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Le pouvoir séparateur des instruments astronomiques
d'observation, traité par l'analyse de Fourier

Par L. BERGER, Rolle

(Manuscrit reçu en date du 1er décembre 1954)

1. Introduction

Le rôle des instruments astronomiques d'observation est, par
définition, de nous faire connaître la forme et la disposition des astres
brillants placés sur la sphère céleste.

Ainsi que je le montrerai, l'analyse harmonique de Fourier, si
familière en radio-électricité, est avantageuse quand il s'agit d'étudier

le «pouvoir séparateur» de ces instruments et d'arriver à des

conclusions d'une portée très générale. Cette méthode s'applique,
par exemple, aux lunettes et télescopes, à l'interféromètre astronomique

de Michelson, ainsi qu'aux radio-télescopes et radio-interféro-
mètres de la radio-astronomie. Elle semble atteindre même, ainsi
qu'on le verra, n'importe quel instrument astronomique d'observation,

quelle qu'en puisse être la structure.

2. Définitions générales

Repérons les points de la sphère céleste à l'aide d'un système
de coordonnées commode.

Si nous nous bornons à une petite portion de la sphère céleste,
ne dépassant pas cinq degrés sur cinq degrés, nous pourrons y
définir des coordonnées x,, y,, approximativement cartésiennes. Un
exemple est celui des coordonnées célestes équatoriales (sphériques),
pour une petite portion du ciel à cheval sur l'équateur céleste.

Etudions les phénomènes lumineux en lumière monochromatique,
de fréquence v et de longueur d'onde A.

Soit C, le nombre complexe qui est la densité de source au point
PL (x,, y,) placé sur la sphère céleste. Cette densité de source est
telle que C, dS, représente par son module et son argument l'amplitude

et la phase de la source de lumière (émise ou diffusée) qui
occupe le petit élément de surface dS, autour du point l3, (xj, yt).

On peut mettre en évidence la densité d'amplitude E1 et la phase
cp, de la lumière:

(1) C, E, ei'/'i

E, et cp, sont des nombres réels. Nous appellerons e1(P< la fonction

de phase. Comme la lumière est monochromatique, E, est
indépendant du temps t, et cp, varie linéairement en fonction du temps.

Remarquons que E,2 est la brillance au point P,. Dans le cas
de lumière émise, ou de lumière diffusée par un corps qui est éclairé
par une source étendue (Soleil), on sait que les C, en deux points,
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même très voisins, de la sphère céleste sont «incohérents». Ce mot
signifie qu'à tout instant donné la phase ({>L varie d'un point à un
autre tout à fait au hasard, et de manière presque discontinue.

L'image du nombre complexe e''f', pour différents points de la
sphère céleste, est sur le cercle trigonométrique exactement comme
la bille du jeu de roulette pour différents tirages successifs. De
même, pour des fréquences v même très voisines, cp, a aussi des

valeurs complètement incorrélées.
La connaissance de la phase (pL en fonction de xt et de y3 ne

présente aucun intérêt; la phase cp3 ne fournit aucun renseignement
sur la structure des astres qui émettent la lumière ou la diffusent.

Par contre, tant qu'on reste à l'échelle humaine ou à l'échelle
astronomique, l'amplitude E, (ou la brillance Efj varie d'une
manière plus régulière en fonction de x, ou de y, et en fonction de la
fréquence v, et nous fournit beaucoup de renseignements au sujet
de la structure géométrique et physique des astres. Le rôle des

instruments astronomiques d'observation est de nous faire connaître la
brillance Ex2 en fonction de x3 et v,.

Aucun appareil optique ne reçoit la lumière d'une seule et unique

fréquence v; nous ferons une théorie presque monochromatique.
Il faut alors caractériser l'émission de lumière, par les sources
célestes, par: a) La distribution de brillance E," (x3), qui est
pratiquement la même pour toutes les fréquences du petit intervalle
spectral Av. b) La distribution de phase cp, f x, pour chaque
fréquence de lumière de Av.

3. Réduction à une seule dimension

La brillance E32 est une fonction de deux variables x3, yr
Cependant, dans un but de simplification de l'exposé, nous considérerons

E,2 comme une fonction d'une seule variable x,, comme si les

astres, tels qu'ils se peignent sur la sphère céleste, n'avaient qu'une
dimension et non deux. Que l'on soit cependant bien persuadé que
tous les théorèmes énoncés dans la suite s'étendent très facilement
et sans modification profonde au cas de deux dimensions.

4. Théorie de Fourier des répartitions de brillance
Le théorème de la borne supérieure

Soit une fonction y y(x) de la variable x; cette fonction y
peut être, par exemple, la brillance Et2 (x, sur la sphère céleste,
ou l'éclairement sur une image.

L'échelle des détails, souvent de l'ordre de la seconde d'arc, qui
nous intéressent dans la répartition des valeurs de la fonction y(x),
est toujours très petite par rapport à l'intervalle total de 5 dégrés
(égale 18 000 secondes d'arc) que nous prenons sur la voûte céleste;
nous pouvons donc considérer cet intervalle de 5 dégrés comme
pratiquement infini. Sous certaines conditions de régularité pour y(x),
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on pourra alors définir, par la formule suivante, la transformée de
Fourier A A(_TL) de cette fonction y:

+ 00

(2) Al J"l_) y(x) e ^-^"X dx

— os

O11 sait que l'on a alors en retour:

+ 00

(3) y (xi Ja(JI) eixJl dA

La grandeur A/2jï joue tout à fait le rôle d'une fréquence de
vibration sinusoïdale, quoique l'unité avec laquelle elle s'exprime soit
le (radian)-1. Aussi l'appellerons-nous fréquence d'image; A sera
la pulsation d'image. On voit que l'on peut remplacer la considération

de la fonction y(x) par celle de sa transformée de Fourier
A (AO c'est ce que l'on fait en Optique pour l'onde lumineuse, et
en Acoustique pour l'onde sonore. Nous ferons ainsi pour la
distribution de brillance E,2 (Xj). A(A) représentera désormais la
distribution des «amplitudes de Fourier» A pour les diverses pulsations
d'image A • Il conviendra seulement de ne pas confondre la
fréquence d'image A/2ji avec la fréquence v de la vibration lumineuse
elle-même

Donnons ce que nous appellerons le théorème de la borne
supérieure, qui est un pur théorème de mathématiques; il nous sera
utile dans la suite.

Supposons que les pulsations d'image A supérieures en valeur
absolue à un nombre M soient absentes de la t. F. de y(x), aient une
amplitude A(A) nulle:

A (Al pour : |a| > M

Nous dirons alors que la t. F. de y(x) est limitée (fig. 1).

(3) donne alors:

+ CV

(i)u J'a(JL) An eiJIx dA
' CC

Or (2) donne:

385



-\~oo

IA (A) I s I |y(x)| • dx

Done :

d»y
+

2Mn rl J I y(x) I dx

CV

(Théorème de la borne supérieure)

On voit donc que, à «norme» donnée pour y(x), plus la fonction
y(x) sera à t. F. limitée, et plus elle devra présenter de contours
arrondis. Les «petits détails», les variations brusques, y manqueront.
On verra l'intérêt de cela au paragraphe 8.

5. Définition de la prise primaire. Les hypothèses fondamentales
et la formule fondamentale. Le théorème fondamental

Passons maintenant à la considération des instruments astronomiques

d'observation eux-mêmes.
Ce n'est que par l'intermédiaire du champ ondulatoire de

lumière, qui règne là-même où se trouve un tel instrument, que nous
pouvons avoir des renseignements au sujet des astres; et nous
devons donc admettre que la réponse fournie par l'instrument doit
être déterminée par ce champ de lumière. Appelons prise d'onde
toute région, tout domaine de l'espace, tel que le champ de lumière
qui règne dans ce domaine détermine de manière univoque la
réponse de l'instrument. Alors, d'après ce que nous venons de dire,
le domaine de l'espace occupé par l'instrument-même est une telle
prise d'onde. Mais nous savons par le principe de Huvgens-Fresnel
(pour sa forme rigoureuse donnée par Kirchoff, voir p. ex. [1], que
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le champ lumineux qui règne dans un volume est déterminé par le
champ qui règne sur la surface-frontière de ce volume. La seule
surface-frontière du domaine occupé par l'instrument est donc aussi
une prise d'onde de cet instrument.

Nous appellerons prise primaire d'un instrument une prise d'onde
(fig. 2) qui satisfait aux trois conditions suivantes:

a) La prise d'onde est contenue tout entière dans un plan.
b) Ce plan est perpendiculaire à la direction générale des astres

observés à l'aide de l'instrument.
c) Le champ lumineux sur la prise d'onde n'est perturbé ni par

l'instrument ni par tout autre corps; c'est à dire que ce champ
lumineux est celui qui régnerait sur la prise d'onde si cette dernière
surface se trouvait en face des astres dans le vide, loin de tout corps
matériel.

Nous admettrons sans démonstration le principe suivant: Tout
instrument astronomique d'observation admet une prise primaire.

En particulier, il semble bien que tous les télescopes et inter-
féromètres, optiques ou radioélectriques, admettent comme prise
primaire une portion de surface plane placée devant leur ouverture

libre et la recouvrant complètement.
Calculons le champ lumineux sur la prise primaire, ce qui est

facile parce que ce champ n'est perturbé par rien.

Supposons que le centre 0 de la sphère céleste se trouve (fig. 3)
dans le plan de la prise primaire (il serait facile de voir qu'un écart
de 0 hors de ce plan n'a pas d'importance). Soit x2 l'abcisse, à partir
de 0, d'un point P, de la prise primaire (théorie à une dimension).
Le champ lumineux C2, de longueur d'onde A, en P, est donné d'une
manière générale par:

oo

(5) C,(x,) J Cj(x,)
— oo
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Nous appellerons couple l'ensemble de deux points A et B
quelconques pris dans la prise primaire (fig. 3). La distance D de ces
deux points est Vécartement du couple. Nous appellerons pulsation
de résonance du couple AB la quantité 0 définie par:

(6) 0 2 k -5- (rad1)
X

Et nous appellerons période de résonance du couple la quantité
T définie par:

(7) T — A(rad)
o D

Soit CL' et C2" les champs à un moment donné en les deux points
d'un couple AB de la prise primaire.

Considérons le produit C2' C2" où C2" désigne le conjugué
complexe de C2". Pour chaque fréquence v de l'intervalle spectral Av,
les champs C2' et C2" en A et B sont différents; et il en est de même
en général pour le produit C2' C,". Prenons la valeur moyenne de
ce produit sur les fréquences de l'intervalle Av.

Notre formule fondamentale du couple affirme que cette valeur
moyenne est égale, pour un écartement D donné du couple, à
l'amplitude de Fourier A (q) de la distribution de brillance E,2(x,).
La définition de Q est donnée par (6).

(8) Zj C2' C2" A(o) (formule fondamentale)
A\v v
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Je n'indiquerai ici que le principe de la démonstration de la
formule fondamentale. On peut la démontrer de deux manières, à

ma connaissance: a) Considérant C,(x2) comme une fonction aléa-
Loire stationnaire de x2, dont chaque fréquence v de l'intervalle Av
fournit un exemplaire différent, on obtient une démonstration purement

mathématique. Le membre gauche de (8) est la «covariance»
de la fonction aléatoire. Voir [2 | et [3]. b) Considérant les points
A et B comme constituant la prise primaire d'un interféromètre
astronomique Michelson, on démontre facilement que les franges
d'interférence, produites dans le plan focal de cet instrument, ont poux-
profondeur l'amplitude A(p) de la pulsation de résonance de la prise
primaire de l'interféromètre ; et, d'autre part, que cette profondeur
est aussi égale à la valeur moyenne du produit C2' G" sur les
diverses fréquences de Av.

Nous verrons bientôt l'intérêt de notre formule fondamentale.
Dans tout instrument astronomique, il existe des organes matériels

récepteurs (œil, plaque photographique, cellule photoélectrique,

ampèremètre haute-fréquence, etc.) qui mesurent l'état du
champ de lumière, qui font ainsi le passage lumière-matière pour
l'information concernant les objets célestes. Nous ferons les
hypothèses fondamentales suivantes:

Hypothèses fondamentales:

a) La réponse de chaque récepteur ne dépend que du carré Ëy
C3. C3 de l'amplitude E.. du champ G, axi point P., où est placé

le récepteur; ainsi chaque récepteur ne peut mesurer que la densité

d'énergie électromagnétique au point où il est.

b) Et même, le récepteur ne peut mesurer que la valeur moyenne

de Es2 sur le petit intervalle spectral Av; la mesure sur une seule
et unique fréquence est impossible.

c) Les équations de propagation de la lumière dans l'instrument
sont linéaires. Si bien que le champ C3 en un point P3 s'exprime
linéairement en fonction des champs C2(x2) sur la prise primaire
de l'instrument, selon l'expression suivante, où F(x,) est xine fonction

convenable qui dépend bien du point P.. considéré mais qui
ne dépend pratiquement pas de la fréquence sur Av; F(x,) s'annule

en dehors de la prise primaire.

d) Il n'y a pas d'effet Doppler-Fizeau (produit par des miroirs
mobiles, etc.) changeant la fréquence de la lumière entre la prise

+ OC

(9)

OD
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primaire et le récepteur matériel. Ainsi la fréquence du champ C3

est égale à la fréquence v des champs C„ qui lui donnent naissance.

Des deux dernières hypothèses fondamentales l'on tire:

J H E.,-' £ Cs clA" V ZV v

-J-cc -(-X

£ JJ F( X;.' Fix,") C„(x,') C, 1.x,") dx,' dx,"
—X —X

Ou encore:

10 A ^ E->2 -
_V v

—J—X

f f Flx.,") Fix.,") [-£ £ C.,(x.,') C.,(x..")
J J ' ~ ^ '

dx.,' dx.,"

La formule (10), jointe aux deux premières hypothèses
fondamentales, montre que la réponse de l'instrument d'observation ne
dépend que de l'ensemble des produits qui ont la forme du membre
gauche de (8) et qui se rapportent à des couples de points
quelconques de la prise primaire.

En employant la formule fondamentale (8), on a alors
l'intéressant: Théorème fondamental: La réponse d'un instrument
astronomique d'observation ne dépend que de ces amplitudes de Fourier
A( J]_J pour lesquelles Si est la pulsation de résonance 0 d'un couple
AB extrait de la prise primaire. Ces amplitudes de Fourier sont
donc les seuls caractères de la distribution de brillance qu'un tel
instrument puisse nous faire connaître.

Une importance conséquence particulière du théorème
fondamental est la suivante: Si la prise primaire d'un instrument est
toute entière contenue à l'intérieur d'un cercle de son plan, dont le
diamètre A sera le diamètre de prise primaire, cet instrument ne
pourra nous transmettre des pulsations d'image supérieures à: J]_

: M. avec:

(111 M r | (rad"11

Notre théorème fondamental repose sur notre formule
fondamentale, ainsi que sur nos quatre hypothèses fondamentales a),
b). c) d), dont il est temps de dire quelque mots. On peut sans
aucun doute imaginer certains instruments qui mettent en défaut
l'hypothèse a), l'hypothèse d), ou même l'hypothèse c). Par manque

de place, je ne donne pas plus d'indications ici. Mais j'ignore
actuellement si les possibilités, qui semblent ainsi ouvertes, sont
réelles; c'est à dire s'il peut exister des instruments de performances

notables, basés essentiellement sur la suppression de ces
restrictions. Il est à remarquer que le champ de lumière est considéré
ici comme étant scalaire, et non vectoriel. (A suivre)
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