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ORION

Mitteilungen der Schweizerischen Astronomischen Gesellschaft
Bulletin de la Société Astronomique de Suisse

SCHAFFHAUSEN FEBRUAR 1951 Ne 30

Nouvelle démonstration du théoréme de Coriolis
avec applications a la Mécanique terrestre®)

.Par M. le Prof. Eugéne PRIGR, Ing. E.P.F., Genéve

Le théoréme dit de Coriolis (Paris; 1832) avait déja été
utilisé par Clairaut (1742) et par notre grand Euler (1754,
théorie des turbines hydrauliques).

Dans les traités classiques, on en donne une démonstration ana-
lytique ou maintenant vectorielle ayant un caractére artificiel qui
rebute les non-spécialistes.

Quoi qu’il en soit, ce théoréme ou proposition est indispen-
sable pour 1’étude du mouvement d’un point mobile par rapport a
un corps, systétme ou référentiel, 3, dit entrainé ou d’entrainement,
lui-méme en mouvement par rapport a un référentiel 3, considéré
comme fixe. Le mouvement du point pour un observateur en-
trainé par 3, est le mouvement relatif, tandis que pour un obser-
vateur lié a F,, c’est le mouvement absolu.

Nous inspirant de Poinsot et de Monge, nous allons faire voir
que le théoréme de Coriolis est, d’abord, essentiellement géomé-
trigue. Il est possible de suivre I’évolution du point mobile dans
ses déplacements relatifs, d’entrainement et absolu a I'aide d’une
figure simple et intuitive (fig. 1) en considérant d’emblée des dé-
placements finis et non des déplacements élémentaires comme dans
les démonstrations classiques basées sur les dérivées.

Illustrons ces généralités par un petit exemple pratique. Un
voyageur se trouve a bord d’un bateau qui s’éloigne d’un port
suivant une ligne quelconque. Un chien va d’un point A & un autre
point B du bateau. Ce dernier constitue le référentiel d’entraine-
ment tandis que la terre ferme est le référentiel absolu. Pour le
voyageur, le chemin AB, mesuré par rapport au bateau, est le
déplacement relatif du chien. Les déplacements d’entrainement,
tant du bateau dans son ensemble que de A et de B, ne sont con-
nus que d’un observateur posté sur la terre ferme. En déterminant
la position initiale du chien et sa position finale par rapport a la

*) Rédigé spécialement pour la Revue «ORION» d’aprés une communica-
tion de l'auteur au Congrés de I’Association francaise pour I’Avancement des
Sciences en septembre 1950 a Toulouse, comme délégué de la Société Astro-
nomique de Genéve, et une conférence du 21 déc. 1950 devant cette Société, a
la salle de 1’Institut National Genevois.
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terre, il pourra connaitre le déplacement absolu de I'animal, c.-a-d.
son déplacement total rapporté a la terre.

On fera bien de noter qu’a chaque instant, le point mobile coin-
cide avec un point du référentiel entrainé, qui coincide lui-méme
avec un point variable du référentiel absolu, de sorte qu’a tout
instant, il y a trois points confondus *). Mais, pour simplifier ex-
posé, nous ne retiendrons que les divers points du référentiel absolu
indiqués par des lettres différentes. En outre et pour prévenir les

confusions, rappelons qu'on appelle déplacement relatif sp (vecteur
polaire) le déplacement qu’aurait le point mobile si le référentiel
entrainé était bloqué dans sa position initiale. Alors, ce déplace-
ment est le méme pour les deux référentiels. Quant au déplace-

ment d’entrainement se du point mobile, c’est le déplacement du
point du premier référentiel coincidant avec le point mobile a
I'instant initial.

e

Examinons maintenant la fig. 1. Le point mobile se déplace
sur une droite, mobile elle-méme. Si /A, est la position initiale de
la droite, le point mobile va de A en B. Le déplacement relatif

est sy — AB. Considérons maintenant la position finale A, de la
droite. Le point de la droite qui coincidait a I'instant initial avec
le point mobile est venu en C; le déplacement d’entrainement est

se — AC. Si maintenant nous additionnons géométriquement le

*) Par commodité typographique, au lieu d’utiliser la fléche droite pour
désigner des vecteurs polaires, on a surligné les letires; de méme, les vecteurs
axiaux ont été soulignés au lieu d’éire munis d’une fléche courbe,
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déplacement relatif avec le déplacement d’entrainement par la
régle du parallélogramme, nous arrivons seulement en D. Pour
que le mobile reste sur la droite, il faut nécessairement compléter
le mouvement par une rotation d'un angle ¥ (vecteur axial) effec-

tuée autour de C avec s; pour rayon. Alors, le point mobile vient
en E qui est sa vraie position finale. Le déplacement absolu du

point est donc AE. Le déplacement complémentaire DE forme le
contenu de notre théoréme, montré ainsi d'une facon presque

naive. Si I'on remarque que le déplacement s’s — BE n’est autre
que le déplacement d’entrainement de B, on peut donner ’énonce
suivant: _

Le déplacement absolu d’un point, mobile par rapport a un
référentiel d’entrainement, est égal a la somme géométrique de
son déplacement relatif et du déplacement d’entrainement de lex-
trémité du déplacement relatif. _

Cet énoncé en langage ordinaire est général: il s’applique aussi
bien aux déplacements finis qu’aux déplacements élémentaires ou
infiniment petits, tant dans le plan que dans Iespace.

Au fond, la plus grande difficulté du probléme est de définir
le mouvement d’entrainement d’un corps solide. Nous nous bor-
nerons a rappeler que le mouvement d’un point quelconque P ap-
partenant a un tel corps est équivalent a une translation (recti-
ligne) égale au déplacement d’un point de réduction O du corps
et suivie d’une rotation autour d’un axe passant par la position
finale de O. Il peut étre avantageux de changer en cours de route
le point de réduction: alors, la translation varie et devient égale
au déplacement total de ce dernier point, alors que I'axe de rota-
tion passe par sa position finale et reste paralléle a lui-méme et
que ’angle de rotation demeure constant. Ces détails sont indis-
pensables pour résoudre des problémes sortant du domaine élé-
mentaire.

Nous étant familiarisés avec les idées et les résultats de base
de notre proposition, nous pouvons passer a quelques formules.
Tout d’abord, I'énoncé ci-dessus s'éerit (fig. 1):

1) sq = sy + ;e. On a identiquement:
2) B,e = Se _|' (S,e = 5e )- N[aiss
| 3) (o — 8e) = 5g; c’est le déplacement complémentaire ou
de Coriolis. On a:
4) 8’e = se + 8¢, et
5) s = sp + se + s .
Autrement dit: Le déplacement absolu d’un point est égal a la

somme géométrique de son déplacement relatif, de son déplace-
ment d’entrainement et du déplacement complémentaire.
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En soi, le déplacement complémentaire a pour expression:

6) sc = ¥ x &,

Notons sans insister qu’il s’agit d’'un produit vectoriel. On voit
que le déplacement complémentaire a un caractére mixte car il
participe a la fois du mouvement relatif et du mouvement d’en-
trainement, par la rotation que comprend celle-ci.

Le déplacement complémentaire ne s'annule que dans trois cas:
1° Le mouvement d’entrainement ne comporte pas de rotation et

se réduit a une translation.
2° Le déplacement relatif est parallele a I'axe de rotation.

3¢ Le déplacement relatif est nul (cas du repos relatif, p. ex. ins-
tantané s’il s’agit d’un point mort ou de rétrogradation).

Remarquons encore que si I'on pose:
7) 8¢ + 8¢ = 8y, e> ON a aussi:
8) sa = se + Sr, e en langage ordinaire:

Le déplacement absolu d'un point est égal a la somme géomé-
trique de son déplacement d’entrainement et de son déplacement
relatif entrainé.

Il est instructif d’envisager ainsi notre proposition sous diffé-
rents aspects.

Appliqué a des déplacements du premier ordre, on constate
que le déplacement complémentaire est du second ordre et qu’il a
pour valeur

9) ddx vp . dt = (0 x v;) dt2, ot
d ) . , -
10) o = T—- est la vitesse instantanée de rotation.
- t

Le terme 9) peut étre négligé pour la composition des vitesses.
Avant de passer aux accélérations, il est intéressant d’exprimer

le déplacement absolu Ds d’un point en série de Taylor (d’aprés

Mébius):
11) Ds = v.dt + 4 .a.de2 4+ ....,

ou v est la vitesse et a, Iaccélération. Celle-ci fournit un déplace-
ment du second ordre qui, suivant I’expression heureuse d’anciens

auteurs, est une déviation du déplacement v . dt du premier ordre.

La formule 11) peut s’établir comme suit: v étant la vitesse ini-

tiale et (;f- - dv) la vitesse finale, la vitesse moyenne est (v -+ %Y)

Donc:

12) Ds — (v + %)dt —v.dt + 4. dv.d. Maisa — %‘f,
t
dv = a . dt, d’ou résulte 11).
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La fig. 2 traduit géoméiriquement les formules 11) et 12), en
v remplacant la différentielle di par un accroissement fini At. On
obtient de bonnes figures en faisant At égal p. ex. a quelques di-

xiemes de seconde. En méme temps, la différentielle dv prend
une valeur finie Av. Ayant choisi Vv et a et leurs échelles, on
obtient Av a une échelle cohérente en tracant, par Dlextrémité
admise A, de v./At une paralléle a la droite qui joint les extré-
mités de v et de a. Une droite menée par la position initiale A,

du mobile et le milieu M de Av vient couper la paralléle a a
menée par la position A, du premier ordre en A,, position du
second ordre. Le segment A A, représente la «déviation» due a

laccélération. Le vecteur A,B, ou vitesse finale (v 4 Av) en
position finale, est la tangente 4 la trajectoire en A, et permet
de tracer cette derniére avec une bonne approximation dans la
région considérée.

Pour passer aux accélérations du point mobile, appelons Dsa
le déplacement absolu total, au second ordre prés. D’une part,
on a:

13) Dsy = (vp + ve)dt + (3 ap + 4 2e + © x v,) dt.
D’autre part, on a:

14) Ds, = ‘Ta Ldt 4 3 ;a . dt%, d’ot1 en égalant les termes de
méme ordre:

15) va — vp + Ve, c-a-d. que la vitesse absolue est stmple-
ment égale a la somme géométrique de la vitesse relative et de la
vitesse d’entrainement: en outre:

16) a, — ap + ag + 2. ® X V.

Cette derniére équation, qui concerne les accélérations et par
conséquent les déplacements du second ordre, exprime le théoréme
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de Coriolis sous sa forme habituelle, soit: laccélération absolue
est égale a la somme géométrique de Uaccélération relative, de Pac-
célération d’entrainement et d’une accélération complémentaire
ou de Coriolis égale au double du produit vectoriel de la vitesse
instantanée de rotation par la vitesse relative.

Si la vitesse de rotation est constante (rotation de la terre),
cela ne change rien a I’énoncé précédent.

U
W

F/'g. 3

Dans les applications, il est trés commode de construire "accé-
lération de Coriolis en utilisant la régle suivante:

A partir de la position instantanée A du point mobile (fig. 3).

porter la vitesse relative v, et I'axe instantané de rotation avec la
vitesse de rotation ®. Mener par A un plan ['| perpendiculaire a

I’axe de rotation; projeter v, sur ce plan, en v’,.; faire tourner ce
] T |Y ’ T
dernier vecteur dans le plan, d’un angle droit et dans le sens de .

On aura ainsi exactement la direction de 1’accélération a. de

Coriolis. Quant a sa grandeur, elle est égale a deux fois le produit
de la vitesse de rotation par la projection ?1‘ de la vitesse rela-

tive. Celle-ci est égale a

17) »V,r — v, .sin ¢, ou ¢ est I'angle compris entre la vitesse
relative et I'axe de rotation.

Ayant passé de la géométrie des déplacements a la cinématique
en introduisant le temps et en considérant les vitesses ainsi que
les accélérations, il resterait a envisager le point de vue dynamique.
Nous nous bornerons a mentionner qu’il suffit pour cela d’attri-
buer une masse m au point mobile et de tenir compte (Newton)
que la résultante des forces appliquées au point est égale au pro-
duit de la masse par l'accélération absolue,
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Applications

1° Une jolie application consiste a déterminer la déviation par
rapport a la verticale et par suite de Paccélération de Coriolis
d’'un corps pesant tombant en chute libre d’une hauteur notable.
Dans ce but, nous utiliserons I’équation 16):

Ba =g =i+ % + 50

Q’ou nous tirons a;y pour un observateur lié a la terre:

18) a, = g — ag — ac

Nous faisons les simplifications suivantes:
a) La terre a une forme sphérique.

b) On néglige les attractions solaire et lunaire. :
¢) L’accélération est indépendante de la hauteur, donc constante.

Comme nous cherchons exclusivement la déviation due a ag.
nous n’avons pas a nous préoccuper de la chute verticale produite

par g. L’accélération centrifuge — ae est perpendiculaire a I'axe
de rotation PP’ de la terre (fig. 4. en projection) et elle a pour
valeur

19) ag = 0 . r = w? . R . cos A,
out R — 6370 km est le rayon terrestre; w est la vitesse de rotation
de la terre (v. infra) et 1 la latitude du lieu d’expérience.
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La composante verticale de -—a, est contenue implicitement

dans la valeur locale de g, tandis que sa composante horizontale
est comprise automatiquement dans la direction locale du fil a
plomb. Au total, nous n’avons pas nous préoccuper de ’accélération
centrifuge.

Pour trouver la direction de Iaccélération a, de Coriolis
(fig. 5), il suffit d’appliquer la régle ci-dessus. La vitesse relative

v, est pratiquement dirigée vers le centre O de la terre. Sa pro-
jection v’y sur le plan du paralléle est orientée suivant le rayon
AT de celui-ci. En faisant tourner v’y d’un angle droit dans le

sens de ®, on voit que l'accélération de Coriolis est dirigée vers

Pouest (W). Par conséquent, pour I'observateur terrestre, il y aura
une accélération dirigée vers 'Est (éq. 18), qui a pour valeur:

20) a, = 2w .V =2 w0 . vp. cos L

Or, pratiquement:

21) vp — g .t (mouvement de chute suivant la verticale),
donc:
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22) a, — 2 ® g . cos b .t (accélération de Coriolis).

dv
Comme, d’autre part, a, — T]ti , on trouve en intégrant 22):
. ds¢ ’ oy
23) vo — @ g . cos L. t°. Mais vp = , d’oti en intégrant
; dt
23):
1 ;
24) sp = 3 .wg.cos k.t (fig. 7).

V

F[g. 6 |
s Fg 7

On peut remplacer avantageusement ce procédé connu en uti-
lisant I’équation 11) de Taylor-Moebius sous forme finie limitée
a trois termes, soit:

1

— — 1_
25)SC:VC.t+?ac.t2+ 6

Tous les vecteurs étant paralléles puisque dirigés vers UEst, on
peut se contenter de leurs valeurs absolues. L’équation 22) donne
la suraccélération de Coriolis.

je - T

: dac
26) ju = e 2. m g . cos b — constante.
Pour t — 0, les valeurs initiales de v et de ac s’annulent;
25) se réduit done a:
27) s¢ = % i~ P = % w g . cos A . 1% identique a 24).

Dans ces conditions, on peut énoncer le résultat sous la forme

remarquable suivante qui nous parait nouvelle:

En chute libre, un corps pesant partant du repos tombe verti-
calement avec Taccélération g constante et il est dévié vers UEst
suivant une suraccélération constante égale a 2 . ® g . cos L
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g

Comme la hauteur de chute est 28) h = £k t’, on peut écrire

24) sous la forme:

29) s¢ = % . cos A e Ay

qui donne la déviation en fonction de la hauteur de chute.

Exemple numérique:

hauteur de chute: h = 500 m
vitesse de rotation de la terre: ® — 0,729.10* [rad/sec]
latitude de Genéve: ho— 46°11°59,37, soit environ:

46°10°; cos L = 0,693;
g = 9,81 m/sec?

On trouve (calculs a la régle) s, — env. 170 mm.

Telle est, dans notre cas, la valeur de la déviation vers I'Est
due a Paccélération ou a la suraccélération de Coriolis. Des essais
effectués dans des puits de mines ont confirmé des résultats ana-
logues qui prouvent, d’une maniére il est vrai un peu compliquée,
la rotation de la terre.

20 L’accélération de Coriolis donne lieu a des cyclones (fig. 6)
tournant dans le sens direct ou trigonométrique (sens inverse du
mouvement des aiguilles d’une montre) pour I'’hémisphére Nord,
en sens opposé dans ’hémisphére Sud. Le centre est en dépression
et en translation, les masses d’air courent au niveau du sol ou de
la mer et sont déviées par l'accélération de Coriolis. Pour les
anti-cyclones, c’est le contraire.

3° Un autre phénoméne dit a I'action prolongée de Paccéléra-
tion de Coriolis est 'inégalité d’usure des deux rives des fleuves et
rivieres.

4° Dans la théorie dynamique du pendule de Foucault, on tient
compte de P'accélération de Coriolis.

5 En outre, notons encore que I’accélération de Coriolis joue
un réle important dans I’étude du mouvement de nombreux méca-
nismes et machines, en particulier dans les turbines, ce qui établit
un nouveau lien entre la mécanique terrestre et la mécanique
céleste.

Nous serions heureux si cette petite étude incitait quelques
lecteurs a se familiariser avec le mouvement relatif normal, avant
d’aborder les théories a la mode de la relativité. Nous partageons
Popinion de lillustre opticien francais Ch. Fabry («Physique et
Astrophysiques, Paris, Flammarion 1935, p. 143): les brillantes dé-
couvertes de I’Astrophysique ne doivent pas faire oublier la Méca-
nique céleste et 1’Astronomie de position qui n’ont pas dit leur
dernier mot, surtout si on les associe avec 1’Astrophysique.
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