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bestimmung mit einer Genauigkeit von 1 Kilometer
auf 100 Millionen Kilometer. Das erlaubte z. B. den
Ingenieuren beim Venus-Flug von «Mariner V», die
Entfernung des unsichtbaren Satelliten jederzeit bis
auf wenige hundert Meter genau zu bestimmen. Diese
erstaunliche Messtechnik, bei der der bekannte Dopp-
ler-Effekt eine entscheidende Rolle spielt, ist eines der
wichtigsten Hilfsmittel in der heutigen Raumfahrt.

Doch kehren wir wieder zu den Radar-Untersuchungen

an der Venus zurück. Es scheint heute
festzustehen, dass die nicht sichtbare Oberfläche des
Planeten drei «rauhe» Gebiete von teils riesigen Ausmassen

aufweist. Die Wissenschafter vermuten Gebirge,

aber Goldstein, als vorsichtiger Gelehrter, meint:
«Es war bisher nicht möglich, die Höhen zu messen.
Gebirge sind also noch nicht nachgewiesen, aber
jenes Terrain, das die Strahlung zurückwirft, ist rauh
im Vergleich zu den übrigen Gebieten.»

Im April 1969, wenn Venus der Erde wieder näher
kommt, steht den Physikern in Goldstone eine
wesentlich erhöhte Sendeleistung von ungefähr 450
Kilowatt zur Verfügung, die bessere Untersuchungsmöglichkeiten

schafft. Eines der Nahziele dieser
Versuche unter Aufsicht der NASA ist das Ausfindigmachen

sicherer Landeplätze für künftige, weich
landende Venus-Sonden. Hans Rohr

Optik für Astro-Amateure

von E. Wiedemann, Riehen
3. Mitteilung

Die Verwirklichung der optischen Abbildung
(Fortsetzung)

In der 2. Mitteilung2) haben wir die bei optischen
Systemen auftretenden Bildfehler besprochen und die

Möglichkeiten zu ihrer Beseitigung aufgezeigt. Von
einem optischen System wird aber nicht nur eine
prinzipielle Korrektur der Bildfehler verlangt. Um
beurteilen zu können, ob ein optisches System für einen
bestimmten Zweck geeignet ist, müssen die Beträge
der Restaberrationen genau bekannt, das heisst zah-

lenmässig definiert sein. Dies gilt insbesondere für die
astronomische Optik, aber auch für die Photo-Optik, die
Mikroskop-Optik und die Optik von Messgeräten.

Für die zahlenmässige Bestimmung des
Korrektionszustandes optischer Systeme, und, wie wir später

sehen werden, auch für deren Synthese, benützt
man heute ausschliesslich mathematische Methoden,
deren man sich entweder auf herkömmliche Weise
oder mit Hilfe von Rechenmaschinen und Computern

bedient, wofür spezielle Rechenprogramme
entwickelt worden sind. An dieser Stelle kann jedoch
nur das prinzipielle Vorgehen bei diesen Rechnungen
gezeigt und an einfachen Beispielen erläutert werden.
Die Rechnungen selbst zerfallen in die folgenden:
1. die Nullstrahlrechnung, die die genauen Werte der Schnitt-

und Brennweiten, gegebenfalls für beliebige Farben, liefert
und damit über die Farbkorrektion auf der Achse (Farblängs-
fehler) und im Bildfeld (Farbquerfehler) Aufschluss gibt,

2. die Berechnung der Flächenteilkoeffigienten und deren Summen, die
ebenfalls für beliebige Farben, einen angenäherten Aufschluss
über den Korrektionszustand auf der Achse und innerhalb
eines mässigen Bildfeldes liefert und besonders auch zum
Einkorrigieren eines neuen Systems dienen kann,

3. die (trigonometrische) Durchrechnung von achsenparallelen,
gegen die Achse geneigten und eventuell auch windschiefen
Strahlen, womit für alle Bildfehler ein zahlenmässiges Bild
des Korrektionszustandes erstellt werden kann, das sich
durch die Berechnung von Treffer-Diagrammen in bezug auf
den jeweiligen idealen Bildpunkt ergänzen lässt.

Eine Berechnung von Trefferdiagrammen ist allerdings des

grossen damit verbundenen Aufwandes wegen kaum ohne

Computer durchführbar und muss deshalb hier ausser Betracht
bleiben. Dagegen sind die drei ersten Berechnungen auch ohne
besondere Rechenhilfen möglich. Auf sie wollen wir nun
eingehen. Für den näher daran interessierten Leser sei in diesem
Zusammenhang die wichtigste einschlägige Literatur zitiert
3)> 4), 5), 8)- Er findet darin auch weitere, zusätzliche
Berechnungsmöglichkeiten, die ihm helfen können, optische Systeme
zu prüfen und zu beurteilen.

7. Die Nullstrahlenrechnung
Beschränkt man sich auf den sogenannten Gauss-

schen fadenförmigen Raum um die Achse, innerhalb
dessen der Sinus eines Winkels seinem Bogenwert
noch gleichgesetzt werden darf, so gilt für die innerhalb

dieses Raumes verlaufenen Parachsialstrahlen in
aller Strenge die ABBEsche Invariante:

(1) ni (~~~ — nT (— — ~T")>
xri si' vri s /

worin ni den Brechungsindex eines ersten und n'i
jenen eines folgenden Mediums, ri den Radius einer
brechenden oder reflektierenden Fläche, si die Schnittweite

vor der Brechung oder Reflexion und s'i jene
nach dieser bedeutet. Folgen mehrere Flächen
aufeinander, so ist deren Abstand in Abzug zu bringen :

(2) S2 s'i — e'i; si s'2 — e'2 und so fort,
wenn mit e'2, e'2 und so fort die aufeinanderfolgenden

Abstände bezeichnet werden.

Auf diese Weise lässt sich ein achsnaher Strahl über eine
beliebige Folge von brechenden und reflektierenden Flächen, also
ein beliebiges optisches System, verfolgen, und man erhält zu
einer beliebig wählbaren ersten Schnittweite si (die meistens œ

oder eine gegebene Objektweite ist) die schliessliche Schnittweite

sV, die gleich der Bildweite ist. Da bei dem unendlich
weit entfernten Objekt in der Astronomie si stets 0= zu setzen

ist, erhält man mit sV stets die Schnittiveite des optischen
Systems, die aber im allgemeinen nicht mit dessen Brennweite
identisch ist. Die Brennweite berechnet sich jedoch einfach aus
den Schnittweiten:

rx\
5,1 s'2

- c(3) — — s v f •

s2 Si
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Um diese kurzen Rechnungen zu erläutern, seien zwei
einfache Beispiele berechnet:

a Der einfache sphärische Hohlspiegel
Ein sphärischer Hohlspiegel habe einen Krümmungsradius

r ± 334.9748 mm. Es sollen Schnitt- und Brennweite
berechnet werden, si sei œ. Der Spiegel befinde sich in Luft,
woraus folgt, dass ni n'i 1 ist. Dann lautet die AßBEsche
Invariante :

/ 1 1 \ / 1 1 \

r
und damit —s'i —"J.

Wie wir natürlich schon aus Erfahrung wussten, beträgt die
Schnittweite die Hälfte des Radius, also —167.4874 mm. Das
Minuszeichen vor der Schnittweite ist die Folge der Richtungsumkehr

des Strahls, gemäss der früher getroffenen Festsetzung1).
Aus (3) folgt weiter :

(3 a) —s'i — f', in Worten :

beim einfachen Spiegel ist die Brennweite gleich der Schnittweite,

da das System die optische Dicke Null besitzt.

b) Die bikonvexe Sammellinse
Eine bikonvexe Sammellinse sei aus dem Glas BK 7 gefertigt,

besitze also für das Licht der gelben Quecksilberlinie den
Brechungsindex nd 1.51680. Sie habe die Radien ri
+604.2000 und r-> —100.7000 mm. Die Dicke e'i sei 6.000.

si sei wiederum oo, m 1. Es sollen Schnitt- und Brennweite
berechnet werden.

Bei brechenden Flächen ist es zweckmässig, die AßBEsche
Invariante hierzu in etwas anderer Form zu schreiben :

(1 b - 3 b) 1. Fläche und Übergang zur 2. Fläche :

—n'i +1 1 —n'i
; —xi; —yi; s i; s i—e i s2.
+ri —si —xi—yi

2. Fläche, Schnittweite s'2 und Brennweite f':
+ n'i—1 —n'i —1

—x2; —y2; s 2;
—r2 s2 —x2—y2

s'i r,— -s 2 f •

S2

Die numerische Ausrechnung ergibt: s'i 1773.4128; s2
1767.4128; s'2 166.9365; f' 167.4874 mm.

Damit sind Schnitt- und Brennweite dieser Linse für die
Wellenlänge 587.5 nm, die dem Licht der gelben Quecksilberlinie

entspricht, berechnet. Schnitt- und Brennweite sind etwas
verschieden, da die Linse eine endliche Dicke besitzt.

Auf genau gleiche Weise verfolgt man den
Nullstrahl auch durch eine Linsenfolge, beispielsweise
durch ein Fernrohrobjektiv, eine BARLOW-Linse, ein
Ross-System oder auch ein Okular, um deren Schnitt-
und Brennweite zu bestimmen.

Ersetzen wir in der Rechnung der Sammellinse den
Brechungsindex für nd durch Brechungsindices für andere
Farben, so erhalten wir die Schnitt- und Brennweiten für diese und
damit die Masszahlen für die Farbfehler unserer Linse.

Schon früher2) haben wir erfahren, dass die
Farbfehler einer einfachen Linse weitgehend aufgehoben
werden können, wenn man zwei Linsen von
gegensätzlicher Brechkraft und verschiedenen r-Werten
kombiniert. Für eine solche Achromatisierung gelten
die folgenden Regeln : Soll die Kombination sammeln,
so muss die Sammellinse eine kleine Farbzerstreuung,
also einen grossen v-Wert, und die Zerstreuungslinse

eine grosse Farbzerstreuung, also einen kleinen v-
Wert aufweisen (Beispiel: Fernrohr-Objektive). Soll
die Kombination verstreuen, so muss die Sammellinse
die grössere und die Zerstreuungslinse die kleinere
Farbzerstreuung besitzen (Beispiel: BARLOW-Linsen).

Führt man für solche Kombinationen nach dem Schema
(1 b - 3 b) die Nullstrahlrechnung für die verschiedenen
interessierenden Farben durch, so erhält man damit die genauen
Zahlenwerte der Achromatisierung der Schnitt- und Brennweite.

Das Ergebnis kann man der Übersichtlichkeit halber
graphisch darstellen, wofür die Fig. 7 der 2. Mitteilung2) ein
Beispiel darstellt.

c) Normierung
Bevor wir zur Flächenteilkoeffizienten-Berechnung

und zur trigonometrischen Durchrechnung von Strahlen

übergehen, sei noch eine in der praktischen Optik
übliche Regel besprochen.

Um bequeme und vergleichbare Zahlenwerte zu
bekommen, ist es üblich, die Nullstrahlrechnung und
auch die trigonometrische Durchrechnung für die
Brennweite 100 (mm) durchzuführen. Das ist immer
möglich, auch wenn man zunächst eine andere Brennweite

ermittelt hat, weil alle Bestimmungsstücke linear
ändern, also mittels eines Faktors dahin gebracht werden

können, dass die Brennweite 100 (mm) wird.
Bei unseren beiden Beispielen a) Hohlspiegel und b)

Sammellinse hatten wir eine Brennweite von 167.4874 (mm) erhalten.

Multiplizieren wir diesen Wert mit dem Faktor 0.59706,
so erhalten wir f' 100.0000. Mit demselben Faktor multiplizieren

wir sodann alle unsere Bestimmungsstücke (Radien, Dik-
ken, Abstände), womit das System normiert ist. Wir erhalten :

a) beim Spiegel:
r 334.9748-0.59706 200.0000 r
f' 167.4874-0.59706 100.0000 f'

b) bei der Sammellinse:

n +604.2000-0.59706 360.7431 n
e'i 6.000-0.59706 3.5823 e'i
r2 —100.7000-0.59706 — 60.1239 r2
Die neuen Schnittweiten werden :

s'r +1058.7742
s2 +1055.1919
s'2 + 99.6701
und die Brennweite wird:
+ 100.0000.

Für die Berechnung der Flächenteilkoeffizienten
wäre eine Brennweite von 100 unbequem. Man hat
sich deshalb darauf geeinigt, für diese Rechnungen
die Brennweite 1 zu setzen. Man rückt dafür bei
den Konstruktionsdaten und den ebenfalls benötigten

Werten der Nullstrahlrechnung das Komma um 2
Stellen nach links. Ferner benötigt man für die
Berechnung der Flächenteilkoeffizienten noch die
sogenannten h-Quotienten, die sich wie folgt ergeben:

(A\ A — 1
h2

_ hi s2u hi 7 ; 17 ~ 17 ' TT;
h3

_ hi s2 s3

hi hi s'i s'2

2. Die Berechnung der Flächenteilkoeffivjenten
Mit der Berechnung der Flächenteilkoeffizienten

verlassen wir den GAUss'schen fadenförmigen Raum
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um die Achse und betreten den Bereich eines massigen

Öffnungsverhältnisses von etwa 1:10 und mäs-
sig gegen die Achse geneigter Strahlen, wie sie einem
Bildwinkel von etwa 15° entsprechen. In diesen
Bereichen treten dann die früher besprochenen 5
monochromatischen Bildfelder, die sphärische Aberration,
die Asymmetriefehler, der Astigmatismus, die Bildfeld-
mlbung und die Verzeichnung auf, und diese Fehler
sind es auch, über deren Grösse und Vorzeichen die
Flächenteilkoeffizienten-Berechnung Aufschluss gibt.

Hierzu ist es nötig, in der Annäherung an den
Sinus eines Winkels einen Schritt weiter als bei der
Nullstrahl-Rechnung zu gehen. L. Seidel hat dafür
als erster Entwicklungen nach der 3. Ordnung
angegeben und auch gezeigt, wie man diese Entwicklungen

dazu benützen kann, Fläche für Fläche einzeln
die 5 von einander unabhängigen monochromatischen
Bildfehler, in der oben angeführten Reihenfolge kurz
mit : A, B, C, P und V bezeichnet, zu berechnen. Die
bei einem optischen System schliesslich resultierenden

Fehler ergeben sich dann einfach durch die
Addition der einzelnen Flächenfehler. Ist deren Summe
gleich Null, so ist das System dafür im Bereich der 3.

Ordnung fehlerfrei.
Es sei bemerkt, dass die Methode der

Flächenteilkoeffizienten-Berechnung nach der 3. Ordnung durch
die Hinzunahme höherer Glieder in den Entwicklungen

(5. Ordnung, 7. Ordnung) verfeinert werden
kann, womit A. Sonnefeld6) die Anzahl der von
einander unabhängigen Bildfehler gesetzmässig
zunimmt. Schon J. Petzval (1840) soll die Entwicklung

nach der 7. Ordnung für die Berechnung seines
berühmten, nach ihm benannten Objektivs, mit dem
bekanntlich die Aera der Astrophotographie eingeleitet

wurde, benützt haben. Da der mathematische
Aufwand dafür aber gross ist und die Berechnung nach
der 3. Ordnung einen ausreichenden Einblick in die
wesentlichen Merkmale eines optischen Systems
vermitteln, soll hier nur darauf hingewiesen werden.

Wichtig ist indes, dass die Ergebnisse der
Flächenteilkoeffizienten-Berechnung sowohl Aufschlüsse über
den Korrektionszustand eines Systems, als auch Richtlinien

für die Korrektur vermitteln, wie sie auf andere
Weise kaum erhalten werden können. Einige Angaben

mögen dies erläutern.
Treten bei einem optischen System in A und B nur

kleine Flächenteilkoeffizienten auf und ist deren Summe

kleiner als 1.5 bzw. 0.5, so bedeutet dies, dass
dieses System eine relativ grosse Lichtstärke haben
kann. Sind ausserdem die Flächenteilkoeffizienten C
und P klein und deren Summen ebenfalls klein und
von entgegengesetztem Vorzeichen, so wird das
System ein grösseres Bildfeld auszeichnen. Zeigt ein
System irgend einen Fehler, so wird dessen Beseitigung

am ehesten gelingen, wenn jene Fläche geändert

wird, an welcher der betreffende Flächenteilkoeffizient

einen grossen Wert hat. Auf diese Weise
kann die Kenntnis der Flächenteilkoeffizienten beim
Korrigieren optischer Systeme helfen. Belässt man

schliesslich den Summen der Flächenteilkoeffizienten
kleine endliche Werte (statt sie zu Null zu machen),
so kann man damit den Einfluss der Glieder der 5.

und 7. Ordnung berücksichtigen. Es reicht dann die
Gültigkeit der Werte bis zu den grösseren
Öffnungsverhältnissen und grösseren Bildwinkeln, besonders,
wenn die einzelnen Flächenteilkoeffizienten alle klein
sind. Grosse Flächenteilkoeffizienten verursachen im
allgemeinen erhebliche Zonenfehler und begrenzen
- auch wenn die Summenwerte klein sind - das

Öffnungsverhältnis oder das Bildfeld (oder beide) stark,
es sei denn, es stünde einem grossen
Flächenteilkoeffizienten ein annähernd gleich grosser entgegengesetzten

Vorzeichens gegenüber. Ein Beispiel dafür
werden wir bei zweilinsigen Fernrohrobjektiven noch
kennen lernen. Auch bei katadioptrischen Systemen,
insbesondere bei den Varianten des MAKSUTOV-Sy-
stems, bei optischen Zusatzsystemen (BARLOW-Lin-
sen, Ross-Systemen, ERFLE-Planokularen etc.) werden

uns die Ergebnisse der Flächenteilkoeffizienten-
Berechnungen noch sehr nützlich sein.

Was nun die Berechnung der Flächenteilkoeffizienten
betrifft, so muss bezüglich des Rechenschemas auf die einschlägige

Literatur3) verwiesen werden. Wie begnügen uns hier
damit, die Ergebnisse für unsere beiden Beispiele in der von M.
Berek vorgeschlagenen Form wie folgt anzuschreiben:

a Der einfache sphärische Hohlspiegel
{' —1.Ö000, si 0=

hy
n v s y
1.0000 —1.0000

hi
1.0000

Cy Pj;
+ 1.0000 —1.0000 ±0.0000

v tv e v
1 ±2.0000 0.0000

Ay Bj;
+0.2500 —0.5000

Da unser Spiegel nur eine optisch wirksame Fläche besitzt,
sind die ermittelten Flächenteilkoeffizienten gleichzeitig die
gesuchten Summenwerte. Ihre Besprechung folgt weiter unten.

b) Die bikonvexe Sammellinse

f' +1.0000, Si co

hy
V tv e'v n'y s 'V hi
1 + 3.6074 0.0358 1.5168 + 10.5877 1.0000
2 —0.6012 — 1.0000 + 0.9967 0.9966

Ay Bp Cv Py Vv
1 +0.0050 +0.0180 +0.0649 + 0.0944 + 0.5746
2 + 6.5990 —2.3353 + 0.8264 + 0.5668 —0.4930
Summen + 6.6040 —2.3173 +0.8913 + 0.6612 + 0.0816

Es sei hier sogleich bemerkt, dass man eine Sammellinse
auch in umgedrehter Stellung benützen kann, womit sich die
Brennweite kaum ändert, die Flächenteilkoeffizienten und
deren Summen aber merklich andere Werte annehmen können.
Da in diesem Fall diese kleine zusätzliche Rechnung ein sehr
instruktives Ergebnis liefert, sei ihr Ergebnis ebenfalls angeführt

:

c Die bikonvexe Sammellinse, umgedreht
f' +1.0000, si oo

V tv e'y n'y s'y hi
1 +0.6012 0.0358 1.5168 J-1.7646 1.0000
2 —3.6074 — 1.0000 + 0.9797 0.9797

Ay By Cy P,. Vy
1 + 1.0335 + 0.6213 + 0.3735 +0.5668 +0.5653
2 +0.9917 —0.7723 + 0.6014 + 0.0944 —0.5418
Summen + 2.0252 —0.1510 + 0.9749 + 0.6612 + 0.0235
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Vergleichen wir zunächst das Ergebnis der
Flächenteilkoeffizienten-Berechnung unseres Spiegels mit
der Fig. 3 der vorangegangenen Mitteilung'2), so
finden wir eine prinzipielle Übereinstimmung in den
Werten A und B mit dem Kurvenverlauf der sphärischen

Aberration und der Abweichung gegen die
Sinusbedingung. Dazu erfahren wir jetzt, dass der Spiegel

positiven Astigmatismus und eine negative Petz-
VAL-Summe, aber keinen Verzeichnungsfehler
aufweist.

Noch interessanter ist der Vergleich der beiden
Flächenteilkoeffizienten-Berechnungen unserer bikonvexen

Sammellinse mit der Fig. 4 der vorangegangenen
Mitteilung2), in der die A- und B-Werte beider
Berechnungen mit kleinen Kreuzchen x eingetragen
sind. Man erkennt, dass die Umkehrung der bikonvexen

Sammellinse sehr merkliche Änderungen der
Summenwerte A und B zur Folge hat, oder, anders

ausgedrückt, dass die Durchbiegung einer Linse den
Korrektionszustand erheblich verändert. Damit
haben wir ein sehr wichtiges Hilfsmittel der konstruierenden

Optik kennen gelernt, dessen Bedeutung sich
noch dadurch erhöht, dass eine chromatische Korrektur

durch Durchbiegungen kaum beeinflusst wird.
Wir sehen weiter, dass unsere Sammellinse in
umgedrehter Stellung fast genau die kleinstmöglichen
Summenwerte A und B aufweist, wobei die sphärische

Aberration aber immer noch etwa fünfmal grösser

als beim Spiegel bleibt. Im Gegensatz zu diesem
besitzt die Linse aber zum positiven Astigmatismus
eine positive PETZVALSumme sowie ein wenig
Verzeichnung.

Es ist nun möglich, die durch die
Flächenteilkoeffizienten-Berechnung aufgezeigten Restfehler unserer
Systeme wenigstens teilweise durch eine einfache
Massnahme zu beseitigen, da die Werte von B, C und
V durch die Blendenstellung beeinflusst werden. Dies
sei an unserem Spiegel gezeigt.

Während der Restfehler der sphärischen Aberration
von der Art der Flächenkrümmung (Kugelschale) und
die PETZVAL-Krümmung des Bildfeldes vom
Schalenradius abhängen, also durch eine Blendenstellung
im Prinzip nicht beeinflussbar sind, gibt es stets eine
Blendenlage, bei welcher die Asymmetriefehler
verschwinden. Diese Blendenlage wird durch ihren
Abstand 7.1 vom System gekennzeichnet und
asymmetriefehlerfreie Eintrittspupille genannt. Sie ergibt sich
für unseren Spiegel nach der FRAUNHOFERschen

Bedingung zu

(5)
IB —0.5000

zi —T-, also zu —2.0000.
ZA' + 0.2500

Bringen wir also im Abstand der doppelten Brennweite

unseres Spiegels eine Blende an, so werden
damit die Asymmetriefehler beseitigt. Schmidt- und
MAKSUTOV-Systeme weisen, wenn sie richtig gebaut
sind, diese Blende auf und sind deshalb (im Bereiche
der 3. Ordnung) asymmetriefehlerfrei. Analog würde

auch beim (sphärischen) Newton-Spiegel eine
Verlängerung des Rohres auf die doppelte Brennweite
und die Anbringung einer Blende am Rohrende die
Bildqualität ausserhalb der Achse verbessern.

Soll weiter (im Bereiche der 3. Ordnung) der
Astigmatismus beseitigt sein, so muss unser asymmetriefehlerfreier

Spiegel auch der Bedingung
(6) (AB)2 ZA ZC genügen.

Die Rechnung zeigt, dass bei unserem Spiegel
nunmehr die méridionale und die sagittale Bildfeldschale
mit der Petzval-Schale zusammenfallen, womit der
Astigmatismus beseitigt ist, wie wir dies vom
ScHMiDT-Spiegel und anderen Systemen her bereits
wissen. Der Krümmungsradius aller Bildfeldschalen
ist gleich der System-Brennweite und das Bildfeld ist
gegen das Objekt zu gewölbt. Kombiniert man aber
zwei Spiegel mit gegensätzlich gleichen Radien, so
wird die PETZVAL-Summe gleich Null und damit das
Bildfeld eben, wenn zugleich auch der Astigmatismus
beseitigt ist. Dieser Fall wird uns bei den aplanatischen
Spiegelsystemen noch beschäftigen.

In analoger Weise kann auch die Korrektion von Linsen
und Linsensystemen durch eine geeignete Blendenstellung
verbessert werden. Wir werden bei der Behandlung der
Fernrohrobjektive, der Korrektionssysteme und der Okulare darauf
zurückkommen.

3. Die (trigonometrische) Strahlendurchrechnung
Es wurde bereits erwähnt, dass die Strahlendurchrechnung

die eingjge Methode ist, die bei optischen
Systemen allgemein einen präzisen Aufschluss über
die Strahlenvereinigung im Bildpunkt auf und
ausserhalb der Achse eines optischen Systems von merklicher

Öffnung gibt. Sie ist deshalb in der praktischen
Optik die wichtigste Methode.

Handelt es sich um reine Spiegelsysteme mit
Kugelflächen, so erfordert die Strahlendurchrechnung
nur die Anwendung des Reflexionsgesetzes, ist also
äusserst einfach. Sie wird schwieriger, wenn den
Rotationsflächen andere Kegelschnitte (Parabeln, Hyperbeln,

Ellipsen) zugrunde liegen, und sie kompliziert
sich weiter, wenn ihre Basis Flächen höheren Grades
(ScHMiDT-Platte) sind. Wir werden auf diese

Berechnungen bei den betreffenden Systemen eingehen.
Bei Linsen- und Spiegellinsen-Systemen, auf welche

der Begriff der trigonometrischen Strahlendurchrechnung

im eigentlichen Sinne zutrifft, werden das

Brechungsgesetz und das Reflexionsgesetz einzeln
oder kombiniert wiederholt schematisch angewendet.

Noch bis zum Jahre 1930 dienten dafür die Methoden der
Trigonometrie im eigentlichen Sinne, daher der Name. Mit der
Einführung der 4-Spezies-Rechenautomaten und dann der Computer

sind neue Rechenschemata entstanden, die vor allem auch
die Durchrechnung gegen die Achse geneigter und windschiefer

Strahlen erheblich erleichtern. Da diese Rechenschemata den
vorhandenen Rechenhilfen angepasst sein müssen, also recht
verschieden sein können, sei von Beschreibungen abgesehen
und dafür an Hand der Literatur 3), 5), '), 8), 9) auf das prinzipielle

Vorgehen verwiesen. Der näher daran interessierte Leser
findet dort auch völlig durchgerechnete Beispiele und
Hinweise für die jeweils zweckmässigste Modifikation der in Frage
kommenden Formeln.
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