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Beziehung zwischen n-}1 Punkten des n-dimensionalen
llyperl)olisdien Raumes, die auf einer Grenzfliche liegen.

Von Dr. K. DANDLIKER, Solothurn.
*

Zwischen den gegenseitigen Abstinden von vier Punkten A,
A,, A, und A, einer Ebene besteht bekanntlich ') die Beziehung,
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wobei s, das Quadrat des Abstandes der Punkte A, A, bedeutet.
Eine analoge Beziehung zwischen den Entfernungen von n - 2
Punkten A, A,, . . . A4+, besteht fiir den n-dimensionalen Raum.

Es ist 0 1

1 spq
wo sp, das Quadrat der Entfernung A, A, ist. Diese Relation ist
von Kroneker gefunden worden.?) '

In der hyperbolischen Geometrie des Raumes von drei Dimen-
sionen nihert sich eine durch drei Punkte hindurchgehende Kugel
bei wachsendem Radius nicht einer Ebene, sondern einer sog.
Grenzfliche.*) Alle Geraden, welche die Grenzflache unter rechtem
Winkel schneiden, sind zueinander parallel, d. h. sie haben einen
unendlich fernen Punkt gemeinsam, den unendlich fernen Punkt
der Grenzfliche. Durch diesen unendlich fernen Punkt hindurch
gehen auch die mittelnormalen Ebenen der Strecken, deren End-
punkte auf der Grenzfliche liegen. Durch drei Punkte sind zwel
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3

1) Vergl. Kowalewsky, Einfithrung in die Determinantentheorie,
p. 342

2) Journ. I. Math. 72 (1870), p. 152 — Werke 1, p. 235.

3) Lobatschefsky-Engel, Zwei geom. Abhandlungen, p. 12 u. 191.
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Grenzflichen bestimml, die symmelrisch liegen beziiglich der
durch die drei Punkte beslimmten Ebene. Liegen vier Punkte
auf einer Grenzfliche, so bestehl zwischen ihnen eine Beziehung.

Welche Beziehung besleht im n-dimensionalen hyperbolischen
Raume zwischen n -+ 1 Punkten, die auf einer n — 1-dimensio-
nalen Grenzfliche liegen?

Zur Einfithrung der allgemeinen Massbestimmung, die von
Cayley-Klein im dreidimensionalen Raume eingefithrt und von
D’Ovideo auf den Raum von n-Dimensionen erweitert wurde,
fixieren wir im Raume S, von n-Dimensionen eine durch homo-
gene Koordinaten dargestellte Hyperfliche zweiten Grades

n
Q (xx) = ay Xy X

i=

)

als absolutes Gebilde. Der Abstand zweier Punkte A (x;), B (yj)
ist definiert durch

ABZk-]g (U1 U: AB), (l')

wo k eine Konstante ist und wobei U, und U, die Punkte bedeuten,
welche die Gerade AB mit dem absoluten Gebilde gemeinsam hat.
Aus (17) folgt dann
h AB _ M_Q (xy)
2k Vo0 Quy
Eine n-1-dimensionale Grenzfliche G, _, ist eine Hyperflache,
die mit der Fundamentalfliche eine n-2-dimensionale Hyperflache
zweiten Grades gemeinsam hat, die in einen Kegel degeneriert.
Die Spitze dieses Kegels ist der unendlich ferne Punkt der G, _,
Sind A (x;) und B (y;) zwei Punkle, die aul einer Grenz-
flaiche G,_; liegen und sind U, und U, die Schnittpunkte ihrer
Verbindungsgeraden mil der Fundamentalfliche, so ist von den
Doppelpunkten der Involution U, U,AB der e¢ine M (m;) der Mittel-
punkt, im nichteuklidischen Sinne, der Strecke AB und der andere
N (n;) der Punkt, den die n-1-dimensionale Polarebene von M
beziiglich Q (xx) mil der Geraden AB gemeinsam hat. Machen wir
den Ansatz

(D)

pmy=2Xi 4+ 7 Yi, 01 N
S0 ist 2§ H 2/1Xi——xyi, >

und es besteht die Bedingung Q (mn) — 0, oder

A2Q (xx) — 22 Q (yy) = 0.
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Es ist daher } — — 2 und y = 7 wo ¢ eine Kon-

VG V Q)

stante ist. Der Punkt N hat demnach die Koordinaten

. Xj . yi
i= Sr——— —
VQ((xx)  4/Q (yy)
Haben die n + 1 Punkte A, 4, . .. A, der Grenzfliche G,

die Koordinaten x,(© bezw. x;(V . . ., . . xim, i=0,1...n, so

gehen die n-1-dimensionalen mittelnormalen Hyperebenen der

n Strecken A A, AA,, ... .. A,A, durch den unendlich fernen

Punkt von G,.,. Die Pole Ndieser Ebenen mit den Koordinaten
N S T b i=0l...n
: A/ Q (x© xiol V(Qm(T))’ h=12...n,

bestimmen eine n-1-dimensionale Hyperebene T,.;, welche die
Fundamentalfliche im unendlich fernen Punkte von G,_.; beriihrt.
Sind

n
tti=2nN &, i=0l1....n,
h=1

die Koordinaten eines Punktes von T,_, so sind &, die auf den
Grundsimplex N, N@ . . = Nm bezogenen Koordinaten dieses
Punktes. Die Gleichung der n-2-dimensionalen Fliache zweiten
Grades, welche die Fundamentalfliche mit T, ; gemeinsam hat,
lautet dann Q (tt) =0, d. h.

3 Q (&, & ulp ueD) = I Q (ulp ulw) & & =
1

pa=1 Pa=
n n
> Ep Xy Q (u(oD) u(oq)) Eq = 0, (3)
p=1 gqg=1
Da diese Fliche ein n-2-dimensionaler Kegel ist, so sind die
n linearen Gleichungen

3 Q (uom uod) §=0,p=12....n,

q=1
die man erhilt, wenn man fiir 5, die Werte der Grundpunkte N®
N@ . . . N in (3) einsetzt, voneinander linear abhingig, denn
diese n Gleichungen charakterisieren die n-2-dimensionalen Po-
larebenen der Pole N, N@  N® beziiglich der Kegelfliche
(3). Es ist also die Determinante
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Q(uOy ON); QuODu©2); Q(uOu®) . Q(u®hyon)
Q(u(OQ) u(Ol)); Q(u(02)u(02)); Q(u(ﬂ?-')u(03)) L. Q(u(DZ)u(Oﬂ))

Q(uOmMy©n); QUOMNYD); Q(uOM u®3d) , ,  Q(udmyn)
Setzt man fir u®n) und u®d die Ausdriicke (2) ein, so erhalt
man

Q (u©p u©w)

x (0 x () x (0) x @
=Q (\/Q EOXO)  4/Q x® x®)’ 4/Q (x @ x©@) V(j‘("{(a)_x(q_)))
o Qx® x(O)) . Q 1x (0 x ()
- Q@xOxO)  4/Q xOxO).Q x® x®)
Q (x © X(Q)) Q (x (n) X(Q‘l)

o \/Q (x 0) x (0)) - Q (x(Q) x (@) \/Q (x(D) x(®). Q (x (@ x(Q))

Nach (1) ist also

A A Ao A A A
©p) Q) — | — gL q e .|
Q (u©p) y ) I —ch 7k ch Tk ~+ ch B
A A Ao A Ao A
= g 2P 7 q 2 " P 2 q
= 2 sh 1K 2 sh ik 2 sh Ak
a .
da ch .';1—-1:25h27 ist.
. A A
Selzt man fpq = Sh? Z{Tq ’
so ist Q (u® uV) = 2 rpg) — 2 rp — 2 Fg)
und Q (u(OD) u(OP)) = — 4 r(OD) .

Setzt man in die Determinante ein, so erhalt man, nachdem
man jede Zeile durch 2 dividiert hat,

—2To1 ; F2—Tot—Tog; Ma —To1 —TFo3; ... Iyp—Tot — Iy

r21 — oz — Tot; — 2 roz ; Tes —Tog —T08; +a. Iyn—Toz — Iyp

: 0

Fny —Ton —To1; Fpa—Togn—Tos; Tps —Ton—Tog; . -» — 2 Tgn



1 0 0 6 bms BB 0
To1 ; —2rm ] Tig—TFor =102} «s.ssus Fin = Fo1 — Fgy
—]| roz; T21 — Fo2 — lo1; —2re2 5 ..., Iyq — Yos — Iyp
ron; rnl - ron - rol; rng - r0n - r02; e s % 8 s * o - 2 ron

Addiert man die erste Spalte zu den iibrigen, so ergibt sich

1 1 1 & w e 1

Fo1, — To1 P P08} awws Ton— By

lo1, rex —ro1 —Toz 5 .... Tgg—Tyn| = 0

Fons Ing —Tor 5 TIpe —To2; .... — I'on

1 0 ; To1 ; los S e Fon

0 L 1 ; 1 P

0 fo; —Toit ; Tizs—Toez ; ....Fn—TIgn
10 Fzo0; T21 —To1 ; — To2 s e Ton—Tyn

0 Tnos TIng — Fon 5 Theg —To2 ; .... —Tgn

Addiert man die erste Zeile zu den iibrigen, ausgenommen
die zweite, und vertauscht man nachher die beiden ersten Zeilen,
so folgt:

0 1 1 1 1 % il
1 0 ro1 o2 s ..... Ton
1 o 0 riz s ..... ryy, |[=0 4)
1 I'no - 2 ™3 «.... O
Liegen die n 4 1 Punkte A, A, . . . A, des n-dimensionalen

hyperbolischen Raumes auf einer Grenzfliche von n-1 Dimen-
sionen, so besteht zwischen ihnen die Beziehung
0 1
2 Spa [ =0,
1 sh 1k

wobei s,, der Abstand der Punkte A, A ist.
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Setzt man in der allgemeinen Massbestimmung [vergl. (17)]
die Konstante k — oo, so erhilt man die euklidische Massbestim-
mung. Die Grenzflichen des hyperbolischen Raumes gehen dann
uber in die Ebenen gleicher Dimension des euklidischen Raumes.

Entwickelt man

A, A A, A A, A3 2
rpq:Sh2 p q=l:qu-'— ( L q) —I— ...... ]

4k (4 k)3 31
_ [AAZ | R
"( 4k )+k4’

: . 5 . | y
wo R ecine ganze rationale IFunktion von — ist. und seizt man in

k
(4) ein, so erhilt man nachdem jede Zeile mit 16 k* multipliziert

und hernach k — ~ gesetzt worden ist:

0 1 1 | 1

1 0 So1 S02 ... Son

1 S10 0 S12 .. ... S J = 0O,
1 Sno Smi Sm2 ... .. 0

wo s, das Quadrat der Strecke A, Ay ist. Das ist die von
Kronecker 2) gefundene Bedingung, welche n 4+ 1 Punkte des
n-dimensionalen euklidischen Raumes zu erfiillen haben, wenn sie
auf einer Hyperebene von n-1 Dimensionen liegen.



	Beziehung zwischen n+1 Punkten des n-dimensionalen hyperbolischen Raumes, die auf einer Grenzfläche liegen

