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Mathematik
in Natur und Kunst

von

Prof. D' A. Emch.

I.
Schon Pluto sagte, die Geometrie sei die Erkenntnis des ewig

Seienden und dass olinc die Rechenkunst, die Messkunst und die

Wägekunst wenig mehr von den Künsten übrigbleiben würde.

Pythagoras und seine Schule reduzierten das Wesen aller Dinge
auf die Zahl. Bei ihnen wird von der sinnlichen Konkretion der
Materie abgesehen und die Quantität und die räumlichen Verhältnisse

werden zur Hauptsache gemacht. Unterschiede der Quantität
jedoch führen auf die Zahl, das Wesentliche der pythagoräischen
Philosophie. Aristoteles in seiner Kritik der platonischen Theorien
stellte vier Prinzipien auf, nach welchen das Universum klassifiziert

werden könne: Stoff, Dorm, Bewegungsursache und
Zweckmässigkeit. Von diesen sind Stoff und Form fundamental und
schlicsscu die andern ein. Die bewegende Ursache ermöglicht die

Verwandlung der unvollständigen Wirklichkeit oder Potentialität in

Wirklichkeit, oder von Stoff in Form. Kr nahm ferner an, dass

in jeder Bewegung des Unvollständigen zum Vollständigen das

letztere der Hauptbegriff und der Anstoss zu dieser Bewegung sei,

so dass folglich bei Aristoteles die Form als die bewegende Ursache

der Matei'ie aufzufassen ist. Es spielen also hier Raumbetrachtungen,

oder, abstrakt genommen, geometrische Prinzipien eine Hauptrolle.
Aber auch bei weniger hoch entwickelten Völkern des Altertums,

ja sogar bei den halbwilden und wilden Völkerstämmen der

Gegenwart zeigt es sich, dass gewisse Ordnungserscheinungen in der
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Natur und im Leben als solche erkannt und abstrahiert werden.
Man denke nur an die Arbeitsgesänge bei verschiedenen Beschäftigungen,

an das Verhältnis zwischen Arbeit und Rhythmus, wie es

von I)1 Karl Bücher in interessanter und lehrreicher Weise dargetan

wurde. ')
Das regelmässige Wiederkehren gewisser Naturerscheinungen

und Begebenheiten im menschlichen Letten, die regelmässige periodische

Bewegung und das wiederholte Auftreten gruppenmässiger
Anordnungen bilden Hauptfaktoren bei der Auffassung der
Erfahrungswelt und der Gestaltung des geistigen Lebens.

Seit Plato und Pythagoras, seit dem schönen aristotelischen
Denken und den geistreichen Spekulationen von Jahrhunderten der
Philosophie haben wir gelernt, die Welt von ganz andern Gesichtspunkten

zu betrachten, und in der menschlichen Erkenntnis hat
sich vieles geändert und abgeklärt. Anstatt vier allgemeine Prinzipien

anzunehmen, haben wir ein grosses Prinzip: die Erhaltung von
Materie und Energie. Dasselbe gründet sich auf Kraft, Stoff und

Bewegung, oder besser gesagt, es drückt eine konstante Beziehung
zwischen denselben aus. Stoff beansprucht Kaum und die Form
erscheint als Grenzprozess in der Verschiebung oder Bewegung der
Materie. Das Prinzip von der Erhaltung von Materie und Energie
ist das oberste Gesetz der physischen Welt. Bis dahin ist es der
Wissenschaft nicht gelungen, Gesetze von solcher Allgemeinheit für
die Erscheinungen der organischen und psychischen Welt
aufzustellen oder zu entdecken. Die Abstammungslehre mag als
Ausnahme betrachtet werden, aber man darf nicht vergessen, dass die

organische Evolution nur die historische Entwicklung der Lebewesen
und nicht den Mechanismus des Lebens erklärt.

Obschon Plato die Mathematik von der Philosophie
ausgeschlossen hatte, so betrachtete er sie doch als unentbehrliche
Hilfswissenschaft zum philosophischen Studium. Heute jedoch ist es rein
unmöglich, in vernünftiger Weise in das Wesen des Raumes und
der Zeit einzudringen, ohne dass das bezügliche Studium ebensowohl
mathematisch als philosophisch genannt werden kann. Wer mit dem

Inhalte der nichteuklidischen und mehrdimensionalen Geometrieen

vertraut ist, weiss, dass die Forschungen eines Lobatschewsky, eines

Bolyai und einer ganzen Anzahl neuerer Mathematiker notwendig

waren, um Licht in das Wesen des Raumes zu bringen.

') Arbeit und Rhythmus, Leipzig, Teubner, 1902.
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Als Hauptsatz darf aufgestellt werden, dass unsere Raunian-

schaiiung nicht a priori nach Kantschem Muster bedingt ist, sondern

dass sie sich allmälig aus der Erfahrung herausgebildet hat. Infolge
dieser Erkenntnis lässt sich denn auch der Raum, der Ort, wo sich

die Naturgegenstände befinden und wo sich die Vorgänge der Natur
abspielen, geometrisch durch verschiedene Bilder darstellen ') und

es darf nicht behauptet, werden, dass nur ein bestimmtes unter diesen

Bildern der Wirklichkeit entspreche.
Hatten die antiken Völker das Bedürfnis, in ihren Betrachtungen

das Gesetzmässige, die Zahl und die Form herauszuschälen, so ist,

das heute um so mehr der Fall. Neben dem wissenschaftlichen Selbstzweck,

der dabei verfolgt wird, stellt sich aus praktischen Gründen
die absolute Notwendigkeit, heraus, solche Studien zu unternehmen,
um in viele Gebiete der menschlichen Erkenntnis tiefer eindringen
zu können und um vieles besser zu begreifen. -)

Wenn nun von Mathematik in der Natur die Rede ist, so wird
man nach dem, was vorausgeht, nicht mehr über eine solche
Prätention erstaunt sein. Um so leichter wird die Erklärung zu der

folgenden diskreten Auswahl von Beispielen sein, welche gesetzmiissig
formuliert ein mathematisches Gepräge an sich tragen. Von da aus

ergibt sich dann der Übergang zur Mathematik in der Kunst von selbst.

II.
Ks würde zu weit führen, auch nur auf die Hauptgesetze der

physikalischen und chemischen Erscheinungen und ihre mathematische

Formulierung einzutreten und es genügt, hier in Erinnerung zu rufen,
dass die grössten Triumphe der Astronomie und teilweise auch der

Physik aus mathematischen Berechnungen hervorgingen. Die
Kristallsysteme- und -Formen liefern geradezu ein typisches Beispiel rein

geometrischer Zusammenhänge. Alle kristallographischen Grundformen

können aus der geometrischen Bewegungslehre und der

Spiegelung abgeleitet werden und es zeigt sich dabei, dass es

theoretisch 230 verschiedene regelmässige J'unktgruppen gibt, welche

sämtlichen möglichen Kristallformen entsprechen.'1) Interessant und

') Poincare: La Science el I'Hypothese.
2) Siehe Henri Poincare: Der Wert der Wissenschaft, Leipzig',

Teubner, 1900.

') I'. Groth: Physikalische Kristallographie, Leipzig, W. Engelmann, 1895.
A. S c ti o e n f 1 i e s : Kristallsysteme und Kristallslruklur. Leipzig, Teubner, 1891.



:>i;o

für (lie Zuverlässigkeit mathematischer Forschung charakteristisch
ist es jedoch, dass umgekehrt nicht alle Kristall formen, welche

theoretisch möglich sind, in der Natur bekannt sind und mau isl

geneigt anzunehmen, dass die vermissten Formen wirklich existieren
und später gefunden werden möchten.

Bei der Bewegung der Gletscher in normaler Gestaltung springen
dem Beobachter auf den ersten Blick die Strömungslinien und Gletscherspalten

in die Augen, welche in mathematischem Sinne ein System

Fio-. 1.

orthogonaler Trajektorien bilden, wie in Fig. 1 angedeutet ist. Die

Spalten stellen hier teilweise die Linien gleicher Geschwindigkeit,
teilweise die Linien maximaler Zugspannung dar. Man hat es also

bei der Gletscherbewegung mit einer Kombination von Strömungs-
und Spannungstrajektorien zu tun. Die Spannungstrajektorien können

am einfachsten durch die projektive Involution der Schnittrichtungen
und Spannungen in einem Spamiungsfelde erklärt werden.l) In jeder
Involution kommt bekanntlich ein Kechtwinkelpar vor, welches der

maximalen und minimalen Spannung in jedem Punkte des Feldes

') Ritter: Graphische Hlalik, L B S. 198—131.
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entspricht und dadurch erklärt sich dio Orlhogonalitiit dor Trajek-
torien. Als ausserordenflipli interessantes Beispiel eines Spannungs-
l'oldes mit elliptischer Involution führe ich die Spaltenbildung
auftrocknenden Schlanimfelder an, wie sie sieh nach einer l'bersrhwem-

mung bilden. Das gleiche gilt für die Spällelung stark lackierter
oder bemalter Ilolzflächeu, ') Fig. 2. In beiden Fällen stehen die

zahlreichen Spalten und Spältrhen, welche sieh beim Auftrocknen
bilden, last ausnahmslos senkrecht aufeinander und haben ihren (Irund
in der Involution ausschliesslicher Zugspannungen in jedem Punkte

des betreffenden Feldes. Bei dieser Involution wirken auf das

Rechtwinkelpar nur Zugspannungen. Fine davon isl die maximale,
die andere die minimale Spannung. Man sollte deshalb erwarten,
dass die maximalen Zugspannungsspalten ein System mehr oder

woniger paralleler Kurven bildeten, was jedoch nicht der Fall ist.

Man kann diese Abweichung, wie sie in Fig. 2 zur Darstellung
kommt, auf folgende Weise erklären: Durch die Bildung einer Spalte

wird die maximale Zugspannung und Beanspruchung senkrecht auf

ihre Richtung aufgehoben, so dass nun die frühere minimale Span-

') A. Enicli: An Introduction to l'rojec/ire Geometry and He Aiiplicutions.
S. 2159. New York, .lohn Wiley X Sons, i'JOö.



362

nung in der Richtung der Spalte zur maximalen Spannung in diesem
Teile des Feldes wird. Der nächste Riss wird sich deshalb senkrecht
zur ersten Spalte bilden.

Obschon der mechanischen Darstellung der Lebenserscheinungen
und der organischen Formen ausserordentliche Schwierigkeiten
entgegentreten und kaum an eine mathematische Formulierung biologischer
Probleme gedacht werden kann, so sieht der aufmerksame Beobachter
im Pflanzen- und Tierreich doch manches, was ein mathematisches
Gepräge an sich trägt.

Man denke nur an das Mendelsche Gesetz der Vererbung und
seine Verifikation durch die interessanten Untersuchungen von Prof.
L. Cuenot in Nancy über die Kreuzung weisser und grauer Mäuse ')
und von Prof. A. Lang über Varietätenbildung bei Gartenschnecken.2)

Durch die Kreuzung der gewöhnlichen grauen Maus mit der weissen
Albino Maus entstehen lauter graue Nachkommen; das graue Element
G dominiert, während das weisse Element W durch das graue
verborgen ist. Kreuzt man dann zwei der Nachkommen, so entstehen
nicht nur graue, sondern auch weisse Mäuse und zwar verhält sich
die Anzahl der grauen zu der Anzahl der weissen, wie 3 : 1. Um
diese von Mendel allgemein beobachtete Tatsache zu erklären, wird
die Voraussetzung gemacht, dass die elterlichen Elemente G und W
sich bei der Kreuzung nicht vereinigen, sie bleiben getrennt, eine

Hälfte besteht aus G-, die andere Hälfte aus W-Elementen. Bei
der Zeugung sind nun unter der G- und W-Elemente folgende
Kombinationen in gleicher Anzahl möglich

G und G,
G und W,
W und G,
W und W.

Jede dieser Kombinationen gibt die Grundlage zu einem
Nachkommen und wo ein G-Element in der Kombination ist, dominiert
das Grau. Unter den Nachkommen werden also durchschnittlich
drei grau und einer weiss sein, was quantitativ vollständig mit den

Experimenten verschiedener Forscher auf diesem Gebiete überein-

') Revue Seientifique, Paris (28. April 1906).
2) Über die Mendelsohen Gesetze, Art und Varielätenbildung, Mutation und

Variation, insbesondere bei unsern Hain- und Gartenschnecken. Verhandlungen
der Schweiz. Naturf. Gesellschaft in Luzern, 1905.
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stimmt. Das Resultat kann durch die Formel dargestellt werden

GW. GW 1 GG + 2 GW + 1 WW.
Dieses Gesetz, dem in allgemeiner Formulierung wohl auch eine

grosse Bedeutung in der menschlichen Gesellschaft zukommt, geht
also in seiner Begründung aus der Kombinationslehre, einem rein
formalen mathematischen Gebiete hervor.

In der Biometrie ist bekannt, dass Grösse und Anzahl der Samen

einer Pflanze in einem gesetzmässigen Zusammenhang stehen. Trägt
man die Durchmesser der Samen als Abscissen und die Anzahl der
Samen von demselben Durchmesser als Ordinaten ab, so entstehen

Linienzüge, welche sich mehr oder weniger der bekannten
Fehlerhäufigkeitskurve der Wahrscheinlichkeitsrechnung J) nähern und für
die entsprechenden Pflanzen durchaus charakteristisch sind.

Auffallend in mathematischem Sinne ist auch die Anordnung
des Blätterstandes bei verschiedenen Pflanzen. Sie geschieht nach

ganz bestimmten Gesetzen und ist für jede Spezies konstant. Je
zwei aufeinanderfolgende Blätter derselben Spezies sind stets durch

denselben Betrag ^ des Umfanges von einander getrennt. Die

Brüche welche wirklich bei der Anordnung alternierender Blätter

erscheinen, sind die Näherungsbrüche des Kettenbruches
1

1 -j-
d. h. 1, —, —, —, —, —, und sind die Glieder einer spe-

2 3 5 8 13

ziellen Lame'schen Reihe. (2) Sie werden Divergenzen genannt und
weisen ein rationelles Verhältnis zum Achsenumfang auf, so dass

auf der Grundspirale, auf der Schraubenlinie, welche die Blätter
trägt, nach einem bestimmten Cyclus jedes Blatt vertikal zu einem

tieferliegenden zu stehen kommt. Der Zweck der Natur in dieser

sozusagen raffiniert mathematischen Anordnung besteht in dermöglichst
gleichmässigen Verteilung der Blätter an der gemeinsamen Achse.

Dadurch wird die beste Ausnützung des Raumes, die gleichmässige

Belastung der Achse und bei vertikaler Stellung auch die beste

Benutzung der Beleuchtung erreicht.2)

') J. Betrand: Calcul des Probabililes, S. 175—246 (Paris).
2) Strassburger: Lehrbuch der Botanik für Hochschulen, S. 31—35.
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l)ie Schraubcnbowegung kommt bei den kSchlingp Hunzen von.
Mechanisch ist die Sohraubung (ladunch begründet, dass der dem

Licht zugewandte Teil der Pt'lanzeiiachse sich besser entwickelt
und folglich auch mehr ausdehnt und eine Biegung um die umrankte
Stelle verursacht. Dass aber die meisten Schlinggewächse mit wenigen
Ausnahmen (Hopfen, Geisblatt, Polygonum Convolvulus) Linkswindor
sind, wird durch den Geotropismus physiologisch bloss umschrieben,
aber mechanisch nicht erklärt. Eigentümlich ist es nach meinen

eigenen Beobachtungen im Pelscngebirge auch, dass die Föhren und

Bergtannen in der Nähe der Waldgrenze unter dem Einflüsse der
durch die Winde verursachten Torsion und Biegung eine linksgängige
Anordnung der Lasern zeigen.

Was die Form der Pflanzenblätter anbelangt, so sind es nach

Bodo llabenieht ') vielfach äussere Einflüsse der Witterung, mechanische

Einwirkungen, welche die Form der Blätter bedingen. Es

gelang diesem Forscher, die meisten Blattformcn analytisch durch

Gleichungen von der Form

r f (cos (/)
in Polarcoordinaten darzustellen, und er gibt sich der Hoffnung hin,
dass es mit der Zeit gelingen müsse, den physiologischen Beweis

für die Notwendigkeit dieser bestimmten Formen zu erbringen.
Als ausgezeichnetes Beispiel mathematischer Notwendigkeit

erwähne ich die Anordnung des innern Blütenstandes einer vollkommenen

Wucherblume (Chrysanthemum Leucanthemum) und der
gewöhnlichen Kamille (Matricaria Chamomilla). Bei diesen Blumen
wachsen die Durchmesser der innern Bliitehen proportional mit der

Entfernung vom Mittelpunkt, wie es nach der radialen Vergrösserung
der Fläche nach aussen ganz natürlich erscheint,. Damit alter bei

diesem Gesetz die grösst mögliche Ausnützung der Gesamtfläche
durch die grösst mögliche Anzahl von Teilblüten erzielt, werde,
müssen je drei benachbarte Blütenkreise einander gegenseitig berühren,
wie es auch bei einer Anordnung gleich grosser Kreise in einem

ebenen rechteckigen Leide der Lall ist. Um diese Behauptung zu

beweisen, stellen wir zuerst fest, dass der Flächeninhalt irgend einer

Anordnung von Kreisen im Rechteck in der Form p ,r ij dargestellt
werden kann, wobei p alle möglichen Werte o \ p ^ i annehmen

kann. Durch irgend eine Transformation mit Ausschluss von Sin-

') Beitrüge zur mathematischen Begründung einer Morphologie der Blatter,
Berlin, Otto Salle, 1905
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galantäten geht nun der Ausdruck p x y über in eine Funktion

p. F (X, )') des transformierten Feldes. 1st nun m derjenige Wert
von p, welcher p ./ y zu einem Maximum macht, so wird auch

in. F(\, Y) ein Maximum im neuen Fehle sein. Fasst man das

rechteckige Feld als in einer komplexen Zahlenebene gelegen auf
und macht die Transformation l)

% 6S Cx~iu
so dass

A' e1 cos y, )' — eJ'. sin y

wird, so geht das System der parallelen Geraden ,r konst. in
das System konzentrischer Kreise

•V2-|- T2= e2''',
und dasjenige der Parallelen y — konst. in das Büschel

F X tang y
über. Die Funktion e" hat die Periode 2 i jt so class der Streifen
der 3 - Ebene zwischen // xr und y — — jr gerade einfach und
vollständig auf die Z - Ebene abgebildet wird. Teilt man diesen Streifen

Jf
in Teilstreifen von — Masseinheiten Abstand und betrachtet die

8

Teillinien als Orte gleichgrosser sich berührender Kreise, so beträgt
der Radius aller dieser Kreise nach Fig. 3

') Siehe F r i e k e : Knrzge/asste Vorlesungen über verschiedene Gebiete der
höhern Mathematik. Analytisch-funktional-theoretischer Teil. Leipzig-, Teub-
ner, 1900.
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A 1) V, 1) tan .40 - - — —
8 S3 24

Bezeichnet man den lialben Winkel, welchen nach der Transformation
die gemeinschaftlichen Tangenten einer radialen Reihe sich berührender
Kreise miteinander einschlössen mit a, so ist also

und « 12° 40' 28". Mit Hilfe dieses Winkels war es leicht möglich,

Fig. 4 zu zeichnen, welche genau die Anordnung des innern
Blutenstandes einer vollkommenen Chrysanthemum Lencanthemum

darstellt. In Polarcoordinatcn der K-Ebene ist 0— Bund g Vä* -)
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und der Geraden y (or — a) m in der z-Ebene entspricht die lo-

garithmische Spirale
<k (log <> — it) m

oder wenn man die Konstanten a log i> und m — 1 /l> setzt
k '<!>

H I) e

In Fig. 4 bilden die Mittelpunkte der Kreise, welche den sich

berührenden Kreisen in der Eichtling von A nach C und von B

nach C entsprechen logarithmische Spiralen, welche sich unter
Winkeln von 60°, respektive 120° schneiden. Eine solche Spirale
ist durch die Mittelpunkte der schraffierten Kreise angedeutet.

Fig. 5.

lu der Zoologie sind noch die prächtigen Spiralen der Schneckengehäuse,

Amoniten, der regelmässigen ßadiolarien etc. zu erwähnen.
Es gibt jedoch kaum ein Lebewesen, welches das geometrische Auge
in grösserem Masse anzieht, als der Plan eines ausgebreiteten
Pfauenschwanzes, in welchem jede Feder vollkommen und am richtigen
Platze ist, Fig. 5. Die Kurven, welche sich nach rechts und links
winden, sind archimedische Spiralen und die ganze Zeichnung ist
symmetrisch.

III.
Wenden wir uns nun zur Kunst, so kann festgestellt werden,

dass in allen Gebieten derselben gewisse Gesetzmässigkeiten, wie
sie aus Naturbetrachtungen hervorgehen, von grundlegender Be-
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deutung sind. Wenn sieh diese G-esetzmässigkeitcn iiueli niciit in
einen metaphysischen Formalismus auflösen lassen, wie es die Alten
taten, so können sie doch vielfach zur Vereinfachung ihrer Auffassung
in mathematischem Gewände dargestellt werden. Bei der Musik und

Dichtung sind es rhythmische Bewegungen, periodische
Wiederholungen, welche für den mechanischen Teil der effektiven Kunst

massgebend sind, ifathematisch werden solche periodische Erscheinungen

durch Kouriersche Keilten dargestellt. Karl Bücher hat
denn auch gezeigt, ') dass ursprünglich Körperbewegung, Arbeit,
Musik und Dichtung in engster Wechselbeziehung waren und dass

auch heute dieser durch Rhythmus hervorgebrachte Zusammenhang
noch besteht. Man denke nur an die Massenübungen bei den grossen
nationalen Turnfesten, an den Taktschritt des Militärs unter Musikoder

Trommelbegleitung etc. In dieser Beziehung sagt Fr. Nietzsche
in seiner „fröhlichen Wissenschaft"2): „Der Rhythmus ist ein Zwang,
er erzeugt eine unüberwindliche Lust nachzugeben, mit einzustimmen;
nicht nur der Schritt der Küsse, auch die Seele selber geht dem

Takte nach."

Kür die bildenden Künste bildet, die Ausscnwelt die Hauptquellc
der artistischen Motive und ihre Wertschätzung in ästhetischer
Beziehung ist teilweise durch die (fesetzmässigkeiten in der Erscheinuugs-
welt, wie solche im zweiten Teile aufgedeckt wurden, teilweise durch
die Physiologie der menschlichen Sinne in ihrem psychologischen
Zusammenhange bedingt. Auch hier spielen gesetzmässig wiederholte
Erscheinungen, eine rhythmische Wiederkehr bildlicher Eindrücke
eine bedeutende Rolle.

Beim weitern Verfolgen dieser Zusammenhänge werde ich mich
der Einfachheit halber auf die Betrachtung elementarer ästhetischer
Können beschränken, um die Prinzipien zu illustrieren, welche solche

Können beherrschen und die unendlichen Erzeugnisse der Einbildung
und Originalität beiseite lassen.:!)

Damit ein freies organisches Wesen keinen unnatürlichen
Spannungen und Lagen unterworfen sei, ist notwendig, dass sein Schwer-

') Loc <:it. S. 312—377.

-) Die fröhliche Wissenschaft (Leipzig' 1887), S. 105.

') Die folgenden Ausführungen sind iter Hauptsache nach meinem Artikel
j> Mathematical Principles of Esthetic Forms« entnommen, welcher im »Monist«,
Vol X!. Nr. 1, Oktober 1900, Chicago, The Open Court Publishing Co. erschien,
und mit Erlaubnis des Editors hier veröffentlicht.
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Natur hat, diese mechanische Bedingung1 in einfachster Weise dadurch

erfüllt, dass sie die blassen der meisten Lebewesen symmetrisch in

Bezug auf Punkte, (icraden und Ebenen angeordnet hat. Obschon

dieses Prinzip für das Tierreich und für einen grossen Teil der

Pflanzenwelt, gilt, so ist es doch nicht ganz allgemein; aber es

genügt, 11111 darzutun, dass die Symmetrie eines der fundamentalen

Prinzipien ist, welche ästhetische Formen regieren. Symmetrie
einfacher oder höherer Art ist in den meisten Fällen eine notwendige
Eigenschaft ästhetischer Formen. Ein Mensch mit einem amputierten
Arm, oder nur mit einem Ohr ist keine ästhetische Erscheinung,
weil die Symmetrie zerstört ist. Aus demselben Grunde stimmt ein

Baum, welcher auf einer Seite all seiner Aste beraubt, oder geneigt
Lt, nicht zu unserer Auffassung einer idealen Baumform.

Das grossenteils von der Natur diktierte Gefühl für symmetrische
Formen ist im menschlichen Geiste so stark entwickelt., dass es hei

der Schaffung künstlerischer Formen konventionell geworden ist.
Es hat die Architektur durch Jahrhunderte bis zur heutigen Zeit
dominiert. Grosse Denkmäler der Baukunst, welche allgemein als

schön betrachtet werden, stehen niemals im Widerspruch zu den

Gesetzen der Symmetrie.
Physiologisch ist die Wahrnehmung symmetrischer Formen durch

die anatomische Struktur des Auges bedingt, wie Professor Mach

nachgewiesen hat. ') Der ganze Apparat des Auges ist symmetrisch
in Bezug auf die Mittelebene des Kopfes und ist fähig, vollkommen
symmetrische Bewegungen auszuführen. Visuelle Bewegungen dieser

Art erzeugen deshalb gleiche oder annähernd gleiche Raumempfindungen.

Auf diese Weise kann die Gleichheit symmetrischer Figuren
in Bezug auf eine vertikale Axe leicht erkannt, werden. Das Prinzip
der Symmetrie macht sich ferner auch bei gewissen Bewegungen von
Händen und Füssen geltend, so lange sie nicht durch das Bewussf-
sein kontrolliert werden.

Ebenso wichtig als das Prinzip der Symmetrie ist für die

Beurteilung ästhetischer Formen dasjenige der Repetition, des schon

erwähnten Rhythmus visueller Erscheinungen, welcher psychologisch
offenbar dieselbe Quelle hat, wie Musik und Dichtung.

') Contributions to the Anah/sis of the Sensations, S. 41- 8t. Popular
Science. Lectures. On Sj/mmelrp, S. 8!) —lOU. — lleides publiziert von »The
Open Court Publishing Co.«, Chieugo.
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Bei der ursprünglichen Entwickelung des menschlichen (ieistes
werden Figuren durcli physiologische Eigenschaften und nicht durch

geometrische Betrachtungen unterschieden. Die (leomelrie ist jedoch
ein Produkt des menschlichen GeRtes und gründet sich axiomatisch
auf ])riniitive ("fesichts- und Muskelenipfindungen. Diese wichtige
Tatsache macht es möglich, rein geometrische Gesetze aufzustellen,
welche zum Teil ästhetische Formen regieren. Ihre Verträglichkeit
mit den fundamentalen Erfahrungstatsachen gewisser angenehmer
Empfindungen führt uns auf eine geometrische Theorie, welche im

Stande ist, einige der Grundlagen artistische)'Formen zu erklären.')

Bemerkenswert ist dabei, dass Miss Ethel Puffer vom Wollesley
College, Mass. durch rein psychologische Betrachtungen zu Uesultaten

gelangte, welche sich der Hauptsache mich mathematisch formuliert
mit den unsrigen decken.-)

Welches ist nun in erster Linie das abstrakte Gesetz der
Symmetrie? Um diese Frage zu beantworten, muss beachtet werden,

dass es in der Geometrie zwei Methoden gibt, um geometrische
Formen zu untersuchen.:1; Die erste unil'asst den Gruppenbegriff,
welcher im einfachsten Falle darin bestellt, dass zwei oder mehrere
lineare Bewegungen im Räume immer durch eine einzige Bewegung
derselben Art ersetzt werden können. Die Bewegung ist die
fundamentale Idee dieser Geometrie. Die zweite gründet sich auf den

sichtbaren Raum und braucht Lichtstrahlen oder Geraden als

aufbauende Elemente. Diese eignet sich besser zur Diskussion dci-
jenigen Formen, welche sich auf axiale und zentrale Symmetrie
gründen. Metrische Eigenschaften ergeben sich hier als bestimmte
Funktionen des Doppelverhältnisscs von vier linearen Elementen.

') Uber weitere Faktoren, welche bei der Beurteilung einer Kmi.stform
in Betracht kommen, findet der Leser Aufschluss in Professor Wundt's l'lii/sio-
hujiselie fsi/ehologie, S. 17S). Man konsultiere auch Soret: Des conditions
/ihi/sii/urs de tu perception du beau, (lent', 181)2.

-) Auf diese Übereinstimmung wurde der Verfasser durch <tie Rede des

Herrn Professor J. Royce von der Harvard Universität am (Congress der Künste
und Wissenschaften in St. Louis, sowie in verdankenswerfer Weise durch briefliche

Mitteilung aufmerksam gemacht. Die Untersuchungen Miss Puffers wurden
unter dem Titel »The Psychology of Beauty« bei Houghton Mifflin & Co..

Boston, veröffentlicht.
'•) Näheres darüber hei Coin earn: 'On the Foundations of (leometri/.

The Monist, Vol. IX, Nr. 1. Ferner S o [i Ii us Lie: Theorie der TrunsJ'ormations-
tjruppen und Theorie, der lieriihrumjslrnnsformntionen.



Nimmt man z. B. vier aufeinanderfolgende Punkte A BUD einer
Geraden, so kann eines der Doppelverhältnisse dieser Punkte durch

/I U A D

B U B D

Fi"-, 6 a.

oder durch das gleich-
hehedeutende Symbol
(ABCD) definiert werden.

Wählt man einen

der Punkte, etwa Z),

unendlich fern und das
Segment BU als Längeneinheit,

so ist der Wert des

Doppelverhältnisses
(A BUD) gleich dem Län-

genmasse des Segmentes
AU. Der einfachste Fall
axialer Symmetrie,
derjenige zweier Punkte A
und J1 in Bezug auf einen

Punkt U (auch radiale
Synunet rie) geht als
spezieller Fall aus dem

Poppelverhältnis (A B U D)

—1 hervor. Die vier
Punkte sind involuto-
risch und gehen in die

verlangte Symmetrie
über, wenn der Punkt D

ins Unendliche rückt. In
der Geometrie bedeutet
das Wort Involution,
dass in einer gegebenen

Konfiguration eine
Verwand tschaft zwischen
den Kiementen besteht, :

welche sich nicht ändert, Fig. Gl>.

wenn man irgendwelche Elemente durch ihre entsprechenden ersetzt.
Die Involution ist also eines der hauptsächlichsten Merkmale der
Symmetrie. Eine andere wichtige Eigenschaft der Symmetrie ist die
Unveränderlichkeit ihres mathematischen Ausdruckes durch die
projektiven Transformationen des Raumes und deckt sich mit dem funda-
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mentalen Gesetz den Perspektive. Aus diesem Grunde geht die

Symmetrie in unserem Anschauungsraume nicht verloren, wie das

deutlich aus einer Frontalansicht und einer Perspektive eines sym¬
metrischen Bauwerkes (Bogen
des Titus), Fig. (>a und (5 b,
sowie der zentralen
Symmetrie, Fig. 7, hervorgeht.

Ein zweiter unerlässlicher
Faktor beim Studium
ästhetischer Formen ist das Prinzip
der Repetition, des visuellen

Rhythmus, und ist
mathematisch durch die Gruppentheorie

begründet. Um dieses

Prinzip zu illustrieren, wollen wir zuerst zwei Bewegungsgruppen
der Translation und der Rotation betrachten. Die Dreiecke

A, Ii, C, K, Fig. 8, nehmen alle Stellen ein, welche ihnen

durch die Translationen einer Gruppe angewiesen werden. In der

Fig. 8

Tat können irgend zwei dieser Dreiecke durch eine einzige Translation

und ihre inverse verwechselt werden. Irgend eine Folge
von Translationen, z.B. A DG CK kann durch eine einzige Translation

A l'J dieser Gruppe ersetzt werden. Dasselbe gilt l'ür eine
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Rotationsbewegung- eines Elementes um ein bestimmtes Zentrum,
Fig. 9, und, wie schon erwähnt, für eine perspektivische
Transformation einer solchen, Fig. 7.

In der Dekorationsmalerei, besonders in der Ornamentik werden
Kombinationen von Translationen, Rotationen und Synunetricen sehr

häufig zur Anwendung gebracht. I)ic Beziehungen zwischen solchen
kombinierten regelmässigen Anordnungen sind in Fig. lOgczeigt, in
welcher drei sich unter je 60" in einem Funkte schneidenden Synr
metrieaxen I, II, HI angenommen wurden. Spiegelt man (axiale
Symmetrie) das Formelement an allen drei Axen, so werden die

neuen gleichen Formen AP, An, AT erzeugt. Spiegelt man jede der¬

selben an denselben Axen, so entsteht die komplete Fig. 10, wobei

jedoch noch drei andere Symmetrie — oder Spiegelungsachsen a, b, r
entstellen. Zwei Spiegelungen von Ai, an / und II nacheinander

ausgeführt, erzeugen As und sind gleichbedeutend mit einer Rotation
von 120° von At, um das Zentrum 0. Tu der1 Reihe aufeinanderfolgender

Spiegelungen (Ai Ai'), (Ad A»), (A:s B-i), (Ik' Bs), (lh Bs) sind

As und Bs in radialer Symmetrie. Daraus geht hervor, dass diese

Figur gewissermassen die Prinzipien der Strahlen- und Bewegungsgeometrie

vereinigt und als charakteristischer Fall einer grossen

Klasse ornamentaler Formen betrachtet werden kann, bei welchen

irgend eine Anzahl regulär verteilter Axen als Grundlage dient.

Wie in der Ebene, so werden auch regelmässige Wiederholungen

von Punkten, Geraden und Mächen im Räume von Gruppen- und

o

Fig. Ü.

ö

Fig. 10.



374

Nynunetrieeigenschaften beherrscht, so z. B. die regulären Polyeder
und die übrigen Kristallformen, wie hei den NaturL'ornien erwähnt

wurde. Als erstklassiges Beispiel dieser Art soll

hier das Ikosaeder angeführt werden.1)
Das Ikosaeder, Fig. 11, wird von 20

regelmässigen Dreiecken, 30 Kanten und 12 Kcken

begrenzt. ,1 edem Dreieck, jeder Kante und jeder
Ecke entspricht ein um (50° gedrehtes
gegenüberliegendes Dreieck, eine gegenüberliegende
Kante und eine gegenüberliegende Ecke, so

dass der Körper 10 Flächenmittelaxen, lOKan-
tenmittelaxcn und (> Ilauptaxen hat. Für jede

S3

Fig. 12.

Flächenaxe gibt es drei verschiedene Rotationen, durch welche der

Körper mit sich selbst zur Deckung gelangt. Jede Hauptaxe lässt

') F. Klein: Vorlesungen über ilus Ikosaeder, Leipzig, 1885.
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fünf und jede Kanteuaxe zwei Rotationen mit derselben Eigenschaft
zu. Jede durch zwei gegenüberliegende Kanten gehende Ebene ist

eine 8ynnnelrieebene und es gibt 15 dieser Art. Jlacht man eine

stenographische Projektion des Ikosaeders in Bezug auf eine

umgeschriebene Kugel und eine Ecke als Zentrum, Big. 12, so gehen

daraus die Bruppeneigen,schalten dieses ausserordentlich schönen und

interessanten Körpers in leichtverständlicher Weise hervor. Die
15 Synnuetrieebenen schneiden die umgeschriebene Kugel in 15 Kreisen,
welche in Big. 12 alle dargestellt, sind. BUn! derselben, diejenigen
welche durch V gehen, werden als Deration projiciert. Eine Spiegelung
an jeder dieser Axen und eine Dotation von 72° um I* transformieren
die ganze Bigur jedesmal in sich selbst.

Es wurde bereits festgestellt, dass perspektivische Transformationen

den Blindruck axialer und zentraler Symmetrie nicht zerstören.
Dasselbe ist der Ball in Bezug auf die

gruppenmässige Anordnung elementarer
Bonnen in einer Konfigural ion und ihrer
Perspektive, wie bereits aus Big. 7 und

hier aus Big. B! hervorgeht.
Die Transformation durch reeiproke

Radien1) ist eine weitere geometrische
Verwandtschaft, welche den Charakter
einer gesetzmässigen Wiederholung
unverändert tässt.

Diese Transformalion ist eine
unerschöpfliche Quelle für das Blntwerfen von urnamenteu; es ist
jedoch unwahrscheinlich, dass sie jemals in bewusster Weise zu

') Die Aufstellung des geometrischen Prinzipes der reeiproken .Radien

(Inversion) ist verhältnismässig neuem Datums und ist in manchem (iebiot der
neuem mathematischen Forschung; von gmsster Bedeutung-. Von gleicher
Wichtigkeit ist es für die mathematische Physik, wie durch Lord Kelvin in
seinem Treatise of Natural l'hiloso/ihy und eine Anzahl anderer Physiker
gezeigt wurde.

i'm die Inversion im Räume zu definieren, wird eine Kinheitskugel in
fixer Stellung angenommen. Kin Punkt A und ein anderer A' sind dann in
der Inversion entsprechend, wenn OA 0 a' 1 ist. Sind //, z) und z')
die t'arterischen Koordinaten von .1 und A', so wird die Transformation der
Inversion analytisch ausgedrückt durchtr __

II -

D I .</' I V ' !' D | ,f I '7 I tr | V
"

Bei der Transformation in der Kbene fallen einfach die ;. aus.



diesem Zwecke verwendet wurde. Die Wirkung einer solchen

Umformung- auf Kreisreihen, Fig. Fi, kommt in Fig. 1-1 zur Darstellung.

Eine der charakteristischen Kigenschal'sen der Inversion bestellt
darin, dass sie Kreise in andere Kreise und unendlich kleine Figuren
in ähnliche unendlich kleine Figuren verwandelt, kurz die Schuitt-
winkelverhältnisse von Figuren unverändert, lässt. Eine solche
Transformation ist auch die stereographische Projektion, wie sie auf das

Ikosaeder angewandt wurde. Alle solche Transformationen gehören

zur Klasse der zirkulären Transformationen und zeichnen sich
dadurch aus, dass sie Kreise in Kreise und Kugeln in Kugeln übei-

fiihren, oder dass sie das „Absolute" im Räume invariant lassen.

durch die Gefälligkeit ihrer Formen und durch ihre enge Beziehung
mit Kreissystemen ausgezeichnet sind. Fig. 15 stellt eine Kurve
dar, welche diese Eigenschaft besitzt. Sie erscheint als Umhüllung
aller Kreise, welche durch einen festen Punkt gehen und deren

Mittelpunkte auf einem festen Kreise liegen und ist eine bizirculare
Kurve 4. Ordnung mit endlichem Doppelpunkt. Man vergleiche
damit z. B. auch Fig. 4, ein solches System von Kreisen, wie es

in der Natur vorkommt. Es ist jedoch nicht notwendig, dass alle

gefälligen Formen mathematisch die imaginären Kreispunkte der
Ebene, oder den imaginären Kugelkreis des Baumes enthalten
müssen. Irgend eine Form, welche durch ein einheitliches
geometrisches Gesetz bestimmt ist, kann als Element einer gefälligen An-

Daraus lässt sich der
Sellins,s ziehen, dassdas

Absolute im Räume,
obschon es imaginär
ist und über unser
Yorstellungsverniögen

hinausgeht, ein wichtiger

Faktor bei der
Evolution ästhetischer
Formen ist. Diese
Tatsache geht auch aus

der merkwürdigen
Erscheinung hervor, dass

diejenigen Linien und

Flächen, welche durch
das Absolute gehen,
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Ordnung oder eines Ornamentes dienen. Es gibt Annäherungen zu

dieser Regel, welche das Auge täuschen mögen und welche aus

diesem Grunde gerechtfertigt sind. Aber gar oft werden grobe
Annäherungen substituiert, nur um die Unkenntnis wahrer Methoden

und Tatsachen zu verdecken. Es gibt Maler und Dekorateure,
welche Ellipsen durch plumpe Ovale ersetzen, wo Ellipsen am

richtigen Platze wären; Durchdringungskurven zylindrischer und
konischer Flächen durch unmögliche Produkte einer fehlerhaften

Anschauung; und richtige Gesetze der Perspektive durch seichte,
der Natur falsch abgeguckte Regeln.

Kürzlich wurden auch geometrische Methoden entwickelt,1)
welche ermöglichen, die abstrakten Gesetze einer gewissen Klasse

von Ornamenten aufzustellen, die zum Gebiete der Dekorationskunst
gehören. Es würde jedoch zu weit führen, darauf weiter einzugehen

und es soll nur erwähnt werden, dass der Zweck dieser

Untersuchungen darin besteht, geschlängelte kontinuierliche Linien
zu konstruieren, welche keine Tangente zulassen und eine gegebene
Region vollständig dicht ausfüllen. Fig. 10 stellt analysierte Teile

') E. H. Moore, On Certain Crinkhj Curves, Transactions of the American
Mathematical Society, Vol. F, Nr. F.



solcher Linienzüge dar und lässt, ihren Zusammenhang mit dekorativen

Entwürfen deutlich genug erkennen.
Aus dem Ganzen geht hervor, dass das was wir (irundlagen

der Geometrie nennen implicite durch die Naturansehauung bedingt
und diktiert ist. Die Eigenschaften, welche wir in vollkommenen
Naturt'ormen entdecken, sind gewissermassen auch mit den
Kunstformen verbunden, folglich müssen letztere im allgemeinen mit
den fundamentalen Gesetzen der Natur und ihren mathematischen

ET2_5H_5~[l_5~E_5~cLE] EL5

Bildern übereinstimmen. Ästhetische formen müssen so gezeichnet
werden, dass sie durch das Auge das Gefühl des Gleichgewichts
und der harmonischen Anordnung erwecken. Ähnlich verhält es

sich mit den übrigen faktoren der bildenden Künste, wie färbe,
Inhalt u. s. w., sowie mit den Künsten überhaupt.

Sollen dieselben nicht der Sterilität anheimfallen, so müssen

dieselben ihre ursprüngliche Kraft von Zeit zu Zeit aus dem Schosse

der Natur holen und die natürlichen Gesetzmässigkeiten ohne
Pedanterie und innerhalb vernünftiger Grenzen zur Anwendung bringen.
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