörnerspitzen» führt. Die Diskrepanz zwischen den Ephemeriden-Werten und den beobachteten Werten der Venus-Phasen wird am leichtesten bei halber Phase, also bei *Dichotomie*, erkannt. Seit der Entdekkung dieser Diskrepanz durch J. Schroeter wird sie regelmässig beobachtet¹). Nach M. Sumner betrug sie im August 1970 7d11h, um welche Zeit die Dichotomie zu früh eintrat.

Im folgenden wird eine Beobachtungsreihe mitgeteilt, die zwischen dem 5. 2. 1972 und 7. 4. 1972 gewonnen wurde, und die durch eine graphische Darstellung ergänzt ist. Nach diesen Beobachtungen trat die Dichotomie 7 Tage vor dem entsprechenden Ephemeridendatum ein, was mit früheren Ergebnissen¹) gut übereinstimmt.

Datum	MEZ	Vergr.	Luft	Durchsicht	Phase geschätzt	Phase in Mittel
5. 2. 72	1700	160×	4+	3—	0.797	0.797
15. 2. 72	1655	$160 \times$	3—	3	0.733	
	1700	$240 \times$			0.722	
	1705	$160 \times$			0.726	0.727
21. 2. 72	1725	$160 \times$	3–4	3	0.700	
	1735	$240 \times$			0.723	0.712
8. 3. 72	1505	$160 \times$	2-3	1-	0.639	
	1515	$160 \times$			0.667	0.646
20 10 100 100000	1525	$160 \times$			0.633	0.646
14. 3. 72	1425	$160 \times$	4—	3	0.627	
	1430	160×			0.641	0.631
45 0 50	1435	160×	2.4	1 0	0.625	0.031
15. 3. 72	1450 1505	$160 \times$	3–4	1-2	0.616 0.603	
	1935	$240 \times 160 \times$			0.603	0.615
	1/33	100 \			0.027	0.013

16. 3. 72	1835 1840 1843 1850	160 × 160 × 160 × 240 ×	2	1–2	0.597 0.624 0.589 0.591	0.600	
18. 3. 72	1800 1803 1815	$160 \times 240 \times 240 \times$	2–3	3–4	0.612 0.636 0.612	0.620	
19. 3. 72	1813 1819 1821	160× 240× 240×	3	2–3	0.596 0.588 0.588	0.591	
20. 3. 72	1825 1830	$^{160\times}_{240\times}$	2—	2	0.583 0.572	0.578	
22. 3. 72	1817 1820 1825	160× 240× 240×	1—	3+	0.552 0.554 0.554	0.553	
23. 3. 72	1820 1825 1900	$160 \times 160 \times 160 \times 160 \times$	3–4 2–3	2–3	0.575 0.549 0.554	0.559	
25, 3, 72	1800 1845 1850	160 × 160 × 240 × 240 ×	3 3—	2–3 2—	0.550 0.552 0.523	0.542	
30. 3. 72	1540 1808 1815 1845	160 × 160 × 160 × 160 ×	3–4 2–3	3–4 2	0.527 0.529 0.552 0.552	0.342	
2, 4, 72	1850 1620	$160 \times 160 \times$	3–4	1—	0.536 0.520	0.533	
	1630 1930	$^{160\times}_{240\times}$	3	1— 3	0.537 0.500	0.509	
4. 4. 72 5. 4. 72	1135 1630 1635	$160 \times 160 \times 160 \times$	4–5 4+	1	0.486 0.480 0.472	0.486	
7. 4. 72	1900 1835	$160 \times 160 \times$	2–3	2	0.486 0.479	0.481 0.479	

Bedeutung der Kolonnen bezüglich der Phasenangaben:

Die erste Phasenkolonne gibt die direkt geschätzte Phase. Die zweite Phasenkolonne gibt den Phasenwert aus a/b (siehe Figur).

Instrument: Maksutov 150 mm, f' = 2400 mm. Erfle-Okulare 15 mm und 10 mm.

Luft (-Unruhe): 1 (ideal) bis 5 (ungenügend) Durchsicht: Gleiche Skala wie bei Luft-Unruhe

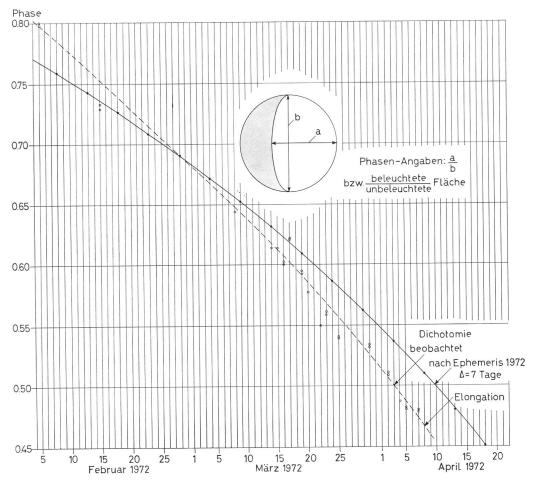
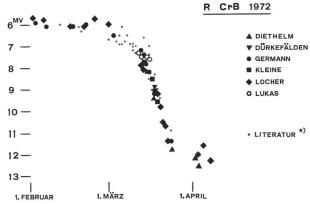


Diagramm der zweiten Phasenkolonne im Vergleich mit den Ephemeriden-Daten.

Literatur: 1) The Strolling Astronomer 23, 143 (1972).

Adresse des Autors: Jürg Alean, Postbureau, CH-9466 Senn-


Verhüllung 1972 von R Coronae Borealis

Nur 1 Monat nachdem Prof. R. Kippenhahn in «Sterne und Weltraum»1) diesen Veränderlichentyp und seinen Hauptvertreter unter den neuesten Gesichtspunkten ausführlich beschrieben hatte, sorgte R CrB am Himmel auch schon für Illustrationen, indem er spontan zu einer in allen Merkmalen typischen Verhüllung, etwa der zwölften seit 130 Jahren²), ansetzte. Eine kurze Beschreibung dieser Sterne findet sich auch in einer früheren Ausgabe des ORION3).

Die abgebildete Lichtkurve zeigt alle dem Verfasser bis Redaktionsschluss bekannten Resultate, nämlich visuelle Schätzungen von 6 SAG-Beobachtern und solche aus 2 Literaturquellen*).

Literatur:

- 1) R. Kippenhahn: Russende Sterne, SuW 1972/2, S. 32.
- 2) Umschlagbild des in 1) genannten Heftes.
 3) G. Freiburghaus: Variables du type R Coronae Borealis, ORION 72 (1961), S. 134.

*) I.A.U. Circulars 2390, 2391, 2394 (1972) «The Astronomer» 8 (1972), S. 201.

Adresse des Autors: K. Locher, Rebrainstrasse, CH-8624 Grüt bei Wetzikon.