Zeitschrift: Oltner Neujahrsblätter

Herausgeber: Akademia Olten

Band: 58 (2000)

Artikel: Dampfbetrieb am alten Hauenstein

Autor: Niederhäusern, Fred von

DOI: https://doi.org/10.5169/seals-659097

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Dampfbetrieb am alten Hauenstein

Engerth-Stütztender-Lokomotive B2E Nr. 4 der SCB nach den Umbauten mit Kamin für Kohlefeuerung, Führerstandsdach und Druckluftbremse, aufgenommen im Depot Basel um 1900

1. Vorgeschichte

Wie ein roter Faden zieht sich die Rivalität zwischen den Städten Zürich und Basel durch die Frühgeschichte der schweizerischen Eisenbahnpolitik. Ein 1836 von der Zürcher Handelskammer veranlasstes Gutachten kam zum Schluss, der Bahnbau sei eine Lebensfrage für die Industrie der Schweiz. Obwohl die verkehrsgeographisch zentrale Lage des Landes erkannt wurde, lag der Schwerpunkt auf dem Binnenverkehr; dem Transitverkehr auf der Ost-West- und Nord-Süd-Achse wurde nur geringe Bedeutung beigemessen. Eine Stammlinie von Basel nach Zürich mit einer Fortsetzung nach Winterthur und dem Bodensee war das erste konkrete Eisenbahnprojekt. Die von den Ingenieuren NEGRELLI¹, ESCHMANN und SULZBERGER durchgeführten Terrainstudien ergaben als günstigste Linienführung eine Strecke von Zürich nach Baden und Basel, den Flussläufen

von Limmat, Aare und Rhein folgend. Beim damaligen Stand der Technik war an eine Bewältigung von grösseren Steigungen noch nicht zu denken. Ebenso wurde eine Linie nach Chur, abwechselnd mit Dampfschiffstrecken auf dem Zürichsee, dem Walensee und einem beide verbindenden Kanal erwogen. NEGRELLI dachte also bereits an eine Alpentraversierung über den Splügen nach Oberitalien: «Chur wird man wohl für alle Zeiten als den nächsten Punkt zu den Alpenpässen annehmen müssen.» Damit war eine der drei grossen Eisenbahnideen, die ostschweizerische, lanciert; sie entsprach dem Standort und dem Interessenkreis Zürichs. Ein der 1838 gegründeten Basel-Zürcher Eisenbahngesellschaft vorgelegtes Dokument NEGRELLIs über die Anwendung von Eisenbahnen in Gebirgsländern hielt erstmals die Realisierbarkeit des schienengebundenen Verkehrs in schweizerischem Gelände für möglich: «Der Lauf der Hauptflüsse

bildet das Netz zu unserem Eisenbahnsystem.» In diesem Sinne wird der Plan für ein schweizerisches Eisenbahnnetz mit der Stammlinie von Basel nach Zürich entwickelt, fortgesetzt bis nach Chur und gekreuzt von der Transversale Bodensee-Genfersee. Die Vereinigung der Flüsse Aare, Reuss und Limmat im Raum Windisch sollte der Knotenpunkt des Netzes bilden.

Auf wenig Begeisterung stiess das Projekt in beiden Basel. Dort hatte man andere Pläne. Schon in den ersten Diskussionsstadien wurde auf den Hauenstein hingewiesen und so der Zürcher Stammlinienidee die zentralschweizerische mit der Nord-Süd-Verbindung Olten-Luzern-Gotthard gegenübergestellt. Der «Vorläufige Verein für die Herstellung einer Eisenbahn ins Innere der Schweiz» und der Basler Bauinspektor ANDREAS MERIAN hatten 1845 in ihren Schriften das Problem als ein gesamtschweizerisches erkannt und den Centralbahngedanken klar heraus-

gearbeitet: «Die Eisenbahnen sind nicht Verbindungsmittel zweier Städte, sondern Glieder eines allgemeinen Continentalverbandes, und nach dieser Doppelbeziehung sollte auch die Anlage der schweizerischen Bahnlinien bestimmt werden.» Die zentrale Lage der Schweiz musste die kürzesten Wege ergeben. In ein kontinentales Verkehrsnetz integriert wurden folgende Hauptstrecken vorgeschlagen:

- Eine Stammlinie von Basel nach Olten durch einen Hauensteintunnel
- Von Olten nach Biel, mit Dampfschiffen weiter nach Yverdon und mit der Bahn weiter nach Genf
- Olten-Luzern, Dampfschiff bis Flüelen, Gebirgsstrasse nach Faido und mit der Bahn an den Lago Maggiore
- Verbindung mit dem Bodensee durch eine Linie Olten-Aarau-Zürich-Winterthur

In Zürich stiess die Centralbahnidee auf Ablehnung. Den Argumenten NE-GRELLIs für seine technisch sicherere Talbahn folgend, wurde das viel problematischere Hauensteinprojekt als «Ideenbahn» abgetan. Aus Bern und Solothurn hingegen trafen positive Antworten ein, ersteres hatte sich schon durch das Interventionsschreiben gegen die Konzessionierung des Nordbahnprojektes eindeutig festgelegt: «Die Bedingung zur Erreichung dieses Ziels scheint uns kein Bahnsystem in solchem Masse darzubieten wie dasjenige, wodurch Olten zum Hauptknotenpunkt der schweizerischen Schienenwege gewählt würde.»

Mit der Entstehung des Bundesstaates 1848 hatten sich durch ein einheitliches Wirtschafts- und Verkehrsgebiet die eisenbahnpolitischen Voraussetzungen grundlegend geändert. Auf Betreiben von Nationalratspräsident ALFRED ESCHER² wurde der Bundesrat beauftragt, durch unbeteiligte Experten einen Linienplan für ein gesamtschweizerisches Eisenbahnnetz zu erstellen. Berufen wurden der englische Eisenbahningenieur ROBERT STEPHENSON3 und sein Landsmann HENRY SWINBURNE. Deren 1850 vorgelegter Bericht enthielt neben grundsätzlichen verkehrspolitischen und eisenbahntechnischen Betrachtungen einen Linienplan, der grösstenteils den Haupttälern folgte, mit einigen wichtigen Ausnahmen, «wo keine Wahrscheinlichkeit mehr vorhanden ist, dass die Lokomotive noch angewendet werden kann, indem nur fixe Maschinen von Erfolg sind, wo solche Höhen erstiegen werden müssen». Die Engländer legten wiederum grossen Wert auf die alte Centralbahnidee: «Die Richtung der Linie von Basel nach Olten mag als Schlüssel des ganzen Eisenbahnnetzes betrachtet werden.» Im Vergleich zur Rheintallinie Basel-Brugg wird über die Hauensteinlinie Basel-Olten gesagt: «Sowohl die grossen nationalen Vorteile als auch die günstigeren finanziellen Aussichten dieser Linie lassen keinen Zweifel darüber walten, dass sie die einzige ist, welche der Schweiz für diese Richtung anempfohlen werden

Zur Bewältigung der Steigungen am Hauenstein wurde ein «System der schiefen Ebenen» vorgeschlagen, auf denen mittels Seilzug Neigungen bis zu 35 Promille überwunden werden konnten, was in England praktisch erprobt war. Bei einem solchen Steilrampenbetrieb war die bergwärts fahrende Lokomotive mit Hilfe eines über eine Umlenkrolle laufenden Seilzugs mit talwärts fahrenden, wasserbeladenen Wagen verbunden. Bei der Talfahrt leisteten bergwärts gezogene Wagen Bremshilfe. Vorgesehen waren eine 3 Kilometer lange Nordrampe von Buckten nach Läufelfingen und eine zweigeteilte Südrampe mit einem Segment von 2,5 Kilometern im von Süden nach Norden ansteigenden Tunnel und einem frei verlegten Teilstück von 2 Kilometern nach Trimbach. Vor beiden Tunnelportalen waren ebene Halteplätze von 250 Metern Länge geplant. Das Befahren von Kurven war natürlich nicht möglich. Für die Strecke Basel-Olten inklusive Zwischenhalte wurde mit einer mittleren Fahrzeit von einer Stunde und fünfzig Minuten gerechnet.

Im ersten Eisenbahngesetz von 1852 hatte sich die Schweiz entgegen den Empfehlungen von STEPHENSON und SWINBURNE für das Privatbahnsystem entschlossen. Am 4. Februar 1853 wurde die Schweizerische Centralbahngesellschaft (SCB) anstelle ihrer Vorläuferinnen definitiv konstituiert. Initiant und führender Kopf war der Basler Wirtschaftspionier JOHANN JAKOB SPEISER (1813-1856), der auch dem ersten Directorium vorstand. In weiser Voraussicht hatte er sich zudem immer für die mit dem Centralbahn-Gedanken aufs engste verbundene Gotthard-Politik eingesetzt und hatte kurz vor seinem Tode geschrieben: «Durch den Bau der Gotthardbahn wird die Centralbahn eine Weltbahn und allein auf diesem Wege kann sie es werden.» Zum technischen Leiter und späterem Oberingenieur wurde der württembergische Eisenbahnfachmann CARL VON ETZEL4 berufen. Als Vorstand der SCB-Hauptwerkstätte in Olten und zukünftiger Maschinenmeister (Chef der Zugförderung) wurde NIKLAUS RIGGEN-BACH gewählt. Den Konzessionsgesuchen der SCB wurde ein in etwa der Expertise STEPHENSON/SWIN-BURNE entsprechendes Netz zugrunde gelegt.

Für die Hauensteinlinie jedoch sah ET-ZEL eine entscheidende Änderung vor. Anstelle der schiefen Ebenen sollten die grösseren Steigungen mit Lokomotivvorspann bewältigt werden. Um die Neigung auf die hiefür maximal zulässigen 26 Promille zu begrenzen, plante er, mit der Südrampe an der Juraflanke absteigend weit nach Osten auszuholen und sie mit einer Schleife in den Nordkopf des Bahnhofs einzuführen, womit sich von Sissach nach Olten eine Streckenlänge von 17 km ergab. Die technische Entwicklung war nicht stehen geblieben. In der Donaumonarchie hatte CARL RITTER VON GHEGA5 allen Widerständen zum Trotz am Semmering die erste Gebirgsbahn der Welt gebaut. Sie war Teil der österreichischen Südbahn von Wien nach Triest und führte von Gloggnitz nach Mürzzuschlag. Durch Ausfahren von Seitentälern und Anlegen von Schleifen war die in der Luftlinie 10 km messende Strecke künstlich auf 28 km verlängert worden, wodurch die Steigung auf 25 Promille begrenzt werden konnte. Als kleinsten Kurvenradius hatte man 190 m festgelegt. Alle Vorschläge, ortsfeste Dampfmaschinen einzusetzen oder Spitzkehren zu bauen, hatte GHEGA in jahrelangen schweren Auseinandersetzungen abgelehnt. Für seine wegweisende Ingenieurleistung, welche für viele Jahrzehnte das Vorbild für den Bau von Gebirgsbahnen u. a. der Hauensteinlinie bildete, wurde er später geadelt. Lokomotiven, «die auf solchen Strecken hätten nennenswerte Lasten rentabel bewegen können», gab es bei Planungsbeginn allerdings noch keine. Die 1851 in einem Wettbewerb mit vier Prototypen gemachten Erfahrungen führten zu einem ersten Konzept für eine Gebirgslokomotive. Nach Prof. WILHELM ENGERTH⁶ sollten alle Räder als Adhäsion genutzt werden und die Achsen in Drehgestellen gelagert sein. Die ENGERTHsche Stütztendermaschine wies folgende Merkmale auf: Im Hauptrahmen waren unter dem Langkessel drei gekuppelte Achsen gelagert. Das auf zwei Achsen ruhende Tendergestell umfasste die Feuerbüchse und war universalgelenkig vor derselben mit dem Hauptrahmen verbunden. Zwischen der letzten Triebachse im Hauptrahmen und der ersten Tenderachse war eine Zahnradkupplung angebracht; die beiden Tenderachsen waren über Kuppelstangen verbunden, was sich jedoch nicht bewährte. ENGERTH-Lokomotiven ohne angetriebene Tenderachsen fanden darauf in Österreich, Frankreich und der Schweiz grosse Verbreitung.

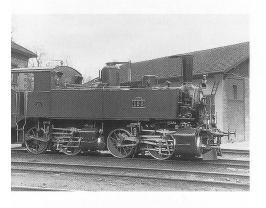
Die Engerth-Stütztender-Lokomotive Ec 2/5 «Genf», Baujahr 1858, bereit zum Einsatz bei den Juhiläumsfahrten auf der 100 Jahre alten Hauensteinlinie, aufgenommen im Depot Basel am 26. April 1958

2. Lokomotiven für die Bergstrecke

Die ENGERTH- und MALLET-Lokomotiven der SCB

Dampflokomotiven mussten entsprechend den mannigfaltigen Betriebsbedingungen und Verwendungszwecken sowie den fast bei jeder Bahn anderen Verhältnissen (Streckenlänge, Neigungen und Kurvenradien) sehr verschieden gebaut werden, was besonders für die SCB mit der Hauensteinlinie galt. Nachdem sich das System ENGERTH am Semmering bewährt hatte und RIGGENBACH zusammen mit KESSLER⁷ mit ihrem Vorschlag, je nach Leistungsprogramm verschiedene Typen zu bauen, durchgedrungen waren, beschafften die SCB von 1854-1872 als erste Lokomotivgeneration insgesamt 60 Stütztendermaschinen, und zwar 57 von der Maschinenfabrik Esslingen und 3 von der Hauptwerkstätte in Olten gemäss nachfolgender Tabelle:

geschickteren Lokomotivführern	ge-
lang. Mit steigenden Zuglasten wu	rde
der Einsatz der ENGERTH-Maschin	nen
ohnehin immer problematisch	
Hauptsächlich auf nassen Schienen	im
Tunnel neigten sie ständig zum Schl	eu-
dern. So kam RIGGENBACH er	st-
mals auf die Idee des zusätzlich	nen
Zahnradantriebs, den er für die dam	als
im Planungsstadium befindliche Go	
hardbahn vorzuschlagen gedachte.	
ihre Leistung sich nicht steigern lie	
hatten die ENGERTH-Lokomotiv	ven
schon vor der Jahrhundertwende i	hre
Bedeutung verloren. Von der SCB w	ur-
den nur sieben Exemplare überno	m-
men. Die Lokomotive GENF führte	am
1. Mai 1858 den Eröffnungszug auf	der
Hauensteinlinie und ist als ältes	
Schienenfahrzeug der Schweiz erhal	
(Abb 2).	
Day Carlan Instrum ANIATO	TT

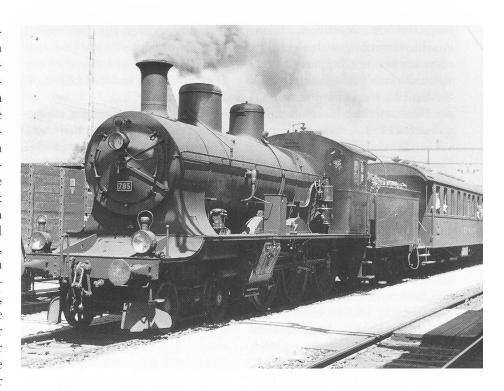

Der Genfer Ingenieur ANATOLE MALLET (1837–1919) liess 1874 seine 2-Zylinder-Verbunddampfmaschine für Lokomotiven patentieren. Dann erkannte er die Vorteile des Ver-

Serie	Bezeichnung 1887–1902	Bezeichnung ab 1902	Anzahl	Baujahre	Leistung	Belastungs	normen
В	B 2 E	Ec 2/5	26	1854–1858	400 PS	Ebene 10‰ Hauenstein	260-330 t 160-220 t 75 t
A	A 2 E	Eb 2/4	17	1857–1872	350 PS	Ebene 10‰	220-310 t 140-180 t
С	D3E	Ed 3/5	17	1858–1859	370 PS	Ebene Hauenstein	500 t 150 t

Umbauten veränderten das Aussehen der Lokomotiven schon bald. Nach Umstellung von Holz- auf Kohlefeuerung wurden die konischen Funkenfängerkamine durch einfache zylindrische Schornsteine ersetzt. Die Führerstandsdächer wurden in den siebziger Jahren aufgebaut (Abb 1). Mit dem Kesselersatz 1867-1880 durch die Hauptwerkstätte Olten wurden die Lokomotiven aller drei Gruppen mit Verbesserungen versehen. Die C-Maschinen hatten Gegendruckbremsen. Ab 1889 wurden die verbliebenen A-Maschinen - ihrer zierlichen Bauart wegen «Spinnen» genannt - mit Westinghouse-Bremsen ausgerüstet. Vor Indienststellung der C-Lokomotiven musste der B-Typ – als «mittlere Lokomotive» bezeichnet - in Doppeltraktion auch den Dienst auf den Hauensteinrampen bewältigen, was mit grossen Schwierigkeiten verbunden war und nur den bundtriebwerks für kurvenbewegliche Lokomotiven und erbaute 1886 die erste vierzylindrige, nach ihm benannte Gelenklokomotive, welche folgende Merkmale aufwies:

Das Hochdrucktriebwerk arbeitete auf die hintere, fest im Rahmen gelagerte Achsgruppe. Über bewegliche Verbinderdampfleitungen gelangte der teilweise entspannte Dampf in die Niederdruckmaschine der beweglich im Rahmen gelagerten vorderen Achsgruppe. Die Ableitungen zum Blasrohr waren ebenfalls gelenkig. Die Vorteile bei derart in Serie geschalteten Triebwerken lagen in der Verminderung der Kondensationsverluste und einem entsprechend geringeren Dampfverbrauch, die Nachteile in der Schwierigkeit, die beweglichen Dampfleitungen dicht zu halten. Hinzu kam, dass bei der Tenderversion die auf der Maschine selbst mitzuführenden Betriebsstoffe einen

entsprechend kleineren Kessel bedingten und dass sich mit abnehmendem Kohle- und Wasservorrat auch das Adhäsionsverhalten verschlechterte. Infolge der nicht miteinander verkuppelten Hoch- und Niederdrucktriebwerke neigten gerade die MALLET-Tenderlokomotiven zum Schleudern. Beim Anfahren mit vollem Schieberkastendruck und leerer Niederdruckmaschine schleuderte das Hochdrucktriebwerk infolge übergrossem Druckgefälle zum Verbinder. Dadurch gelangte zu viel Dampf in die Niederdruckmaschine, die nun ihrerseits durchdrehte. Zudem trat beim Einsatz als Zug- oder Schiebelokomotive ein Kippmoment auf, das die vordere Achsgruppe entlastete und zum Schleudern brachte, was aber durch den Druckabfall im Verbinder schnell verschwand. Jetzt musste die Hochdruckmaschine gegen einen sehr geringen Verbinderdruck arbeiten und kam ebenfalls ins Schleudern. Die MALLET-Maschinen mussten sehr behutsam gefahren werden und konnten ihre volle Leistung vor allem am Berg kaum ausnützen.



Gelenk-Verbund-Tenderlokomotive System Mallet Ed 2x2/2 196 der SCB, für Güterzug- und Vorspanndienst, aufgenommen im Depot Basel am 26. April 1958

Tenderlokomotiven C 4 / Ed 2 x 2/2 Betriebsnummern

Baujahre 1891 und 1893 Leistung 650 und 700 PS

Der stark zunehmende Verkehr auf der Hauensteinlinie erforderte jedoch dringend leistungsfähigere Lokomotiven. Als Ersatz für die auszumusternden 17 ENGERTH-C-Maschinen beschaffte die SCB Anfang der Neunzigerjahre

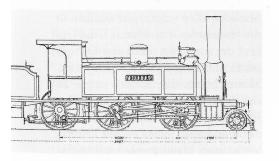
Ausklang des Dampfbetriebs auf der alten Hauensteinlinie: Schnellzug-Lokomotive A 3/5 785 mit Personenzug im Bahnhof Olten, 1947

von MAFFEI⁸ sechs Vierzylinder-Verbund-Tenderlokomotiven System MALLET. Die «Maffeis», wie sie vom Personal genannt wurden, fanden vorwiegend für den Vorspann- und Schiebedienst am Hauenstein Verwendung. Um sie auch im Flachland einsetzen zu können, wurden bei den zehn Maschinen des zweiten Bauloses die Vorratsräume für die Betriebsstoffe vergrössert, was weitere Einschränkungen am Kessel- und Triebwerkgewicht bedingte. Die durch Erhöhung des Kesseldrucks von 12 auf 14 atm vergrösserte Leistung bei gleichzeitiger Verringerung des Adhäsionsgewichts um 2 t ergab eine noch grössere Neigung zum Schleudern. Die Belastungsnormen auf den Hauensteinrampen betrugen 180-220 t und 550 t im Flachland. Die Maschine mit der SCB-Betriebsnummer 196 ist als einzige normalspurige MALLET-Lokomotive in Europa der Nachwelt betriebsfähig erhalten (Abb 3).

In Olten für die Hauensteinlinie entworfene und gebaute Lokomotiven

Von den fünf durch die SCB-Hauptwerkstätte erbauten Lokomotivgattungen beschreiben wir den älteren von zwei speziell für den Bergdienst konzipierten Typen:

Personenzuglokomotiven B 3 / Eb 3/4


Betriebsnummern 57–60, 79 Baujahre 1864–1873 Leistung 600 PS

Diese fünf zuerst dreiachsigen Tendermaschinen wurden in Dienst gestellt, um auf der Hauensteinlinie über grössere Zugkraft und Geschwindigkeit zu verfügen und gleichzeitig auf den Lokomotivwechsel in Sissach verzichten zu können. Gewicht und Achsstand hatten allerdings die zulässigen Normen überschritten, was starke Spurkranz- und Gleisabnützung verursachte. Ab 1870 wurde in der Hauptwerkstätte ein Umbau vorgenommen. Durch Hinzufügen einer vorderen beweglichen Laufachse entstanden so die ersten 3/4-gekuppelten Lokomotiven in Europa. Wegen der im Verhältnis zum kleinen Kessel und der geringen Betriebsstoffvorräte zu grossen Maschinenleistung befriedigten die Lokomotiven nicht und wurden frühzeitig ausrangiert (Abb 4).

Dampflokomotiven der SBB

Nach der Betriebsübernahme 1902/ 1903 mussten die Schweizerischen Bundesbahnen sofort eine durchgreifende Ergänzung und Erneuerung der

von den Privatbahngesellschaften übernommenen Lokomotiven durchführen, von denen nicht einmal die Hälfte neuzeitlicher Bauart war und weder an Zahl noch an Leistungsfähigkeit den steigenden Betriebsanforderungen genügten. Um den Rückstand einigermassen aufzuholen, wurden Nachlieferungen neuzeitlicherer Typen der Jura-Simplon-Bahn (JS), der Nordostbahn (NOB) und der SCB in Auftrag gegeben. Gleichzeitig wurden leistungsfähigere und wirtschaftlichere Neubauten projektiert. Durch Anheben der Achslast auf 15 bis 16 t, Vermehrung der gekuppelten Achsen auf vier bis fünf, die Verwendung von Verbundtriebwerken und ab 1905 des Heissdampfes konnte eine qualitative Verbesserung der Dampflokomotiven erreicht werden. Alle Neubauten wurden von der Schweizerischen Lokomotiv- und Maschinenfabrik Winterthur (SLM) ausgeführt. Aus dem Neubauprogramm der SBB seien drei Lokomotivtypen vorgestellt, welche auf der alten Hauensteinlinie im Plandienst standen.

Personenzug-Lokomotive B3 Nr. 75 «Frohburg» der SCB, Typenzeichnung (mit freundlicher Genehmigung des Verlags Eisenhahn, Villigen)

Schnellzuglokomotiven A 3/5 700

101111 313 100
701-811
1902-1907
1250 PS
,

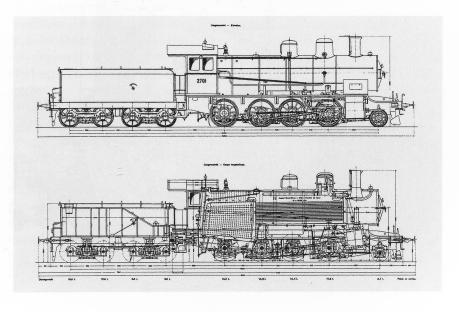
Von der JS übernahmen die SBB die zwei von der SLM 1902 gebauten 3/5-gekuppelten Schlepptender-Lokomotiven. Deren Vierzylinder-Verbund-Nassdampftriebwerk entsprach der Bauart DE GLEHN mit auf die zweite Achse wirkenden Hochdruckund auf die erste Achse wirkenden Niederdruckzylindern, was einen fast voll-

kommenen Massenausgleich und einen leichten, ruhigen Lauf ergab. Das Leistungsprogramm sah die Beförderung von 300 t bei 10 Promille Steigung mit einer Geschwindigkeit von 50 km/h vor. Es zeigte sich, dass bei dieser Steigung mit 400 t Last im Beharrungszustand gefahren werden konnte, was einer induzierten Leistung von 1300 PS entsprach. Die Höchstgeschwindigkeit wurde auf 100 km/h festgelegt. Bis 1909 wurden von den SBB 109 Exemplare mit geringfügigen Änderungen als Einheitslokomotiven nachbeschafft. In den Jahren 1913-1923 wurden 68 Maschinen (wovon fünf in der Werkstätte Olten) mit Überhitzern ausgerüstet, was eine Leistungssteigerung von 10% ergab. Die hervorragenden, vom Personal gern gefahrenen «700er» zählen zu den schönsten Dampflokomotiven der Schweiz. Die Nr. 705 ist betriebsfähig erhalten (Abb 5).

Personenzuglokomotiven B 3/4 1300

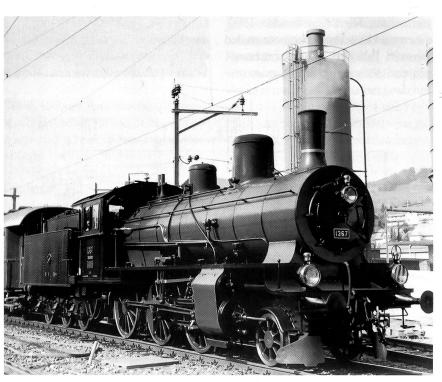
Betriebsnummern 1301–1369
Baujahre 1905–1916
Leistung 1050 PS
Belastungsnormen:

Ebene P 400 t G 1000 t 10‰ P 350 t G 550 t


Als Weiterentwicklung der bewährten 3/4-gekuppelten Dreizylinder-Nassdampf-Verbundlokomotiven der JS für gemischten Dienst entstanden 1905 die ersten Heissdampflokomotiven der Schweiz. Fahrwerk, Kesselabmessungen und Aussentriebwerk wurden un-

verändert übernommen, der innere Hochdruckzylinder jedoch weggelassen, so dass eine einfache Zwillingsmaschine entstand. Eingebaut wurden ein SCHMIDTscher Rauchrohrüberhitzer; die Dampftemperatur betrug 350 Grad, der Kesseldruck konnte auf 12 atm gesenkt werden. Die günstigen Betriebsergebnisse der beiden Prototypen stellten die Vorzüge der Dampfüberhitzung unter Beweis. Die darauf in 67 Exemplaren gebauten B-3/4-Lokomotiven stellten den Mustertyp einer einfachen, leistungsfähigen und wirtschaftlichen universell verwendbaren «Gemischtzug-Lokomotive» dar. Nr. 1367 ist betriebsfähig erhalten

Aus der B 3/4 wurde 1911 unter der Bezeichnung Eb 3/5 5800 eine Tenderlokomotive mit den gleichen Belastungsnormen abgeleitet. Die wegen den an der Rückwand des Führerhauses angebauten Kohlenkästen «Habersäcke» genannten Maschinen hielten auf der Hauensteinlinie bis am Schluss durch. Nr. 5819 ist betriebsfähig erhalten.


3. Die Verkehrsentwicklung auf der Hauensteinlinie

Wie die Gründer der SCB vorausgesehen hatten, wurde die Stammstrecke Basel-Olten mit dem Hauensteintunnel zum Eingangstor für die Erschliessung des Mittellandes. Schon in den Jahren 1857–1858 musste sie als eine der ersten in der Schweiz auf Doppelspur erweitert werden. Mit der

Eröffnung der Gotthardbahn am 1. Juni 1882 entstand sodann die erste direkte Bahnverbindung zwischen Nordeuropa und dem Mittelmeer, worauf auf der Linie Basel-Olten-Luzern eine erneute Verkehrszunahme eintrat. Schon der erste Fahrplan sah durchgehende Personenwagen von Basel bis Mailand vor, die in Luzern in die Gotthardzüge eingestellt wurden. Die Zahl der Reisenden nahm ständig zu, was von Jahr zu Jahr vermehrte Zugsleistungen erforderte. Mit der Vermehrung der internationalen Personenwagenkurse wurden zudem die Züge immer schwerer, was die Aufnahme weiterer Zugsverbindungen in den Fahrplan bedingte. So verkehrten bereits 1886 drei Schnellzugspaare mit direkten Wagen ab Basel, Ostende, Calais und Köln nach Mailand und ab Frankfurt am Main nach Genua. Um den ständig wachsenden Bedürfnissen im Reiseverkehr einigermassen zu genügen, waren 1911 bereits acht Schnellzugpaare notwendig. Neben dem internationalen nahm aber auch der schweizerische Binnenverkehr zu. Dazu kam, dass die Güterzüge bis zur Einführung der durchgehenden Luftdruckbremse von Hand gebremst werden mussten. Die aus Sicherheitsgründen auf 30 km/h begrenzte Geschwindigkeit wirkte sich zwangsläufig in einer längeren Fahrzeit aus. Der Abschnitt Sissach-Olten wurde zusätzlich belastet durch die zahlreichen Leerfahrten der Vorspann- und Schiebelokomotiven (Abb 7). So wuchs die Streckenbelegung derart an, dass die Hauensteinlinie an der Grenze ihrer Leistungsfähigkeit angelangt war. 1906 begann die Generaldirektion der SBB mit den Studien zur Verbesserung der Verbindungen von Basel nach der Zentral- und Westschweiz. Wirtschaftlichkeitsberechnungen ergaben, dass mit einer Basislinie jährliche Einsparungen von ca. einer Million Franken erzielt werden konnten, was die geschätzten Baukosten von rund 25 Millionen Franken rechtfertigte. Am 5. November 1909 genehmigte der Verwaltungsrat das Projekt «Hauenstein-Basislinie - Variante Gelterkinden». Ein Vorschlag der Firma Brown Boveri & Cie, mittels der aufkommenden elektrischen Zugförderung die alte Hauensteinlinie so leistungsfähig zu machen, dass eine neue Basislinie überflüssig würde, fand kein Echo. Im Jahre 1913 rollten 20921 Schnell- und Personen-

Gemischtzug-Lokomotive B 3/4 1367 vor historischem Zug 1930 im Einsatz bei den Jubiläumsfahrten auf der 120 Jahre alten Hauensteinlinie, aufgenommen in Läufelfingen am 25. August 1978

züge sowie 15 496 Güterzüge über den alten Hauenstein. Durch den Ausbruch des Ersten Weltkrieges 1914 wurde dann allerdings diese ansteigende Verkehrsentwicklung jäh unterbrochen. Der internationale Reiseverkehr und Güteraustausch kamen völlig zum Stillstand. Die Rekordzahlen von 1913 auf der alten Strecke wurden auf der 1916 eröffneten Hauensteinbasislinie erst wieder gegen 1930 erreicht. Mit dem Wegfall des Transitverkehrs verlor die Bergstrecke an Bedeutung. Der vergleichsweise geringe lokale Personenund Stückgutverkehr konnte auch von Dampflokomotiven für den Flachlanddienst bewältigt werden. 1938 erfolgte der Abbruch des zweiten Geleises.

4. Dampfbetrieb am alten Hauenstein

Wer im Spätsommer 1978 an der 120-Jahr-Feier der alten Hauensteinlinie teilnahm, sah unter strahlend blauem Himmel blank herausgeputzte historische Züge, welche in den kleinen Bahnhöfen von Trachtengruppen und Musikkapellen empfangen wurden. In die Marschmusik mischte sich das Geheul der ausgiebig betätigten Dampfpfeifen. Dicht gedrängt stand das Volk, Mütter hoben ihre Kinder empor zu den russgeschwärzten Männern auf den Plattformen, und jedermann bestaunte das Wunder aus alter Zeit, die Dampflokomotive. Man konnte sich für einen Augenblick in die Anfänge des Eisenbahnzeitalters zurückversetzt glauben (Abb 8). Nun darf aber eine in der Rückschau verklärende Dampfromantik nicht über die ausserordentlich harten Arbeitsbedingungen des damaligen Eisenbahnbetriebs hinwegtäuschen. Auf den alten ENGERTH-Maschinen waren Führer und Heizer Wind und Wetter schutzlos ausgesetzt, die nachträglich aufgebauten Führerstandsdächer hielten allenfalls den Fahrtwind ab. Besonders mühsam waren Bergfahrten mit schwerer Last auf den im Tunnel meist nassen Schienen. Eingehüllt in Dampf und Rauch konnte es bei gleitenden Rädern schon mal vorkommen, dass sich die beiden Männer auf der Lokomotive fragten, ob sie nun vorwärts oder rückwärts fuhren.

STATION.	Personen- sug II. 111. Classe	301 Rück- kehrende Vorspann maschine	205 Regel- mässiger Stück- Güterzug	Schnell- zug 1. 11. Classe	303 Rück- kehrende Vorspann maschine	105 Gemischi. Zug II. III. Classe	207 Facul- tativer Gütersug	Schneil- sug I. II. III Classe
ASEL Abg.	Morg. 5 20	Morg.	Morg.	Morg. 7 —	Vormitt.	Vormitt. 8 -	Vormitt.	Vormitt. 10 30
ngirbahnhof	-	-	5 50		-	8 02 05	9 05	-
rsbrücke	(5 23)	-	5 55	(7 03)	-	8 08	ම් ම්ම 9 10	(10 33
ittenz	5 30	-	6 05 09	-	-	8 16		-
atteln	5 37	-	≈ §6 18 27 15	ន្តី (7 12)	-	8 25	9 30	(10 42
hönthal	5 45	-	7 26	- E	_	8 36	-	es —
estal	5 51	-	7 42 58	7 21	-	8 44	(9 50)	10 52
uson	5 58	_	8 07 17	(fac. 200)	-	8 54	-	-
sach	6 08	-	8 27 42	7 33	-	9 04	ुं⊊ 10 13 18	11 09 04
mmerau	6 20	-	€ 8 56 9 03	_	_	9 28	(10 33)	_
ufelfingen	6 37	7 —	9 25 9 10 —	7 54	8 47	ទន ខ្លាំ 9 49	i 10 55 11 −	11 26
LTEN Ank.	6 57	7 23	10 23	8 12	ខ្លី ទ្រ 1 0	10 10		11 44
Strecke Olter besonders be spannmaschi	n-Läufelfi skannt ge nen in na	ngen eine macht. F chstehend maschine mit Zug als mit >	ür die Di er Weise v	efahren; auer der on Läufe	auf welcheinspurig lingen na Vorspan Zug 100 3 108 3 108 3 12 3 214	em Geleis en Fahrt ch Olten z maschine i mit Zug 3 > 3 3 als > 3	e wird je haben di urückzuk	weilen vor-

Fahrplanauszug SCB der Hauensteinlinie aus dem Jahre 1877 (Sammlung W.F. Weibel)

Ein an die Tunnelwand gehaltener Besen musste Klarheit schaffen.

Gefahren wurde im sogenannten Titularsystem, d.h. eine Lokomotive war dem Personal fest zugeteilt, wobei Führer und Heizer ein gut eingespieltes Team zu bilden hatten. Der Lokomotivführer auf der rechten Kesselseite war als Vorgesetzter für die ordnungsgemässe Dienstabwicklung und die Einhaltung von Fahrplan und Geschwindigkeit sowie für die Bremsbedienung zuständig. Der Heizer auf der linken Seite hatte mit der Feuerbeschickung, dem Wässern von Kohle und der Einspeisung von Kesselwasser mehr als genug zu tun. Dazu musste er bei der Signalbeobachtung mithelfen. Mit den zunehmend leistungsfähigeren Lokomotiven wurde auch seine körperliche Arbeit immer schwerer. Tonnenweise musste die Kohle in gekonntem Wurf genau richtig in der Feuerbüchse verteilt werden, um eine optimale Dampferzeugung zu gewährleisten; alle Dampflokomotiven in der Schweiz wurden von Hand gefeuert.

Im Depot Sissach wurde im Normalfall

nur Wasser nachgefasst, worauf die Lokomotive für die Bergfahrt auf der von Hand betriebenen Drehscheibe gewendet wurde. Nach getaner Arbeit wurden die Maschinen im Depot Tannwald Olten für den nächsten Einsatz aufgerüstet.

Beim Betrieb auf den Hauensteinrampen bereitete früher das Bremsen bei Talfahrt grosse Schwierigkeiten. Anfänglich besassen auch die ENGERTH-Lokomotiven nur an den Tenderrädern Bremsen mit Spindelantrieb. Ab 1869 wurden dann an den C-Maschinen Gegendruckbremsen⁹ eingebaut, und vom Jahre 1889 an gelangte die 1872 von WESTINGHOUSE erfundene durchgehende Druckluftbremse zum Einsatz.

Bis dahin mussten auf den Wagen mitfahrende Bremser auf Pfeifsignale des Lokomotivführers ihre Spindelbremsen betätigen. So war jeder Güterzug mit fünf bis acht Bremsern besetzt, die sich in den schlecht geschützten Bremserhäuschen aufhielten und sich im Winter mit unförmigen Strohüberzügen auf den Schuhen gegen Zugluft und Kälte wehren mussten. Besonders unangenehm für sie war auch die Kreuzung im Tunnel mit einem qualmenden Gegenzug. Anfänglich, als noch Holzbremsklötze verwendet wurden, standen auf den Stationen Kessel mit Wasser bereit, um allenfalls beim Bremsen entstehendes Feuer zu löschen.

Man glaubte auch ursprünglich entgegen der üblichen von England her übernommenen Technik des Linksfahrens am Hauenstein rechts fahren zu müssen. Man hatte nämlich Angst, bei Talfahrten auf der linken, an der äusseren Seite des Abhangs gelegenen Fahrbahn bei ungewolltem Überschreiten der Höchstgeschwindigkeit hinunterzustürzen.

Im Rahmen des ersten Elektrifizierungsprogrammes der SBB wurde mit der Fertigstellung der Strecke Olten—Yverdon 1927 die Elektrifikation der Olten tangierenden Hauptstrecken abgeschlossen. Neben gelegentlichen Einsätzen unter dem Fahrdraht beschränkte sich der Dampfbetrieb von nun an auf die erst 1946 bzw 1953 elektrifizierten Strecken Aarau—Suhr—Zofingen und die alte Hauensteinlinie sowie einen Teil des Rangierdienstes. Am

2. Oktober 1953 fuhren die letzten Dampfzüge über den alten Hauenstein. Über der Bergstrecke, die man zu ihren Glanzzeiten den «kleinen Gotthard» nannte, waren die letzten Dampfschleier verweht.

¹ Alois von Negrelli, 1799–1858, österreichischer Ingenieur, Erbauer der ersten Dampfeisenbahn Österreichs und der schweizerischen Nordbahn. Generalinspektor der österreichischen Eisenbahnen und der Bauten am Suez-Kanal.

Alfred Escher, 1819–1882, Zürcher Regierungsrat, Nationalrat, Gründer der Nordostbahngesellschaft und der schweizerischen Kreditanstalt. Mitbegründer und Direktor der Gotthardbahn.

Robert Stephenson, 1803–1859, Sohn des Eisenbahnpioniers George Stephenson, Direktor der Lokomotivfabrik Robert Stephenson & Co. in Newcastle upon Tyne, Eisenbahningenieur und Brückenbauer.

Carl von Etzel, 1812–1865, Baudirektor der württembergischen Staatsbahn, seit 1853 der SCB, zum Schluss der österreichischen Südbahn; Schöpfer der Brennerbahn.

Oral Ritter von Ghega, 1802–1860, Dr. der Mathematik und Ingenieur, Erbauer der Semmeringbahn, 1848 Generalinspektor für die Staatseisenbahnbauten, 1849 Sektionsrat im k.k. Ministerium für öffentliche Arbeiten.

⁶ Wilhelm Engerth, 1814–1884, 1843 Professor in Graz, später im Ministerium für Gewerbe, 1854 Zentraldirektor für technische Dienste bei der Staatsbahn.

⁷ Emil Kessler, 1813–1867, Gründer der Maschinenbau-Gesellschaft Karlsruhe, seit 1846 Direktor der Maschinenfabrik Esslingen.

⁸ J. A. Maffei AG, Lokomotivfabrik in München. 1931 Fusion mit der Lokomotivfabrik Krauss & Co.KG zur Lokomotivfabrik Krauss-Maffei AG.

Gegendruckbremse: Von Niklaus Riggenbach 1869/ 70 vervollkommnete Luft-Gegendruckbremse, bei welcher die umgesteuerten Triebwerke als Kompressoren arbeiteten, indem sie Luft ansaugten, verdichteten und ins Freie ausstiessen. Die dabei entstehende Kompressionswärme wurde durch das Einspritzen von Kesselwasser absorbiert.

Ouellenverzeichnis

Aebersold, Rolf: Niklaus Riggenbachs Zahnstangen am Gotthard, «Oltner Neujahrsblätter» 1981.

Bauer, Hans: Die Geschichte der Schweizerischen Eisenbahnen, Ein Jahrhundert Schweizer Bahnen 1847–1947, Band I, Frauenfeld, 1947.

Dietschi, Hugo: Olten – 75 Jahre Eisenbahnstadt – Olten als Geburtsstätte der Bergbahnen, Separatdruck aus dem «Oltner Tagblatt», Olten, 1931.

Gagliardi, Ernst: Geschichte der Schweiz, Band I und III, II. Auflage, Zürich und Leipzig, 1934 und 1937. Generalsekretariat SBB: SBB-Dampflokomotiven, Bern. 1997.

Gölsdorf, Karl: Lokomotivbau in Alt-Österreich 1837–1918, Wien, 1978.

Jeanmaire, Claude: Swiss Steam, Verlag Eisenbahn, Villigen, 1975.

Kellerhals, Johann: Die Verkehrsentwicklung der Hauensteinlinie, «Oltner Neujahrsblätter», 1957.

Moser, Alfred: Der Dampfbetrieb der Schweizerischen Eisenbahnen 1847–1966, IV. Auflage, Basel und Stuttgart.

Riggenbach, Niklaus: Erinnerungen eines alten Mechanikers, Neuausgabe 1967, Basel.

Saluz, Eduard (Redaktion): Historische Fotos aus der Welt der Eisenbahn, Verkehrshaus Luzern. Thun, 1993. Schweizerische Lokomotiv- und Maschinenfabrik Winterthur: Schweizer Lokomotivbau 1877–1977.

Spinnler, Heinz: Eisenbahngeschichten aus dem oberen Baselbiet, Verlag Volksstimme, Sissach, 1998. von Niederhäusern, Fred und Danuser, Reto: Olten – Drehscheibe der Schweiz, Luzern, 1997.

Wiesli, Urs: 100 Jahre Eisenbahnstadt Olten, Olten 1956.

Winter, Paul: 50 Jahre Hauenstein-Basistunnel, «Oltner Tagblatt» vom 1. März 1966. Olten.