Zeitschrift: Orion: Zeitschrift der Schweizerischen Astronomischen Gesellschaft

Herausgeber: Schweizerische Astronomische Gesellschaft

Band: 28 (1970)

Heft: 116

Rubrik: Ergebnisse der Beobachtungen von Bedeckungsveränderlichen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

der berechneten Kugelform höchstens 1.5 μm und die Asymmetrien zur optischen Achse nicht mehr als 0.2 μm betragen. Linsenabstände sind zum Teil bis auf 1 μm und Linsendicken auf wenige hundertstel Millimeter genau einzuhalten.

Mechanische Besonderheiten

Die mechanische Konstruktion musste den besonderen Verhältnissen beim Einsatz dieser Objektive Rechnung tragen. So waren sehr strenge Bestimmungen der NASA zu erfüllen, damit die Objektive die hohen Beschleunigungen und die extremen Druckund Temperaturschwankungen ohne Schaden überstehen:

- Linsenfassungen aus Chromnickelstahl mit gleichem Wärmeausdehnungskoeffizient wie Glas;
- Kräftige Bauart, um mechanische Beschädigungen zu verhindern;
- Staubdichte Entlüftungsöffnungen zum Druckausgleich;
- Besonders entwickelter Kitt zum Verkitten der Linsen:
- Blenden- und Distanz-Einstellringe mit vorstehenden Griffen, damit die Betätigung mit dicken Handschuhen möglich ist.

Strenge Prüfung

Ausser der sehr genauen Prüfung der optischen Eigenschaften wird jedes Objektiv weiteren strengen Kontrollen unterworfen. So wird es z. B. auf der Rüttelmaschine während fünf Minuten der 5.5fachen Erdbeschleunigung ausgesetzt, und die Einstellringe müssen auch bei Temperaturen von —40°C und +70°C leicht zu betätigen sein. Im Ganzen enthält das von der NASA aufgestellte Kontrollblatt 25 verschiedene Prüfungen, die jedes Objektiv zu bestehen hat.

Einsatz der Kern-Objektive im Apollo-Programm

Die Kern-Objektive werden mit der sogenannten «Data-Acquisition»-Filmkamera verwendet. Sie dient dazu, nach einem bis in alle Einzelheiten festgelegten

Die von Kern entwickelte und gebaute Serie von Hochleistungsobjektiven für die in den Apollo-Programmen verwendete 16-mm-«Data Acquisitions»-Filmkamera.

Plan Bewegungsvorgänge im Film festzuhalten, um das Verhalten von Menschen und Material im Raum und auf der Mondoberfläche verfolgen zu können. Diese Informationen leisten wertvolle Hilfe bei der Auswertung der Apollo-Ergebnisse und bei der Vorbereitung weiterer Raumfahrt-Projekte.

Bei Apollo 10 waren es vor allem das Verbinden und Trennen von Mondlandefähre (LM) und Raumschiff (CSM) sowie das Rendez-vous-Manöver und das Wiederankoppeln des LM an das Raumschiff nach erfolgter Mondumkreisung, die in allen Details im Film festgehalten wurden. Dabei waren sowohl das Raumschiff als auch das LM mit einer Kamera und Kern-Objektiven ausgerüstet.

Bei Apollo 11 und 12 lag das Schwergewicht der «Data Acquisition» naturgemäss auf der Mondlandung sowie der Bewegung und den Manipulationen der Astronauten auf der Mondoberfläche.

 $\it Adresse \ des \ Verfassers: Hans Labhart, c/o Kern & Co. AG, 5001 Aarau.$

Ergebnisse der Beobachtungen von Bedeckungsveränderlichen

1	2	3	4	5	6	7	SV Cam SV Cam	2 440 515.318 528.354	+11361 11383	-0.005 -0.017	17 13		b b
AB And	2 440 542.336	+13353	+0.032	11	RD	b	AB Cas	2 440 523.362		-0.017 + 0.006	18		Ь
XZ And	2 440 499.325	+ 5611	+0.074	16	HP	b				1 0 00 00 00			
XZ And	541.398	5642	+0.072	10	KL	b	RZ Cas	2 440 507.412	1 1000000000000000000000000000000000000	-0.029	16	KL	
XZ And	541.400	5642	+0.074	12	HP	b	RZ Cas	507.416	19370	-0.024	11	RG	b
00 Aql	2 440 507.336	$+12393\frac{1}{2}$	-0.051	12	KL	0	RZ Cas	507.417	19370	-0.024	17	HP	b
00 Aql	520.269	$+123937_{2}$ 12419	-0.031 -0.041	13	KL		RZ Cas	513.394	19375	-0.023	14	HP	b
						a	RZ Cas	531.328	19390	-0.018	18	HP	b
00 Aql	522.291	12423	-0.046	5	KL		RZ Cas	555.221	19410	-0.030	10	KL	b
00 Aql	536.233	$12450\frac{1}{2}$		6	KL		RZ Cas	555.226	19410	-0.025	11	HP	b
00 Aql	542.322	$12462\frac{1}{2}$	-0.034	1	RD	a	U Cep	2 440 510.308	+13085	+0.158	12		b
V 346 Aql	2 440 523.270	+ 8310	-0.004	7	KL	b	1						~
CZ Agr	2 440 537.299	+11082	-0.010	6	KL	h	U Cep	510.312	13085	+0.162	14	KL	
		100000000000000000000000000000000000000					U Cep	515.290	13087	+0.154	19	HP	b
RY Aqr	2 440 531.387	+ 3386	-0.050	6	KL	b	U Cep	515.298	13087	+0.161	12	RG	b
RY Aqr	537.291	3389	-0.047	7	KL	b	U Cep	520.275	13089	+0.163	13	HP	b
AL Cam	2 440 530.376	+10629	-0.092	13	HP	b	RW Cet	2 440 541.326	+ 8268	-0.047	8	KL	a

RW Cet	542.298	8269	-0.050	18	KL	a
TW Cet	2 440 507.444	$+31089\frac{1}{2}$	-0.007	6	KL	b
TW Cet	527.395	$31152\frac{1}{2}$	-0.018	5 8	KL KL	b b
TW Cet TU CMa	555.296 2 440 542.664	$31240\frac{1}{2} + 12028$	$0.000 \\ +0.040$	12	KL	
BR Cyg	2 440 542.004	+ 12028 + 5294	+0.040	12	HP	a
V 382Cyg	2 440 513.366	+ 6656	-0.010	11	RD	a
DM Del	2 440 542.325	+11696	-0.010 -0.031	9	RD	a
AI Dra	2 440 498.382	+13230	+0.008	11	HP	a
AI Dra	516.358	13245	+0.002	7	RR	a
AI Dra	516.359	13245	+0.003	7	JK	a
AI Dra	528.370 2 440 509.612	13255 + 2990	+0.026 +0.015	16	HP KL	a
RY Eri TZ Eri	2 440 509.612		+0.015 +0.038	14 12	HP	a
TZ Eri	527.472	+ 5549 5549	+0.036 $+0.042$	8	KL	a a
WX Eri WX Eri	2 440 529.487 557.470	$+15787 \\ 15822$	$^{+0.014}_{+0.006}$	21 12	KL KL	a a
YY Eri	2 440 507.503	+21546	+0.005	12	KL	b
YY Eri YY Eri	526.637 548.498	$21605\frac{1}{2}$ $21673\frac{1}{2}$	$+0.010 \\ +0.009$	18 12	KL KL	b
YY Eri	555.409	$21675\frac{7}{2}$	+0.009	11	KL	b
YY Eri	557.500	$21701\frac{1}{2}$	+0.009	10	KL	b
YY Eri	565.378	21726	+0.011	6	KL	b
YY Gem	2 440 561.459	+17602	+0.010	5	RD	a
SZ Her SZ Her	2 440 524.262 524.268	$+\ 8768$ 8768	-0.012 -0.007	17 7	KL RG	a
SZ Her	542.257	8790	-0.016	18	KL	a
UX Her	2 440 541.277	+13342	-0.042	14	KL	a
CM Lac	2 440 499.307	+ 8396	0.000	16	HP	b
CM Lac	507.328 515.352	8401 8406	-0.003 -0.002	10 9	RG RG	b b
CM Lac	515.357	8406	-0.002 + 0.004	17	HP	b
CM Lac	523.370	8411	0.007	9	RG	b
CM Lac	523.377	8411	0.000	8 11	HP HP	b b
CM Lac RV Oph	531.393 2 440 508.310	8416 + 4478	-0.007 -0.019	8	KL	a
U Oph	2 440 486.352	+19201	-0.019	13	HP	a
ER Ori	2 440 508.643	$+13564\frac{1}{2}$	-0.069	11	KL	b
ER Ori	544.423	13649	-0.067	6	KL	b
ER Ori	555.426	13675	-0.072	10	KL	b
DI Peg	2 440 526.264	+11358	-0.006	21	KL	b
U Peg	2 440 542.260	$+19636\frac{1}{2}$	-0.011	5	RD	b
β Per β Per	2 440 523.359 523.368	+ 2029 2029	-0.014 -0.005	10 19	RG HP	a
AY Pup	2 440 536.630	$+30205\frac{1}{2}$	+0.056	7	KL	a
EQ Pup	2 440 542.642	+13025	+0.007	12	KL	a
RT Scl	2 440 555.286	+32877	-0.014	10	KL	b
U Sct U Sct	2 440 509.291 530.298	+25281 25303	$^{+0.017}_{+0.014}$	11 8	$_{\mathrm{KL}}^{\mathrm{KL}}$	a a
U Sge U Sge	2 440 524.299 524.300	+ 3376 3376	$^{+0.009}_{+0.009}$	14 17	KL HP	b b
V 505 Sgr	2 440 507.252	+ 5911	-0.030	9	RG	a
V 505 Sgr V 505 Sgr	507.253 520.269	5911 5922	-0.030 -0.025	13 13	HP KL	a a
V 505 Sgr	520.276	5922	-0.023 -0.018	12	HP	a
RW Tau	2 440 531.402	+ 8427	-0.076	23	HP	b
RW Tau	531.403	8427	-0.075	12	KL	b
X Tri	2 440 536.348	+ 6012	+0.030	10	KL	a
BU Vul BU Vul	2 440 528.312 565.298	+12180 12245	$+0.055 \\ +0.057$	6 16	AV KL	a
Z Vul	2 440 507.281	+ 6131	+0.013	16	HP	b
	20//201	,	1 - 1		_	-

Die Kolonnen bedeuten: 1 = Name des Sterns; 2 = B = heliozentrisches Julianisches Datum des beobachteten Minimums; 3 = E = Anzahl Einzelperioden seit der Initialepoche; 4 = B-R = Differenz zwischen beobachteter und berechneter Minimums-

zeit in Tagen; 5 = n = Anzahl Einzelbeobachtungen, die zur Bestimmung der Minimumszeit verwendet wurden; 6 = Beobachter: RD = Roger Diethelm, 8400 Winterthur, RG = Robert Germann, 8636 Wald, JK = Jürg Keller, 8344 Bäretswil, KL = Kurt Locher, 8624 Grüt-Wetzikon, HP = Hermann Peter, 8112 Otelfingen, RR = René Rossi, 8304 Walliselen, AV = Arnold von Rotz, 8008 Zürich; 7 = Berechnunggrundlage für E und B-R: a = Kukarkin und Parenago 1958, B = Kukarkin und Parenago 1960.

Reduziert von R. Diethelm und K. Locher

Komet Tago – Sato – Kosaka (1969 g)

Am 10. und 12. Oktober 1969 entdeckten die drei Japaner Tago, Sato und Kosaka unabhängig voneinander einen Kometen etwa 10. Grösse im Sternbild Ophiuchus. Die bald in grosser Fülle eintreffenden Beobachtungen liessen erkennen, dass sich der Komet noch lange vor seinem Periheldurchgang befinden musste. Es war also endlich wieder einmal die Gelegenheit vorhanden, einen hellen Kometen zu sehen!

Komet TAGO - SATO - KOSAKA bewegte sich bald nach Süden, durch die Sternbilder Skorpion, südliche Krone ins Teleskop, wo er um Weihnachten eine Helligkeit von 2.8^m erreichte und einen Schweif von 2–3° Länge zeigte. Im Januar 1970 zog er durch die Sternbilder Indus, Kranich, Bildhauer und Walfisch wieder an den Nordhimmel. Nach der untenstehenden Ephemeride, die von Brian G. Marsden aufgrund von 27 Beobachtungen zwischen dem 13. Oktober und 26. Dezember 1969 berechnet wurde, können wir diesen Kometen im Februar 1970 am Abendhimmel bis nach Mitternacht sogar mit dem Feldstecher in den Sternbildern Widder und Perseus aufsuchen. Im März 1970 wird der Komet schon deutlich schwächer, ist aber zirkumpolar und somit während der ganzen Nacht zu beobachten.

$1970 0^{\rm h} ET \\ \sim 1^{\rm h} MEZ$	Rektaszension (1950.0)	Deklination (1950.0)	Helligkeit
Febr. 3. 5. 7.	2 ^h 06.63 ^m 2 16.97 2 26.42	+23°27.8′ +26 45.5 +29 32.7	5.5 ^m
9. 11.	2 35.13 2 43.21	+31 54.9 $+33 56.7$	6.1
13. 15.	2 50.75 2 57.84	+35 42.0 $+37$ 13.6	6.6
17. 19.	3 04.54 3 10.92	+38 33.8 +39 44.6	7.1
21. 23.	3 17.00 3 22.84	$+40 47.5 \\ +41 43.6$	7.6
25. 27.	3 28.47 3 33.92	$+42 34.0 \\ +43 19.5$	8.0
März 1. 3.	3 39.21 3 44.36	$+44\ 00.8 \\ +44\ 38.4$	8.4
5. 7.	3 49.39 3 54.32	+45 12.8 $+45$ 44.3	8.7
9. 11.	3 59.15 4 03.91	$+46 13.4 \\ +46 40.2$	9.1
13. 15.	4 08.60 4 ^h 13.23 ^m	$+47^{\circ}05.1 \\ +47^{\circ}28.2'$	9.4 ^m

Literatur: IAU-Circ. Nr. 2175, 2183, 2189 und 2197.

Niklaus Hasler-Gloor