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Uber automorphe Funktionen die zu
gewissen Untergruppen der Modulgruppe

gehoren.

Von D Emil Blaesi.

-5 =

Einleitung.

f[ Qs <02 ‘\n%

D“%ie Anfiange der Entwicklung fiir die Theorie der auto-
o‘!d\@ morphen Funktionen finden sich in den Werken von
¥ == Riemann und Schwarz. Durch, von einander unabhén-
gige, Arbeiten von Klein und Poincaré ist die Kenntnis dieser
Funktionen rasch vertieft worden.

Wichtig fiir diese Theorie der automorphen Funktionen ist
deren Festlegung durch analytische Ausdriicke, die die charakteris-
tischen Eigenschaften leicht erkennen lassen. Diese Aufgabe wurde
von Poincaré allgemein fiir Funktionen, die sich bei den Substi-
tutionen der Fuchsschen Gruppen nicht dndern, durch Aufstellen
von Partialbruchreihen, den @-Funktionen, gelost.

R. Fueter!) hat fiir den Fall der zyklischen hyperbolischen
Untergruppe der Modulgruppe ein spezielles Verfahren zur Kon-
struktion einer zugehorigen automorphen Funktion gegeben. Dazu
werden nicht die Poincaréschen ©-Reihen benutzt, sondern un-
endliche Produkte, deren Bildung auf einem &hnlichen Prinzip be-

1y Vierteljahrsschrift der Naturforschenden Gesellschaft Ziirich LXIV (1919)
pag. 680.
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ruht, aber in natiirlicher Weise eine zahlentheoretische Tatsache
beniitzt, nimlich die Theorie der Kettenbriiche, die mit den qua-
dratischen Zahlen und somit auch mit den hyperbolischen Sub-
stitutionen in engem Zusammenhang steht.

Die Ausfithrung dieses Konstruktionsverfahrens ist der Zweck
dieser Arbeit, die ich auf Anregung von Herrn Prof, Dr R. Fueter
im W.-S. 1918/19 in Angriff nahm und unter seiner Leitung zu
Ende fiihrte.

Die Arbeit zerfillt in zwei Teile. Im I. Teil werden die gruppen-
theoretischen Grundlagen, soweit sie benutzt werden, entwickelt
und der Zusammenhang mit den Kettenbriichen hergestellt. Die
Konstruktion der Grundinvarianten fiir die Substitutionen der zyk-
lischen hyperbolischen Untergruppe mit reduzierten Fixpunkten
wird im 1. Kapitel des Il. Teils vollstindig durchgefithrt und auf
ein spezielles Beispiel angewendet. Im 2, Kapitel wird bewiesen,
dass die betrachteten Funktionen einen Korper bilden. Zum Schluss
wird die Beschrankung auf reduzierte Fixpunkte fallen gelassen und
gezeigt, dass in diesem Fall die automorphen Funktionen auf die
schon konstruierten zuriickgefiihrt werden konnen.

e b G b e e
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|. Gruppentheoretischer Teil.

§ 1. Modulgruppe, hyperbolische Untergruppe; Zusammenhang
mit den periodischen Kettenbriichen.

Der Ausgangspunkt fiir die vorliegende Arbeit ist die Modul-

gruppe. Sie wird gebildet durch die Transformationen
,_az i f
1) iy bk

in denen ad—fy=1
ist. Dabei sind «, f, », 0 irgend welche positive oder negative
ganze Zahlen. Aus dieser Gruppe kénnen Untergruppen ausge-
sondert werden. Darunter sind, ausser den endlichen, sicher die
zyklischen Gruppen hyperbolischer Substitutionen die einfachsten,

da sie aus einer einzigen Erzeugenden 1) S = (?j g) hervorgehen,

deren Diskriminante

2) m==(a-} 0)*— 4> 1
ist. [hre Fixpunkte, die Wurzeln « und «’ der Gleichung.
YW o
R

sind konjugierte, reelle, quadratische Irrationalzahlen. Umgekehrt
ist jede solche Zahl Fixpunkt einer bestimmten unimodularen,
hyperbolischen Substitution. Es gilt der fundamentale

Safz.!) Sind die irrationalen Punkte @ und ' die Wurzeln
einer ganzzahligen, quadratischen Gleichung, so gehort zu diesen
Punkten als Fixpunkten jedesmal eine zyklische Gruppe hyper-
bolischer Modul-Substitutionen.

Die Substitution 1) ldsst sich auf die Form bringen
7 — w Z—

3) - z — o
Die Streckungskonstante

£ g et —t 0 TP = VTP

a—pye 2
=04y’
hat eine einfache zahlentheoretische Eigenschaft, sie ist ndmlich die
2. Potenz der Grundeinheit ¢ des quadratischen Zahlkdrpers £ (/' m).

') Klein-Fricke Modulfunktionen pag. 256.
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Diese speziellen Gruppen hyperbolischer Modulsubstitutionen
stehen also in naher Beziehung zum quadratischen Zahlkorper
k(Vm), (m== (u-} 0)* — 4) und damit zur Theorie der perio-
dischen Kettenbriiche, deren Teilnenner ganze rationale Zahlen
sind, auf Grund der bekannten Tatsache, dass die Gesamtheit
der reellen quadratischen Zahlen identisch mit der Gesamtheit
der periodischen Kettenbriiche ist.

Fiir die Konstruktion der erwihnten automorphen Funktionen
ist die Tatsache, dass die Fixpunkte reelle quadratische Zahlen
sind, von fundamentaler Bedeutung. Zur Vereinfachung kann man
zundchst diese quadratischen Zahlen speziell als reduziert voraus-
setzen, was keine wesentliche Einschriankung ist. Die erzeugende
Substitution gewinnen wir, indem wir ® in einen Kettenbruch
entwickeln und die passende Potenz der ersten sich daraus er-
gebenden Substitution mit der Determinante -}- 7 wihlen, die o
ungeandert ldsst.

Es seien hier noch ausfiihrlicher die Grundtatsachen aus dem
Gebiet der periodischen Kettenbriiche und der quadratischen Zahlen
angefiihrt.!)

Eine reelle quadratische [rrationalzahl @ == x -}- y ¢/ m heisst
reduziert, wenn sie folgenden Bedingungen geniigt:

w ist positiv und grosser als /
«’ ist negativ und absolut kleiner als 7,
wobei «' die zu @ konjugierte Zahl ist. Es ist also

0y Vm—x<I<]yvm-x
Jede reelle quadratische Irrationalzahl ist mit mindestens einer
solchen reduzierten Zahl eigentlich dquivalent, d. h. durch eine uni-
modulare Substitution in sie {iberfithrbar. Wir betrachten immer
nur eigentliche Aquivalenz.

Die quadratische Zahl o ldsst sich nun in einen reinperio-
dischen Kettenbruch entwickeln:

5) W = @, -} o 1/

-
-k,

und es ist also |
an = am flir n — m (mod. »),

'} Betr, der Beweise c¢, f. Weber, Algebra, Bd. I. Braunschweig 1912,
pag. 403 u. ff. " '

L]
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Die Gesamtheit der reduzierten quadratischen Irrationalzahlen ist
mit der Gesamtheit der reinperiodischen Kettenbriiche identisch.
Verwandeln wir den Kettenbruch 5) in einen gewdhnlichen Bruch,
so erhalten wir, wenn wir nach » Gliedern abbrechen

| Pr wr -} Pr—,
6 () —/= - — e g
) Qr r —}* Qr——l
wo wr wieder reduzierte Zahlen des Korpers £ (ym) und
[ — Pf
U Qr

Niherungsbriiche sind. Beriicksichtigen wir die Teilnenner bis
und mit ay, so ergibt sich ‘
. [‘)u (1) —[‘— P]l——l

7) ) =— O o Ovs
Auf diese Weise erhilt man eine unimodulare Substitution, die w
ungedndert ldsst. Da ihre Determinante

Py ‘Q‘UMI — Q‘V Pp—i = (— I)V

ist, wihlen wir fiir ungerades » als erzeugende Substitution der
zyklischen Gruppe

=So.

8) P P\
i (QQV QE'V—I) =S 529
die wegern Py Q:!')'——-l — Q:w' Qw——x === {— ]) "

wieder eine eigentliche Modulsubstitution ist. -
Satz. Lisst die hyperbolische, unimodulare Substitution S
die Fixpunkte @ und «’ ungeidndert, so ist S eine gewisse Potenz

der Substitution S.

Beweis.?) Der Beweis stiitzt sich auf die Umkehrung des
Lagrangeschen Satzes iber Kettenbruchentwicklungen iquiva-
lenter quadratischer Irrationalzahlen. Die Umkehrung lautet: Sind
zwei quadratische Irrationalzahlen x und p (x = p inbegriffen) ein-
ander iquivalent

y:%—gzs,\t ad—fy=c:k1,
so lassen sich die Kettenbruchentwicklungen

/ {x = (@o, A1, ...., @k, Xk-}1)
== (bo, by, ..., by, yh-~lﬂ1)

) Die gruppentheoretische Symbolik wird so angewendet, dass man die
Substitutionsbuchstaben links von der zu transformierenden Zahl der Reihe
nach von rechts nach links schreibt.

) Hurwitz, Vorlesungen iiber Zahlentheorie S.-S. 1914,

Weber, Algebra Bd. I, Braunschweig 1912, pag. 417.
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so abbrechen, dass die Endungen xx } == yu |- sind und die Sub-

stitution (i 'g) durch Elimination der Endungen xix4 und yn . aus

den Gleichungen /) erhalten wird.

Dabei ist £ nur an die Forderung xi-}« > I, & hinreichend
gross aber sonst beliebig, gebunden. /% ist durch %2 bestimmt.

Diesen Satz wenden wir folgendermassen an: Ist die Zahl w,
vermdge einer beliebigen hyperbolischen unimodularen Substitu-
tion S mit den Fixpunkten « und «’, sich selbst eigentlich dqui-
valent, ist also _

w=38 w=— EL————(—{——)%_—l;ﬁ _ ad— fy=1,

’

so ldsst sich die Kettenbruchentwicklung von w auf zwei ver-
schiedene Arten abbrechen
' " {(.:) == (a.}, ty, .... 0ak, (’)k-fl-’-l)
! i
w = (@, @, ... an, Oh|1),
so dass die Endungen wi-+ = on} sind, und dass die Substi-
tution S durch Elimination der Endungen aus /' erhalten wird.

Da w reduziert ist, ist wx}+ > 1. Ausserdem kann man %
so gross wihlen, dass
(r)kﬂl—g = CU:—VIA Z== (L)

ist und dass % - 7 und % - 1 gerade sind.
Es ist dann £ 41, &A1= 0 (mod. v)

und also k=2rn—1, h=2sn—1, iz::'—;i oder »

je nachdem » gerade oder ungerade ist. Wir haben dann aus

[”{ W == (ao, iy «ov. Qan—1, o, A, ... , Qarn—1, Cl)irn)

w = ((lo, @, ... Qm—1, @, a, ...., zsn—1, (UESH)
. *

die Endungen - - (3rn == (asn = @)

zu eliminieren. Es ist aber
ey o
W = S Warn
cox @
w=3S8 wsn >

a]SO Wern == SAr )

STw = S w.
Die Elimination ergibt
w=38"%w=58w,

S 8m.
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Daraus ergibt sich nach dem Lagrangeschen Satz, dass S mit S™
identisch sein muss, wodurch der Satz bewiesen ist.

Bei der funktionentheoretischen Behandlung erledigen wir zu-
erst den Fall S==S. Am Schluss wird dann gezeigt, dass die
Konstruktion auch fiir beliebiges S ohne weiteres angewendet
werden kann.

Die Kettenbruchentwicklung der nicht reduzierten quadra-
tischen Irrationalzahlen &£ ist auch periodisch, beginnt aber mit
Vorziffern. Man hat

9) Q = by [f L
e 1
b‘uw1 "{‘ a) .
Daraus ldsst sich der gewohnliche Bruch bilden
10) @ PO P g,
gre @ + Gu—
P Gu— — Gu Pu—: = (— 1 )‘“.

Ist # = 0 (mod. 2) so verwenden wir
Pl wr "]‘ P
Guts o+ gu
wo o, wieder eine reduzierte Zahl ist. Es gilt also

Satz. Es existiert immer eine Substitution S, sodass £ durch
diese Substitution in eine reduzierte quadratische Zahl iibergefiihrt
wird, die mit ihr eigentlich Aquivalent ist.

S 8 == ‘
I e R )

Die Substitution S, fiihrt daher @ in Q iiber. Jede andere
Substitution S, die @ in £ uberfuhrt ist bestimmt durch
S, w=3S8, ‘o =2
also durch w :S S, w.
Die Substitutionen S, S, haben « zum Fixpunkt, besitzen dem-
nach die Form S (n beheblg), somit ist

Q =

S, =8, §™
Unter Beniitzung von S erhalten wir
12) SR =85S, 02=8"'o=2

und § ist eine hyperbolische Modulsubstitution, die aus S durch
Transformation mit S, entsteht, also mit S holoédrisch isomorph
ist. Sie lisst £ ungeindert.
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Umgekehrt sei S’ eine beliebige Substitution, die Q in sich
iberfithrt. Wegen

S, 8= w
folgt daraus 5850 =w
oder Q=5"5 " w
§ 'S, ist also eine Substitution S, = S, 'S ",
somit St S, S e S, ‘g

Losen wir nach & auf, so erhalten wir

S, =9 8,'s™,
§ =35,'S" S, .
Jede Substitution §" mit den Fixpunkten £ und £’ ist also
in der Form S, S" S, enthalten.
Wegen
§8z2=S8"S5S,S,"'5S.2=S,"5S5,8S,
ist S’ wieder Erzeugende einer zyklischen hyperbolischen Gruppe.

Analog existiert zu jeder Gruppe mit der Erzeugenden S eine
holoédrisch isomorphe mit der ErzeugendenS, ' S' S, .

§ 2. Zusammenstellung der beniitzten Tatsachen aus der Theorie
der Kettenbriiche.

Zur Berechnung der Niherungsbriiche hat man bekanntlich
die Rekursionsformel
FPs = @iy i “}“ Py
Qn == {n— an-l I* Qn—z
wobei zu setzen ist:
Pﬂ e ], pl == (o, )O.! =y h -{*-1,
Q=0Q=1,¢=ua e
Um spiter Einheitlichkeit in unserer Bezeichnung zu erhalten,
erweitern wir diesen Algorithmus. Wir setzen nach riickwirts
fort und erhalten fiir n < 0 , '
Pn = pn—l—:; — n-|-1 Pnf—|--1
' n — Qn}-2 — Qan-|-1 Qn-~-|~1 |
Poﬂl, p—l:0; Py 1 y 3 == — Ayp—2 g e
Qo == 0, Q———f Bor 1 5 Qwa = — @Qv_1, Q—-s:au-_-.. Ay—2 +I,
Fiir n <C 0 sind alle Ndherungsbriiche negativ mit Ausnahme von
lwl e 0

Pn Ql’l*'"*l ] P (Q“ — (— ])n’
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Nun beweisen wir eine Tatsache von fundamentaler Bedeu-
tung, die der Ausgangspunkt der Konstruktion unserer Grundinva-
rianten sein wird.

[nfolge der Periodizitit ist

Prn — Prs B P |-y — Pn |-y —2
S i
P n “—”Qn-—‘z _ ani‘--v — n |1'-—:
(n— Qn~|w-1
Daraus erhalten wir durch Rekursion und Anwendung eines be-
kannten Eliminationsverfahrens:
]3) lpn |,,.,.:P.,, pn fl P,J, 1 Qn, Pn—-;/"‘—": —*1)): (Pn Qv--—-1 “—‘plhﬂ Qn)
{@nfr=Qy Pn +Qv—1 Qn, Qv == (—IJ" (— Pa Qv - Py Qr).

Durch Quotientenbildung ergibt sich

[)y ln *l'— P;r—r q ~ Q‘V—l [n —*Pu—n -

e = Shy ey = ——————-=8'h.

Qv In -} Qv—i — Qv In -} Py
Bei Anwendung unserer Substitution S werden Niherungsbriiche

wieder in solche iibergefiihrt.

(In-—-

1 3’) Inri—-v ==

Eine Tatsache, die auch beniitzt wird, ist folgende:

14) ! i

o P == fy— F (.11'4_---2 + R !

— 1
“to

o’
Wenn «'r die zu der in 6) definierten Zahl o« (r=0,1,2...v—1)
konjugierte Zahl ist, so gilt
B_ 1 _ 7

Die Niherungsbriiche der konjugierten Zahlen stehen in ein-
facher Beziehung zu einander. Seien die von «’ mit /, bezeichnet,
so ist |

hoe= (— )" Qo Qn= (— )~t" P o,
h=(—1)" P o Po = — )P Qe

und daraus folgt
1
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Betrachten wir noch die Niherungsbriiche L. der nicht redu-
zierten Zahl Q. Es ist
P — b‘u—--q Pu—: —*I*- Pu—2
Pt = @ pu -t pu— = P pu -+ Qi pru—
Prtn = @n_y Puta_t + pufn_z
= n_ (Pn_1 Pu —I— P Qnmx) fl— Pn_s Pu + Qn__z Pt
== pPu (An_ Po_ -} Pn__e) —l— Pu—t (An_s Qn,ﬁl -f— Qn_s)
= pu Pn + pus On,
so dass wir erhalten:
Putn = pu Pa -} pru—1 Qn
Gutn = qu Pn 4+ Gqu— @n

und daraus
P In + Pit-—1 o
16) Ly—{—n o qu [n *F Gi—r o S* b
S, fiihrt also nicht nur £ in o {iber, sondern es gilt auch
17) S, Lo = lh—yu,

wo u die Anzahl der Vorziffern bedeutet.

§ 3. Geometrische Darstellung.

Die betrachteten unimodularen hyperbolischen Substitutionen
sollen wie tiblich als Transformationen der Ebene in sich gedeutet
werden. Es sei

S*(?/g) ad — fy =1L
Die Fixpunkte w und «’ sind die Wurzeln der Glelchung
vzt —(a—90) z— f=—o0,
also .
i gl e 008 Evatoyr—4_ a—0tym
Es sind demnach Zahlen des quadratischen Zahlkorpers %4 (/ m).
Deuten wir sie auf der reellen Achse, so liegen sie in Bezug auf

-CL;?O— symmetrisch. Die geometrische Deutung wird besonders
einfach, wenn in der Fixpunktform 3) eine neue Variable einge-
fithrt wird, wodurch die Fixpunkte nach 0 und oo zu liegen
kommen. Wir setzen

Z2—w w{— w

$:Tz:.%—a)’ | §—1
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und erhalten

18) =0
Diese Substitution bedeutet eine einfache Ahnlichkeitstransforma-
tion, also eine Sireckung. Jede Gerade durch den Nullpunkt geht
in sich {iber und die Kreise um z == 0 vertauschen sich.

417

Die nte Potenz der betrachteten Substitution wird in unserer Ebene
dargestellt durch

. g’ :-Qn g
-0 - Via |- 8)F 4
Wegen _Qf:al( | VZ(GI()*'—4'>-1 o
und 0d — 1,
e 0<e<l

Wir erhalten also unendlich viele von einander verschiedene Sub-
stitutionen. Unsere Gruppeist deshalb von unendlich hoher Ordnung.
Betrachten wir den allgemeinen Fall, so liegen die Verhiltnisse
dhnlich. An Stelle von z == 0, co treten beliebige Fixpunkte. Statt
des Systems der Geraden durch z = 0 und des Systems der Kreise
um z—20 treten die Kreisscharen auf, die durch die Abbildung
, Z—w Zz—w
S =g T 7=
entstehen; also Kreise durch @ und o’ und dazu orthogonale.
Wir betrachten nun die durch unsere Erzeugende S ent-
standene Gruppe und bestimmen den Diskontinuititsbereich. Wir

gehen wieder aus von

§'=e¢4
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Die Gruppe wird dann dargestellt durch

§'=p"5. =0 442 ... ..
Ein beliebiger Kreis K, um ¢ - 0 wird bei Ausiibung der Sub-
stitution in einen kleineren konzentrischen Kreis K transformiert.

Der Punktbereich zwischen den beiden Kreisen inkl. K, (oder
K.) bildet einen Diskontinuititsbereich fiir unsere Gruppe.

Speziell wihlen wir fiir K, den Einheitskreis, dann ist K der
Kreis mit dem Radius o. Das Zwischengebiet samt dem Einheits-
kreis bildet dann den Diskontinuititsbereich, wihrend der Kreis
mit dem Radius ¢ nicht mehr dazu gehoren soll.

Dem Einheitskreis entspricht in der urspriinglichen, der z-Ebene,
die Senkrechte C, zur Abszissenachse, die diese im Punkte-ag_-:;)

schneidet.

Kreis C, der die Abszissenachse in den Punkten i und (i;'j(:aﬁf{ﬁ)l
rs i/ T Y
schneidet, was mit Hilfe der Substitution
T Jied...
5= 2 — o Iz

leicht nachzupriifen ist. Sein Mittelpunkt ist
w a -y —1
A ICH S N
T 2 T v a )
Das Gebiet zwischen der Geraden C, und dem Kreis C bildet
den Diskontinuititsbereich. Die Gerade C, wird dazu gerechnet.
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Wird dieser Bereich durch eine Substitution S*(n—=0, -7, +2,...)
unserer Gruppe transformiert, so erhalten wir einen neuen Diskon-
tinuititsbereich, der fiir # > ¢ innerhalb C, fiir 7 < 0 links von
Co liegt,

Wir haben gesehen, dass man jede unimodulare hyperbolische
Substitutionsgruppe mit reduzierten Fixpunkten auf eine Potenz
S¥, der aus dem Kettenbruch sich ergebenden Substitution, zuriick-
fihren kann. Die Beziehung zwischen den reprisentierenden Fi-
guren besteht in der Zusammenfassung der Diskontinuitéitsbereiche,
indem die Gruppe mit der Erzeugenden S eine Untergruppe der
Gruppe mit der Erzeugenden S ist.

Fiir den Fall, dass die Fixpunkte nicht reduziert sind, haben
wir eingesehen, dass eine der vorgelegten Gruppe isomorphe Gruppe
mit reduzierten Fixpunkten existiert. Unsere funktionentheoretische
Aufgabe wird sich auf die Konstruktion der Funktion dieser iso-
morphen Gruppe mit reduzierten Fixpunkten reduzieren. Wir
wollen noch tiberlegen, inwiefern unsere die Gruppe versinnlichende
Kreisfigur (zwei zu einander orthogonale Biischel) durch den Uber-
gang zur isomorphen Gruppe deformiert wird. Dazu fiihren wir
ein Exzentrizititsmass der Biischel ein. Wir gehen von der Formel
aus, die den Mittelpunkt und den Radius eines Kreises festlegt, in

. . , : I .
den ein gegebener Kreis bei Inversion o —= s {ibergeht.

. ¢ cr s
Mittelpunkt ¢ —> . (¢ konjugiert zu ¢)
Radi N

adiu S B e Ly

) | et l—

und wenden das auf die in ihre Bestandteile zerlegten Substitution
W' §— o

Z‘:: T . ‘k.:.i : SL. _; ']"W (Z rT;"’ X -l— l'y)

an; so kann man leicht einsehen, dass die Gleichung der Ortho-
gonalkreise folgendermassen lautet:

10) x fyt— 2 for | 1 (w0 — )]+ [ 4t (0 — )]0

: n— o
Mittelpunkt: —(—)-I—jri-—.

Radius: et
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dabei ist der Parameter
. r‘.’
| i—r : |
wo ¢ der Radius des entsprechenden Kreises in der {-Ebene ist.
Man sieht z. B., dass dem Nullkreis » = 0 der Nullkreis
(X —w)P-+y' =0, dh x=w0 y=20
und dem Nullkreis » == >~ der Kreis
(x— ' P+ yP=20 d h x=0o, y =0,

also die Ponceletschen Nullkreise des hyperbolischen Biischels
entsprechen.

Nebenbei sei bemerkt, dass die Gleichuno der Kreise durch
w und ' folgendermassen lautet:

200 x4 )yP—(w Fd)x— (0w —)vy -} 0o =0,

wo der Parameter

‘L(. e

v == Clg a
und « die Neigung des entsprechenden Strahles gegen die Abszissen-
achse der ¢-Ebene ist. Diese Formel folgt daraus, dass bei Inver-
sion eine Gerade mit dem Biischelzentrum z, und mit der Neigung
a in einen Kreis mit dem Mittelpunkt

5=
i . —a
e 2

und dem Radius R

iibergeht, dabei bedeutet ER[ZO 2 ('7—;—*““” den reellen Teil des
Klammerausdruckes.

Nun fithren wir die absolute Abweichung eines Orthogonal-
kreismiftelpunktes vom Nachbarnullkreis « bezw. " als Mass der
Exzentrizitdt ein:

D w-— o

=] = =

S C() || = e —_—
I—r l 1 — r s

wo r, der Radius in der Modulfigur ist.
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Es seien nun £ und &' nicht reduzierte Fixpunkte einer hyper-
bolischen Substitutionsgruppe, « und « die reduzierten der iso-
morphen Gruppe. Es ist dann

0 o PO pe—  pu e P
gp @+ Gqu- Gu &~ Gu—s
o w—
T lgn o T ) (e o T i)
Es handelt sich nun darum, zu # in der {-Ebene der zu o, o’ ge-
horenden Figur das entsprechende R in der &-Ebene der zu £,
& gehorenden Figur zu bestimmen.

. . Z = !J
R: nbﬁlrlr 7‘12:*——““‘
: i e
(c)? V¥ —w
= e
—
W Fr— w
0 S e
R= oy o
R
~dd
(r)’ ¥y —w

G - f’ ;*]"“ '"i— q1—1

g & - gu—
21 — MU ey,
) R Gu W —}-— Gu—:
sodass jetzt das Exzentrizititsmass ist:
e —w
N e A

((],u. o' —l—(]‘u,——; 2,
’ : ¥
_ L e—o Wf_‘"‘“li_‘_/’f‘ji)._m_____ -
(g b gu-)(qu @ - qu—y) (,f@i O G\ g
fu W —F Jr—
o (G @ + qu—) #? ,
T guot-gu— (ot gu—)' — (qu o - qu—y)* #*
Als Verhiltnis der beiden Exzentrizititen ergibt sich

‘e _ gu o'+ qu— I e

e quotgua (quotgu—) (o’ Fqu ) rt’
dabei ist » < 1

iy guo - gu rt—1

e guo b ques (guo F ) = (qu o qu-i )t

5
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ll. Funktionentheoretischer -T\eil.

1. Kapitel.
Die Grundinvariante und ihre analytische Darstellung.

§ 1. Gedanken der Konstruktion der Grundinvarianten und
Vergleich mit andern Konstruktionsmethoden.

Das Ziel der funktionentheoretischen Aufgabe ist, alle Funk-
tionen zu gewinnen, die gegeniiber der hyperbolischen zyklischen
Modulgruppe invariant sind und ausser in den beiden Fixpunkten,
in denen sie wesentlich singuldr sind, hochstens Pole besitzen.
Zunichst ist unsere Absicht, eine einfache Grundinvariante zu
konstruieren. Es soll nun das Verfahren erliutert werden, von
dem wir Gebrauch machen, um diese einfachste automorphe Funk-
tion unserer Gruppe zu gewinnen.

Die Tatsache, dass zu jeder quadratischen Zahl nur endlich
viele reduzierte gehoren, die mit ihr im weitern Sinne &dquivalent
sind, wurde schon betont. Diese dienen sozusagen als Repri-
sentanten der Zahl. Das ermdglicht uns, bei der Konstruktion
der automorphen Funktion zunichst die Fixpunkte als reduzierte
Zahlen anzunehmen. Es wird dann gezeigt, dass bei nicht redu-
zierten Fixpunkten die Konstruktion ohne weiteres mit Hilfe der
schon gefundenen Funktionen ausgefiihrt werden kann.

Allgemein besteht das Prinzip, automorphe Funktionen durch
analytische Ausdriicke festzulegen darin, dass man Reihen oder
Produkte herstellt, in denen sich bei Ausfithrung der Transforma-
tionen der Gruppe einfach die Glieder vertauschen, wobei even-
tuell gewisse Faktoren ausgesondert werden, die dann entweder
durch Quotientenbildung oder logarithmische Differentiation weg-
geschafft werden.

Ganz prinzipiell und in allgemeiner Form ist diese Konstruk-
tion von Poincaré?) zur Bildung der ©®-Reihen angewandt worden.
Aber dasselbe Prinzip ist natiirlich auch in der Jacobischen, wie

'} Poincaré, Acta mathematica Bd. 1, pag. 193 (1882).
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in der Weierstraschen Theorie der elliptischen Funktionen und
ebenso zur Bildung der Eisensteinschen Reihen der Modulfunk-
tionen benutzt worden. Indem man die J-Funktionen als Produkte
konstruiert, geht man bewusst von diesem Prinzip aus und wihlt
die Faktoren entsprechend aus. In der WeierstraBschen Theorie
ist das unmittelbar ersichtlich bei der Bildung von g’ (z). Es ist

1

[ (.'5') = 2 I; (Z R ee—— (,)2))3 )
was der Poincaréschen ©-Reihe
1 o 1 ’ , (a /_))) - (], my Gy "}" mgy We
6(z) = % ay Z - P 8 (yvz-|0u) y ol 0O, 1
Yy Z _l— (31!

entspricht, die aber nicht nur ©-Reihe, sondern zugleich auch auto-
morphe Funktion ist. Von weniger grosser Wichtigkeit ist bei
diesen Konstruktionen, dass die sich verschiebenden Faktoren, wie
z. B. bei der o (1)-Funktion, die Nullstellen der Funktion liefern.

Ausgangspunkt fiir die zu betrachtenden Funktionen ist

LR . -
- T Dt
D B@e)= | [ —— T k=0 St
. S 2
T byn-| 2kt
Falls /_, — 0 auftritt setzen wir als Faktor iT:?_ .

S

Diese Funktion besitzt /yn|ok zu Nullstellen, /yn |2k} zu Polen
und besitzt in @ und «’ je eine wesentliche Singularitit. Die be-
stimmenden Elemente /wn}ex und lynjek-|« der Funktion £, (z, w)
sollen dhnlich wie bei der ¢ («)-Funktion zu Polen der automorphen
Funktion werden. Im gruppentheoretischen Teil haben wir ge-
sehen, dass die erzeugende Substitution S, die « in sich iiber-
fiihrt, zugleich auch die Niherungsbriiche /n untereinander ver-
tauscht. Es gilt folgendes

7

1) Verschiedenen £ entsprechen verschiedene Funktionen, die durch das-
selbe Verfahren konstruiert werden kdénnen. Dadurch werden alle Naherungs-
briiche ausgeniitzt. ‘
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1— -2
Fundamentallemma: Jeder Faktor ——-———--——-'-‘-’9}’-1‘*-— der Funk-
R P hou

tion E, (z, w) geht bei Ausiibung einer Substitution der Gruppe auf
z bis auf einen konstanten Faktor in einen Ausdruck iiber, in dem
die inverse Substitution ausgefiihrt wird, aber nicht auf z, sondern
auf 7.

Es ist
Sz foo B
2) [vn—}—?:k s S anvl'?,}.{w_ S — a .
] — Sz ] — % v o
l-vn-»l-z k- & lvnfl-—:ak-|ﬂ1
Hier sind S '/i wieder Niherungsbriiche, und es ist
g bl Obntak—f

- l’l’n~l—2k 0 lunAl—z k—}«t - [7)

Die Faktoren sind also so gebildet, dass sie bei Ausiibung einer
Substitution der Gruppe einfach unter sich vertauscht werden.

Uben wir in £, (z, @) auf z eine Substitution der Gruppe
aus, so wird ein konstanter Faktor abgesondert. Es ist nicht
noétig, im Produkt noch konvergenzerzeugende Faktoren hinzuzu-
fiigen. Seine Konvergenz ist leicht nachzuweisen, indem man je
einen Quotienten zusammenfasst und beniitzt, dass P, und @,
stirker wachsen als n selbst,') eine Tatsache, die bei allen unsern
Konvergenzbeweisen beniitzt wird.

Im weitern ist das Prinzip, das beniitzt wird, um mit Hilfe
von £, (z, w) die Grundinvariante zu bilden, logarithmische Diffe-
rentiation. Dabei fillt der, bei Ausiibung einer Substitution unserer
Gruppe auf z auftretende, konstante Faktor fort. Es ist aber zu
beachten, dass die Ableitung einer automorphen Funktion im all-
gemeinen selbst nicht automorph ist, sodass noch Faktoren hin-
zugefiigt werden miissen, um gewisse, durch Differentiation der
Substitutionsausdriicke entstandene, Fakto‘ren aufzuheben.

Allgemein kann aus einer automorphen Funktion mit zwei im
Endlichen liegenden, wesentlich singuldren Punkten, durch Verlegen
dieser Punkte nach 0 und oo eine multiplikativperiodische Fuuk-
tion hergestellt werden.

') Weber, Algebra Bd. . Braunschweig 1912, p. 405.
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Sei ndmlich A (z) eine automorphe Funktion mit den beiden
Grenzpunkten z und z, so ist also

3) A(Sz) = A(2), - se=|] §) -
Machen wir nun die Substitution
xe= 2R Ty
z— z,

so entsprechen den Punkten z — z,, z = z,
die Punkte x=0, x =

und es sei
4) AE =UE=UI(Tz.
Nun sei ferner w == Sz, dann besteht die Bezichung
. w-— z z—z
TWeas—eeeleee o L—px=pTz.

Da z =T "'x ist, erhalten wir schliesslich
Ux)=UTz)=U(Tw =AW
und da nach 3) und 4) ,
Aw)=A(82)=A(2) = U
ist, ergibt sich
5) | Uox)—=U().
U (x) ist also eine multiplikativperiodische Funktion. In unserem
Falle haben wir es mit einer besondern Art dieser Funktionen zu
tun. Sie entstehen aus den automorphen Funktionen der zyklischen

hyperbolischen Untergruppe der Modulgruppe. Ihre Periode ist
das Quadrat der Grundeinheit im quadratischen Zahlkérper £ (y m).

§ 2. Durchfilhrung des Konstruktionsplanes.
Partialbruchzerlegung.

Wie bereits erwihnt wurde, gehen wir aus von der Funktion

Z

£ i .
El{ (z, CU) - ZI T ; 16 ::" 0} 1’ sy ';- — I »

AL
: [‘anl—gku{»l
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Der Faktor ml% verschwindet '()vegen {— == 0. Er ist vor-

kommenden Falls durch [—2'—; % zu ersetzen. Im 1. Teil §213)

haben wir gesehen, dass

[l-'--|--:k == 3___[2[<
. lnv--r|--2k = 3" g
ist. Aus diesem Grund koénnen wir schreiben:
e
6) L (z, 0) = l\ -
Z
‘ n — oo ]___. on o
S" k-}1

Dieses unendliche Produkt konvergiert absolut und gleichmissig
fiir jeden Bereich, der die Punkte o, o’ und S™bi |« (r—0"T7 132+
nicht enthalt.

Konvergenzbeweis. Nach dem WeierstraBschen Konvergenz-
kriterium?) ist das obige Produkt absolut und gleichmissig kon-
vergent, da auf Grund der Eigenschaften der Kettenbriiche

I SR N R
b ﬁ,z:,ZJAWHkéﬁhbhl
Z Z
[ — o e B
['Vnn}—zk—}—x ! | ! l’l’n—lu:!k--l“l l
; Zi | Pyn+~3k-v|—1 ern»]—zk* Pun—}—zk va[—akflﬂ ' & __i_,_Z__L -

=M l Pyn ok Py |2k | | Mn?
Damit ist die Konvergenz bewiesen.
Uben wir nun in 6) auf z die Substitution

g PV P]J_H1
5= (QV Ql’—l)
aus, so erhalten wir nach dem Fundamentallemma:
Sz
(& e
]"k (S Z, (U) e :[_J: =
Con=— 00 ] e P e
S lzkzl_.l

) Osgood Lehrbuch der Funktionentheorie I, Leipzig 1912, pag. 532
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Z
o Lo Sn b l - Qu— ! Sn [2l. = [)11——1) = Mﬂg.ﬂ: 'TSB l.'k
I i ey A e e
T S18n lzl<—|—1
und wegen § 2, I. Teil 13) ergibt sich
- : ‘ P [-2k-f-1 PV(n—l)»-l--zk S(n_l) 1‘7
‘Ek (Sz, @)= H Pvn-—[—ek pu(n-—-l)—|——2k—|—| 1 4 -
o — S

woraus leicht zu ersehen ist, dass die Faktoren, die z enthalten,
sich einfach verschieben. Es ist also

NP
[ | Sn b o
T) ]‘;k (SZ, ('t)) sl - = =C - ]”k (2, CU)
" e Sn 2k i-_l—

Protfar-fi P ). -2k

H Prm |2k Pu(n_ml)w{al }-e
Dieses unendllche Produkt ist wegen der erwiihnten Eigen-
schaft der Kettenbriiche und wegen der Beziehung 13) in § 2,
[. Teil konvergent. Fiir den Fall, dass /o = ~ und /-1 = 0 vor-
kommen, sind die Faktoren, in denen diese Werte auftreten, abzu-
sondern und besonders zu untersuchen. Es ergeben sich aber

daraus keine weitern Schwierigkeiten.

Es handelt sich nun darum, die Konstante C zu bestimmen.

Zu diesem Zwecke zerlegen wir das Produkt:

= Pvn—[ k- } Pu(n il }*’lx P*-'V(n*l 1) | 2k |1 P—ymn- -|-2)- |2k .
o H Pyn- f-2k P n—1) ]— k- }m P-wv(n o2 ot -p(n-|-2)-|-2 k- =il G

Nun ist: _
€Y = P—vtax  im Pruwtocfe 1 Py
Pyt -2 k—} i M =59 Punf}ﬂ ko 'y k| P ok } .

nach 15) § 2, L. Teil.
Ebenso ergnbt sich fiir

P- ok P-— -1)-|-2k P ok |- .
Cs — Povpucts lim  Powopolw PP R 2

Py =L Py F2) |2k |t — -k
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sodass wir schliesslich erhalten:

8) C— (()2l.7|:‘ '

21 |1

Die Funktion F, (z, w) geniigt der Funktionalgleichung

()Qk —1

09) B, (8 2, )= —= '|~— I (z, w) .
Sie besitzt die einfachen Pole: l'un—-|—-2k—[—1 (=m0, o)

und die einfachen Nullstellen: Zn-}-x.
In z=w und o besitzt sie wesentlich singuldre Stellen.

Aus F, (z, w) erhalten wir eine in Bezug auf die Substitutionen
der zyklischen Gruppe automorphe Funktion durch logarithmische
Differentiation, unter Beniitzung der Tatsache, dass die Ableitung
selbst nicht automorph ist. Wegen

Ex(S z, w) == C Fx(z, ),

ist
Ey (S z,w)dS S z __ 1l (z, w) Az
LL (Sz, cu) Lk (z, W)
Da '
Sz—w L E—0
Sz — o S z—o

ist, folgt durch Differentiation

und wegen

ergibt sich
0= co'__ JSr— — w-—a J
Sz — w)(Sz— o) = (z — w)(z — o) #

Durch Division erhiilt man schliesslich

(Sz_—— C,'),),(,SZ _ o) By Sz, o) (z — )z — o) B (2, 0)

w— Ex(Sz, o) W — Fx (2, ©)
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In

A (z, )= ET 00— o) Bz @)
IO) k (Z; (z)) O s 43 Ek (Z) C())

haben wir somit eine automorphe Funktion. Die Grundinvariante
ist damit analytisch konstruiert.

Es handelt sich nun darum, ausser dem analytischen Aus-
druck, der zur Konstruktion der Funktion dient, ndmlich der Pro-
duktdarstellung, die in mancher Beziehung die Eigenschaften der
Funktion nicht deutlich genug hervortreten ldsst, noch andere ana-
‘lytische Darstellungen zu gewinnen. (Die zur Rechnung geeignete
Darstellung werden wir allerdings erst spiter mit Hilfe der doppelt-
periodischen Funktionen gewinnen.)

Eine erste solche Darstellung haben wir in der Partialbruch-
zerlegung. Um sie herzuleiten, werden wir der Einfachheit halber
zu der, der automorphen Funktion entsprechenden, multiplikativ-
periodischen Funktion iibergehen, wie dies im § 1 dieses Kapitels
beschrieben wurde. In der Tat entspricht unserer Klasse der auto-
morphen Funktionen eine besondere Klasse der multiplikativperio-
dischen Funktionen, die nicht alle solchen umfasst, auf die Weise,
dass wir alle Eigenschaften der automorphen Funktion mit Hilfe
dieser multiplikativperiodischen Funktion studieren konnen. Der
Ubergang von einer Funktionsklasse zur andern ist dabei, wie wir
in § 3, I. Teil gesehen haben, durch eine einfache konforme Ab-
bildung gegeben.

Der Ubergang wird noch einfacher, wenn die Substitution

Z —
b == Tz= AZM——icrz)' ’
schon in der Funktion Fx (z, o) ausgefiithrt wird. Es ist dann
_ Wi
Z = g_ Fi

Der in § 3, L. Teil angefiihrte Beweis gilt hier fast ohne Anderung.
Es ist ndmlich
1) By (z, w) = Hx (§, ©) = Hx (T2z, o)

Wegen T8=0Tz
ist Hye (0§, @) = Hk (07z, w) = Ik (TZ, )

(Wak—|-
= Ek (Z’, (r)) e .77,3 },i

W 2k-|-

- I (2, w)
1
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und deshalb gilt die Funktionalbeziehung
12) Heio & 0) = gi.*lﬁﬂ Hie (&, o).

Dabei ist ¢ wie erwidhnt wurde das Quadrat der Grundeinheit
des Korpers & (V m).

Aus dieser Funktion Hx (z, ) gewinnen wir auf bekannte.
Weise, durch logarithmische Differentiation, die multiplikativperio-
dische Funktion

o f[l,\ 2, (t))
13) Uk (z, w) = Z ff_l'"kj(—(z, o)

die der Funktionalgleichung geniigt:
Uk (0 2, w) = Uk (z, w).

Fithren wir jetzt im analytischen Ausdruck fiir die Funktion
Ex (z, ) die Substitution

g: Z—-Cdr_:TZ Z'—i—TI‘C
Z— |
aus, so erhalten wir:
. *'_'ST"""]S
Ex (z, w) = Hx (§, ©) == H }; T“‘;“k_
v S b1
Nach dem Fundamentallemma erhalten wir ;
N
Hi (£, ©) = ﬂ G o LSk
= e N ] P —“t‘:—.“g—-"“"""
o TS l:;k |1

wobei sich fiir en folgender Wert ergibt:

— 73_1"[%__'—' . __§n b — w

§n“[21< 3“ [zlcfh —

(n

Beniitzen wir, dass

'S S Lk — w . :
T Sﬂ lzk == — = ()n e Gl

~ [\
S Lk — o (R p—

ist und setzen zur Abkiirzung
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14) =8, o da,

[n - (l)'

wobei An wieder Zahlen sind, die dem Korper £ (/ m) angehdren,
so erhalten wir die einfachere Darstellung :
z

. ' 4 o ] — _"_____2
15) Hy (z, ) = C H R X
cllinct / (T N
on 221\'-'*1
. ) + o §n [2 kkl‘l . '
dabei ist C = H D_EHt sesetzt, ein unendliches Produkt,
L —O0 ak

das auf Grund der erwidhnten Eigenschaft der Zihler und Nenner
der Niherungsbriiche absolut konvergiert. In der Form 15) ist das
Produkt zu logarithmischer Differentiation geeignet, sobald nach-
gewiesen ist, dass es gleichmissig und absolut konvergiert.!) Nach
dem WeierstraBschen Kriterium ist dies der Fall, da

i

|
Sile—o | evdw
Sn 131\'41»-1 — ) [ — Zfﬁ 1
on /l2k——|—1 [
f§ﬂ l;zl{ —= (1} l
— e e o Z

Sn o — o Snly — o
Sn lak4|~»1 ) Sn laleI—t —
§“ lzkfh — o)

| 1 P Z “:.n _\_n i
— | (§”ll\|! o '(,));HZ(:ST“ [2“,]_1 ‘“MU)') ) bk — S lzk~|——|) |
<| M oM
' Q'lrn~ |2k Qym[—gkkh | = ot
ist. Da M, ausser in den kritischen Punkten, immer endlich ist,

ist die Konvergenz nachgewiesen.
Bilden wir nun die logarithmische Ableitung von Hx (z, w)

und multiplizieren mit z, so erhalten wir
+ oo

1 1
16) Uk (z, ) = z E {Z——Q“_};l; B z;Q—’EI{—]—l } .

n —o

—1

1} Knopp, Funktionentheorie [, Géschen 1913, pag. 22.
Goursat, Cours d’analyse math. II. 3. Aufl. 1918, pag. 100.
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Die Summe ist wieder absolut und gleichméssig konvergent. Bei
1

: 1 :
Trennung in > Py > PRy konvergieren

die einzelnen Summen nur fiir negatives n# absolut und gleich-

méssig. Um eine zur Rechnung vollstindig geeignete Form zu
£ I

erhalt ir di S S —

en, formen wir die Summe ZU Z T odn o 1131<n|-1}

so um, dass auch fiir positive » die Summe getrennt werden kann.

p = I > zon Ak — zgn Azl
Zﬂ { Z — on Ask Z— o0 Aaic- |1 | Z (20" Au)(Z—0n Aeicft)
L (2 oM Ak — O Ask Aai— ) — (zon Anlefr — gn /lok k1)
—E:o (2 — o0 Aud)(z — on Aot |)
L n Aok - Qnﬁfz 2 lc- ] 1
Z Z S ()“ /igk ;“- on /?-zi\ -1
n- .0 n 0

Durch Addition und Subtraktion von gn As As-} im Zihler der
Summe fiir positive #» haben wir also erhalten:

Ofl A’l\ dn A’k

17) Ul{(Z (1) ,F_.Z z—--()n/{k Z— Z—Qn/?,dkll-
oo
Z
+ Z T A HZD T Dk '
ye 2 e

In dieser Form ist jede einzelne Summe absolut und gleichméssig
konvergent.

§ 3. Laurentsche Reihe.

Um die Laurentsche Reihe abzuleiten, miissen wir noch einige
Folgerungen iiber die Pole und Residuen der Funktion Uk (z, w)
machen. Aus der Partialbruchzerlegung ist ersichtlich, dass Uk (2)
die einfachen Pole



lzk == IR
onde =g ———
2k — W
Lok f1— @

mit den entsprechenden Residuen
on Ase und — on /?-gk-l-l
besitzt. Wir beweisen nun folgenden

Satz: Hat eine multiplikativperiodische Funktion mit der
Periode ¢ im Kreisring (7, ) die einfachen Pole A und Aok |- mit

3 " : o » /221{—
den Residuen A und — Awc |, so hat sie fiir A <|z| << Fx)

[\

die Laurentsche Entwicklung.

+ oo
T |
) Usgy o) =0+ > - 7wl
—_—0 =

Der Strich an 2 bedeutet, dass der Ausdruck fiir 7 —= 0 aus-
zulassen ist.
Wir beweisen das mit der Methode des Herumintegrierens.

/?nk--}

Im konzentrischen Kreisring A~z | < Q " ist die Funktion

Uk (2, w) regu]ﬁr und eindeutig und ldsst deshalb in diesem Ge-
biet die Laurentsche Entwicklung zu:

+N t} -
_ : T Uk (§,w) .
Uk (z, w) == Z Cn 2N Cn == dai | et dg.
n —_0 C

Das Integral ist dabei {iber eine regulire, geschlossene, den Punkt
n = 0 enthaltende, im Kreisring verlaufende Kurve C zu erstrecken.
Im vorliegenden Fall wihlen wir den Einheitskreis () als Integra-
tionsweg. Es ist dann fiir positives n

1 [ Uk w)

= oni| o
)

Man kann dieses Integral ausdriicken durch ein Integral tiber einen

Kreis mit beliebig grossem Radius, vermindert um die Summe

G s

Cn
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der Integrale iiber die Umldufe um die Pole. Der Richtungssinn
ist wie iiblich entgegengesetzt der Bewegung des Uhrzeigers.

Der Kreis vom Radius R sei so gewihlt, dass er einem Kreise
im Kreisring dquivalent ist, auf dem Uk (g, w) endlich bleibt. Es
ist dann fiir

|zl =R |Uk(z, )| <M.

Nun ist, wenn 2 m die Anzahl der der zwischen (/) und (R) ge-
legenen Pole ist:

1 [ Uk(S o) ! J Uk (6, w)

T 2wl 4nh 2m a8

§n+: &



und nach dem Residuensatz

i A n ’k+1
] i . ]/ 'y
O == § Uk ls @) dg-— E g -} E €
2 gn+1 (/l k )n +1 /zzk»h o
£ i ———
(R} 214 ~ :

Lassen wir nun R gegen oo konvergieren, so ist

A U(S, ) - 1 M
2-7Tl Sn-{-l Rn+1

2R = Aj{i—ﬁ>0fﬁrR -3 00,

gt R

(/\’)

Schliesslich erhalten wir

) 4 ] ' 0 \n / 0 n
221\ /{sk+1 J S St A W .

] — @n

Analog erhalten wir fiir

/lll—{'—l - /111—{—11
L:—(ll-—*—l) == - “"1 o QF+12L+ == 0, I, 2, .-
Nun handelt es sich noch darum, die Konstante ¢, zu bestimmen,
die durch Angabe der Pole und Residuen unbestimmt gelassen
wird. lhren Wert entnehmen wir der Partialbruchzerlegung, die

wir in folgender Form beniitzen:

19) Ui(z, )= i i i Q" A
M ’ s (’_“On Xtﬂl\ 0 Z-— ()n AB]\"{M]_

n -

ot z P Qn—{—x z

__|-‘ Z . llk"_'l___—-ﬂn-i-lz T g — l2k+1 ,.V{A. Qﬂ+lz
Entwickeln wir die einzelnen Summen, so erhalten wir

Ane + ( Azt ) hs s + (’12")" .

Z




a2 — 2 _ . . . ”Z ll |
e /lzk +Q ( /vzk) P— F QV( /{21 ) }’
2 & Y -
to gote (L) b e L)
T e
& z AR 2\
te - ten () + o el +
e
2 &\
fe l & T e ok (szif-> + l

In dieser Entwicklung sind die Bedingungen des Doppelreihen-
satzes erfiillt. Es ergibt sich daraus ohne weiteres, dass ¢ — 0
ist, und die Laurentsche Reihe fiir Uk (2, w) lautet deshalb:

+(“-U

I An — AD o . ’ A
0) Ugo)= > - PO S < A
—_0d ~ = [\

Analoge Entwicklungen koénnen wir fiir jeden Ring aufstellen,
in dem die Funktion reguldr ist.

Aus der Entwickiung fiir U, (z, ) erhalten wir fiir z U] (2, )
die Reihe

+ oo

4 I L — ) 1 T /l:zk— 1
21) =z UL: (2) = — Z s 2k] :()ﬂ‘+ — A< ’Z} < H .

Dabei bedeutet der Strich an & immer, dass der Wert fiir =0
auszulassen ist.
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~ § 4. Aligemeine Sitze.

Die Definition der Funktionsgesamtheit, die der Gegenstand
dieser Betrachtung ist und der Nachweis, dass sie ein Funktionen-
korper ist, wird uns im Kapitel iiber die allgemeine funktionen-
theoretische Aufgabe beschiftigen. Die automorphen Funktionen,
mit denen wir hier zu tun haben, kénnen, wie erwahnt wurde,
auf eine gewisse Klasse multiplikativperiodischer Funktionen zu-
riickgefiihrt und mit Hilfe dieser studiert werden. Es gelten {iber
diese multiplikativperiodischen Funktionen allgemeine Sitze, die
gar nicht an den besondern Charakter dieser Funktionen, niamlich
an die Wahl von ¢ gebunden und den bekannten Sitzen iiber die
doppeltperiodischen Funktionen vollstindig analog sind. Da diese
Sitze ausserdem fortwihrend benutzt werden, sollen sie hier kurz
Erwahnung finden. Sie werden, so weit sie fiir beliebige auto-
morphe Funktionen gelten, moglichst allgemein formuliert.

Sucht man irgendwelche allgemeine Aussagen iiber die Null-
stellen, Pole und Residuen einer analytischen Funktion f (z) zu
formulieren, so kommt man natiirlicherweise auf folgende Sitze:

Seien wi die Nullstellen, »i die Pole und # die Residuen in
einem Bereich mit der Berandung C, so haben wir

1. Aussage {iber Residuen:

ZJ”J? z)dz—Zrl,

C
2. Aussage iiber Nullstellen und Pole-

szm LB a2 =50 —> g0+ les@N ).

(4) D)
Dabel ist @ (2) allgemein analytisch und mehrdeutig angenommen;
[¢ (2)] bedeutet den Sprung dieser Funktion auf dem Schnitt, durch
den der Bereich einfach zusammenhingend gemacht wird und
[lo f(2)] die Anderung des Logarithmus auf dem Schnitt.

Die naheliegendsten Spezialfdlle fiir ¢ (&) in der Formel 2.
. liefern Aussagen iiber:
a) Anzahl fiir ¢ (2) == /1
1 F .
2w f#-(—zjﬂdz——N——P,

dabei bedeutet /V die Anzahl der Nullstelien, /° die der Pole;
6
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by Summe fiir ¢ (2) — 2

A |
?J;’?J\ Z f' (Z) dz - Z‘H] = Zil 5

C) Produkt fiir @ (z) = lg =z
o e Z D e TT 4 4 ) sl e o
i @ L T ag 5
C
= [0 H L +[[ofj

Es handelt sich nun darum, die links stehenden Integrale fiir ge-
gebene Funktionen auch direkt zu berechnen, nimlich mit Hilfe
der besondern Eigenschaften der vorliegenden Funktion. Bei den
doppeltperiodischen Funktionen hat man ohne weiteres
Fl8z)d Sz==F(2) @2, (Sz =z 4 m o |- m2 o2).

Infolgedessen ist

flg) da=10,

QC‘

was den bekannten Satz iiber die Residuen liefert. Wollte man
eine analoge Tatsache fiir beliebige Fuchssche Funktionen ge-
winnen, so wiirde man zu keinem einfachen Resultat gelangen.
Statt dessen kann bei den multiplikativperiodischen Funktionen
das Integral

A /@

2ri | =z

C

eingefiihrt werden, das infolge der Eigenschaft

dz

L&* d(0z) = j_;z)_ dz,

gleich Null ist, wobei das Integral immer {iber die Berandung des
Fundamentalbereiches zu erstrecken ist. Die allgemeine Berech-

nung des Integrals
! I /(@) dz

2n{ z

C
liefert fiir den Fall einfacher Pole

I [ f@ ==
'?fnfl;,J z dz=> m

c
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wo mi die Stellen bedeutet, an denen die Funktion f(z) einfache
Pole besitzt. Diese Uberlegung liefert uns sofort

Satz 1. Hat eine multiplikativperiodische Funktion V (z) im
Fundamentalbereich nur einfache Pole fiir

Z == T, T, SR Tn
mit den Residuen Yy, By ooy P,
so ist
Fi Fa Fn
22 s i
) T + T + + JTn

I fE
Was nun das Integral ?m’f )
[

dz anbetrifft, so gilt fiir

jede automorphe Funktion, infolge

S8 e G
75n 1T

unter der Voraussetzung eindeutiger Randerzuordnung,

1 [ /& o
i rf(z) dz = 0.

d z

Es gilt deshalb

Satz 2. Jede nicht durchwegs konstante automorphe Funk-
tion mit » einfachen Polen im Fundamentalbereich nimmt jeden
Wert # Mal an.

Daraus folgt: Eine automorphe Funktion ohne Pole ist eine

Konstante.
Speziell fiir multiplikativperiodische Funktionen gilt

Satz 3. Es gibt keine multiplikativperiodische Funktion 1. Ord-
nung.

Das ergibt sich auf Grund von Satz 1; denn sonst miisste
das Residuum den Wert Null haben.

Das Integral
1 (2
2m[ 72 4z

ist bei den doppeltperlodlschen Funktionen leicht direkt zu be-
rechnen; denn es ist

L 7+ w) 7z (ill-—d(z% J L8 g ”I‘"Q';gw [lgf(2)],

_an +w) S
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dabei bedeutet o die Periode und [lgf(2)] die Anderung zwischen
zwei Gegenseiten. Das Integral liefert den bekannten Satz,®dass

g Y I g Ui
i i

Ganz analog verhilt es sich beim Integral

ist.

2ni,
flir multiplikativperiodische Funktionen. Es ist

1 , ” 1 &
i | leee b2 doe— o[ lre L0 det L tellesien

1 f'(2)
=g quﬂf( dz 4+ klgo;

[{gf(<)] bedeutet die Anderung zwischen zwei zugeordneten Rindern
des Fundamentalbereiches. Vergleicht man dieses Resultat mit der
allgemeinen Ausrechnung, so ergibt sich

klgo=Ilg H--fh— 2k 7i,

also l
Wi L PR
lg:l:llyi“——-klg@ 2/3 Ti.

Wir erhalten also schliesslich
i
i
Satz 4. Nimmt die muitiplikativperiodische Funktion f (¢) an
den Stellen ui einen beliebigen festen Wert ¢ an und wird jede
Stelle wi so oft gezihlt, als ihre Ordnung betrigt, so ist

— @k.

23) sdiin == &)k'

Ausserdem gebrauchen wir noch

Satz 5. Ist Vi (2) eine multiplikativperiodische Funktion 7,-ter,
V: (&) eine solche n.-t** Ordnung, so besteht zwischen V1 (2) und
V: (¢) eine algebraische Gleichung von 7-tm Grad in Vi (¢) und
von -t Grad in Vi (2).

Der Beweis fiir diesen Satz kann analog gefuhrt werden wie
bei Osgood, Lehrbuch der Funktionentheorie I, 2. Aufl, p. 478.
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§ 5. Die Hauptfunktionen.

Bis jetzt wurden folgende Funktionen eingefiihrt:
Ik (2, ©) und entsprechend [l (2, w)
Az, w) > » Uk (2, w).
Es sollen nun einige Eigenschaften dieser Funktionen untersucht
werden. Vor allem soll der Zusammenhang der Funktion Ax (2, )
mit Uk ({, w) festgestellt werden. Uk (S, w) hat im Fundamental-
bereich die Pole A:x, Axt. mit den Residuen Aw, — At Aus

Uk (§, CO) = Tk (Th?, &) w== Ax (.3', (z)) ]
folgt fiir die Residuen der Pole lx, ki1 von Ax (2, w)
Residuum von Ak (2, ) in by = lim (& —bx) Ax (2, )

z—>Py
b 2 - I/
= lim (§ — Ax) Uk (§, ) R
\ Z"“‘)‘!Ek _‘Q.T_.W :.)E
& — Lk
] A (l-glc —_ C())(lzk — Ct)’)
i J— T /»2 Kk o= e—— ——
g—w wW—
(45’ e CU’)Z = ‘

Uber die Funktion Uk (2, ») und die aus ihrer Ableitung ge-
bildete Funktion Ui == & Uk (2, o) wollen wir die fiir uns wich-
tigsten Sitze ableiten.

Satz 1. Die Funktion Ux (g, w) ist ausser der eigentlichen

Gruppe noch gegeniiber der elliptischen Substitution z— A'“’k'ifk“
invariant,
24) - Uk (—/{—k—;ii) = Uk (2 w) .

Der Gedanke, die Transformation
Aske /22.1{—}—1

A~

~

~

4

auszufiihren, stammt von der Gleichung
Ak /13I<+1

o e
in der w, . die Nullstellen von Uk (¢, ) bedeuten. Uk (2, ») und

Ut (.5?‘1.??“‘*-*—-, ) sind beide multiplikativperiodisch. Sie haben

-3

== ‘91{ i

&

dieselben Pole 1. Ordnung mit denselben Residuen; denn wenn
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r., r» die Residuen von Uk (2, m) In A, Akt
Ask lalc—l— ‘ ¢ q
und R, R: » > » Uk (— e fr)) in Ak, Askt
sind, so ist nach Satz 1 § 4
4 O] .
Nom ol e =. @, hiolob o — gk D Askd .
/1 2k Azl

Ferner ist

: . Ak Ak
R~ lim (z— /Ax) Uk ( . ‘-.-I?L‘-., m)

Z—>» A2k ' <
B A:I /l k/i 2kt /?-akisk— 1
2—> Aak /5" 1+1‘ P = z
A ” s 7 ’ /i::k
lim (—2) lim (& At )Uh(&,0) —=— """ p

Agl‘+' Z—> Azk 2'——>sz+1 /Z'.!k—f-l

P
Es ist also

Uk (2, ) — Uk ( ok /_L,Hrl ) - Konst.

~

Da aber s Nullstelle der beiden Funktionen ist, wird Konst. = 0,

Ask /Zﬂk-i-l _

denn es ist - Dok s

[N

Im Zusammenhang beweisen wir noch den analogen Satz

iiber die Funktion H(z), die nur die Nullstelle « und den Pol v
besitzt. Es gilt

Satz 2. 25) )H('“)-—C|0

i~/

Auf diese Funktionalgleichung werden wir aus dem Grunde

gefiihrt, weil ‘UJ_‘V fiir = » in u Gbergeht und umgekehrt. Die

-

Funktion H () H ( ‘“: ) ist multiplikativperiodisch ohne Pole, da

sich Nullstelle und Pol zerstoren.

Aus dem Satz 2 koénnen wir noch eine Folgerung ziehen.
Machen wir die Substitution = - = # &, wo « ein Parameter ist, so
erhalten wir

\

Hue H(L%) = C,
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Dividieren wir durch die Gleichung 25), so erhalten wir:

(v
” AR ) _
H (2) 7 (ﬂ )
Uz
: : . Huz) . o
Das konnen wir auch direkt beweisen. - ”([(t:,))« ist multiplikativ-
periodisch und besitze in " und w« die Residuen #, .,
e
i),
ebenso - el LU Ry, R..
(47
iz
Nun ist
H ('iz'_ I ( ‘”ZV )
Res. von - = in o dim (& —yp0) - "
H ("EE Z—> 1t H ('rﬁ)
, & . Loy H)
Z‘_”;’-“}::” L ) ( T )“"1/ ()
“wz u 7> 5
==
s el (N B
ll
H-
wegen :’; *I— ’;f = 0’ wenn .2° - ' jj gesetzt ist.
{4

Durch Differentiation der Funktionalgleichung aus Satz 1 er-
héilt man
Satz 3. Die Funktion = U’ (&) - U (&) geniigt der Funktional-
gleichung

27) U)o — U (")

4
Die Funktion U, (=) besitzt an den Stellen Awx, 4. Pole
2. Ordnung.
Die Nullstellen seien bei = -1, ta, ta, 144
Wenden wir die Beziehung

Vi

R - 01 4
]___—_I: i h

!
auf U, (2) an, so erhalten wir:

PR
Ja e U Wy - - Qk{ /u:”; A'.!k-}-l .
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Da aber U (&) — U (ur) (r =1, 2, 3, 4) nur die Nullstelle 2. Ord-
nung ur besitzt, so ist

;,Lrﬁ == os Azk ﬁgk‘}_,’ re=12 3 4
Alss e == &% Vou Zakpa .

Nun ist wegen _
W < bk ~J
das Produkt A:x Aaiqa sicher negativ, also wr rein imaginir:
e = £ &7 Y ek deke]
Damit simtliche Nullstellen im Fundamentalbereich liegen, ist ¢
so zu bestimmen, dass folgende Ungleichung erfiillt ist:
& < &% |V dadenp | < T
dann erhalten wir '
po = &% - L Vakdacta |, e = — &% |V Ak daieq |
pz = UtV 2o ekt | L e == — gt |V 20k A1 |
und es ist ¢ = 2 ¢« + L
Einfacher ergeben sich die Nullstellen aus den Gleichungen
U (&) == — U (’E‘*'i::“_’___"_ih") .
In der Umgebung eines Poles hat U (¢) die Entwicklung

(l__g (.

Ui (@) = — R (e — ) ¢

e T e

Aus der Partialbruchentwicklung

. 7 W(.g‘)niﬁzk)z on Al (on ,«121\,*,1)2 B on /121<+1
Ll % { (g—ondzi)® I &— Q"ﬂak (é’——-@ﬂ221<+1)2 E—O Akt

ergibt sich:
a—s == — Aik .
(l— == —— Ak

§ 6. Umkehrproblem. Differentialgleichung.

Wir kommen auf den Zusammehhang mit der Integralrech-
‘nung. Es handelt sich darum zu ermitteln, von welchen unbe-
stimmten Integralen unsere Funktion die Umkehrung darstellt.
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Auf Grund des Satzes 5 § 4 wissen wir, dass die Funktion
Uk (¢, w) = U (2) der Differentialgleichung 1. Ordnung geniigt:
28) ( d;jf-"—)—) + R (U®) - s—d—g—-——}—R UE) =0,
wo R und R:. rationale Funktionen hochstens 4. Grades sind.
Diese quadratische Gleichung kann man nach § U’ (§) auflésen
und kommt so auf eine Quadratur:

U §) =sU ) = — U(L') ' I/R‘ (U(g) (U( )) ,
ds d U ©)
s ( L (U©)
5 RIU_S__ VR ‘»____Rz( L)

Die quadratische Funktion im Nenner wollen wir aus unsern Er-
gebnissen ndher bestimmen und zeigen, dass fiir die vorliegende
Funktion
R (U) =20

ist. Wir benutzen dabei die Methode der Identifizierung zweier
multiplikativperiodischer Funktionen auf Grund der Kenntnis ihrer
Nullstellen. Wir sind dazu in der Lage, weil wir die Nullstellen
der Funktion &/’ ($) kennen. Im Bereich (7, o) sind es die Stellen

& = i Yk, 2= e [k Ak
U (8) hat die Pole 1. Ordnung A:x, Awk-,
SU' () die Pole 2. Ordnung Awx, Ask.

Der Fundamentalbereich ist fiir beide Funktionen der gleiche. Die

Funktion

@ (UQ) = (UE)— Ui |akizk 1)) (UE) — U (— i V|Aekdak+4]))
(U@ — U (gi V|axae | ) (UG — U (— &i Y]asxdac+1]))

wird zweimal Null in jedem der vier Punkte, in denen § U’ (§) Null

wird und viermal unendlich in jedem der Punkte Ax und Ak

Wir konnen also die Funktion mit § U’ (&) vergleichen und erhalten

SU Q) = C ¢ (U (&)
Zur Bestimmung von C bilden wir

lim (g—---/‘ir:ek)'1 - (8 suU (‘)) = C Ax* H
z—> A2k
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daraus ergibt sich
L == 1

Die Funktion ¢ (U (5)) hat keine iiberfliissigen Nullstellen, weil

Aste sk 1

die elliptische Substitution &— " die Klammerausdriicke

A
=
~

ineinander {iberfiihrt. Das Umkehrproblem fiihrt schliesslich auf
folgende Quadratur

) Y e 0o
Die Konstanten unter der Wurzel kénnen wir aus der Partialbruch-
zerlegung bestimmen. Nach dem Schwarzschen Spiegelungsprinzip

ergibt sich {ibrigens, dass sie paarweise konjugiert sind; es ist

rdg f dU®©

U(— & Vjakaer ) == U( i V}asidsi-fa])
U(— el Y auci+]) = Ulel y)ascdss 1)) .
Bezeichnen wir U ( { V|ikiue |3]) mit p=a -} i b

Uei Viaa]) mit g = ¢} id

so ist
b oe
p= i Vil > -l e
= V [Azk Ask - e . e i
l L \/’ l/'(,zk).ak——}—jf — Q1 Ak L 'V ,ﬁ?k/l.‘!k ~|-1I == (O /{21{ +1
— o
oo
el Vi g . !
— <& alc Al - . e e e e e e gy
7 f et £l '»/I)vg](jlgk*illl — g Ask LA \/M?kﬂzk-—d = QN /12}{4-1

Das Integral lautet dann

20) f as ] dU©Q
: IVITO U@ 0@ U@ -

-

S
J’ d U Q)
o VU = (U Q) =PV = U@—7)

5

Dem Umbkehrproblem kann noch eine einfachere Form gegeben
werden. Fiir den Integranden erhalten wir nimlich

(U =2a U-HpH(U=2cU-FlgP = U—ap Fo2 (U~ o7 |- a3,
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Fithrt man jetzt die Variable

a-|c a-—c
B D e g , ! — «a
2 ' 2

ein, so erhilt man schliesslich:

- s _ d x
s Vik— ' 0 [ o+

Das Umkehrproblem besteht nun darin, zu gegebenen «, &, d die
drei aus p und ¢ fiir diese Grossen hergestellten Gleichungen
nach o, Ax, A:x-t, aufzulésen,

§ 7. Zusammenhang mit den elliptischen Funktionen.

Der Ubergang von einer elliptischen Funktion f (w) zu einer
multiplikativperiodischen wird bekanntlich!) dadurch erreicht, dass
man statt der Variabeln w ihren Logarithmus substituiert; denn
dann werden alle Summeneigenschaften zu Produkteigenschaften:

flug e + lo ey — fllga 2.
Da der Logarithmus eine mehrdeutige Funktion ist, weist man
nach, dass infolge der doppelten Periodizitidt alle Zweige der re-
sultierenden Funktion identisch sind, sodass man sie zu einer
einzigen eindeutigen Funktion verschmelzen kann. Ausgenommen
sind natiirlich die wesentlich singulidren Punkte 0 und -o.

Sei f (w) eine doppeltperiodische Funktion mit den Perioden
2 Kund 2 K’ {, so lautet die Substitution

) 2K _
Das Argument der Funktion f (-2—35 [o =] erhilt beim Zuwachs

2kwni des Logarithmus den Zuwachs einer ganzen Zahl von
Perioden 2 K; der Funktionswert bleibt also ungedndert, was die
Grundlage fiir die Verschmelzung bildet,

'} Uber multiplikativperiodische Funktion ¢f. Rausenberger, Lehrbuch der
period. Funktionen. Leipzig 1884, pag. 221 u. ff.
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Damit die Funktion multiplikativperiodisch ist, muss ferner

LS RATY U S
e

2
sein. Fiir die 2. Periode erhalten wir deshalb
, . 2K
2R =g 8 e

denn dann ist:

f (2K o+ ﬁflzg) —f 2K it w) - f W)

2

Als Periodenverhiltnis ergibt sich:
2K s
ein Verhiltnis, das wegen o < I positiv ist.

+ Zu unsern multiplikativperiodischen Funktionen kann man
also auch doppeltperiodische Funktionen bilden. Der Zusammen-
hang zwischen den Polen und Residuen von Uk (g, w) == U (2)
und f (w) ist offenbar folgender:

Hat U (2) die Pole A:x und As;c |+ mit den Residuen ll und
— Ask-}1, SO smd

32)

2 K 2K 2K ; :

231’ b o Ask y 2”5 lg /?.21:——}'—1 e —2E£ lg Ask —|—41| —I~ K die POI(‘.‘,
2K 2K .

i T ows die entspre

chenden Residuen der zugehdrigen doppeltperiodischen Funktion
f (w); denri es ist
Residuum von U/ (2) in Asc - Asx;

. " { 2
Residuum von f (w) in 2K lg v~ lim (W -——Ji lg Ax) f(W)
2w K 2ri
o . 2K a /?.Jl{ |
— zgulré (w — 5 lg Ax) | - g w — B (w)
W o RN e 2K 7 _ qu

/lzlc 2 K

e e

(d K)
dw W : lgl 8"

251::
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und ebenso
2K _

LS .
Tl ° ' 2ni

Residuum von f (w) in P
Jetzt suchen wir fiir unsere doppeltperiodischen Funktionen
eine Darstellung durch bekannte Funktionen. Fiir meromorphe
Funktionen gibt es zweierlei Haupttypen: Produkt- und Partial-
bruchdarstellung, indem eben fiir die Faktoren oder Partialbriiche
nicht algebraische Ausdriicke genommen werden, wie das in der
Weierstraschen und Mittag-Lefflerschen Darstellung der Fall ist,
sondern Elemente von demselben Charakter wie die darzustellende
Funktion, also hier bekannte doppeltperiodische Funktionen.

[. Die wichtigste Produktdarstellung der meromorphen dop-
peltperiodischen Funktionen ist die Darstellung durch o- und 4-
Faktoren. Da wir nur Pole und keine Nullstellen unserer Funktion
kennen, konnen wir eine solche Darstellung nur fiir eine Differenz
zwischen

2ri
U (e 2K ) — f(w)
und einem ihrer speziellen Werte finden. Als solchen Wert kénnen
wir etwa
2K
f (2 n:[ lg Azk —l~ K)

wihlen, der z. B. fiir die Funktionen, die einem zweigliedrigen
Kettenbruch entspringen, gleich — l ist. Nun kennt man von

der erwédhnten Differenz die Pole und durch die elliptische Sub-
stitution auch die beiden Nullstellen. Aus

Ak Asle - g 3
U - U™

~ /

folgt namlich

3 fn o S (o

Jl'l-_

/g‘ Ask /‘Zakrlq) .

Als 2. Nullstelle ergibt sich also

»2~K ([g /lzk/lsk—lﬂ = lg /jvzk) — K= 2K

i oni lg | Asca]
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Das fiithrt unmittelbar zu der Relation

34) Ul(z) — U(— 4x) = flw) — J (gf—lgm\ }- K)

_ N (0) (Z:HA |A:‘f—l;~1| l ) ( = [ngz* |> )')(ZJ!! g|41k+;|)

2 a | Ask N
™ )( )()1(2wll‘5|/l\}[))l‘2ﬁtl“’/.')9'(2ﬂll‘g|/l\{~| } )

wobei # die ungerade /-Funktion!) ist. Die Konstante bestimmt

sich ohne weiteres durch Multiplikation mit (w - ;:lfz lg /Z-_:n\-") und

Grenziibergang, unter Benutzung des Residuums von f(w).

Il. Eine andere wichtige Art von Produktdarstellung ist die
durch die s#-Funktion. Hier muss man darauf achten, dass suu
zwei getrennte Nullstellen und Pole hat. Durch eine Verschiebung
des Parallelogrammnetzes um «, erzielt man, dass die beiden Null-
stellen und Pole an die richtige Stelle kommen.?) Die Funktion

sn(wt @) sniw | a
snw - ay —sn (o - )
soll die Nullstellen fy
und die Pole [
und nur diese besitzen. Nun ist hier
2K ,
u R
l 2w 8 - K
2K :
e == : lg' |/~3k |1|
2wl
2 lo
v E L2k
l 2xi °
. 2K :
Vo = Ao A : Ao [ Ase 1|
o lg a5l ] - K

Wir suchen nun « so zu bestimmen, dass

K— (-4 a w4+ a@mod 2 K, 2 K i
ist, also auch

K— w4« v+ amod 2K,2KIi.

') Goursat, Cours d’analyse mathématique II, 3. Aufl,, 1018, pag. 203.
') Koénigsberger, Vorlesungen iiber die Theorie der elliptischen Funk-
tionen, Leipzig 1874, pag. 350.
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Daraus folgt

K v 5 5
fl 58wy == sy (imod. 2 K, 2 K'i).

Setzen wir unsere Werte ein, so erhalten wir

2_77[ lg I/Z;zk ;12!{ ill ’

U lg] === Ui /z-.’k) f(W) — f(% lg Ak *}— K)

5

W K g K Jisk

. sn ( W — 27!'[ lg J/»:zk Ask |||) 'I" sn (2]{1' l‘g TJR—T-—; )
TR T T T Kk ‘——2;{—1"" :
sn|w— 2 lg | Ak Auk ;ll) e S (\2]”. g B To )

Die Konstante bestimmen wir auf die gleiche Art:

| 2K, (2K
2[”[,([ (W — 2.7TL [g /»:ak){f UV) — j (2Jrl /‘b Ak ‘IK)I

w—y» o Ak
2 £

, | 2 h . sniw-|a -} sna
lim (w — < lg /(:z'lc) s l—-;'-——} s §
2K 2mi sn(w-|-a) — sn a
Ww—>_ = [o Ak
2mi
, 2K 2sna . . Aok |,
es ist also s i€ -~ wobei a = <. [g |-——] ist.
2mi sn' a 2r0 ° | Ax
Schliesslich ergibt sich
. K ( sn’w
2ritsnow! K | Ak )
2mi T | Aak

Unsere Darstellung lautet also:

35) U() — U= ) — flw) — f (?%g lg dac |- K

K ldlgsrzw
2ni | dw |,— K
lw= lo

sniw - a) - sna
K | ek | 7 :
=

ok | osn(w-a) —sna
| Azl

lII. Die wichtigste Darstellung vom 2. Typus ist die Partial-

bruchdarstellung von Hermite!) durch ¢-Partialbriiche. Sie lautet
hier ohne weiteres auf Grund der Hauptteile und Pole:

Y Goursat, Cours d’analyse mathémathique, II. 3. Aufl,, 1918, pag. 197
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(Grie i) o real,)

o+ — { ( w— —K [g‘/»gl) (Vm *—~[g,2)k H)
 Die Konstante bestimmt man wreder durch Grenziibergang:

e U= a2 ) - sl
Ubrigens ist ihre Kenntnis nicht wichtig fiir die weitere Darstel-
lung, da sie durch Differentiation verschwindet.

V. Eine Darstellung fiir die Funktion & U’ () — U, () erhilt
man durch Differentiation aus der ¢-Darstellung fiir U (2). Es

ist fiir

2xi
fw) U ( 2K ”’)
e

2ni
W
; - 2w 2K , [ 2w 2w 2mi
f (W) 2K - € U (82'[(, W)n 2K U (e-ﬂ( w);
~ R K ,
37) L (2) = = S (w)

( ;(5)2 !59 (w — ;rlgl- lgﬂgkl‘l) — P (w — Jﬁ lgﬂgk)} .

Diese Relation ist tibrigens leicht unmittelbar aus den Eigen-
schaften von U, (2) abzulesen. U, (£) hat Ax und A:xc-. als Doppel-
pole. Berechnet man durch sukzessive Subtraktion und Grenz-

ibergang die Residuen von % /' (w), so verschwinden die Kof-

fizienten der 1. Potenz, und

S

2
fiir den Pol w;% lg Ao ist —- ( ) Koéffizient der 2. Potenz und

2
ebenso fiir ft lg Asict ist ( ) Koéffizient der 2. Potenz.

kl

§ 8. Anwendung auf zweigliedrige Kettenbriiche.

Die Konstruktion soll fiir den einfachsten Fall, indem sich o

in den Kettenbruch
0 = (@, @1, Ao, ..... )
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entwickeln ldsst, vollstindig durchgefiihrt werden. Dieser Fall ist
vor allem dadurch ausgezeichnet, dass £ nur den Wert Null an-
nehmen kann und deshalb nur eine Funktion

U (2, 0) = Ui (5, ©)

existiert,
Es ist
< p-_: Pl\
= (¢ o)
@ = {‘2 PH - Q (t) gy [ - () (\p;g‘--"“ Qg (t))g’

P - Q (() o [- _ ()
oder ¢ = & = (Qy @ 4 Q.)*

Die quadratischen Zahlen, die als Pole der einzigen Funktion U (2, w)
auftreten, sind

10 = o

/20 e —7‘-'4 — ([—)—,- —
ll ' (€3] Pg — Q2 ) . : .
Lll’ld /1[‘ == .Z;——:._(L) IS e— (,), [33 T Q2 ot e (p.} - Q.z W) ==—28,

wegen fi = P = Qo — (P — Q) w.
Infolgedessen lautet die Partialbruchentwicklung:

. + oo I Fi 7
38 Us (2, 0) = & — ;
) ( af)) nZ_(J\Jl rC——Qn ,5_'_&}1‘c
oder in der 2. Form: |
o0 n O 1’1-+-1 =
Us (3, (:)) e Z ***** + Z m‘-w) & Z ¢ v
gl © Tl & ﬂl_ L(\)n‘! 0 Qn.ldlte"—’—]
(& @) Qn 1 P
T2 et
Daraus ergibt sich fiir &2 = — 1
1
U (— 1) == — 5

Wir erhalten folgenden .
Satz. Lisst sich o in einen zweigliedrigen Kettenbruch entwickeln,

so nimmt die Funktion U, (2, ) an den Stellen & == — I, ¢ den
Wert — é- an, also |
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39} (J() (—-—-— ]) :iI‘Uo ({;‘) o — ‘; .

Die Entwicklung der Funkhon U, (2, w) in eine Laurentsche Reihe
lautet:

. : ! i _{_ D
40) i o) 3 A d=k=8

Infolge der, im obigen Satz ausgesprochenen, Eigenschaft der
Funktion U, (2, @) vereinfacht sich die Darstellung durch doppelt-
periodische Funktionen, Sie lautet:

i) sl i) ol st
[ A i _ o > ]log
K srz( ?Eilge) srz(\.w i lge)—sn i ga)

Uh(2,w)-|- _21__ _—

2ni K ' K ) K
—Sﬂ("é}tflg'_g) srz(\wm—%;; lge) - sn(2 - Lo L\
K lge p 2K,
und wegen KT 2K b = = lo &
sn’ (—— Kl) sn (w — -l—<-— - ) —SH (K;)
41) Us (2, o)+ L s B8 o .. L
S 2 2= _S,Z(K’ ) 5 (wJ(’ (’S
2
Fiir 2 U} (2, o) erhalten wir:
! K\g e
2 U (2, ) = (m) { p ¥ —p (v —iK -
Beniitzen wir die Beziehung
s @ () — " (V) .
» (4 v) = ( @ W ) p (L) — p (v,
ik L (W )2___ il —
pWw—IiK')— y ( Py — @ (W) — e,

so erhalten wir:
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2. Kapitel.
Allgemeine funktionentheoretische Aufgabe.

§ 1. Nachweis der Korpereigenschaften der Funktilonsgesamtheit.

Die allgemeinste Funktion, die wir betrachien, ist die Funktion
A* (z), die gegeniiber der zyklischen hyperbolischen Untergruppe
der Modulgruppe invariant bleibt und im Fundamentalbereich nur
Pole als Singularititen besitzt,

Die einfachste Funktion dieser Art, die im Fundamentalbereich
nur zwei Pole hat, wurde im vorhergehenden Kapitel analytisch
konstruiert. Unsere weitere Aufgabe ist nun den allgemeinen
Satz zu beweisen, dass jede Funktion A*(z) eine rationale Funk-
tion der Grundinvarianten A (z) und der aus ihrer Ableitung ge-
(z —wculz(;’- ) A’ (z) ist, dass also die Ge-
samtheit unserer Funktionen A* (z) einen Funktionenkdrper bildet.

Wir haben bereits erwidhnt, dass unsere Betrachtungen sich
einfacher gestalten, wenn wir statt der automorphen Funktion,
die daraus durch Ausfiihrung der Substitution

wonnenen Funktion

; 1) g et —-zim “ === T:,'

5 e )

erhaltene multiplikativperiodische Funktion einfiihren. Es ist dann
| A* () == U* (¢ |

S)
A == U©
LT A (@) = S U =T (),

und wir haben nur den Satz zu beweisen, dass jede multiplikativ-
periodische Funktion {™ (3), die im Fundamentalbereich nur endlich
viele Pole besitzt, eine rationale Funktion der beiden Funktionen
Uz und U, (z) ist. ‘

Den Beweis gliedern wir. Zunidchst kommen wir zu einigen
einfachen Problemstellungen, die uns ein paar fiir sich interessante
Tatsachen liefern. Als erste erhalten wir das Multiplikationstheorem,
indem wir U (zu) durch U (2) rational ausdriicken. Das gelingt
durch die Methode der Hermiteschen Partialbruch-Darstellung und
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durch die Produkt-Darstellung. Die Partialbruch-Darstellung liefert
uns eine Methode

Uiz -+ U (I—Zl) rational durch (' (z) und U, ()
auszudriicken. ' Die Methode der Produkt-Darstellung wenden wir

nicht auf U (zu) selbst an, sondern auf

Hzu)
H (z)

und erhalten eine Produkt-Darstellung fiir

I (7 u) =

FE(tz u) (7%, u ) durch U ().

/

Durch logarithmische Differentiation und Grenziibergang fiir £—-1
erhalten wir daraus eine Partialbruch-Darstellung fiir
UGzu) — U (_Z_) .

Addieren wir diese beiden Darstellungen fiir Summe und Differenz,
so erhalten wir das allgemeine Multiplikationstheorem, d. h. eine
Relation, die gestattet, U/ (zu) rational durch U (z) und U (z) aus-
zudriicken. Die Methode der Produkt-Darstellung erlaubt es auch,
die Funktion ¥ (z, «) rational durch U («’ 3) auszudriicken, wo also
das Argument z mit einem Faktor multipliziert ist.

Zum Beweis des allgemeinen Theorems ist .dann nur noch
nachzuweisen, dass jede multiplikativperiodische Funktion durch
E-Produkte ausgedriickt werden kann,"was zu einem Analogon
der ¢{-Darstellung der elliptischen Funktionen fiihrt.

l. Ableitung einer Relation fir U (z u) U (—;7;-) durch die
Methode der Partialbruchzerlegung.

Es handelt sich also darum, ein Multiplikatilonstheorem zu
gewinnen. Seien x# und v nunmehr Pole von U (z), so besteht
die Beziehung

o i [ U (.
VL i ’ ‘

Diese Beziehung erhalten wir, wenn wir die Funktion U(z ) mit
Hilfe der Hermiteschen Partialbruchmethode darstellen wollen.
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Da U (z «) die einfachen Pole Z, :} besitzt, haben wir diese

Funktion mit

C, C:
— ——l—— o) P | ;_‘!)

U@ — UL U@ —U(;)

zu vergleichen. Es ist aber zu beachten dass U(z) — D( ) ausser

der Nullstelle 7; auf Grund der elllpttschen Substitution noch
die Nullstelle » z besitzt, ein Umstand, der schon bei der Dar-
stellung durch sz « aufgetreten ist. Ebenso hat U(z) — D( )ausser
der Nullstelle Tz noch eine andere in x «. Die Pole v # und u «,
die infolgedessen in /7 (z) auftreten, sind gerade die Pole der Funk-
tion U(M-). Es ist also

U(zu) - U(E) mit P (z)

zu vergleichen. Beide Funktionen haben dieselben Pole und es
sind noch die Residuen in Ubereinstimmung zu bringen. Die

Funktion U (zu) - U( ) hat entsprechend den Polen

v 1

Sy v, mwu
i 114
. ; v “ ‘
die Residuen — i i —Willly Pl

Die Koéffizienten C, und C. von P(z) sind also so zu bestimmen,
dass P (z) dieselben Residuen hat. Es ist deshalb zu verlangen,

dass Residuum von U (zu) -+ U (2) in :: s ...--_9_'-{_2__ = £ st
E: T &
U
und ebenso
: I AN C: v
Residuum von [ (zu) + U (TZ) n —=—"=—

Daraus ergibt sich
e ). c==0(3)

Wegen . |
U, ( ,‘,‘L) = == Ui a

U, (V) == — U (u)
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stimmen auch die andern Residuen miteinander iiberein, Die Funk-

tionen U(z u) - U(;-\) und P (z) sind also beide multiplikativ-
periodisch von der betrachteten Art und haben dieselben Pole
und Hauptteile (Residuen). Ihre Differenz ist also nach allgemeinen

Sitzen der Funktionentheorie eine Konstante, Um diese in
Uizuwy+ U (5) — P+ K

zu bestimmen, haben wir fiir z eine Nullstelle von P (z), also einen
Pol von U (z) zu setzen. Sei z. B. z == v, so ergibt sich

K— U uH—U(z) -

I. Ableitung einer Relation fiir U (z u) — U (—5—) durch die
Methode der Produkt-Darstellung.

Ganz analog konnen wir das Problem des Multiplikations-
theorems mit Hilfe der Produkt-Darstellung erledigen.
~ Bis jetzt haben wir zur Bildung der multiplikativperiodischen
Funktionen einzig die logarithmische Differentiation einer Hi (z, w)-
Funktion beniitzt und die Division, wie sie von Jacobi zur Bildung
der sz u-Funktion angewandt wurde, noch gar nicht verwendet.
Als einfachste solche Funktion erhalten wir ‘

Huwz)

*H-—(z)*a = I (3, u) .
H (z) habe die Nullstelle © und den Pol v. £ (z, u) ist eine Funktion,
deren logarithmische Ableitung auf eine Differenz zweier Funk-

tionen U/ (z) fithrt. Es ist namlich

dlg B (zu) _dlg Hzu dig Hz)
z T 7 =3 T ***AMZT**"U(UZ)%U(ZL

so dass man von einer Produkt-Darstellung fiir ' (z, &) zu einer
neuen Partialbruch-Darstellung fiir U (3) gelangen kann. Ent-
sprechend der Funktionalgleichung

U (i‘z_&_’zzk'}" ) w2 JF (Z)
%
ergibt sich hier, auf Grund der Gleichung
’ ‘ v
Hnz q (_z_)

Hiz) H(f‘_‘.’_) ,

uz



103

die elliptische Substitution
wr.

3 AR
) ? uz

so dass wir die Funktionalgleichung erhalten:

4) I (

Jetzt nehmen wir die Fragestellung des Multiplikationstheorems
wieder auf, indem wir suchen I (£z, u) rational durch U (3) auszu-
driicken. Bei der Funktion U (z) haben wir die Partialbruch-Zer-
legung angewendet, weil wir die Nullstellen von U (z) nicht kennen.
Da wir von der Funktion 7 (z«) die Nullstellen ohne weiteres
angeben koénnen, es sind ndmlich die Stellen

oWy Al
,'!,l‘z’;, ”) e _[‘; (Z, ﬂ) .

m
v und -
i

so ist fiir % (z,u4) die Produkt-Darstellung die natiirlichste. Die
Pole von F (3, ) sind

v
- und @
u

Es ist klar, dass man davon ausgehend durch logarithmische Dif-
ferentiation wieder eine Partialbruchzerlegung erhilt.

. - oo - v
I/ (t z,u) hat die Nullstellen Ry und die Pole P

Indem wir von [7(£z, u) ausgehen und die iiberfliissigen Nullstellen
beriicksichtigen, die bei den U (z)-Differenzen auftreten, erhalten wir:

| \ , 2 — U2
5 E(tzu E (lft—’ u) == [ (v, u) I (uyt’ ll) Z E: Zé :; ;
3) — 3

Fiir IV (£z, ) hat man namlich auf Grund der erwihnten Nullstellen
und Pole den Ansatz:
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Auf Grund der elliptischen Substitution treten im Zihler die {iber-
fliilssigen Nullstellen w ¢, » # ¢ auf, im Nenner v ¢, pu f. Das

sind gerade die Nulistellen und Pole von Iz‘( :’”) - Das Ver-

héltnis des Produktes I (¢z, u) I ( u) zu dem gemachten

Ansatz ist also konstant. Die Konstante kéonnen wir wieder be-
stimmen, indem wir fiir 5 einen Pol der Funktion U (z) setzen.

Die Formel 5) eignet sich zur logarithmischen Differentia-
tion. Wir kommen dann leicht zu U (3), indem wir noch mit z
multiplizieren. Differenziert man nach z, so erhilt man:

o —viea 4 03] -l -

U, (z) - ],, — i S T ! d
‘ Ce—U(y) Um-U(L) Ue-U(L) @-U(s;

wobei aber urspriinglich #-}- 7 vorausgesetzt war. Machen wir
den Grenziibergang fiir #— 1, so erhalten wir

)= 9 G@
== ¢ {—”—) Uz) — U

U

0) Uz u) — U(/

mc‘l

III. Aligemeines Multiplikationstheorem fiir U (z).

Nun haben wir zwei Darstellungen erhalten, die uns Summe
und Differenz von U (z «) und U(-ﬁ—) durch U (z) ausdriicken.
, Durch Addition erhalten wir das allgemeine Multiplikationstheorem

7) Uuzu—’] e +UI(%> +UI( “)A} Ulvu)+ U (’ ‘)‘ .

2o —ofl) Lm—o( 2

Wir konnen also U (z u) rational durch U (z) und Ui (3) ausdriicken,

Man kann nun fiir I (z, ) eine Produkt-Darstellung durch
U (' z) erhalten. F (z,u) hat die Nullstellen 1,:: und die Pole /,a,%-
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Von vornherein wire man geneigt, folgenden Ansatz zu machen:

. o
v —tw UE—U(G)

=

Nun ist aber U/ (v) == U(u) == ~, so dass der erste Quotient gleich
eins wird. In dem iibrigbleibenden Ausdruck haben aber Zihler
und Nenner noch die iiberfliissigen Nullstellen » # und s «, die
nicht wegzubringen sind. Wir machen deshalb den Ansatz

UViez — Ulawr)

Vs Ul
Dieser Ausdruck hat die Nullstelle » und den Pol x#. Die Kon- |
stante « bestimmen wir nun so, dass die Nullstellen und Pole bei
Ausfiithrung der elliptischen Substitution in die noch fehlenden
Nullstellen und Pole {ibergehen. [m Zihler ist die zweite Null-
stelle gegeben auf Grund der elliptischen Substitution durch

w 7
€ 2 == . i e
car a?
im Nenner durch
) 1V
o3 = id*ﬁ , T B e s
o -

Damit die Nullstelle im Zihler zu —;i und im Nenner zu ; wird,
muss offenbar « = 3 sein. Beiderseits hat man also wiederum
multiplikativperiodische Funktionen mit denselben Nullstellen und
Polen, ihr Verhiiltnis ist also eine Konstante:

Ulvez —U(yuav)

I (7 u) = K UNuer) —Ulvam

. 1!
Zur Bestimmung von K kann man offenbar etwa z = = setzen,
’ i

wodurch der Quotient rechts zu 7 wird, und sich fiir
PR
ergibt. Sodass wir also haben:

s B2 o) Llved —UWay)
8 B =E(0, o) i = Uiy m
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Aus der Zusammenstellung dieser Darstellung mit dem allge-
meinen Multiplikationstheorem 7) fiir {7 /z) folgt, dass # (3, u) ra-
tional durch {71z und Ui (z) ausgedriickt werden kann.

Damit wir nun unsern funktionen-theoretischen Hauptsatz in
seiner Allgemeinheit beweisen konnen, miissen wir nur noch be-
weisen, dass jede multiplikativperiodische Funktion von der hier
betrachteten Art sich rational durch #(z, 1) ausdriicken ldsst. Dieser
Satz ist aber nichts anderes als ein Analogon zur Hermiteschen
Partialbruch-Darstellung durch ¢-Partialbriiche. Statt der Summe
von §-Ausdriicken treten hier Produkte von F#-Quotienten auf.

Fiir die Funktionen 2. Ordnung mit den Polen », ». und den
Nullstellen w,, s ist der Satz ohne weiteres richtig; denn

H*(5) =~
H (5 3)
hat die gleichen Pole. Eine richtige Nullstelle konnte man er-
(! w)
zielen, wenn man die Konstante (.: ) subtrahiert. Die 2.
74 1
R

Nullstelle ist aber auf Grund der allgemeinen Siitze schon mitbe-
stimmt, sodass die Funktionen 2. Ordnung sicher proportional
dem hergestellten Ausdruck H* (z) sind.

Fiir eine Funktion (" (z) beliebiger Ordnung ergibt sich die
Richtigkeit des Satzes durch vollstindige Induktion. Man bildet
I /A

0) Viz) - -?[—:rlf:‘v)- ]
wo A*(z) mit zwei Polen und einer Nullstelle von U* (z) kons-

truiert ist. 177(z) hat dann n—7 Pole, nimlich:
' ViV
vs, V4 ... vn und dazu noch w. — o - i
we ist eine Nullstelle von A* (z). V(z) ist eine Funktion 7—-7 Ord-

nung, und fiir die haben wir den Satz als richtig angenommen.

§ 2. Konstruktion fiir den Fall, dass die Erzeugende der Gruppe
eine Potenz von S ist.
Es soll gezeigt werden, dass in diesem Fall das Konstruk-

tionsprinzip ungeéndert angewendet werden kann und zu wesent-
lich denselben Resultaten fiihrt.
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Sei & 8¢ die Erzeugende der Gruppe, dann wird die Funk-
tion auf folgende Art gebildet:

L S '
Fazo- | ] S w00
= L gy
Die grundlegenden Tatsachen, Fundamentallemma und Ketten-

bruchbeziehungen, gelten hier ungedndert. Speziell erhalten wir
als Verallgemeinerung von 13) und 13") in § 2, L. Teil:

[ Pl'l’ I n [)l'l’ /)n“* [)l‘l’ 1 (l)ﬂ

oy

0L -

l (L)(‘V' | n — (L)l'l’ ,[)I'l Sa (l)r""_'l (‘)n .
llnd ' -[)n*'l'lf = — j)r" { (t)rl'-—-l Pn s ‘[)I'l’——l (k)“}
l (g)n--rv E [ 1)”} {__ (t,)l‘l' .[')n ’I" Pr:' (g n } ]

/rvln' kS’ ln?'fgr /n
ST ST

—rr|n

Wendet man in &\« (3, ) auf z die Substitution S an, so er-
gibt sich nach dem Fundamentallemma

ek |

]jwl\'. AS’: (I)\ ovan
e i |

£ (%, )

Daraus kann wie frither die automorphe Funktion durch logarith-
mische Differentiation gebildet werden. Ebenso kdnnen wir wie
frither zu den multiplikativperiodischen Funktionen iibergehen.

Die weitere Entwicklung, namentlich iiber das funktionen-
theoretische Hauptproblem, gilt, wie bereits erwihnt wurde, ohne
Aenderung auch fiir den Funktionenkdrper mit den hier ange-
gebenen Grundinvarianten.

Ausser durch logarithmische Differentiation kénnen wir hier
mit Hilfe des Divisionsverfahrens automorphe Funktionen bilden.
Infolge

Gy == ddge e — K (mod. v)
sind die Funktionen
1 \ ¥ " .
By (3, @) [9; (7, W) &(r——s); (3, @)
’ e ’ - % s = , e -
r v (3, @) ' " (Z (r) E(r~—|) y (3, @)
(r"'"‘) (I‘ﬁw) 2 "

automorph.
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§ 3. Fall nicht reduzierter Fixpunkte.

Nachdem die Funktion mit reduzierten Fixpunkten konstruiert
ist, ist noch zu ergéinzen, wie eine Funktion zu einer hyperbolischen
zyklischen Gruppe konstruiert werden kann, deren Fixpunkte nicht
reduzierte quadratische Zahlen sind. Im gruppentheoretischen Teil
(§ 1, 10) wurde gezeigt, wie man aus der Kettenbruchentwicklung
von nicht reduzierten Fixpunkten £ eine Substitution 5, gewinnen
kann, so dass

10) S* -.Q Iz ()

;

B ! omm ({;:: j;:i:) Pit Gy — Gu Pu— = 1,
Der Substitutionsgruppe, erzeugt durch S* mit den reduzierten Fix-
punkten o, ¢, entspricht hier eine holoédrisch isomorphe mit der
Erzeugenden ‘

11) | St 88§ =
deren Fixpunkte £ und €’ sind. Ist eine automorphe Funktion
Ax (z, w) der Gruppe mit der Erzeugenden S* konstruiert, so kann
man sofort einsehen, dass die Funktion

12) Ui (3, ) == A (5, 7, )
eine automorphe Funktion der Gruppe mit nicht reduzierten Fix-
punkten ist; denn es ist:
A (5 Q) =, (S, 878,52 =4,(5,5, " S8, 5,0)=4,(5°8, 5 0)

=4, (S, 5 o)
und wegen 12) ist A, (S, 5, ) == A, (5, L)
Die Funktion 9, (z, 2) ist also invariant gegeniiber der Substitu-
tion §: |
| A (8 5, Q) = A, (7 Q).
Im [ Teil § 2 17) haben wir gesehen, dass bei dieser Funktion
genau wie bei der aus dem Kettenbruch konstruierten, die Nihe-
rungsbriiche
Ly, = 8.7 ln-ep

die Pole der Funktion sind. Im geometrischen Teil haben wir den
Zusammenhang zwischen dem Kreisbiischel mit den Nullkreisen
w, ' und demjenigen mit den Nullkreisen 2 und £’ untersucht.

Die Residuen von %, (3, £) unterscheiden sich von den Re-

. /
[ . tor ——
siduen von 4, (s, w) durch den Faktor T TS wetn
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i Pol von A, (3, @) ist. Es ist also

1
(G lax 18— I l
Jetzt ist noch der Zusammenhang mit den multiplikativperiodischen
Funktionen zu untersuchen, Der Ubergang wird hergestellt durch

Residuumvon U, (z,2)in La=[Res.von , (z,w)in ff -

_ o : — Q0
U, (g, &) =9, {75 5 B). (L;;:}_@d,
Von U, (3, £) gelangen wir zu U, (3, w) durch
Hk (.'Tl S-:l i Z, 'Q) o Drl\ (:E: a))-
Es ist also
W, (3 8) == U (TS, 17" 5 0) = Uk (v, 0),

wo 1\ die Substitution bedeutet:
4 O\
(=)
Die Substitution 7'8, 77" haben wir im geometrischen Teil aus-
gerechnet und gesehen, dass
B TR CT  Le B
Wt e
ist. '
- fu ' + qu—
G © ~F Qe
Wir erhalten also schliesslich:

7‘ .‘
uk (‘i:‘? '('}) — brk (\[, ’ (c)) )

[n dieser Form sieht man ohne weiteres, dass 11, (3, £) multipli-
kativperiodisch mit derselben Periode ¢ ist. Der Zusammenhang
zwischen den Polen und Residuen ist der folgende:

Pole von U, (z, @) - Avtey Avic |

Pole von U, (3 £) : A+ €y A €
Res. von 1l (5, £) in Aw + ¢ = A - ¢

Res. von 1, (3, £) 1n Awcj € == — Aw|d - G

Damit ist die Aufgabe, die Funktionen zur zyklischen hyper-
bolischen Untergruppe der Modulgruppe zu konstruieren und alle
Funktionen zu bestimmen, die im Fundamentalbereich bis auf Pole
reguldr sind, erledigt.
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