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Über automorphe Funktionen die zu

gewissen Untergruppen der Modulgruppe
gehören.

Von Dr Emil Blaesi.

Einleitung.

Anfänge der Entwicklung für die Theorie der auto-
rnorphen Funktionen finden sich in den Werken von
Riemann und Schwarz. Durch, von einander unabhängige,

Arbeiten von Klein und Poincare ist die Kenntnis dieser

Funktionen rasch vertieft worden.

Wichtig für diese Theorie der automorphen Funktionen ist

deren Festlegung durch analytische Ausdrücke, die die charakteristischen

Eigenschaften leicht erkennen lassen. Diese Aufgabe wurde

von Poincare allgemein für Funktionen, die sich bei den
Substitutionen der Fuchsschen Gruppen nicht ändern, durch Aufstellen

von Partialbruchreihen, den ©-Funktionen, gelöst.
R. Fueter1) hat für den Fall der zyklischen hyperbolischen

Untergruppe der Modulgruppe ein spezielles Verfahren zur
Konstruktion einer zugehörigen automorphen Funktion gegeben. Dazu

werden nicht die Poincareschen 0-Reihen benutzt, sondern
unendliche Produkte, deren Bildung auf einem ähnlichen Prinzip be-

') Vierteljahrsschrift der Naturforschenden Gesellschaft Zürich LXIV (101Q)

pag. 680.
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ruht, aber in natürlicher Weise eine zahlentheoretische Tatsache

benützt, nämlich die Theorie der Kettenbrüche, die mit den
quadratischen Zahlen und somit auch mit den hyperbolischen
Substitutionen in engem Zusammenhang steht.

Die Ausführung dieses Konstruktionsverfahrens ist der Zweck
dieser Arbeit, die ich auf Anregung von Herrn Prof. Dl' R. Fueter
im W.-S. 1918/19 in Angriff nahm und unter seiner Leitung zu
Ende führte.

Die Arbeit zerfällt in zwei Teile. Im I. Teil werden die
gruppentheoretischen Grundlagen, soweit sie benutzt werden, entwickelt
und der Zusammenhang mit den Kettenbrüchen hergestellt. Die
Konstruktion der Grundinvarianten für die Substitutionen der
zyklischen hyperbolischen Untergruppe mit reduzierten Fixpunkten
wird im 1. Kapitel des II. Teils vollständig durchgeführt und auf
ein spezielles Beispiel angewendet. Im 2. Kapitel wird bewiesen,
dass die betrachteten Funktionen einen Körper bilden. ZumSchluss
wird die Beschränkung auf reduzierte Fixpunkte fallen gelassen und
gezeigt, dass in diesem Fall die automorphen Funktionen auf die
schon konstruierten zurückgeführt werden können.
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I. Gruppentheoretischer Teil.

da sie aus einer einzigen Erzeugenden 1) 5 — 'A hervorgehen,

§ 1. Modulgruppe, hyperbolische Untergruppe; Zusammenhang
mit den periodischen Kettenbrüchen.

Der Ausgangspunkt für die vorliegende Arbeit ist die
Modulgruppe. Sie wird gebildet durch die Transformationen

7' - - aA±J — sv
1) yz~\b '

in denen ab — ß y — 1

ist. Dabei sind a, ß, y, b irgend welche positive oder negative
ganze Zahlen. Aus dieser Oruppe können Untergruppen
ausgesondert werden. Darunter sind, ausser den endlichen, sicher die
zyklischen Gruppen hyperbolischer Substitutionen die einfachsten,

(;ß]
deren Diskriminante

2) m (a | b)'1 — 4>1
ist. Ihre Fixpunkte, die Wurzeln co und co' der Gleichung-

a co -T ß
co -f-ry oo -|- b

sind konjugierte, reelle, quadratische Irrationalzahlen. Umgekehrt
ist jede solche Zahl Fixpunkt einer bestimmten unimodularen,
hyperbolischen Substitution. Es gilt der fundamentale

Satz.1) Sind die irrationalen Punkte co und co' die Wurzeln
einer ganzzahligen, quadratischen Gleichung, so gehört zu diesen
Punkten als Fixpunkten jedesmal eine zyklische Gruppe
hyperbolischer Modul-Substitutionen.

Die Substitution 1) lässt sich auf die Form bringen
z' — co z — CO

3) Y— co' ~~ Q 7
Die Streckungskonstante

a —y co a -|- b — y'fa-f d)2 - 4
i)e (a-ra)' a-ya,

— (ö+rM')2
hat eine einfache zahlentheoretische Eigenschaft, sie ist nämlich die
2. Potenz der Grundeinheit e des quadratischen Zahlkörpers k (y m).

') Klein-Fricke Modulfunktionen I pag. 256.
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Diese speziellen Gruppen hyperbolischer Modulsubstitutionen
stehen also in naher Beziehung zum quadratischen Zahlkörper
k (v/m), (m (a -f- d)1 — 4) und damit zur Theorie der
periodischen Kettenbrüche, deren Teilnenner ganze rationale Zahlen
sind, auf Grund der bekannten Tatsache, dass die Gesamtheit
der reellen quadratischen Zahlen identisch mit der Gesamtheit
der periodischen Kettenbrüche ist.

Für die Konstruktion der erwähnten automorphen Funktionen
ist die Tatsache, dass die Fixpunkte reelle quadratische Zahlen
sind, von fundamentaler Bedeutung. Zur Vereinfachung kann man
zunächst diese quadratischen Zahlen speziell als reduziert voraussetzen,

was keine wesentliche Einschränkung ist. Die erzeugende
Substitution gewinnen wir, indem wir a> in einen Kettenbruch
entwickeln und die passende Potenz der ersten sich daraus

ergebenden Substitution mit der Determinante ]- 1 wählen, die w

ungeändert lässt.

Es seien hier noch ausführlicher die Grundtatsachen aus dem
Gebiet der periodischen Kettenbrüche und der quadratischen Zahlen

angeführt.1)
Eine reelle quadratische Irrationalzahl a> x -|-j> y'm heisst

reduziert, wenn sie folgenden Bedingungen genügt:
o) ist positiv und grösser als 1

a/ ist negativ und absolut kleiner als /,
wobei io' die zu co konjugierte Zahl ist. Es ist also

o < y \J~^ — x < / < y V m -|- x.

Jede reelle quadratische Irrationalzahl ist mit mindestens einer
solchen reduzierten Zahl eigentlich äquivalent, d. h. durch eine uni-
modulare Substitution in sie überführbar. Wir betrachten immer
nur eigentliche Äquivalenz.

Die quadratische Zahl co lässt sich nun in einen reinperiodischen

Kettenbruch entwickeln:

5) -! „!
| '
" + -+ ' /

Clv—i -|-
und es ist also 01

(in — am für n m (mod. v).

') Betr. der Beweise c. f. Weber, Algebra, Bd. I. Braunschweig 1912,

pag. 403 u. ff.
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Die Gesamtheit der reduzierten quadratischen Irrationalzahlen ist
mit der Gesamtheit der reinperiodischen Kettenbrüche identisch.
Verwandeln wir den Kettenbruch 5) in einen gewöhnlichen Bruch,
so erhalten wir, wenn wir nach r Gliedern abbrechen

Pr (Or | Pr—l
6) n ~r\(ijr ~p Qr—i

wo cor wieder reduzierte Zahlen des Körpers k pm) und

/ - Pr
Qr

Näherungsbriiche sind. Berücksichtigen wir die Teilnenner bis
und mit civ, so ergibt sich

n\ °> + Pv—1 c l\* w ~~
Qv to -f Qv-\ — Sc° )-

Auf diese Weise erhält man eine unimodulare Substitution, die cu

ungeändert lässt. Da ihre Determinante
Pv Qi'- l Ql> Pf— I 1)V

ist, wählen wir für ungerades v als erzeugende Substitution der
zyklischen Gruppe

8) IPw PiV~

\ Qiv—11 ^ '

die wegen Ak Qw—i — Q3V Qiv—x — (—l)'iv
wieder eine eigentliche Modulsubstitution ist.

Satz. Lässt die hyperbolische, unimodulare Substitution S
die Fixpunkte to und to' ungeändert, so ist 5 eine gewisse Potenz

der Substitution 5.

Beweis}) Der Beweis stützt sich auf die Umkehrung des

Lagrangeschen Satzes über Kettenbruchentwicklungen äquivalenter

quadratischer Irrationalzahlen. Die Umkehrung lautet: Sind
zwei quadratische Irrationalzahlen x und y (x y inbegriffen)
einander äquivalent

«x 4- ß cy —- S x ad —• ß v iL 1,
y x -f- ö '

so lassen sich die Kettenbruchentwicklungen
x — (ao, öi, —, ök, xu-p
y (bo, bi, ...,bh,yh \ x)

') Die gruppentheoretische Symbolik wird so angewendet, dass man die
Substitutionsbuchstaben links von der zu transformierenden Zahl der Reihe
nach von rechts nach links schreibt.

J) Hurwitz, Vorlesungen über Zahlentheorie S.-S. 1914.

Weber, Algebra Bd. I, Braunschweig 1912, pag. 417.
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so abbrechen, dass die Endungen Xk \ i yh | sind und die

Substitution durch Elimination der Endungen Xk-j-i undjh |-i aus

den Gleichungen I) erhalten wird.
Dabei ist k nur an die Forderung Xk-j-i > /, k hinreichend

gross aber sonst beliebig, gebunden, h ist durch k bestimmt.
Diesen Satz wenden wir folgendermassen an: Ist die Zahl co,

vermöge einer beliebigen hyperbolischen unimodularen Substitution

5 mit den Fixpunkten w und r</, sich selbst eigentlich
äquivalent, ist also

C a CO ß nco 6 w — -—j a o — p y /,
y w -)- o

so lässt sich die Kettenbruchentwicklung von co auf zwei
verschiedene Arten abbrechen

j, | Co '= (ttn, (Ii, ßk, Wk\-,)
\ o) — (cu, ch, ah, roh-|-i^,

so dass die Endungen wk-|-i Wh D sind, und dass die Substitution

5 durch Elimination der Endungen aus /' erhalten wird.
Da co reduziert ist, ist wk-D > /. Ausserdem kann man k

so gross wählen, dass

Wk|i Wh |-i — CO

ist und dass k -[- 1 und h 1 gerade sind.
Es ist dann k -\- 1, h-\-1 0 (mod. v)

und also k 2rn — 1, h 2sn~ 1, n — -- oder v' 1
a

je nachdem v gerade oder ungerade ist. Wir haben dann aus

CO (an öi, ßan—i üo a — ßarn—1 Chrn)
' CO (a0 a Ö2n—i ßo ß - ßssn—1 Chan)

die Endungen «am w?sn c>

zu eliminieren. Es ist aber
CO 5 ß>2rn

*
CO o ^asn

alSO Warn — S~r CO

W2sn —— S S
CO

S~rco — S""s CO.

Die Elimination ergibt
CO Sr~~S CO — Sm <0

S=- Sm
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Daraus ergibt sich nach dem Lagrangeschen Satz, dass S mit Sm

identisch sein muss, wodurch der Satz bewiesen ist.
Bei der funktionentheoretischen Behandlung erledigen wir

zuerst den Fall S — S. Am Schluss wird dann gezeigt, dass die
Konstruktion auch für beliebiges S ohne weiteres angewendet
werden kann.

Die Kettenbruchentwicklung der nicht reduzierten quadratischen

Irrationalzahlen ß ist auch periodisch, beginnt aber mit
Vorziffern. Man hat

9) ü=b*+! /b, 1

bß-~i -)— •

CO

Daraus lässt sich der gewöhnliche Bruch bilden

10) +
CJ/l (O (]/i—i

P/t q/t—\ — q/t P/i—\ (— //'.
Ist fx $ 0 (mod. 2) so verwenden wir

Q /->,«"(' W1 -J- j)fl
~~

q/i \^ w. -j- q/t
'

wo coi wieder eine reduzierte Zahl ist. Es gilt also
Satz. Es existiert immer eine Substitution S*, sodass ß durch

diese Substitution in eine reduzierte quadratische Zahl übergeführt
wird, die mit ihr eigentlich äquivalent ist.

11) StS< ß CO o /sjy oo' a* * P*y* '•
Die Substitution S*

1

führt daher co in Q über. Jede andere
Substitution S», die co in Q überführt, ist bestimmt durch

S* (O S^co ß
also durch co S* S* co.

Die Substitutionen S* S* haben co zum Fixpunkt, besitzen demnach

die Form S~n (n beliebig), somit ist

V-S*1
Saunter Benützung von S erhalten wir
12) S' St S~1 5 S* Q S*1 w Q

und S' ist eine hyperbolische Modulsubstitution, die aus S durch
Transformation mit S* entsteht, also mit S holoedrisch isomorph
ist. Sie lässt ß ungeändert.
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Umgekehrt sei S' eine beliebige Substitution, die Q in sich
überführt. Wegen

S* Ü o >

folgt daraus S* S' ü —: o>

oder ü — S' '
o>.

S' '
5»

' ist also eine Substitution St
' S n,

somit S' '
S,

'
— S,

'
S ".

Lösen wir nach S' auf, so erhalten wir
'•

: y s/s'\
5' — s,

1 s" s;,

Jede Substitution S' mit den Fixpunkten Ü und Q' ist also

in der Form S,'1 Sn S, enthalten.

Wegen

s; s; z 5,1 s, s,s;1 s2 s.z - s;1 s, s3 s,
ist S' wieder Erzeugende einer zyklischen hyperbolischen Gruppe.

Analog existiert zu jeder Gruppe mit der Erzeugenden Sr eine
holoedrisch isomorphe mit der Erzeugenden S, ' Sr S4.

§ 2. Zusammenstellung der benützten Tatsachen aus der Theorie
der Kettenbrüche.

Zur Berechnung der Näherungsbrüche hat man bekanntlich
die Rekursionsformel

PQ: ~ "r: q7-: + qz: p- <*- - <?- - <-
wobei zu setzen ist:

Po — 1, Pi — ao, Po - et« a i -f-1,
Q» — 0, Qy 1 Qi -- flt

Um später Einheitlichkeit in unserer Bezeichnung zu erhalten,
erweitern wir diesen Algorithmus. Wir setzen nach rückwärts
fort und erhalten für n < 0

Pn — /^n-j-2 Cln |-i /"*n-|-i
Qn Qn-\-2 — Qn-j-i

Po — - 1 P—l — 0 P 3 1 P 3 — - — eiv 2 -

Qo 0, Q—(1, Q—2 — eiv—I» Q—3 ;;=: eiv—> eiv—2 -f-1,
Für n < 0 sind alle Näherungsbrüche negativ mit Ausnahme von

— 0.
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Nun beweisen wir eine Tatsache von fundamentaler Bedeutung,

die der Ausgangspunkt der Konstruktion unserer Grundinvarianten

sein wird.
Infolge der Periodizität ist

Pn — Pn— 2 Pn | 1' — Pn |-c—2
(In i - ~ ~ ~ ri ~~ ~ ~ ' •Pn Pn\-i> i

Qn—'i Qn {-p Qn | p—2
fln~" "

Qn ' '

Daraus erhalten wir durch Rekursion und Anwendung eines
bekannten Eliminationsverfahrens:

13) \Pn\v Pv P„ -[ P,, Qn, Pn-, ^ 1)" (Pn Q, - Pv Qn)
\ Qn | Q,Pn \Qv-> Qn}Qn ,^ (—1)" (- Pn Qv -L P, Qn).

Durch Quotientenbildung ergibt sich

1 o/\ I
ZV ' c/ / Q1' 1 ZV 1 o—1 /13 } ln 1 V ~ ~

Q, In -
Sln' ln~V ~

'--Qv In + PV ~S /n"

Bei Anwendung unserer Substitution S werden Näherungsbrüche
wieder in solche übergeführt.

Eine Tatsache, die auch benützt wird, ist folgende:
14) 1 1

— f —- Clv—t *[ "
1 1

1 i(o cir—2 —p 1
flo + -

J

<7

Wenn co'r die zu der in 6) definierten Zahl wr (r-~- 0, 1,2 v— 1)

konjugierte Zahl ist, so gilt
15 /__ /

(>)'r
" ß' '

ör-2 -j-...~j |
1

+ - "

| | I
0" 8+-'-+flr+- 1

j-
Oj'r

Die Näherungsbrüche der konjugierten Zahlen stehen in
einfacher Beziehung zu einander. Seien die von oj' mit /Q bezeichnet,,

so ist
Pn (— l)n Q n Qn=-(— l)a h P' n-.
Q'n (— l)n P Pn - (— /)"+ ' Q ' n

und daraus folgt

Z'---7in •—• —
L — n—l
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Betrachten wir noch die Näherungsbrüche Ln der nicht
reduzierten Zahl Q. Es ist

P/l bfX 1 Pß 1 - | - Pfl—2
P/u-)-i flo p/i -(• p/t—i Pi p/i -(- Qi p/i—i

P/l-f-n ßn_i P/u-\-n_i -f- P/l-(-n—2
—T ön—i (Pn -i p.tt -j- P/l—l Qn—t) - | Pn - 2 P/l -\ Qn—2 P/l—l
—" P/l (ün—i Pn—i -|- Pn—2) —|- P/l—1 (Cln—t Qn i -(- Qn—2)

- P/l Pn j- P/l—1 Qn

so dass wir erhalten:

P/l pn P/l Pn ~\~ P/i—1 Qn
(J/l | -n Cj/i Pn -f- CJ/i—1 Qn

und daraus

16) + P"— 5; ' In
CJ/i In + q/i— 1

S* führt also nicht nur Q in 10 über, sondern es gilt auch

17) S, Ln h- -n1

wo p, die Anzahl der Vorziffern bedeutet.

§ 3. Geometrische Darstellung.

Die betrachteten unimodularen hyperbolischen Substitutionen
sollen wie üblich als Transformationen der Ebene in sich gedeutet
werden. Es sei

S={yö) aÖ-ßy=^l.
Die Fixpunkte co und <J sind die Wurzeln der Gleichung

y z1 — (a — ö) z —ß — 0,
also

a — ö ± V 7ä~\~öj- -- 4 a — ö ± y m
CO, OJ - - - - — -2 y 2 y

Es sind demnach Zahlen des quadratischen Zahlkörpers k {\Jm).
Deuten wir sie auf der reellen Achse, so liegen sie in Bezug auf

(3

— — symmetrisch. Die geometrische Deutung wird besonders
2 y

einfach, wenn in der Fixpunktform 3) eine neue Variable eingeführt

wird, wodurch die Fixpunkte nach 0 und » zu liegen
•kommen. Wir setzen

T _ z — w w
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und erhalten

is) r - i> „c

Diese Substitution bedeutet eine einfache Ähnlichkeitstransformation,

also eine Streckung. Jede Oerade durch den Nullpunkt geht

Die nle Potenz der betrachteten Substitution wird in unserer Ebene

dargestellt durch
5' ea £

Wegen =uL > („ + »> 2)

und es' 1,

folgt 0 < Q < /•

Wir erhalten also unendlich viele von einander verschiedene
Substitutionen. Unsere Gruppe ist deshalb von unendlich hoherOrdnung.

Betrachten wir den allgemeinen Fall, so liegen die Verhältnisse
ähnlich. An Stelle von z 0, &o treten beliebige Fixpunkte. Statt
des Systems der Geraden durch 2 — 0 und des Systems der Kreise

um z 0 treten die Kreisscharen auf, die durch die Abbildung
z' — CO

£ z CO

* z' — co' ' z — co''

entstehen; also Kreise durch co und co' und dazu orthogonale.
Wir betrachten nun die durch unsere Erzeugende S

entstandene Gruppe und bestimmen den Diskontinuitätsbereich. Wir
gehen wieder aus von

£' Q £
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Die Gruppe wird dann dargestellt durch

.C — <>n ,C n — O, \ 1, I 2,

Ein beliebiger Kreis K« um ,C _ 0 wird bei Ausübung der
Substitution in einen kleineren konzentrischen Kreis /C transformiert.

Der Punktbereich zwischen den beiden Kreisen inkl. /Co (oder
/CO bildet einen Diskontinuitätsbereich für unsere Gruppe.

Speziell wählen wir für /C, den Einheitskreis, dann ist /C der
Kreis mit dem Radius y. Das Zwischengebiet samt dem Einheitskreis

bildet dann den Diskontinuitätsbereich, während der Kreis
mit dem Radius o nicht mehr dazu gehören soll.

Dem Einheitskreis entspricht in der ursprünglichen, der 2-Ebene,

die Senkrechte Co zur Abszissenachse, die diese im Punkte " ^
2 y

schneidet.

schneidet, was mit Hilfe der Substitution

leicht nachzuprüfen ist. Sein Mittelpunkt ist

a a~ -1 - ß y — /
y _

_y_(_a |- 6) _ 1

2 7 (a -|- öj

Das Gebiet zwischen der Geraden Co und dem Kreis G bildet
den Diskontinuitätsbereich. Die Gerade Co wird dazu gerechnet.
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Wird dieser Bereich durch eine Substitution Sn(n — o, i l,±2,...)
unserer Gruppe transformiert, so erhalten wir einen neuen
Diskontinuitätsbereich, der für n > 0 innerhalb G, für n 0 links von
Co liegt.

Wir haben gesehen, dass man jede unimodulare hyperbolische
Substitutionsgruppe mit reduzierten Fixpunkten auf eine Potenz
Sk, der aus dem Kettenbruch sich ergebenden Substitution, zurückführen

kann. Die Beziehung zwischen den repräsentierenden
Figuren besteht in der Zusammenfassung der Diskontinuitätsbereiche,
indem die Gruppe mit der Erzeugenden S eine Untergruppe der

Gruppe mit der Erzeugenden 5 ist.

Für den Fall, dass die Fixpunkte nicht reduziert sind, haben
wir eingesehen, dass eine der vorgelegten Gruppe isomorpheGruppe
mit reduzierten Fixpunkten existiert. Unsere funktionentheoretische
Aufgabe wird sich auf die Konstruktion der Funktion dieser
isomorphen Gruppe mit reduzierten Fixpunkten reduzieren. Wir
wollen noch überlegen, inwiefern unsere die Gruppe versinnlichende
Kreisfigur (zwei zu einander orthogonale Büschel) durch den Übergang

zur isomorphen Gruppe deformiert wird. Dazu führen wir
ein Exzentrizitätsmass der Büschel ein. Wir gehen von der Formel

aus, die den Mittelpunkt und den Radius eines Kreises festlegt, in

den ein gegebener Kreis bei Inversion to ~ ^ übergeht.

Mittelpunkt c —>
6

a
(c konjugiert zu c)

c — r
rRadius /* —> oi

| c~'— r |

und wenden das auf die in ihre Bestandteile zerlegten Substitution

an; so kann man leicht einsehen, dass die Gleichung der
Orthogonalkreise folgendermassen lautet:

19) x2 -|-f — 2 x fco -| - ,u (to — o>')f -| - /w* -|- ft (to"- — w'V/ 0

1 w
z - T ,s

to' ,C — to

.C— / (z - x -f iy)

Mittelpunkt:
to — r to'

Radius:

/ — r2

(to — to') r
7/—c| ;
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dabei ist der Parameter

r
1 -r

wo r der Radius des entsprechenden Kreises in der £-Ebene ist.
Man sieht z. B., dass dem Nullkreis r — 0 der Nullkreis

(x — to)2 -f- y2 0, d. h. x to, y — 0

und dem Nullkreis r rrrr OO der Kreis

(x — to')2 -f y2 — 0, d. h. x — o/, y 0,

also die Ponceletschen Nullkreise des hyperbolischen Büschels
entsprechen.

Nebenbei sei bemerkt, dass die Gleichung der Kreise durch
to und to' folgendermassen lautet:

20) x'2 -f y2 — (to to') x — (to ~ to') v y -f- to to' — 0,

wo der Parameter
v ctg a

und a die Neigung des entsprechenden Strahles gegen die Abszissenachse

der £-Ebene ist. Diese Formel folgt daraus, dass bei Inversion

eine Gerade mit dem Büschelzentrum za und mit der Neigung
a in einen Kreis mit dem Mittelpunkt

und dem Radius

3t

3t

Zo e

zü e

Zo e
I (t-) den reellen Teil desübergeht, dabei bedeutet 3t

Klammerausdruckes.

Nun führen wir die absolute Abweichung eines
Orthogonalkreismittelpunktes vom Nachbarnullkreis to bezw. to' als Mass der
Exzentrizität ein:

I to — r2 to' 1 (to — to') r2
t'(> to 7:— o

1 — r i 1 — r2 G r,
wo /%, der Radius in der Modulfigur ist.
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Es seien nun ü und ü' nicht reduzierte Fixpunkte einer
hyperbolischen Substitutionsgruppe, co und co' die reduzierten der
isomorphen Gruppe. Es ist dann

g qi Pfl 10 ~\- Pß—c Pß co' ~f" Pß—1

qfi co -|~ qfi i q/t co' -\~

(q,i co -j- qp,—x) faß co' -)- q/t-,)
Es handelt sich nun darum, zu r in der £-Ebene der zu co, co'

gehörenden Figur das entsprechende R in der £- Ebene der zu Ü,
Ü' gehörenden Figur zu bestimmen.

R TxS'T'r Rz z — 22

Z — <J

R

co' r — co

Pß r _ i—r Pa—i

co' r — co
</ß r _ J r Iß -<

co r — co

Pß —r Pß—1

co' r - co
qß ^ }

| qn

22

12'

21) /? r^c r,
cjfi co q/i—i

r2

sodass jetzt das Exzentrizitätsmass ist:
!2 — 22'

I Qß t0' ~f- Qß ' \2
<o — co' \ q/ico -c/fl-

(c/ß <o -fqfl-tj(q,u co' ^-c/fi—i)
^

/ qf^co' -)-q/i—i \«

\ <7« co + <?/*-*)

o) — co' (qfl co' -j- q/t-i) r2
~~

q/j. co -j- qfl—i (qn co qfi—J2 — (qß co' -f- q/i—i)2 r2

Als Verhältnis der beiden Exzentrizitäten ergibt sich
e'q_

__ c/fi co' -f- qfi—i
e qfi co -|- c/fi—i (qn co -|- qfi—i)2 — (q/i co' qfi -i)2 f2

dabei ist r < 1

Und eü' _ c/h co |- q„ r- — /
e~, ~~

qß oo' h V" - (iß w' + Iß-'/ r2 — (iß w + Iß-'/CO
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II. Funktionentheoretischer Teil.

1. Kapitel.

Die Grundinvariante und ihre analytische Darstellung.

§ 1. Gedanken der Konstruktion der Grundinvarianten und

Vergleich mit andern Konstruktionsmethoden.

Das Ziel der funktionentheoretischen Aufgabe ist, alle
Funktionen zu gewinnen, die gegenüber der hyperbolischen zyklischen
Modulgruppe invariant sind und ausser in den beiden Fixpunkten,
in denen sie wesentlich singular sind, höchstens Pole besitzen.
Zunächst ist unsere Absicht, eine einfache Grundinvariante zu
konstruieren. Es soll nun das Verfahren erläutert werden, von
dem wir Gebrauch machen, um diese einfachste automorphe Funktion

unserer Gruppe zu gewinnen.
Die Tatsache, dass zu jeder quadratischen Zahl nur endlich

viele reduzierte gehören, die mit ihr im weitern Sinne äquivalent
sind, wurde schon betont. Diese dienen sozusagen als
Repräsentanten der Zahl. Das ermöglicht uns, bei der Konstruktion
der automorphen Funktion zunächst die Fixpunkte als reduzierte
Zahlen anzunehmen. Es wird dann gezeigt, dass bei nicht
reduzierten Fixpunkten die Konstruktion ohne weiteres mit Hilfe der
schon gefundenen Funktionen ausgeführt werden kann.

Allgemein besteht das Prinzip, automorphe Funktionen durch
analytische Ausdrücke festzulegen darin, dass man Reihen oder
Produkte herstellt, in denen sich bei Ausführung der Transformationen

der Gruppe einfach die Glieder vertauschen, wobei eventuell

gewisse Faktoren ausgesondert werden, die dann entweder
durch Quotientenbildung oder logarithmische Differentiation
weggeschafft werden.

Ganz prinzipiell und in allgemeiner Form ist diese Konstruktion

von Poincare1) zur Bildung der 0-Reihen angewandt worden.
Aber dasselbe Prinzip ist natürlich auch in der Jacobischen, wie

') Poincare, Acta mathematica Bd. 1, pag. 193 (1882).
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in der Weierstraßschen Theorie der elliptischen Funktionen und
ebenso zur Bildung der Eisensteinschen Reihen der Modulfunktionen

benutzt worden. Indem man die ^-Funktionen als Produkte
konstruiert, geht man bewusst von diesem Prinzip aus und wählt
die Faktoren entsprechend aus. In der Weierstraßschen Theorie
ist das unmittelbar ersichtlich bei der Bildung von p' (z). Es ist

P (•«) 2 ^>_ ,z (mj O)!m2in. _ mo '

was der Poincareschen 0-Reihe

entspricht, die aber nicht nur 0-Reihe, sondern zugleich auch
automorphe Funktion ist. Von weniger grosser Wichtigkeit ist bei
diesen Konstruktionen, dass die sich verschiebenden Faktoren, wie
z. B. bei der a (w)-Funktion, die Nullstellen der Funktion liefern.

Ausgangspunkt für die zu betrachtenden Funktionen ist

z
+ °" 1 7 7

"1 f tvn+a k vl) hk (z, (o)
2

; * o, i,..T- /. >)

l 0 — %
Falls l-i 0 auftritt setzen wir als Faktor — •

— z

Diese Funktion besitzt lvn -|-2k zu Nullstellen, lVn | »k [ t zu Polen
und besitzt in tu und co' je eine wesentliche Singularität. Die
bestimmenden Elemente Lvn [~ak und Am+ak |-i der Funktion Ek (z, co)

sollen ähnlich wie bei der ö (w)-Funktion zu Polen der automorphen
Funktion werden. Im gruppentheoretischen Teil haben wir
gesehen, dass die erzeugende Substitution S, die co in sich
überführt, zugleich auch die Näherungsbrüche In untereinander
vertauscht. Es gilt folgendes

') Verschiedenen k entsprechen verschiedene Funktionen, die durch
dasselbe Verfahren konstruiert werden können. Dadurch werden alle Näherungsbrüche

ausgenützt.
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Fundamentallemma: Jeder Faktor ^.'"i3.-— der Funk-

/ _ z
lvn -|--2 k-|-L

tion Ek (z, cd) geht bei Ausübung einer Substitution der Gruppe auf

z bis auf einen konstanten Faktor in einen Ausdruck über, in dem

die inverse Substitution ausgeführt wird, aber nicht auf z, sondern
auf ln.

Es ist

/ — i— z

21
lvnj-2 k ^

5 ' lynj-'i k
_

/.a ß\

"j_ Sz ~~

j z_
" \r<V'

/cn--|-2k-|-i 5 ' /i'n [-2k-| i

Hier sind S 1 Ii wieder Näherungsbrtiche, und es ist

^
Ivn | 2 k |-i Ö lvn~|-2k— ß

lvn-j-ik Ö /j'n (-2 k -[- — ß

Die Faktoren sind also so gebildet, dass sie bei Ausübung einer
Substitution der Gruppe einfach unter sich vertauscht werden.

Üben wir in Ek (z, co) auf z eine Substitution der Gruppe
aus, so wird ein konstanter Faktor abgesondert. Es ist nicht
nötig, im Produkt noch konvergenzerzeugeride Faktoren hinzuzufügen.

Seine Konvergenz ist leicht nachzuweisen, indem man je
einen Quotienten zusammenfasst und benätzt, dass Pn und Qn

stärker wachsen als n selbst,1) eine Tatsache, die bei allen unsern
Konvergenzbeweisen benützt wird.

Im weitern ist das Prinzip, das benützt wird, um mit Hilfe
von Ek{z, co) die Grundinvariante zu bilden, Ipgarithmische
Differentiation. Dabei fällt der, bei Ausübung einer Substitution unserer
Gruppe auf z auftretende, konstante Faktor fort. Es ist aber zu
beachten, dass die Ableitung einer automorphen Funktion im

allgemeinen selbst nicht automorph ist, sodass noch Faktoren
hinzugefügt werden müssen, um gewisse, durch Differentiation der
Substitutionsausdrücke entstandene, Faktoren aufzuheben.

Allgemein kann aus einer automorphen Funktion mit zwei im
Endlichen liegenden, wesentlich singulären Punkten, durch Verlegen
dieser Punkte nach 0 und oo eine multiplikativperiodische Funktion

hergestellt werden.

') Weber, Algebra Bd. I. Braunschweig 1912, p. 405.
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Sei nämlich A (z) eine automorphe Funktion mit den beiden
Grenzpunkten zi und zi, so ist also

3) A(Sz) A(z), S^[yö
Machen wir nun die Substitution

2 — Z\ -rx — -1-- Tz
Z — Z2

so entsprechen den Punkten z — z1 z z.,

die Punkte x 0 x oo
und es sei

4) A(z) U(x)=U(Tz).
Nun sei ferner w — Sz, dann besteht die Beziehung

w — zl z — z. „/ w i> i- ^ n X —- o Tz.
w — z2 z — z2

^ u

Da z T
1

x ist, erhalten wir schliesslich

(J (qx) — U {Q Tz) U (Tw) — A (w)

und da nach 3) und 4)

A {w) — A (Sz) — A (z) — U(jö
ist, ergibt sich

5) U{qx)-= U{x).
U (x) ist also eine multiplikativperiodische Funktion. In unserem
Falle haben wir es mit einer besondern Art dieser Funktionen zu
tun. Sie entstehen aus den automorphen Funktionen der zyklischen
hyperbolischen Untergruppe der Modulgruppe. Ihre Periode ist
das Quadrat der Grundeinheit im quadratischen Zahlkörper k( \ m).

§ 2. Durchführung des Konstruktionsplanes.

Partialbruchzerlegung.

Wie bereits erwähnt wurde, gehen wir aus von der Funktion

-O / 2

Ek (z, co)
U±*±__ k o, I, ?—i.

n °° /vn-f-ak f-t
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Der Faktor
1 —

l 0 ,t
—— verschwindet wegen /—i 0. Er ist vor-

z

i-

kommenden Falls durch

haben wir gesehen, dass

1-2
zu ersetzen. Im I. Teil § 2 13')

lv | jk S Au

Inv | 2k Sn /2k

ist. Aus diesem Grund können wir schreiben:

-f- nO

6) Kk (2, to) n7
z

S" Ak

5n Ii k [~i

Dieses unendliche Produkt konvergiert absolut und gleichmässig
für jeden Bereich, der die Punkte a, to' und S"Ak | 1 Jn=ö^tl,
nicht enthält.

Konvergenzbeweis. Nach dem Weierstraßschen Konvergenzkriterium1)

ist das obige Produkt absolut und gleichmässig
konvergent, da auf Grund der Eigenschaften der Kettenbrüche

z
ivn 2 k

Z

Ivn |-2k-) 1

/ 1

Ivn |-2 k lvn-\-ik~\

/ A'n-|~2k-|-i

M
Pvn | 2 k 1 1 Qvn [ 2 k — /Vn | 2k AA'n [ 2k | 1

/7n|2k Pvn |-L'k | i j

Damit ist die Konvergenz bewiesen.

Üben wir nun in ö) auf 2 die Substitution

c Pv Pv— l \
' Qv Qv—1 j

aus, so erhalten wir nach dem Fundamentallemma:

Sz

MnS
ist.

+ ^ / •

Pk(Sz, (0)= —
n — — 2-0

1 '

sn Ak

S 2

s" Ak |-

') Osgood Lehrbuch der Funktionentheorie I, Leipzig 1912, pag. 532
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2
-4- rx? J -

nSn/!k[,(^-ijn Ia — Pv-C] S 1 -Sn h k

S" Lk /,k I-, — Pv—i) z_ _" ~ S 1 Sn /ak-)-i

und wegen § 2, I. Teil 13) ergibt sich

2
rx_ / - — — —

nPim I 2k-\-i Pv(n—l) I-sk S(n—^/2k

/Vn f-sk P)'(n—1) |-2k |-i Z
11 5tn 0 /2U-I 1

woraus leicht zu ersehen ist, dass die Faktoren, die z enthalten,
sich einfach verschieben. Es ist also

+ ~ / — - *
—

7) Pk(Sz,<o) -C- Y\ C Pk{z,to)
" WsiTlT

I" rN-

^ -|—r-
f cn-[-2 k |-i P\>{n- 1) |-ak

-L-L Pvn |-2k/^»'(n—1) | ak |-i
n — x

Dieses unendliche Produkt ist wegen der erwähnten Eigenschaft

der Kettenbrüche und wegen der Beziehung 13) in § 2,

I. Teil konvergent. Für den Fall, dass lo X) und /— i 0
vorkommen, sind die Faktoren, in denen diese Werte auftreten,
abzusondern und besonders zu untersuchen. Es ergeben sich aber
daraus keine weitern Schwierigkeiten.

Es handelt sich nun darum, die Konstante C zu bestimmen.
Zu diesem Zwecke zerlegen wir das Produkt:

-j—j-
TVn-j -jk | i Pi'(n—0 | i'lv -i—j-P—v(n J i) | ak j i P - Wn -| 2) | -2k ^J- -L Pyn-|-2k Pi'ln—t) | ak-[-i -L -J- P— )'(n |-i) |-uk/"*—i'(n 1-2) I-3k-(— i

no no
Nun ist:

Q
P—t' |-3k lim PI'"—-k I 1 1

_
P-V Hk

P—V |-2k-{-i " ^ /^i'n-j-ak f'j'jk | 1 P—v |—ak [ 1

nach 15) § 2, I. Teil.

Ebenso ergibt sich für

^ P-e-|-2k |-i Um P—vln | ;) |-?k P—v|-2k|-i
C,2 =^* —tz~~~ — l —- -— ~ f

P—V (—2 k n ^ P V(n I 2) I 2k- 1-1 /—
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sodass wir schliesslich erhalten:

8) C —
CO 2k- |-i

Die Funktion Ek (z, co) genügt der Funktionalgleichung

9) Ek(Sz, (o) ^±LEk{z, co).
CO ak-|-i

Sie besitzt die einfachen Pole: /vn-|-2k-|-i (« — oo, -|-oo)
und die einfachen Nullstellen: />»n-|-ak.

In z w und co' besitzt sie wesentlich singuläre Stellen.

Aus Ek(z, co) erhalten wir eine in Bezug auf die Substitutionen
der zyklischen Gruppe automorphe Funktion durch logarithmische
Differentiation, unter Benützung der Tatsache, dass die Ableitung
selbst nicht automorph ist. Wegen

Ek (S z, co) — C I'j k (z, co),

ist

E'k (Sz, co) d Sz E'k (z, o))

Ek (Sz, co) Ek (z, co)

Da

Sz — CO z — CO

Q fSz—co' z — co'

ist, folgt durch Differentiation

CO co' _ 0) — co'
a Sz q dz

und wegen

ergibt sich

(Sz — co')2 (z — co')2

Sz — CO z — co'
O — ^

Sz — co' Z — CO

CO CO - CO CO

d Sz — ; —- dz.
(Sz — co)(S z — co') (z — co)(z CO'

Durch Division erhält man schliesslich

(Sz — oj)(Sz — o/) E'k(Sz, co) (z — co)(z — co') E'k (z, co)

co — co' Ek (S z, cj) co — co' Ek (z, co)
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In

haben wir somit eine automorphe Funktion. Die Grundinvariante
ist damit analytisch konstruiert.

Es handelt sich nun darum, ausser dem analytischen
Ausdruck, der zur Konstruktion der Funktion dient, nämlich der
Produktdarstellung, die in mancher Beziehung die Eigenschaften der
Funktion nicht deutlich genug hervortreten lässt, noch andere
analytische Darstellungen zu gewinnen. (Die zur Rechnung geeignete
Darstellung werden wir allerdings erst später mit Hilfe der
doppeltperiodischen Funktionen gewinnen.)

Eine erste solche Darstellung haben wir in der Partialbruch-
zerlegung. Um sie herzuleiten, werden wir der Einfachheit halber

zu der, der automorphen Funktion entsprechenden, multiplikativ-
periodischen Funktion übergehen, wie dies im § 1 dieses Kapitels
beschrieben wurde. In der Tat entspricht unserer Klasse der
automorphen Funktionen eine besondere Klasse der multiplikativperio-
dischen Funktionen, die nicht alle solchen umfasst, auf die Weise,
dass wir alle Eigenschaften der automorphen Funktion mit Hilfe
dieser multiplikativperiodischen Funktion studieren können. Der
Übergang von einer Funktionsklasse zur andern ist dabei, wie wir
in § 3, I. Teil gesehen haben, durch eine einfache konforme
Abbildung gegeben.

Der Übergang wird noch einfacher, wenn die Substitution

schon in der Funktion Ek (z, to) ausgeführt wird. Es ist dann

Der in § 3, I. Teil angeführte Beweis gilt hier fast ohne Änderung.
Es ist nämlich

11) Ek (z, to) 77k (£, to) Hk (Tz, (o).

to' g — co
2 ; i

Wegen
ist

Tz' q Tz
77k (q g, to) Hk (Q Tz, o)) TT (Tz', «)

Ek {z>, co) "f1/ Ek (;z, w)
CO L'k-J-I
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und deshalb gilt die Funktionalbeziehung

12) Hk i Q £, w) -~k+b Hk (£, co).
W2k- f-i

Dabei ist q wie erwähnt wurde das Quadrat der Grundeinheit
des Körpers k v'm)-

Aus dieser Funktion Hw (z, co) gewinnen wir auf bekannte

Weise, durch logarithmische Differentiation, die multiplikativperio-
dische Funktion

13) ITC \ HUZ> w)
Uk {z, co) z Hk {z, co)

die der Funktionalgleichung genügt:

Uk (q z, co) Uk (z, m).

Führen wir jetzt im analytischen Ausdruck für die Funktion
Ek (z, co) die Substitution

Z CO

z — CO

aus, so erhalten wir:

Tz

+ no 1 —

/-
Ek (z, co) Hk (£, co) J '

n — oo

Nach dem Fundamentallemma erhalten wir

-}- oo

n

-T 1 £

T ls
Sn hk

T
S" /.u-f,

Hk (£, o)
+ <x> 1

Cn

n - — oo f "

£

TSnhk
£

7"Sn/,k+i

wobei sich für Cn folgender Wert ergibt:

Sn hk- Fi S" hk — CO

Cn —

Benützen wir, dass

T Sn hk

S"hk S" /alc-J-i

S" hk CO

SDhk— co'

ist und setzen zur Abkürzung

p" —
hk CO

hk — Co'
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14)
In — CO

— An
In — Cd'

wobei An wieder Zahlen sind, die dem Körper £ (^m) angehören,
so erhalten wir die einfachere Darstellung:

z
£n A-ju

2 '

/t2k-|-i

15) c n A

dabei ist C

Hk (z, co) —

t—r Sn /al--|-i

-n
'

gesetzt, ein unendliches Produkt,
Sn/ak

das auf Grund der erwähnten Eigenschaft der Zähler und Nenner
der Näherungsbrüche absolut konvergiert. In der Form 15) ist das
Produkt zu logarithmischer Differentiation geeignet, sobald
nachgewiesen ist, dass es gleichmässig und absolut konvergiert.1) Nach
dem Weierstraßschen Kriterium ist dies der Fall, da

5" h k — CO

Sn Zsk-f-i - CO

Snhk CO'

S" hk

/—
Qn ztak

l / - -
Qn Xak |-i

5" hk — CO

S" hk — Cd'

5n 7>k-|-i CO

Sn /2k—j— i

2

CO

1 — Z
— I —

• {Sn hk — Sn /ak-h)
I [Sn hk | -1 — Cd) — Z (S " hk |-1 — Cd r

< | M M
I Qt'n |-2l< <3,'n+2k-p, ; ^ H1

ist. Da M, ausser in den kritischen Punkten, immer endlich ist,
ist die Konvergenz nachgewiesen.

Bilden wir nun die logarithmische Ableitung von Hk (z, co)

und multiplizieren mit z, so erhalten wir

16) Uk (z, co) — z l—l-r- -{ Z on /2k Z—pn /tak-f-i

') Knopp, Funktionentheorie II, Göschen 1913, pag. 22.

Goursat, Cours d'analyse math. II. 3. Aufl. 1918, pag. 100.
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Die Summe ist wieder absolut und gleichmässig konvergent. Bei

Trennung in — X- konvergieren
2 — QnA2k Z— f)n/ak-|-i

die einzelnen Summen nur für negatives n absolut und
gleichmässig. Um eine zur Rechnung vollständig geeignete Form zu

j jerhalten, formen wir die Summe — —. —}
^—o \z — ^ z—ea ^k+t |

so um, dass auch für positive n die Summe getrennt werden kann.

CO - „ CO
j 1 1 \ Z Qa Mk — Z £jn /ak |-i

2L- [ Z gn iak Z — Qn A2k-\-, j / (Z—Qn Ask)(Z—Qn /bk-|-i)
n 0 n 0

(z Q" Ask — Q" ^2k Zak |-0 — (Z L>" ^ak-|-i —• Qn Ask A«k fi)
(.Z — Qn A,k){Z — Qn /bk-|-i)

1 >0
ßn /ak Qf\ A»k | i

Z—Qn Ask X 2—gn/lak-l-t
it U n 0

Durch Addition und Subtraktion von Qn iak /ak-fi im Zähler der
Summe für positive n haben wir also erhalten:

OO *, CO
A-,k X3k |

17) Uk{Z, Oi) — 7. X
Z — £n Xak 2 — Qn Aak-l-t

n 0 n 0

fx
m | 1 «n I 1

c

In dieser Form ist jede einzelne Summe absolut und gleichmässig
konvergent.

§ 3. Laurentsche Reihe.

Um die Laurentsche Reihe abzuleiten, müssen wir noch einige
Folgerungen über die Pole und Residuen der Funktion Uk(z,o>)
machen. Aus der Partialbruchzerlegung ist ersichtlich, dass Uk(g)
die einfachen Pole
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/sk CO

Qn A-jk On—, - j
lak — 0)'

a /ak-l-i — CO

L)n '•*•* i ' • F"
'

'2k—1 CO

mit den entsprechenden Residuen

Qn Aik und — q" /t2k-|-i

besitzt. Wir beweisen nun folgenden

Satz: Hat eine multiplikativperiodische Funktion mit der
Periode q im Kreisring (/, q) die einfachen Pole A»k und |-i mit

den Residuen A*k und —i2k | 1, so hat sie für /t2k < I2I <
^2k

6
die Laurentsche Entwicklung.

-f- 00

18) Uk (z, CO) ft + y' — ^ 1 '
•

y
- zn 1 — Q"

u —00

Der Strich an 2' bedeutet, dass der Ausdruck für n — 0
auszulassen ist.

Wir beweisen das mit der Methode des Herumintegrierens.

Im konzentrischen Kreisring /£3k<|2|<^'!k ' 1

ist die Funktion
e

(Jk {z, (o) regulär und eindeutig und lässt deshalb in diesem
Gebiet die Laurentsche Entwicklung zu:

+ « jUk (Z, CO) — ~S~ Ca 2" Ca
2 ic i

• «.(£ ") „<Tn+'

Das Integral ist dabei über eine reguläre, geschlossene, den Punkt
n 0 enthaltende, im Kreisring verlaufende Kurve Czu erstrecken.
Im vorliegenden Fall wählen wir den Einheitskreis (/) als

Integrationsweg. Es ist dann für positives n

1
Cn —- ~x~ •2ni

' u*iS>{0)
de

w

Man kann dieses Integral ausdrücken durch ein Integral über einen
Kreis mit beliebig grossem Radius, vermindert um die Summe
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der Integrale über die Umläufe um die Pole. Der Richtungssinn
ist wie üblich entgegengesetzt der Bewegung des Uhrzeigers.

Der Kreis vom Radius R sei so gewählt, dass er einem Kreise
im Kreisring äquivalent ist, auf dem Uk(g,oj) endlich bleibt. Es

ist dann für

R M| fA (z, 10) |

Nun ist, wenn 2 tri die Anzahl der der zwischen (/) und (R)
gelegenen Pole ist:

2 m

Cn
l

2iti
Uk (.C, 0))

£n+l
d g

' Uk(g,u>)
2ni

(R)
£n+i

dg
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und nach dem Residuensatz

Cn
1

2ni
' t/kO,» d

;-.k

L"'
' Aik \n+! f

A->k+i

r
A2k-fi \n+>

(R) \ £>>' I ' \

Lassen wir nun R gegen »o konvergieren, so ist

/
2ni

' Uk (£, co)
dC

m

l M

Schliesslich erhalten wir

Cn
QV \n

-|Uk
Analog erhalten wir für

C-di+O — -

2 7t Rn+'

1"'

2jtR M
h-->OiüvR >-c>o.

R

e_r_
'AikJ

1 — Q"

/Lk+i

; "+i
2k __/t2k-|-i
/ gn+1

n 0,1,2,

Nun handelt es sich noch darum, die Konstante Co zu bestimmen,
die durch Angabe der Pole und Residuen unbestimmt gelassen
wird. Ihren Wert entnehmen wir der Partialbruchzerlegung, die
wir in folgender Form benützen:

19) Uk(z,co):
Qn Ä2k

Z—«n Alk

Qn /Sk+I

Z — ()n /tak+1

+
£>"+' Z

Aik -|~ £>n+i Z

^n+i 2

0 --- i ^ •

o

Entwickeln wir die einzelnen Summen, so erhalten wir

/2k Aik

Aik+i -f- g'H-i z

-h

/^2k
I / /-2 k+ s --r- + 2- (-z-

"I"
>£sk / A'k

+ »» —+e»

+ •• +(t)" + -
+•• +t»'(-v)'+-

4- ••• + i>vn
Aik V +

-f-
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In dieser Entwicklung sind die Bedingungen des Doppelreihensatzes

erfüllt. Es ergibt sich daraus ohne weiteres, dass c0 — 0
ist, und die Laurentsche Reihe für (Jk {s, co) lautet deshalb:

20) t/k(*,«)= J"'--7- A"<+'~' A>k ^1 Qn Q
n —oc

Analoge Entwicklungen können wir für jeden Ring aufstellen,
in dem die Funktion regulär ist.

Aus der Entwicklung für Uk (z, co) erhalten wir für z U'k (z, co)

die Reihe

-f- oo

21) zU'k (Z) - ; X < |zi <k Z" 1 — £)" Q
n — oo

Dabei bedeutet der Strich an 2" immer, dass der Wert für n-—0
auszulassen ist.



81_

§ 4. Allgemeine Sätze.

Die Definition der Funktionsgesamtheit, die der Gegenstand
dieser Betrachtung ist und der Nachweis, dass sie ein Funktionenkörper

ist, wird uns im Kapitel über die allgemeine
funktionentheoretische Aufgabe beschäftigen. Die automorphen Funktionen,
mit denen wir hier zu tun haben, können, wie erwähnt wurde,
auf eine gewisse Klasse multiplikativperiodischer Funktionen
zurückgeführt und mit Hilfe dieser studiert werden. Es gelten über
diese multiplikativperiodischen Funktionen allgemeine Sätze, die

gar nicht an den besondern Charakter dieser Funktionen, nämlich
an die Wahl von q gebunden und den bekannten Sätzen über die

doppeltperiodischen Funktionen vollständig analog sind. Da diese
Sätze ausserdem fortwährend benutzt werden, sollen sie hier kurz
Erwähnung finden. Sie werden, so weit sie für beliebige
automorphe Funktionen gelten, möglichst allgemein formuliert.

Sucht man irgendwelche allgemeine Aussagen über die
Nullstellen, Pole und Residuen einer analytischen Funktion / (z) zu
formulieren, so kommt man natürlicherweise auf folgende Sätze:

Seien g\ die Nullstellen, v\ die Pole und n die Residuen in
einem Bereich mit der Berandung C, so haben wir

1. Aussage über Residuen:

1 ^
f(z) dz 2_

(0
2 iti

2. Aussage über Nullstellen und Pole:

1

2ni <p d z =21p m — ]E pMi [&/(*)] \<p (*)] •

J\z) w ,0 zni
Dabei ist rp (z) allgemein analytisch und mehrdeutig angenommen;
[ip (z)] bedeutet den Sprung dieser Funktion auf dem Schnitt, durch
den der Bereich einfach zusammenhängend gemacht wird und

[lgf{z)\ die Änderung des Logarithmus auf dem Schnitt.

Die naheliegendsten Spezialfälle für <p (g) in der Formel 2.

liefern Aussagen über:
a) Anzahl für ip (z) — J

1

2ni
dabei bedeutet N die Anzahl der Nullstellen, P die der Pole;

f'. dz — N — P
f{z) '

c

6
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b) Summe für cp (z)

1

2ni / w
Vi

(<) (<)

c) Produkt für (p (z)

1

- lg z

2ni lg f ^ (I ZS f {z)
in
Vi

-h 2jxi
1

-- feil n + MW 1

Es handelt sich nun darum, die links stehenden Integrale für
gegebene Funktionen auch direkt zu berechnen, nämlich mit Hilfe
der besondern Eigenschaften der vorliegenden Funktion. Bei den

doppeltperiodischen Funktionen hat man ohne weiteres

/ (Sz) d Sz — f{z) dz (Sz ---= z -I- ,m o), | - tm <,k).

Infolgedessen ist

/ (z) d z 0
t c

was den bekannten Satz über die Residuen liefert. Wollte man
eine analoge Tatsache für beliebige Fuchssche Funktionen
gewinnen, so würde man zu keinem einfachen Resultat gelangen.
Statt dessen kann bei den multiplikativperiodischen Funktionen
das Integral

/
2ni

' f(z) d z

eingeführt werden, das infolge der Eigenschaft

0 z
dz

gleich Null ist, wobei das Integral immer über die Berandung des
Fundamentalbereiches zu erstrecken ist. Die allgemeine Berechnung

des Integrals
]_

2ni
f(z) dz

liefert für den Fall einfacher Pole

1

2ni
' m dz —

n
m
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wo m die Stellen bedeutet, an denen die Funktion f(z) einfache
Pole besitzt. Diese Überlegung liefert uns sofort

Satz 1. Hat eine multiplikativperiodische Funktion V (z) im
Fundamentalbereich nur einfache Pole für

Z JTij JT->, Tin

mit den Residuen rh rh Zn,
so ist

22) r'- + + -f — 0.
Tti Tl'i 7tn

1 C f'(z)
Was nun das Integral v, dz anbetrifft, so gilt für

Z Kl J J \Z)
C

jede automorphe Funktion, infolge

L d Sz — f ^ dz
f(Sz) f(z)

unter der Voraussetzung eindeutiger Ränderzuordnung,

/ (' f (z) n
o • trr dz 0
2jti f{z)

c
Es gilt deshalb

Satz 2. Jede nicht durchwegs konstante automorphe Funktion

mit n einfachen Polen im Fundamentalbereich nimmt jeden
Wert n Mal an.

Daraus folgt: Eine automorphe Funktion ohne Pole ist eine
Konstante.

Speziell für multiplikativperiodische Funktionen gilt

Satz 3. Es gibt keine multiplikativperiodische Funktion 1.

Ordnung.

Das ergibt sich auf Grund von Satz 1; denn sonst müsste
das Residuum den Wert Null haben.

Das Integral
1

2tü z^p-dz
c

ist bei den doppeltperiodischen Funktionen leicht direkt zu
berechnen; denn es ist

1

2ni
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dabei bedeutet to die Periode und [lgf{s)\ die Änderung zwischen
zwei Gegenseiten. Das Integral liefert den bekannten Satz^dass

Vi Iii
ist. 1 '

Ganz analog verhält es sich beim Integral
1

2 ni Ii? 8 d,Sf (0)
c

für multiplikativperiodische Funktionen. Es ist

1

2.711
f iQz) j 1

lg 08 d P 8 "TT rf(e&) 2ni<
1

lgsjj^ds+4nlseVsf{-^

[lgf{s)\ bedeutet die Änderung zwischen zwei zugeordneten Rändern
des Fundamentalbereiches. Vergleicht man dieses Resultat mit der
allgemeinen Ausrechnung, so ergibt sich

2ni

,U i

Vi

also

k lg Q ig n -v 2 k' 7t i,

ig II Cr =k ig i> — 2 k'n i
Vi

i

Wir erhalten also schliesslich

ik:=^
Satz 4. Nimmt die multiplikativperiodische Funktion f(s) an

den Stellen ßi einen beliebigen festen Wert c an und wird jede
Stelle ß\ so oft gezählt, als ihre Ordnung beträgt, so ist

23) n ,/ü «k.
Vi

l

Ausserdem gebrauchen wir noch

Satz 5. Ist Fi (£) eine multiplikativperiodische Funktion /zt-ter,
V-2 (8) eine solche «2-ler Ordnung, so besteht zwischen Vi {s) und
Ka (8) eine algebraische Gleichung von /?2-tem Grad in K (8) und
von «i-tcm Grad in V2 (s).

Der Beweis für diesen Satz kann analog geführt werden wie
bei Osgood, Lehrbuch der Funktionentheorie I, 2. Aufl., p. 478.
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§ 5. Die Hauptfunktionen.

Bis jetzt wurden folgende Funktionen eingeführt:
Ek{s,co) und entsprechend llk (3, <o)

Ak(3,C0) » » Uk{3, (ü).

Es sollen nun einige Eigenschaften dieser Funktionen untersucht
werden. Vor allem soll der Zusammenhang der Funktion Ak (3, co)

mit Uk FC, co) festgestellt werden. Uk(s, co) hat im Fundamentalbereich

die Pole Aak, /bk+i mit den Residuen Am, — A2u+i. Aus

Uk f,C, CO) Uk {T3, Co) /Ik (,5'j CO) -

folgt für die Residuen der Pole Uk, Im+i von Ak {3, co)

Residuum von Ak («, co) in Uk lim {3— Um) Ak {3, 00)

z^-hk

— lim (£ — ^ak) Uk (£, <») z

1

z—yhk
3— Uk

1 {Uk to){Uk — CO')
Mk

M co'

/Sk

Über die- Funktion Uk {3, co) und die aus ihrer Ableitung
gebildete Funktion Ui — 3 Uk (3, co) wollen wir die für uns
wichtigsten Sätze ableiten.

Satz 1. Die Funktion Uk {3, co) ist ausser der eigentlichen

Gruppe noch gegenüber der elliptischen Substitution 3->
invariant.

/ 3 — CO Y
V 3 — Co');

24) u^MLpl.)= (*,„).
Der Gedanke, die Transformation

/2k /t2k-j-I

auszuführen, stammt von der Gleichung
Aak /tak+i

ek>
fJ.1 f-C 2

in der ,mi, ,m3 die Nullstellen von Uk{3, co) bedeuten. Uk(3,oo) und

Uk ^-"ü1 -, co^ sind beide multiplikativperiodisch. Sie haben

dieselben Pole 1. Ordnung mit denselben Residuen; denn wenn

/
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r,, n die Residuen von Uk (z, o>) in /2k, 22k+i

und Rx, Ri > » » CA (_^Jk.hl
>

f0j jn ^3kj /}3k+i

sind, so ist nach Satz I § 4

r> r- n - • i- -h 0 A Aa — >tak Aak+t
/t2k

' /ak Fi

Ferner ist

Ah -- • lim Ac -- x2k) Uk X2k^k+1 o>)
Z—>X2k "

3 — /ak ^ /ak/sk-f-a 3 Wf / ^ak/ak-J-i

2—> /.ak 'ak^ak+i •

/ak+

/ /lak/isk-f-s - \ / Zak/Ak i \(-- /tak+i) Uk - --- - ,(0
<C \ fv

' lim (—.a') lim (U l.k+x)Uk{z',<») ——}-k a
/lak+i z' xak+i /lak+i

' A i

Es ist also

Uk w) — f/k /2k *sk+1 Konst.

Da aber //. Nullstelle der beiden Funktionen ist, wird Konst. - 0;
/tak /tak-ki

denn es ist o'<

Im Zusammenhang beweisen wir noch den analogen Satz
über die Funktion H{z), die nur die Nullstelle ,u und den Pol v
besitzt. Es gilt

Satz 2. 25) // (,c) : C | 0.

Auf diese Funktionalgleichung werden wir aus dem Grunde

geführt, weil ' für z e in ,n übergeht und umgekehrt. Die

Funktion It (,e-) H ^^ ist multiplikativperiodisch ohne Pole, da

sich Nullstelle und Pol zerstören.

Aus dem Satz 2 können wir noch eine Folgerung ziehen.
Machen wir die Substitution z r- uz, wo u ein Parameter ist, so
erhalten wir

"<« *»"(«) c-
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Dividieren wir durch die Gleichung 25), so erhalten wir:

26)
"(7
II ' II Z

II (,;)

Das können wir auch direkt beweisen. ^ ist multiplikativ-

periodisch und besitze in v und ,u die Residuen n, r-.

"('r)
ebenso

2 in '
> u » RhRt.

H '
^ uz >

Nun ist

Ml") "{"z
Res. von - in // lim (* — u)

H z-w\ UZ <
' // 2

„
V //(,')

lim
Z—> ,11 I'

UZ II z —>
II

II
'

- n n ;

wegen ^ ~b ^ ~ö, wenn gesetzt ist.

II

Durch Differentiation der Funktionalgleichung aus Satz 1

erhält man

Satz 3. Die Funktion .e' U' L-) <7. (,;•) genügt der Funktionalgleichung

27) U, i*~) - Ux

Die Funktion (7, (.;) besitzt an den Stellen ä2k, /»k+i Pole
2. Ordnung.

Die Nullstellen seien bei ,//>, /o, ii3 /u.
Wenden wir die Beziehung

i'i

I' in " - ',k

auf Ux (s) an, so erhalten wir:
fix fh Lh tu - (M /2k
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Da aber U (0) — U (/ir) (r— 1, 2, 3, 4) nur die Nullstelle 2.

Ordnung (jLr besitzt, so ist

das Produkt /t2k Ä3k+i sicher negativ, also ,ur rein imaginär:

/Mr ± £qs i y'|A,k •

Damit sämtliche Nullstellen im Fundamentalbereich liegen, ist qs

so zu bestimmen, dass folgende Ungleichung erfüllt ist:

dann erhalten wir

fXx £c'i i |V^iTÄsk+T| ,«2 — £q' • i | V^kZsk+i"|

ß2 fi'VH/ |yXskSk+r| /M - — f^i+U' | VÄZak+i |

und es ist q 2 qx -f- /.

Einfacher ergeben sich die Nullsteilen aus den Gleichungen

In der Umgebung eines Poles hat Ui {&) die Entwicklung

Hr2 s i2k Xok+i,

also (Ar £qs VA.k Z2k+,
Nun ist wegen

r=l, 2, 3, 4.

0)' hk [ j CO

£ < £q> IV/lskAzk+i | < 1 ;

a "
] -| —.—I- (0—i3k) •

(0 — lak)2
1

S—Mk 1^ — /tak

Aus der Partialbruchentwicklung

I (ö"/l2k)2 Qn Xik __Jg"22k+i)2 ign22k+i
\ {0—gn/t2k)2

' ^-gn/l2k 0'--gn/iak+i)2 gi/lak+i

ergibt sich:
a—2 —

«-i

§ 6. Umkehrproblem. Differentialgleichung.

Wir kommen auf den Zusammenhang mit der Integralrechnung.

Es handelt sich darum zu ermitteln, von welchen
unbestimmten Integralen unsere Funktion die Umkehrung darstellt.
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Auf Grund des Satzes 5 § 4 wissen wir, dass die Funktion
Uk [s, (o) U {s) der Differentialgleichung 1. Ordnung genügt:

28) (+ Ri {U cc))' ^= 0'

wo Ri und Rs rationale Funktionen höchstens 4. Grades sind.
Diese quadratische Gleichung kann man nach £ U' (£) auflösen
und kommt so auf eine Quadratur:

m !m -8 ±V- r, mm2

d£ dU {£)

Die quadratische Funktion im Nenner wollen wir aus unsern
Ergebnissen näher bestimmen und zeigen, dass für die vorliegende
Funktion

R, ({/(£)) 0

ist. Wir benutzen dabei die Methode der Identifizierung zweier
multiplikativperiodischer Funktionen auf Grund der Kenntnis ihrer
Nullstellen. Wir sind dazu in der Lage, weil wir die Nullstellen
der Funktion £ U' {£) kennen. Im Bereich (/, q) sind es die Stellen

s — <- l V'|A2kAsk+i|, mr. El | Aak Xik \ 11.

U (£) hat die Pole 1. Ordnung 22k, 22u u,
£ W (.£) die Pole 2. Ordnung A>k, 22k+i-

Der Fundamentalbereich ist für beide Funktionen der gleiche. Die
Funktion

cp (£/(£)) (U(£)— U(i v71AskÄife+Tf)) (t/(£") — U (—/Vl-SÜÄ+i]))
(f/CO — U (ß i |AakAak-|—i])) (£/(,0 — U (— si y|/t2k^ak |-i|))

wird zweimal Null in jedem der vier Punkte, in denen £ U' (£) Null
wird und viermal unendlich in jedem der Punkte /t2k und /bu-h-
Wir können also die Funktion mit £ U' (£) vergleichen und erhalten

(£U'(£))2 C <p(U(S)).

Zur Bestimmung von C bilden wir
lim (£ —22k)4 {£U'{£)f C i2k4;

Z—*-X2k
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daraus ergibt sich
C - /.

Die Funktion cp (U CO) hat keine überflüssigen Nullstellen, weil
X X

die elliptische Substitution die Klammerausdrücke
<!

ineinander überführt. Das Umkehrproblem führt schliesslich auf

folgende Quadratur

d s d UY.0

y'vwü))
Die Konstanten unter der Wurzel können wir aus der Partialbruch-
zerlegung bestimmen. Nach dem Schwarzsehen Spiegelungsprinzip
ergibt sich übrigens, dass sie paarweise konjugiert sind; es ist

U(— t V'l-tak/käk-pil) — " U{ i \J\fakÄA | -i|)

U(— ei v'lÄskAsk+il) — Uiei V|Aaiäak-| ij).
Bezeichnen wir U i Cl/Uk/Uk |T|) mit p ---- a ~\~ i b

U (e i V|^üüTiT|) mit q — c -\- i d
so ist

i \J \A2kA2k |-i |

4 <^(
1 1

I V \Ä2kXik |-i[ — Cn i V|AakA3k-|-i| — £>n /tsk

ei V|>2a3k-h|
jf / V|AaUak-h| — £>n ei V^akAak+i| — i?n Äk

29)

Das Integral lautet dann

P d £

S

d U (£)

V(U CO - p) (U CO - P) (U (£) - q) (U CO ->)
d U (O

V(U CO - p) {u CO - 77) (UCO - (UCO — 1)

Dem Umkehrproblem kann noch eine einfachere Form gegeben
werden. Für den Integranden erhalten wir nämlich

(U*-2aU V\pY)(U'2 — 2cU Y\q\2)--~{\U-af |-6« }{(£/-<•)» Yd2).
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Führt man jetzt die Variable

a c

ein, so erhält man schliesslich:

d s

£ v [(*-«)» M2][(* f-«)' + </']

d x

Das Umkehrproblem besteht nun darin, zu gegebenen a, b, d die
drei aus p und q für diese Grössen hergestellten Gleichungen
nach q, As\, aufzulösen.

§ 7. Zusammenhang mit den elliptischen Funktionen.

Der Übergang von einer elliptischen Funktion / (w) zu einer

multiplikativperiodischen wird bekanntlich1) dadurch erreicht, dass

man statt der Variabein w ihren Logarithmus substituiert; denn
dann werden alle Summeneigenschaften zu Produkteigenschaften:

Da der Logarithmus eine mehrdeutige Funktion ist, weist man
nach, dass infolge der doppelten Periodizität alle Zweige der
resultierenden Funktion identisch sind, sodass man sie zu einer

einzigen eindeutigen Funktion verschmelzen kann. Ausgenommen
sind natürlich die wesentlich singulären Punkte 0 und x>,

Sei / (w) eine doppeltperiodische Funktion mit den Perioden
2 K und 2 K' i, so lautet die Substitution

Das Argument der Funktion / I lg «•) erhält beim Zuwachs

2 k TT i des Logarithmus den Zuwachs einer ganzen Zahl von
Perioden 2 K\ der Funktionswert bleibt also ungeändert, was die

Grundlage für die Verschmelzung bildet.

/ bS? 4 ls «) / {ig & •

31)

2K

') Über nuiltiplikativperiodische Funktion cf. Rausenberger, Lehrbuch der
period. Funktionen. Leipzig 1884, pag. 221 u. ff.
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Damit die Funktion multiplikativperiodisch ist, muss ferner

/(M-/m>
sein. Für die 2. Periode erhalten wir deshalb

2K '<• -

denn dann ist:

f (2)K;'lgQJr f(~2K'i+w> f O) •

\2TII ztti

32) -o^=~o „feö,
Als Periodenverhältnis ergibt sich:

2/C' _
1

2K 2tt
ein Verhältnis, das wegen g < 1 positiv ist.

Zu unsern multiplikativperiodischen Funktionen kann man
also auch doppeltperiodische Funktionen bilden. Der Zusammenhang

zwischen den Polen und Residuen von U\< {s, to) - U {&)

und f (w) ist offenbar folgender:
Hat U (s) die Pole 2-k und 2ai< 11 mit den Residuen 22k und

— iak+i, so sind

2K j 2K 2 K | II [ZA' Dl
2 Iii lg ' 2,i 'Z 1' ' Si*? I'*""1 + * d'e P0lC'

2K 2K
9»/ > — 9* i d,e entSPre"
^ JT / zv 7t t

chenden Residuen der zugehörigen doppeltperiodischen Funktion

/(w); denri es ist
Residuum von U (,e) in /Sk 22k;

2 K 2 h\
Residuum von/(w) in-—- lim (w—-pr - lg hk)f(w)2 Kl ') IS 2 711

- äm lw- f-£ ig U) [
- + üä (»)

W—> g.- r/P'iak I 2K W
12tti ö \ e z/x — 2Sk

iak 2/C
2"''

dw - Vt, 'g"<
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und ebenso
.2 KResiduum von f (w) in i 2ni

2K

Jetzt suchen wir für unsere doppeltperiodischen Funktionen
eine Darstellung durch bekannte Funktionen. Für meromorphe
Funktionen gibt es zweierlei Haupttypen: Produkt- und Partial-
bruchdarstellung, indem eben für die Faktoren oder Partialbrüche
nicht algebraische Ausdrücke genommen werden, wie das in der
Weierstraßschen und Mittag-Lefflerschen Darstellung der Fall ist,
sondern Elemente von demselben Charakter wie die darzustellende
Funktion, also hier bekannte doppeltperiodische Funktionen.

I. Die wichtigste Produktdarstellung der meromorphen
doppeltperiodischen Funktionen ist die Darstellung durch o- und d-

Faktoren. Da wir nur Pole und keine Nullstellen unserer Funktion
kennen, können wir eine solche Darstellung nur für eine Differenz
zwischen

und einem ihrer speziellen Werte finden. Als solchen Wert können
wir etwa

wählen, der z. B. für die Funktionen, die einem zweigliedrigen
Kettenbruch entspringen, gleich —'s*- Nun kennt man von
der erwähnten Differenz die Pole und durch die elliptische
Substitution auch die beiden Nullstellen. Aus

folgt nämlich

Als 2. Nullstelle ergibt sich also

- IgÄk) - K - |*V lg |X* H
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Das führt unmittelbar zu der Relation

34) U (*, - U (- /,u) -- f(w, - / 22y. lg-I - K)

_
IK (0) '*\lTrrl |Äak+i|^ 2 ('2 jt / ^ Äak ^ 2 (2 zr7 ^ |Aak+i|)

" 2W
2

wobei ZA die ungerade /AFunktion1) ist. Die Konstante bestimmt
2 Ksich ohne weiteres durch Multiplikation mit (w lg /->k) und

Grenzübergang, unter Benutzung des Residuums von f{w).
II. Eine andere wichtige Art von Produktdarstellung ist die

durch die s/t-Funktion. Hier muss man darauf achten, dass sua
zwei getrennte Nullstellen und Pole hat. Durch eine Verschiebung
des Parallelogrammnetzes um a, erzielt man, dass die beiden
Nullstellen und Pole an die richtige Stelle kommen.2) Die Funktion

sn (w [ <t) sn (/o -|- a)

sn (w -| «) — sn (ri | - u)

soll die Nullstellen //, />.

und die Pole r, y3

und nur diese besitzen. Nun ist hier

•"* - o_; lS I

2K
2nl
2K l& z.-.k
2 ix i * -

2K • 2K i -' ~ 2m 'S2,i + K-

Wir suchen nun <t so zu bestimmen, dass

K — • (/< -(- «) /o -|- a (mod. 2 K, 2 /<' i)

ist, also auch

K — -|- a\ — y, -|- (i (mod. 2 K, 2 K! i)

') Ooursat, Cours d'analyse mathernatique II, 3. Aufl., 1918, pag. 203.
') Königsberger, Vorlesungen über die Theorie der elliptischen

Funktionen, Leipzig 1874, pag. 350.
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Daraus folgt

K +" 2 2
Setzen wir unsere Werte ein, so erhalten wir

(mod. 2 K, 2 K' i)

K
2

K
2ni lg Äik /?al< |

Ui Ui- Alk) f{w)-f( lg U 4- K)

K
2/ri
2K
2 Tri

lg | 2ak Mk | 11

S!l W ~ 2iri lg ';'2k ;"k 1 '') ' S" 2ni lg

sn w

K
2ni
~K
2 Tri

K
2 Tri

K

/•ak

lg l^k/tak |,|) S/l (2^. lg

>?2k |-i

/ak | t

Die Konstante bestimmen wir auf die gleiche Art:

/• i 2/<lim \w — „2/C. / 2*1
ir—> Iff /.2 k

Zit i

a) 4 sn a

lg j/t«') - /( 2„i + ^)}

lim
2 K

II'—>" r /"' /.2 k
2 JT t

W
2 K • \ sn iw
„ lg /tsk c I

- : - - - -2iri ö ' sn (w m — sn a

es ist also 2K 2 sn a
2 it i sn' a

Schliesslich ergibt sich

K i sn' w

wobei a

/ sn w \

\ sn w
'2 jri \sn w

Unsere Darstellung lautet also:

K
2 TT i Iii-

K
2iri

/.2 k

Aak-J-i

; 'S
/2k

/.k |

ist.

35) U — U (— Äk) f{W) —/(y~y Lg ^
K I d lg sn w

27ti [ d iv K /2k
W „ - lg I - - -2jti I xak-j-i

K\

sn tiv -1 «) sn a

sn (w -I - «) — sn a

III. Die wichtigste Darstellung vom 2. Typus ist die Partial-

bruchdarstellung von Hermite1) durch £-Partialbriiche. Sie lautet
hier ohne weiteres auf Grund der Hauptteile und Pole:

') Goursat, Cours d'analyse niatliemathique, II. 3. Aufl., 1918, pag. 197.
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36) M*, m 0-e(w«xz)
c+Ti{^w-~ii tg^-t(«>--§jlg^+)\

Die Konstante bestimmt man wieder durch Grenzübergang:

Übrigens ist ihre Kenntnis nicht wichtig für die weitere Darstellung,

da sie durch Differentiation verschwindet.

IV. Eine Darstellung für die Funktion s U' (0) — (Jt (0) erhält
man durch Differentiation aus der Darstellung für U (0). Es

ist für
/ 2 jci \

f (w) — U \g2K J

2iti
w2ni 2K ,„ 2ni \ 2ni / 2nif iw) o w e U [ OkrW\ O W (-\e2>

w2K \n2K 2K \„2K

37) U, M =- * f (w)

*)" )-o("- ti'e1*)]-
Diese Relation ist übrigens leicht unmittelbar aus den

Eigenschaften von ih (0) abzulesen. LI, (0) hat /t2u und xak-| 1 als Doppelpole.

Berechnet man durch sukzessive Subtraktion und Grenz-

K
Übergang die Residuen von — f (w), so verschwinden die

Koeffizienten der 1. Potenz, und

für den Pol — lg X2k ist —(--Q Koeffizient der 2. Potenz und
711 \7Tl!
K i K \2

ebenso für lg X2k+, ist (- Koeffizient der 2. Potenz.
TT l & \jTlf

§ 8. Anwendung auf zweigliedrige Kettenbrüche.

Die Konstruktion soll für den einfachsten Fall, indem sich &>

in den Kettenbruch
TO —
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entwickeln lässt, vollständig durchgeführt werden. Dieser Fall ist

vor allem dadurch ausgezeichnet, dass k nur den Wert Null
annehmen kann und deshalb nur eine Funktion

(Jk ß, 0)) — Uu (g, CO\

existiert.

Es ist
(Pi PA

S ^ '
Q- Q,-

2
P> — Ql CO h — CO

v — 1 — ~p2 _ q, ü)> -- //_ o/ — (p- ~ Q°-mY>

oder q e2 (Q2 co' -|- Qt)2.

Die quadratischen Zahlen, die als Pole der einzigen Funktion U« ß, co)

auftreten, sind

4> - -^L /
/<> — co'

h — co co P> — Q2 CO

und At j - - f p r) / J
^ Q^oo) e,i\ — co o) y-2 — (*/2 co

wegen h A ---- Q> or — (P2 — (?)«.
Infolgedessen lautet die Partiaibruchentwicklung:

+~ f /
'

/ 1

38) t/o ß, co) a ^ 'n-oJ*-e e I

oder in der 2. Form:

n rl _i.i
TT/ \ X— i} I X— Q ^ I x: Q / ^
Uo (8, OJ) =- > + > — -f

,i ü f
P

ir*4-en« o
en"hiSr—1

Qn H^' + £

Daraus ergibt sich für s — — /

U, (-/) 2
•

Wir erhalten folgenden
Satz. Lässt sich co in einen zweigliedrigen Kettenbruch entwickeln,
so nimmt die Funktion t/o <ß, co) an den Stellen 8 — — 1, e den

Wert an> a'so
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39 a •• / u, f)
1

Die Entwicklung der Funktion Uo {s, co) in eine Laurentsche Reihe
lautet:

-I- ^' 1 /_(_/.)»40) Uo is, to) -

n — >o 1 — /)"

Infolge der, im obigen Satz ausgesprochenen, Eigenschaft der
Funktion Uo {s, co) vereinfacht sich die Darstellung durch
doppeltperiodische Funktionen. Sie lautet:

k "fsW
•*'"') 1

2 2iri K
'

•. i K \ / /<' \
—S \2tt7 7

und wegen ^ 2 /<' / - 2Jj ig s

K'i\ j K'i\ (K'i\
/ * 5/2 \—2) S,T~ 2 rSnV.2)

41) Uo(s,co) \--2 - 2ni
-

K,.
Stl

\ 2~) sn \W 2 / \ 2

Für s Uo (s, (•>) erhalten wir:

* U'o (2, CO) - (A,)' [i, (w) - f> (W - iK'))

Benützen wir die Beziehung

* <* -iK) -' '* (tw ^=ir)' - '<" - " •

so erhalten wir:

42) ,w,<,)- («)• {2P(„>+c-/- {?$:--))
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2. Kapitel.

Allgemeine funktionentheoretische Aufgabe.

§ 1. Nachweis der Körpereigenschaften der Funktionsgesamtheit.

Die allgemeinste Funktion, die wir betrachten, ist die Funktion
A * (z), die gegenüber der zyklischen hyperbolischen Untergruppe
der Modulgruppe invariant bleibt und im Fundamentalbereich nur
Pole als Singularitäten besitzt.

Die einfachste Funktion dieser Art, die im Fundamentalbereich
nur zwei Pole hat, wurde im vorhergehenden Kapitel analytisch
konstruiert. Unsere weitere Aufgabe ist nun den allgemeinen
Satz zu beweisen, dass jede Funktion A* (5) eine rationale Funktion

der Orundinvarianten A (z) und der aus ihrer Ableitung

gewonnenen Funktion ——A' (z) ist, dass also die Ge-
« — or

samtheit unserer Funktionen A* (z) einen Funktionenkörper bildet.
Wir haben bereits erwähnt, dass unsere Betrachtungen sich

einfacher gestalten, wenn wir statt der automorphen Funktion,
die daraus durch Ausführung der Substitution

erhaltene multiplikativperiodische Funktion einführen. Es ist dann

A* (z) II* (.C)

A (zi f/(.0
(% 0J)(^ W At - ut / TT / <-\(Z\ t, u s) UI s),

CO — CO

und wir haben nur den Satz zu beweisen, dass jede multiplikativperiodische

Funktion P*{z), die im Fundamentalbereich nur endlich
viele Pole besitzt, eine rationale Funktion der beiden Funktionen
V (z) und Ui (z) ist.

Den Beweis gliedern wir. Zunächst kommen wir zu einigen
einfachen Problemstellungen, die uns ein paar für sich interessante
Tatsachen liefern. Als erste erhalten wir das Multiplikationstheorem,
indem wir U(zu) durch U (z) rational ausdrücken. Das gelingt
durch die Methode der Hermiteschen Partialbruch-Darstellung und
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durch die Produkt-Darstellung. Die Partialbruch-Darstellung liefert
uns eine Methode

U (;«)+ U rational durch U (z) und lh (z)

auszudrücken. Die Methode der Produkt-Darstellung wenden wir
nicht auf II(zu) selbst an, sondern auf

Durch logarithmische Differentiation und Grenzübergang für t-^1
erhalten wir daraus eine Partialbruch-Darstellung für

Addieren wir diese beiden Darstellungen für Summe und Differenz,
so erhalten wir das allgemeine Multiplikationstheorem, d. h. eine

Relation, die gestattet, U (zu) rational durch U (z) und lh (z)
auszudrücken. Die Methode der Produkt-Darstellung erlaubt es auch,
die Funktion JE (z,u) rational durch U (u' z) auszudrücken, wo also
das Argument z mit einem Faktor multipliziert ist.

Zum Beweis des allgemeinen Theorems ist dann nur noch
nachzuweisen, dass jede multiplikativperiodische Funktion durch
TZ-Produkte ausgedrückt werden kann, was zu einem Analogon
der ,C-Darstellung der elliptischen Funktionen führt.

1. Ableitung einer Relation für U (z u) -j- U durch die

Methode der Partialbruchzerlegung.

Es handelt sich also darum, ein Multiplikationstheorem zu
gewinnen. Seien ,u und v nunmehr Pole von U («), so besteht
die Beziehung

Diese Beziehung erhalten wir, wenn wir die Funktion U(zu) mit
Hilfe der Hermiteschen Partialbruchmethode darstellen wollen.

und erhalten eine Produkt-Darstellung für

E (tz, u) E ii durch U (z).
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Da U \z u) die einfachen Pole besitzt, haben wir diese
a ' it '

Funktion mit
C, C»

I/U,• irr»-
zu vergleichen. Es ist aber zu beachten, dass U(z) — ausser

der Nullstelle ^ auf Grund der elliptischen Substitution noch

die Nullstelle v u besitzt, ein Umstand, der schon bei der

Darstellung durchsn«aufgetreten ist. Ebenso hat U(z) — ausser

der Nullstelle — noch eine andere in ju u. Die Pole vu und u,
u '

die infolgedessen in P (z) auftreten, sind gerade die Pole der Funktion

• Es ist also

U (zu) -\- V mit P (z)

zu vergleichen. Beide Funktionen haben dieselben Pole und es

sind noch die Residuen in Übereinstimmung zu bringen. Die

Funktion U (z u) -f- U ^ ^ hat entsprechend den Polen

i' ii
> i V U, u u

u II ' '

die Residuen — -"
> > — vu, ,u u.

II u '

Die Koeffizienten Cr und C2 von P(z) sind also so zu bestimmen,
dass P(z) dieselben Residuen hat. Es ist deshalb zu verlangen,

dass Residuum von U (zu) -4- U(--\ in ''
— ist

\ Ii / II lit l f^\

P

und ebenso

Residuum von V (zu) -\- P{~) Jin

Daraus ergibt sich

Wegen

U',\ «

_C,_
"•on

c, =-; U> 'r) C. — — U, ' "
II J

7 \ II

p (;;) - (vu)

Vi Vi (/LI II)
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stimmen auch die andern Residuen miteinander überein. Die

Funktionen U(zu) -j- P und P (z) sind also beide multiplikativ-

periodisch von der betrachteten Art und haben dieselben Pole
und Hauptteile (Residuen). Ihre Differenz ist also nach allgemeinen
Sätzen d'er Funktionentheorie eine Konstante. Um diese in

U(zu)+ l'{ I I P z, \ K

zu bestimmen, haben wir für z eine Nullstelle von P (z), also einen
Pol von U (z) zu setzen. Sei z. B. z ---- v, so ergibt sich

K U(?ti)+U(vu)

II. Ableitung einer Relation für U (z u) — U durch die

Methode der Produkt-Darstellung.

Ganz analog können wir das Problem des Multiplikationstheorems

mit Hilfe der Produkt-Darstellung erledigen.
Bis jetzt haben wir zur Bildung der multiplikativperiodischen

Funktionen einzig die logarithmische Differentiation einer Hk{z, co)-

Funktion benützt und die Division, wie sie von Jacobi zur Bildung
der sn «-Funktion angewandt wurde, noch gar nicht verwendet.
Als einfachste solche Funktion erhalten wir

H{uz) ^H (z) " } •

H(z) habe die Nullstelle ,u und den Pol v. E (z,u) ist eine Funktion,
deren logarithmische Ableitung auf eine Differenz zweier
Funktionen U (z) führt. Es i,st nämlich

iJgXM 5 Z
dtgmz) vm_mi

so dass man von einer Produkt-Darstellung für E (z, u) zu einer
neuen Partialbruch-Darstellung für V (z) gelangen kann.
Entsprechend der Funktionalgleichung

U U (z)

ergibt sich hier, auf Grund der Gleichung

M "Jfß
\u z
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die elliptische Substitution

3)
U Z

so dass wir die Funktionalgleichung erhalten:

4) E "u ^ uj --= E (z, a).

Jetzt nehmen wir die Fragestellung des Multiplikationstheorems
wieder auf, indem wir suchen E (tz,u) rational durch U (z)
auszudrücken. Bei der Funktion U (z) haben wir die Partialbruch-Zerlegung

angewendet, weil wir die Nullstellen von U (z) nicht kennen.
Da wir von der Funktion E (z, u) die Nullstellen ohne weiteres

angeben können, es sind nämlich die Stellen

so ist für E(z,u) die Produkt-Darstellung die natürlichste. Die
Pole von E (z, u) sind

v- und Li.
ii

Es ist klar, dass man davon ausgehend durch logarithmische
Differentiation wieder eine Pärtialbruchzerlegung erhält.

E(tz,u) hat die Nullstellen --- und die Pole —'V~r
> •

v ' y tut at t
Indem wir von E(tz,u) ausgehen und die überflüssigen Nullstellen
berücksichtigen, die bei den U(z)-Differenzen auftreten, erhalten wir:

Für E(tz,u) hat man nämlich auf Grund der erwähnten Nullstellen
und Pole den Ansatz:

v und '

u
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Auf Grund der elliptischen Substitution treten im Zähler die
überflüssigen Nullstellen ß t, \> u t auf, im Nenner v t, /.t u t. Das

sind gerade die Nullstellen und Pole von E [ Das

Verhältnis des Produktes E{tz,u) E^*t,ii) zu dem gemachten

Ansatz ist also konstant. Die Konstante können wir wieder
bestimmen, indem wir für z einen Pol der Funktion U (s) setzen.

Die Formel 5) eignet sich zur logarithmischen Differentiation.

Wir kommen ,dann leicht zu V (3), indem wir noch mit s

multiplizieren. Differenziert man nach z, so erhält man:

U{tz u) - U(tz) + V (f) - ü(£t) -
r / 1

wobei aber ursprünglich t 4- 7 vorausgesetzt war. Machen wir
den Grenzübergang für t—^1, so erhalten wir

6) U(zu) — U(Z)
U\ (5) U[ (.£

f/(s, — //(.;;.)

III. Allgemeines Multiplikationstheorem für U (z).

Nun haben wir zwei Darstellungen erhalten, die ufis Summe

und Differenz von U (z u) und durch U (z) ausdrücken.

1 Durch Addition erhalten wir das allgemeine Multiplikationstheorem

;| »<» + «*(£) kc-HMT) „cd
7) -J 7V\ TV\+ 1 °v„)

Wir können also U(zu) rational durch U(z) und Ui es) ausdrücken.

Man kann nun für E {z, u) eine Produkt-Darstellung durch

U («' z) erhalten. E(z,u) hat die Nullstellen v,J' und die Pole (x,- -
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Von vornherein wäre man geneigt, folgenden Ansatz zu machen:

0 i\<Z]~r(u)
U (z) — U ('/.() /; _ (r ^ j j

Nun ist aber U (v) --- U(,u) *= so dass der erste Quotient gleich
eins wird. In dem übrigbleibenden Ausdruck haben aber Zähler
und Nenner noch die überflüssigen Nullstellen v u und ,u n, die
nicht wegzubringen sind. Wir machen deshalb den Ansatz

f (u z) — V (a v)

I '
(ci z) — V (a //.)

Dieser Ausdruck hat die Nullstelle v und den Pol ,u. Die
Konstante a bestimmen wir nun so, dass die Nullstellen und Pole bei

Ausführung der elliptischen Substitution in die noch fehlenden
Nullstellen und Pole übergehen. Im Zähler ist die zweite
Nullstelle gegeben auf Grund der elliptischen Substitution durch

a r /i
<i z - - Z '

a )' 2 >

im Nenner durch
U V V

uz :• —
nil a-

Damit die Nullstelle im Zähler zu — und im Nenner zu '' wird,
u u '

muss offenbar a \:7T sein. Beiderseits hat man also wiederum
multiplikativperiodische Funktionen mit denselben Nullstellen und
Polen, ihr Verhältnis ist also eine Konstante:

7/ ,.N „UfVlt'Ä — U{ \ UV)L u) ^ /c7/Tv_a)_i/ (v,h/().
•

V
Zur Bestimmung von K kann man offenbar etwa z — —= setzen,

V "
wodurch der Quotient rechts zu 1 wird, und sich für

K E • u
\ V u

ergibt. Sodass wir also haben:

8) E (z, u) - ^ E ''
u)

^ " s)
v \ V « / U (v u z) — U (\/ u ,u)
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Aus der Zusammenstellung dieser Darstellung mit dem
allgemeinen Multiplikationstheorem 7) für f':-) folgt, dass E (z, u)
rational durch (T'z) und U\ (z) ausgedrückt werden kann.

Damit wir nun unsern funktionen-theoretischen Hauptsatz in
seiner Allgemeinheit beweisen können, müssen wir nur noch
beweisen, dass jede multiplikativperiodische Funktion von der hier
betrachteten Art sich rational durch E<z,u) ausdrücken lässt. Dieser
Satz ist aber nichts anderes als ein Analogon zur Hermiteschen
Partialbruch-Darstellung durch ,C-Partialbriiche. Statt der Summe

von ,C-Ausdriicken treten hier Produkte von /?-Quotienten auf.

Für die Funktionen 2. Ordnung mit den Polen c,, v» und den
Nullstellen ,u2 ist der Satz ohne weiteres richtig; denn

//( " z)
/riz).- " <»-)

hat die gleichen Pole. Eine richtige Nullstelle könnte man er-

7/(,M
zielen, wenn man die Konstante " subtrahiert. Die 2.

H c»
Nullstelle ist aber auf Grund der allgemeinen Stütze schon
mitbestimmt, sodass die Funktionen 2. Ordnung sicher proportional
dem hergestellten Ausdruck Fl* (z) sind.

Für eine Funktion U* \Z) beliebiger Ordnung ergibt sich die
Richtigkeit des Satzes durch vollständige Induktion. Man bildet

n r ir*iz>9l t IS I -rr-T- - 'tl IZ)

wo //* iz) mit zwei Polen und einer Nullstelle von V(z)
konstruiert ist. V(z) hat dann n—1 Pole, nämlich:

l'i V'
>>3, )'n und dazu noch u3 — -

fh
ß<> ist eine Nullstelle von Fl* (zj. Fiz) ist eine Funktion n~- l
Ordnung, und für die haben wir den Satz als richtig angenommen.

§ 2. Konstruktion für den Fall, dass die Erzeugende der Gruppe

eine Potenz von S ist.

Es soll gezeigt werden, dass in diesem Fall das

Konstruktionsprinzip ungeändert angewendet werden kann und zu wesentlich

denselben Resultaten führt.
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Sei S Pl~ die Erzeugende der Gruppe, dann wird die Funktion

auf folgende Art gebildet:

"F ^ 1 n*' —

IÜJZ, CO) PJ ' (t- - 0, Prvf — 1).

" 1
~s~n~i*\7n —-

| /V i' | n Pr p Pn
\ Qrp | n Qrp Pn

und

Die grundlegenden Tatsachen, Fundamentallemma und Ketten-
bruchbeziehungen, gelten hier ungeändert. Speziell erhalten wir
als Verallgemeinerung von 13) und 13') in § 2, I.Teil:

Pr p i Qn
QI i'—i Qn

Pn rp - I — lY'' { Qrp i Pn - Prp—i Qn }

Qn—r p I lY1' J — Qrp Pn -| Pr p Qn [ >

/r c | n $ In P In

I S"' In P^/n.
- rp | n

Wendet man in Ek (z-, co) auf z die Substitution S an, so
ergibt sich nach dem Fundamentallemma

I i T,Äk uS Z.CO) - EkiZ; CO).
Co', k I 1

Daraus kann wie früher die automorphe Funktion durch logarithmische

Differentiation gebildet werden. Ebenso können wir wie
früher zu den multiplikativperiodischen Funktionen übergehen.

Die weitere Entwicklung, namentlich über das
funktionentheoretische Hauptproblem, gilt, wie bereits erwähnt wurde, ohne

Aenderung auch für den Funktionenkörper mit den hier
angegebenen Grundinvarianten.

Ausser durch logarithmische Differentiation können wir hier
mit Hilfe des Divisionsverfahrens automorphe Funktionen bilden.

Infolge
cjji, - - Mh/ h Ii' (mod. >')

sind die Funktionen

v (r. p Ep (z-i E, P '"•> °J>
Jj0 CO) (r— a)

2

E „ (s, co) E p (z, co) E p co)
(r— i)-y (r— 2

(r— 0 2

automorph.
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§ 3. Fall nicht reduzierter Fixpunkte.

Nachdem die Funktion mit reduzierten Fixpunkten konstruiert
ist, ist noch zu ergänzen, wie eine Funktion zu einer hyperbolischen
zyklischen Gruppe konstruiert werden kann, deren Fixpunkte nicht
reduzierte quadratische Zahlen sind. Im gruppentheoretischen Teil
(§ 1, 10) wurde gezeigt, wie man aus der Kettenbruchentwicklung
von nicht reduzierten Fixpunkten S3 eine Substitution *S',|: gewinnen
kann, so dass

10 S..: S3 co

S*
'

(Jq,u y"" i) ~ ^ 1

Der Substitutionsgruppe, erzeugt durch S^mit den reduzierten
Fixpunkten co, co', entspricht hier eine holoedrisch isomorphe mit der

Erzeugenden

11) S, 1 Sr S,S'
deren Fixpunkte S3 und S3' sind. Ist eine automorphe Funktion
,4k (z, oj) der Gruppe mit der Erzeugenden Sr konstruiert, so kann

man sofort einsehen, dass die Funktion

12) 2(k (s, S3) - Ak iS,t z, CO)

eine automorphe Funktion der Gruppe mit nicht reduzierten
Fixpunkten ist; denn es ist:

2lk (S' z, Q) %k(S~lSr S, z, S3) Ak (S, S,
1 Sr S, z, co) Ak(SrS,z, co)

Ak (£„ s, co)

und wegen 12) ist Ak (S* z, o) 21k (z, S3).

Die Funktion 2tk {z, S3) ist also invariant gegenüber der Substitution

S':
2tk (S' z, S3) -= 21k (3, S3).

Im I. Teil § 2 17) haben wir gesehen, dass bei dieser Funktion

genau wie bei der aus dem Kettenbruch konstruierten, die
Näherungsbrüche

'S, in <>

die Pole der Funktion sind. Im geometrischen Teil haben wir den

Zusammenhang zwischen dem Kreisbüschel mit den Nullkreisen
co, co' und demjenigen mit den Nullkreisen S3 und S3' untersucht.

Die Residuen von 21k (s, S3) unterscheiden sich von den

Residuen von Ak (z, co) durch den Faktor -—-—\ ^ wenn
i/Jii l-i k -j- CJ/i,—i)
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/a Pol von .4k c, <>>) ist. Es ist also

Residuum von 2tk (:•,£)in Z)su=-[Res.von.lk(;,w)in/A] r—^
•

(j/l 12k | (/f I- I )'
Jetzt ist noch der Zusammenhang mit den multiplikativperiodischen
Funktionen zu untersuchen. Der Obergang wird hergestellt durch

Uk (z, Q) - 3fk (IV z, ä). [ '7, z •

Von Uk (z-, -R) gelangen wir zu Uk (Z, co) durch

Uk S~l T~l z, -Q) Uk (z,a>).

Es ist also

Uk (3, -R) - lrk i T S„ TT1 z, a» Uk (.r, co},

wo T, die Substitution bedeutet:

Die Substitution T St 1\ ' haben wir im geometrischen Teil
ausgerechnet und gesehen, dass

v
10 + ;

Ufi co' -j- c[/(—i c
ist.

(fail Co' -[- Qtt —i

(j/t o) -f- q/t—i

Wir erhalten also schliesslich:

IV:., Uk
*

co j
In dieser Form sieht man ohne weiteres, dass ltk (z, ü) multipli-
kativperiodisch mit derselben Periode £> ist. Der Zusammenhang
zwischen den Polen und Residuen ist der folgende:

Pole von lTk tz,co) : k.k, V 11

Pole von Xtk (:, -R) : k.k • c, k,k |, • c

Res. von llk c, -R) in xa • c - /a c

Res. von ltk (Z, .Rj m k2\-\ i c — — k,k |, c.

Damit ist die Aufgabe, die Funktionen zur zyklischen
hyperbolischen Untergruppe der Modulgruppe zu konstruieren und alle

Funktionen zu bestimmen, die im Fundamentalbereich bis auf Pole

regulär sind, erledigt.
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