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bestimmung mit einer Genauigkeit von 1 Kilometer
auf 100 Millionen Kilometer. Das erlaubte z. B. den
Ingenieuren beim Venus-Flug von «Mariner V», die
Entfernung des unsichtbaren Satelliten jederzeit bis
auf wenige hundert Meter genau zu bestimmen. Diese
erstaunliche Messtechnik, bei der der bekannte Dopp-
ler-Effekt eine entscheidende Rolle spielt, ist eines der
wichtigsten Hilfsmittel in der heutigen Raumfahrt.

Doch kehren wir wieder zu den Radar-Untersu-
chungen an der Venus zuriick. Es scheint heute fest-
zustehen, dass die nicht sichtbare Oberfliche des Pla-
neten dtei «raunhes Gebiete von teils riesigen Ausmas-
sen aufweist. Die Wissenschafter vermuten Gebirge,

aber GOLDSTEIN, als vorsichtiger Gelehrter, meint:
«Bs war bisher nicht méglich, die Héhen zu messen.
Gebirge sind also noch nicht nachgewiesen, aber je-
nes Terrain, das die Strahlung zuriickwirft, ist rauh
im Vergleich zu den ibrigen Gebieten.»

Im April 1969, wenn Venus der Erde wieder niher
kommt, steht den Physikern in Goldstone eine we-
sentlich erhéhte Sendeleistung von ungefihr 450 Ki-
lowatt zur Verfiigung, die bessere Untersuchungs-
moglichkeiten schafft. Eines der Nahziele dieser Ver-
suche unter Aufsicht der NASA ist das Ausfindig-
machen sicherer Landeplitze fur kiinftige, weich lan-
dende Venus-Sonden. Hax~s Rour

Optik fiir Astro-Amateure

von E. WienpEMANN, Richen
3. Mitteilung

Die Verwirklichung der optischen Abbildung
(Fortsetzung)

In der 2. Mitteilung?) haben wir die bei optischen

Systemen auftretenden Bildfebler besprochen und die

Moéglichkeiten zu ihrer Beseitigung aufgezeigt. Von

einem optischen System wird aber nicht nur eine prin-

zipielle Korrektur der Bildfehler verlangt. Um beur-
teilen zu konnen, ob ein optisches System fir einen
bestimmten Zweck geeignet ist, mussen die Betrige
der Restaberrationen genau bekannt, das heisst zah-
lenmissig definiert sein. Dies gilt insbesondere fiir die
astronomische Optik, aber auch fiir die Photo-Optik, die

Mikroskop-Optik und die Optik von Messgeriten.

Fur die zahlenmissige Bestimmung des Korrek-
tionszustandes optischer Systeme, und, wie wir spi-
ter sehen werden, auch fir deren Synthese, beniitzt
man heute ausschliesslich mathematische Methoden,
deren man sich entweder auf herkommliche Weise
oder mit Hilfe von Rechenmaschinen und Compu-
tern bedient, wofur spezielle Rechenprogramme ent-
wickelt worden sind. An dieser Stelle kann jedoch
nur das prinzipielle Vorgehen bei diesen Rechnungen
gezeigt und an einfachen Beispielen erldutert werden.
Die Rechnungen selbst zerfallen in die folgenden:

1. die Nillstrablrechnung, die die genauen Werte det Schnitt-
und Brennweiten, gegebenfalls fiir beliebige Farben, liefert
und damit tiber die Farbkorrektion auf der Achse (Farblings-
fehler) und im Bildfeld (Farbquetfehler) Aufschluss gibt,

. die Berechnung der Fléichenteilkoeffizienten und deren Summen, die
ebenfalls fur beliebige Farben, einen angenaherten Aufschluss
iiber den Korrektionszustand auf der Achse und innerhalb
eines missigen Bildfeldes liefert und besondets auch zum
Einkorrigieren eines neuen Systems dienen kann,

3. die (#rigonometrische) Durchrechnung von achsenparallelen, ge-
gen die Achse geneigten und eventuell auch windschiefen
Strahlen, womit fiir alle Bildfehler ein zahlenmissiges Bild
des Korrektionszustandes erstellt werden kann, das sich

durch die Berechnung von 7reffer-Diagrammen in bezug auf
den jeweiligen idealen Bildpunkt erginzen lisst.

S8

Eine Berechnung von Trefferdiagrammen ist allerdings des
grossen damit verbundenen Aufwandes wegen kaum ohne
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Computer dutrchfiithtbar und muss deshalb hiet ausser Betracht
bleiben. Dagegen sind die drei ersten Berechnungen auch ohne
besondere Rechenhilfen méglich. Auf sie wollen wit nun ein-
gehen. Fir den niher daran interessierten Leser sei in diesem
Zusammenhang die wichtigste einschligige Literatur zitiert
3), 4), £), ). Er findet darin auch weitere, zusitzliche Berech-
nungsmaoglichkeiten, die ihm helfen kénnen, optische Systeme
zu priifen und zu beurteilen.

1. Die Nullstrablenrechnung

Beschrinkt man sich auf den sogenannten Gauss-
schen fadenférmigen Raum um die Achse, innerhalb
dessen der Sinus eines Winkels seinem Bogenwert
noch gleichgesetzt werden darf, so gilt fiir die inner-
halb dieses Raumes vetlaufenen Parachsialstrablen in
aller Strenge die ABBEsche Invariante:

M Il1(i—L =n" L—L>
by S1 1 Sy
worin n; den Brechungsindex eines ersten und n’
jenen eines folgenden Mediums, t; den Radius einer
brechenden oder reflektierenden Fliche, s die Schnitt-
weite vor der Brechung oder Reflexion und sy jene
nach dieser bedeutet. Folgen mehrere Flichen auf-
einandet, so ist deren Abstand in Abzug zu bringen:

(2) s2 = s§'1 — ¢'1; 851 = s'» — ¢'s und so fort,
wenn mit e’s, €’» und so fort die aufeinanderfolgen-
den Abstinde bezeichnet werden.

Auf diese Weise ldsst sich ein achsnaher Strahl iiber eine be-
liebige Folge von brechenden und reflektietenden Flichen, also
ein beliebiges optisches System, vetfolgen, und man erhilt zu
ciner beliebig wihlbaren ersten Schnittweite s; (die meistens oo
oder eine gegebene Objektweite ist) die schliessliche Schnitt-
weite s'y, die gleich der Bildweite ist. Da bei dem unendlich
weit entfernten Objekt in der Astronomie sy stets = o zu set-
zen ist, erhdlt man mit s’y stets die Sehnittweite des optischen
Systems, die aber im allgemeinen #ich# mit dessen Brennweite
identisch ist. Die Brennmweite betechnet sich jedoch einfach aus
den Schnittweiten:

.
B == =2

So S1
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Um diese kurzen Rechnungen zu erldutern, seien zwei ein-
fache Beispiele berechnet:

a) Der einfache sphérische Floblspiegel

Ein sphirischer Hohlspiegel habe einen Kriimmungsradius
r = -+ 334.9748 mm. Es sollen Schnitt- und Brennweite be-
rechnet werden. s; sei o. Der Spiegel befinde sich in Luft,
woraus folgt, dass n; = n’y = 1 ist. Dann lautet die ABBEsche
Invariante:

a1 (=)=t =)

4
und damit —s’1 = -5

Wie wir natiitlich schon aus Etfahrung wussten, betrigt die
Schnittweite die Hilfte des Radius, also —167.4874 mm. Das
Minuszeichen vor det Schnittweite ist die Folge der Richtungs-
umkehr des Strahls, gemiss der frither getroffenen Festsetzung?).
Aus (3) folgt weiter:
(3a) —s'1 =—1{’,in Worten:
beim einfachen Spiegel ist die Brennweite gleich der Schnitt-
weite, da das System die optische Dicke Null besitzt.

b) Die bikonvexe Sammellinse

Eine bikonvexe Sammellinse sei aus dem Glas BK 7 gefer-
tigt, besitze also fur das Licht der gelben Quecksilberlinie den
Brechungsindex nd = 1.51680. Sie habe die Radien r; =
+604.2000 und r2 = —100.7000 mm. Die Dicke e’ sei 6.000.
s1 sei wiederum o, n; = 1. Es sollen Schnitt- und Brennweite
berechnet werden.

Bei brechenden Flichen ist es zweckmissig, die ABsEsche
Invariante hierzu in etwas andeter Form zu schreiben:

(1b-3b) 1.Fliche und Ubergang zur 2. Fliche:

—n'1+1 . 1 v —n'y §1c she't —
— = —X1; —— = —y1; ———— = 8'1; s'1—e'1 =sa.

41y e T —X1—y1 ’

2. Flache, Schnittweite s’s und Brennweite f':
+n'1—1 —n'1 —1 ;
= —X2; =—Y2; ————_ =82;

—12 —X2—Yy2
s,
— sy = 1",
82

Die numerische Ausrechnung ergibt: s’y = 1773.4128; s, =
1767.4128; s’s = 166.9365; f* = 167.4874 mm.

Damit sind Schnitt- und Brennweite dieser Linse fiir die
Wellenlinge 587.5 nm, die dem Licht der gelben Quecksilbet-
linie entspricht, berechnet. Schnitt- und Brennweite sind etwas
verschieden, da die Linse eine endliche Dicke besitzt.

Auf genau gleiche Weise verfolgt man den Null-
strahl auch durch eine Linsenfolge, beispielsweise
durch ein Fernrohrobjektiv, eine BARLOW-Linse, ein
Ross-System oder auch ein Okular, um deren Schnitt-
und Brennweite zu bestimmen.

Ersetzen wir in der Rechnung der Sammellinse den Bre-
chungsindex fir nd durch Brechungsindices fiir andere Far-
ben, so erhalten wir die Schnitt- und Brennweiten fiir diese und
damit die Masszahlen fiir die Farbfehler unserer Linse.

Schon frither?) haben wir erfahren, dass die Farb-
fehler einer einfachen Linse weitgehend aufgehoben
werden kénnen, wenn man zwei Linsen von gegen-
sitzlicher Brechkraft und verschiedenen »-Werten
kombiniert. Fuir ecine solche Achromatisiernng gelten
die folgenden Regeln: Soll die Kombination sammeln,
so muss die Sammellinse eine kleine Farbzerstreuung,
also einen grossen »-Wert, und die Zerstreuungslinse
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eine grosse Farbzerstreuung, also einen kleinen »-
Wert aufweisen (Beispiel: Fernrohr-Objektive). Soll
die Kombination gerstresen, so muss die Sammellinse
die grossere und die Zerstreuungslinse die kleinere
Farbzerstreuung besitzen (Beispiel : BARLOW-Linsen).

Fihrt man fiir solche Kombinationen nach dem Schema
(1 b -3 b) die Nullstrahlrechnung fiir die verschiedenen inter-
essierenden Farben durch, so erhilt man damit die genauen
Zahlenwerte detr Achromatisierung der Schnitt- und Brenn-
weite. Das Ergebnis kann man der Ubersichtlichkeit halber
graphisch darstellen, wofiir die F7g. 7 der 2. Mitteilung?) ein
Beispiel datstellt.

¢) Normierung

Bevor wir zur Flichenteilkoeffizienten-Berechnung
und zur trigonometrischen Durchrechnung von Strah-
len iibergehen, sei noch eine in der praktischen Optik
ibliche Regel besprochen.

Um bequeme und vergleichbare Zahlenwerte zu
bekommen, ist es {iblich, die Nullstrahlrechnung und
auch die trigonometrische Durchrechnung fir die
Brennweite 100 (mm) durchzufiithren. Das ist immer
moglich, auch wenn man zunichst eine andere Brenn-
weite ermittelt hat, weil alle Bestimmungsstiicke linear
andern, also mittels eines Faktors dahin gebracht wer-
den kénnen, dass die Brennweite 100 (mm) wird.

Bei unseren beiden Beispielen @) Hohlspiegel und 4) Sam-
mellinse hatten wir eine Brennweite von 167.4874 (mm) erhal-
ten. Multiplizieren wir diesen Wett mit dem Faktor 0.59706,
so erhalten wir f* = 100.0000. Mit demselben Faktor multipli-
zieren wir sodann alle unsere Bestimmungsstiicke (Radien, Dik-
ken, Abstinde), womit das System normiert ist. Wir erhalten:
«) beim Spiegel:

r = 334.9748-0.59706 = 200.0000 = r

f" = 167.4874-0.59706 = 100.0000 = £’
b) bei der Sammellinse:

r1 = -+604.2000-0.59706 = 360.7431 = r;
ely = 6.000-0.59706 = 3.5823 = ¢’
rs = —100.7000:0.59706 = — 60.1239 = 1,
Die neuen Schnittweiten werden:

s’y = +1058.7742

se = —1055.1919

s’s =+ 99.6701

und die Brennweite wird:

f” = 100.0000.

Fir die Berechnung der Flichenteilkoeffizienten
wire eine Brennweite von 100 unbequem. Man hat
sich deshalb darauf geeinigt, fiir diese Rechnungen
die Brennweite = 1 zu setzen. Man riickt dafiir bei
den Konstruktionsdaten und den ebenfalls benétig-
ten Werten der Nullstrahlrechnung das Komma um 2
Stellen nach links. Ferner benétigt man fiir die Be-
rechnung der Flichenteilkoeffizienten noch die so-
genannten h-Quotienten, die sich wie folgt ergeben:

hl_ . hz_hl S2
R e T

hs hy S2 S3 "
— =—— — ectc.
hl h1 S1 So

— 3
S1

2. Die Berechnung der Flichenteilkoeffizienten
Mit der Berechnung der Flichenteilkoeffizienten
verlassen wir den Gauss’schen fadenformigen Raum
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um die Achse und betreten den Bereich eines missi-
gen Offnungsverhiltnisses von etwa 1:10 und mis-
sig gegen die Achse geneigter Strahlen, wie sie einem
Bildwinkel von etwa 15° entsprechen. In diesen Be-
reichen treten dann die frither besprochenen 5 mono-
chromatischen Bildfelder, die sphirische Aberration,
die Asymmetriefebler, der Astigmatismus, die Bildfeld-
wilbung und die Vergeichnung auf, und diese Fehler
sind es auch, uber deren Grosse und Vorzeichen die
Flichenteilkoeffizienten-Berechnung Aufschluss gibt.

Hierzu ist es nétig, in der Anndherung an den Si-
nus eines Winkels einen Schritt weiter als bei der
Nullstrahl-Rechnung zu gehen. L. SEipeL hat dafiir
als erster Entwicklungen nach der 3. Ordnung ange-
geben und auch gezeigt, wie man diese Entwicklun-
gen dazu beniitzen kann, Fliche fir Fliche einzeln
die 5 von einander unabhingigen monochromatischen
Bildfehler, in der oben angefiihrten Reihenfolge kurz
mit: A, B, C, P und V bezeichnet, zu berechnen. Die
bei einem optischen System schliesslich resultieren-
den Fehler ergeben sich dann einfach durch die Ad-
dition der einzelnen Flichenfehler. Ist deren Summe
gleich Null, so ist das System dafiir im Bereich der 3.
Ordnung fehlerfrei.

Es sei bemerkt, dass die Methode der Fliachenteil-
koeffizienten-Berechnung nach der 3. Ordnung durch
die Hinzunahme hoherer Gliedet in den Entwicklun-
gen (5. Ordnung, 7. Ordnung) verfeinert werden
kann, womit A. SoNNEFELD®) die Anzahl der von
einander unabhingigen Bildfehler gesetzmissig zu-
nimmt. Schon J. Perzvar (1840) soll die Entwick-
lung nach der 7. Ordnung fiir die Berechnung seines
berithmten, nach ihm benannten Objektivs, mit dem
bekanntlich die Aera der Astrophotographie eingelei-
tet wurde, beniitzt haben. Da der mathematische Auf-
wand dafiir aber gross ist und die Berechnung nach
der 3. Ordnung cinen ausreichenden Einblick in die
wesentlichen Merkmale eines optischen Systems ver-
mitteln, soll hier nur darauf hingewiesen werden.

Wichtig ist indes, dass die Ergebnisse der Flichen-
teilkoeffizienten- Berechnung sowohl Aufschlisse tiber
den Korrektionszustand eines Systems, als auch Richt-
linien fir die Korrektur vermitteln, wie sie auf andere
Weise kaum erhalten werden konnen. Einige Anga-
ben mogen dies erldutern.

Treten bei einem optischen System in A und B nur
kleine Flichenteilkoeffizienten auf und ist deren Sum-
me kleiner als 1.5 bzw. 0.5, so bedeutet dies, dass
dieses System eine relativ grosse Lichtstirke haben
kann. Sind ausserdem die Flichenteilkoeffizienten C
und P klein und deren Summen ebenfalls klein und
von entgegengesetztem Vorzeichen, so wird das Sy-
stem ein grosseres Bildfeld auszeichnen. Zeigt ein
System irgend einen Fehler, so wird dessen Beseiti-
gung am chesten gelingen, wenn jene Fliche gein-
dert wird, an welcher der betreffende Flichenteil-
koeffizient einen grossen Wert hat. Auf diese Weise
kann die Kenntnis der Flichenteilkoeffizienten beim
Kotrigieren optischer Systeme helfen. Belisst man
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schliesslich den Summen der Flichenteilkoeffizienten
kleine endliche Werte (statt sie zu Null zu machen),
so kann man damit den Einfluss der Glieder der 5.
und 7. Ordnung beriicksichtigen. Es reicht dann die
Giiltigkeit der Werte bis zu den grosseren Offnungs-
verhidltnissen und grosseren Bildwinkeln, besonders,
wenn die einzelnen Flichenteilkoeffizienten alle klein
sind. Grosse Flichenteilkoeffizienten verursachen im
allgemeinen erhebliche Zonenfehler und begrenzen
— auch wenn die Summenwerte klein sind — das Off-
nungsverhiltnis oder das Bildfeld (oder beide) stark,
es sei denn, es stiinde einem grossen Flichenteil-
koetfizienten ein annihernd gleich grosser entgegen-
gesetzten Vorzeichens gegentiber. Ein Beispiel dafiir
werden wir bei zweilinsigen Fernrobrobjektiven noch
kennen lernen. Auch bei katadioptrischen Systemen,
insbesondere bei den Varianten des MAKSUTOV-Sy-
stems, bei optischen Zusatzsystemen (BArRLow-Lin-
sen, Ross-Systemen, ERFLE-Planokularen etc.) wet-
den uns die Ergebnisse der Flichenteilkoeffizienten-
Berechnungen noch sehr niitzlich sein.

Was nun die Berechnung der Flichenteilkoeffizienten be-
trifft, so muss beziiglich des Rechenschemas auf die einschli-
gige Literatur3) verwiesen werden. Wie begniigen uns hier da-
mit, die Ergebnisse fiir unsere beiden Beispiele in der von M.
Berex vorgeschlagenen Form wie folgt anzuschreiben:

a) Der einfache sphirische Hoblspiege/

f’ = —1.0000, s; =
hy
v ty e’y n’y s’y hi
1 +2.0000 0.0000 1.0000 —1.0000 1.0000
A'H BV CIJ P'p Vp
+0.2500 —0.5000 -+1.0000 —1.0000 --0.0000

Da unser Spiegel nur eine optisch wirksame Fliache besitzt,
sind die ermittelten Flichenteilkoeffizienten gleichzeitig die ge-
suchten Summenwerte. Thre Besprechung folgt weiter unten.

b) Die bikonvexe Sammellinse
f” = +1.0000, s1 = =

hy
v fy € /y n ’1} S /'p hl
1 +3.6074 0.0358 1.5168 +10.5877  1.0000
2 —0.6012 — 1.0000 +0.9967 0.9966

Ay By Cy Py Vy

1 +0.0050 +0.0180 +0.0649 -+0.0944 +0.5746
2 +6.5990 —2.3353 +0.8264 +40.5668 —0.4930
Summen +6.6040 —2.3173 +40.8913 +0.6612 +0.0816

Es sei hier sogleich bemerkt, dass man eine Sammellinse
auch in umgedrehter Stellung beniitzen kann, womit sich die
Brennweite kaum dndert, die Flichenteilkoeffizienten und de-
ren Summen aber merklich andere Werte annehmen kénnen.
Da in diesem Fall diese kleine zusitzliche Rechnung ein seht
instruktives Ergebnis liefert, sei ihr Ergebnis ebenfalls ange-
fithrt:

¢) Die bikonvexe Samumellinse, umgedrebt
f’ = +1.0000, s; =

hy
VY fy e ,v n /1) S ’1} h1
1 +0.6012 0.0358 1.5168 +1.7646 1.0000
2 —3.6074 — 1.0000 +0.9797 0.9797

Aq} Bp Cv P’V VV

1 +1.0335 +0.6213 +40.3735 +0.5668 —+0.5653
2 +0.9917 —0.7723 +40.6014 +40.0944 —0.5418
Summen +2.0252 —0.1510 +0.9749 +0.6612 +0.0235
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Vergleichen wir zunichst das Ergebnis der Fli-
chenteilkoeffizienten- Berechnung unseres Spiege/s mit
der Fig. 3 der vorangegangenen Mitteilung?), so fin-
den wir eine prinzipielle Ubereinstimmung in den
Werten A und B mit dem Kurvenverlauf der sphiri-
schen Aberration und der Abweichung gegen die Si-
nusbedingung. Dazu erfahren wir jetzt, dass der Spie-
gel positiven Astigmatismus und eine negative PETZ-
vAL-Summe, aber keinen Verzeichnungsfehler auf-
weist.

Noch interessanter ist der Vergleich der beiden
Flachenteilkoeffizienten- Berechnungen unserer bikon-
vexcen Sammellinse mit der Izg. 4 der vorangegangenen
Mitteilung?), in der die A- und B-Werte beider Be-
rechnungen mit kleinen Kreuzchen (x) eingetragen
sind. Man erkennt, dass die Umkehrung der bikon-
vexen Sammellinse sehr merkliche Anderungen der
Summenwerte A und B zur Folge hat, oder, anders
ausgedrickt, dass die Durchbiegung einer Linse den
Korrektionszustand erheblich verdndert, Damit ha-
ben wir ein sehr wichtiges Hilfsmittel der konstruie-
renden Optik kennen gelernt, dessen Bedeutung sich
noch dadurch erhoht, dass eine chromatische Korrek-
tur durch Durchbiegungen kaum beeinflusst wird.
Wir sehen weiter, dass unsere Sammellinse in umge-
drehter Stellung fast genau die kleinstméglichen
Summenwerte A und B aufweist, wobei die sphiri-
sche Aberration aber immer noch etwa fiinfmal gros-
ser als beim Spiegel bleibt. Im Gegensatz zu diesem
besitzt die Linse aber zum positiven Astigmatismus
eine positive PETZvALsumme sowie ein wenig Ver-
zeichnung.

Es ist nun moglich, die durch die Flichenteilkoeffi-
zienten-Berechnung aufgezeigten Restfehler unserer
Systeme wenigstens teilweise durch eine einfache
Massnahme zu beseitigen, da die Werte von B, C und
V durch die Blendenstellung beeinflusst werden. Dies
sei an unserem Spiegel gezeigt.

Wihrend der Restfehler der sphirischen Aberration
von der Art der Flichenkrimmung (Kugelschale) und
die PErzvAL-Kriimmung des Bildfeldes vom Scha-
lenradius abhingen, also dutrch eine Blendenstellung
im Prinzip nicht beeinflussbar sind, gibt es stets eine
Blendenlage, bei welcher die Asymmetriefehler ver-
schwinden. Diese Blendenlage wird durch ihren Ab-
stand z; vom System gekennzeichnet und asymme-
triefehlerfreie Eintrittspupille genannt. Sie ergibt sich
fiir unseren Spiegel nach der FRAUNHOFERschen Be-
dingung zu

—0.5000

M e 3 5000,
% 3702500 ohon

ZB
=_——,al
(5) 2, =y alSe2

Bringen wir also im Abstand der doppelten Brenn-
weite unseres Spiegels eine Blende an, so werden da-
mit die Asymmetriefehler beseitigt. ScumIDT- und
Maxsurov-Systeme weisen, wenn sie richtig gebaut
sind, diese Blende auf und sind deshalb (im Beteiche
der 3. Ordnung) asymmetriefehlerfrei. Analog wiirde
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auch beim (sphirischen) NEwTON-Spiegel eine Ver-
lingerung des Rohres auf die doppelte Brennweite
und die Anbringung einer Blende am Rohrende die
Bildqualitit ausserhalb der Achse verbessern.

Soll weiter (im Bereiche der 3. Ordnung) der Astig-
matismus beseitigt sein, so muss unser asymmetrie-
fehlerfreier Spiegel auch der Bedingung
(6) (B2 = XA - 2C

Die Rechnung zeigt, dass bei unserem Spiegel nun-
mehr die meridionale und die sagittale Bildfeldschale
mit der PETZvAL-Schale zusammenfallen, womit der
Astigmatismus beseitigt ist, wie wir dies vom
Scumipt-Spiegel und anderen Systemen her bereits
wissen. Der Kriimmungsradius aller Bildfeldschalen
ist gleich der System-Brennweite und das Bildfeld ist
gegen das Objekt zu gewolbt. Kombiniert man aber
zwei Spiegel mit gegensitzlich gleichen Radien, so
wird die PETzZvAL-Summe gleich Null und damit das
Bildfeld eben, wenn zugleich auch der Astigmatismus
beseitigt ist. Dieset Fall wird uns bei den aplanatischen
Spiegelsystemen noch beschiftigen.

gentgen.

In analoger Weise kann auch die Korrektion von Linsen
und Linsensystemen dutch eine geeignete Blendenstellung ver-
bessert werden. Wit werden bei det Behandlung der Fernroht-
objektive, der Korrektionssysteme und der Okulare darauf zu-
riickkommen.

3. Die (trigonometrische) Strablendurchrechnung

HEs wurde bereits erwihnt, dass die Strahlendurch-
rechnung die eznzige Methode ist, die bei optischen
Systemen allgemein einen prédgisen Aufschluss tber
die Strahlenvereinigung im Bildpunkt auf und aus-
serhalb der Achse eines optischen Systems von merk-
licher Offnung gibt. Sie ist deshalb in der praktischen
Optik die wichtigste Methode.

Handelt es sich um reine Spiegelsysteme mit Ku-
gelflichen, so etfordert die Strahlendurchtechnung
nur die Anwendung des Reflexionsgesetzes, ist also
dusserst einfach. Sie wird schwieriger, wenn den Ro-
tationsflichen andere Kegelschnitte (Parabeln, Hyper-
beln, Ellipsen) zugrunde liegen, und sie kompliziert
sich weiter, wenn ihre Basis Flichen hoheren Grades
(Scawmipr-Platte) sind. Wir werden auf diese Berech-
nungen bei den betreffenden Systemen eingehen.

Bei Linsen- und Spiegellinsen-Systemen, auf wel-
che der Begriff der trigonometrischen Strahlendurch-
rechnung im eigentlichen Sinne zutrifft, werden das
Brechungsgesetz und das Reflexionsgesetz einzeln
oder kombiniert wiederholt schematisch angewendet.

Noch bis zum Jahre 1930 dienten dafiir die Methoden det
Trigonometrie im eigentlichen Sinne, daher der Name. Mit der
Einfithrung der 4-Spezies-Rechenautomaten und dann der Com-
puter sind neue Rechenschemata entstanden, die vor allem auch
die Durchrechnung gegen die Achse geneigter und windschie-
fer Strahlen erheblich erleichtern. Da diese Rechenschemata den
vorhandenen Rechenhilfen angepasst sein miissen, also recht
verschieden sein konnen, sei von Beschreibungen abgesehen
und dafir an Hand der Literatur 3), 5), 7), 8), 9) auf das prinzi-
pielle Vorgehen verwiesen. Der ndher daran interessierte Leser
findet dott auch vollig durchgerechnete Beispiele und Hin-
weise fiir die jeweils zweckmissigste Modifikation der in Frage
kommenden Formeln.
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