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Mathematik
in Natur und Kunst

von

Prof. D A. Emch.

s

L.

Schon Plato sagte, die Geometrie sei die Krkenntuis des ewig
Seienden und dass ohne die Rechenkunst, die Messkuust und die
Wigekunst  wenig mehr von den Kiinsten iibrighleiben wiirde.
Pythagoras und seine Schule reduzierten das Wesen aller Dinge
aul die Zahl. Bei ihnen wird von der sinnlichen Konkretion der
Materie abgesehen und die Quantitiit und die ridumlichen Verhiilt-
nisse werden zir Hauptsache gemacht.  Unterschiede der Quantitilf
jedoch fiithven auf die Zahl, das Wesentliche der pythagoriischen
Philosophie.  Arvistoteles in seiner Kritik der platonischen T'heorien
stellte vier Prinzipien auf, nach welchen das Universum klassifi-
ziert werden konne: Stoff, I'orm, Bewegungsursache und Ziweck-
miissigkeit.  Von diesen sind Stoff und Form fundamental und
schliessen die andern ein.  Die bewegende Ursache ermoglicht die
Verwandlung der unvollstindigen Wirklichkeit oder Potentialitit in
Wirklichkeit, oder von Stoff in Form. r nahm ferner an, dass
in jeder Bewegung des Unvollstindigen zum Vollstindigen das
letztere der Hauptbegriff und der Anstoss zu dieser Bewegung sei,
so dass folglich bei Aristoteles die Form als die bewegende Ursache
der Materie aufzufassen ist. I8 spielen also hier Raumbetrachtungen,
oder, abstrakt genommen, geometrische Prinzipien eine Hauptrolle.

Aber auch bei weniger hoch entwickelten Volkern des Alter-
tums, ja sogar bei den halbwilden und wilden Volkerstammen der
Gegenwart zeigt es sich, dass gewisse Ordnungserscheinungen in der
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Natur und im Leben als solche erkannt und abstrahiert werden.
Man denke nur an die Arbeitsgesiinge bei verschiedenen Beschiifti-
gungen, an das Verhiltnis zwischen Arbeit und Rhythmus, wie es
von DU Karl Biicher in interessanter und lehrreicher Weise darge-
tan wurde, )

Das regelmiissige Wiederkehren gewisser Naturerscheinungen
und Begebenheiten im menschlichen Leben, die regelmiissige periodi-
sche Bewegung und das wiederholte Auftreten gruppenmiissiger
- Anordnungen bilden Hauptfaktoren bei der Auffassung der Er-
fahrungswelt und der Gestaltung des geistigen Lebens.

Seit Plato und Pythagoras, seit dem schonen aristotelischen
Denken und den geistreichen Spekulationen von .Jahrhunderten der
Philosophie haben wir gelernt, die Welt von ganz andern Gesichts-
punkten zu betrachten, und in der menschlichen Erkenntnis hat
sich vieles geindert und abgekliart. Anstatt vier allgemeine Prinzi-
pien anzunehmen, haben wir ein grosses Prinzip: die Erhaltung von
Materie und Energie. Dasselbe griindet sich auf Kraft, Stoff und
Bewegung, oder besser gesagt, es driickt eine konstante Beziehung
zwischen denselben aus. Stoff beansprucht Raum und die Form
erscheint als Grenzprozess in der Verschiebung oder Bewegung der
Materie. Das Prinzip von der Krhaltung von Materie und Energie
ist das oberste Gesetz der physischen Welt. Bis dahin ist es der
Wissenschalt nicht gelungen, Giesetze von solcher Allgemeinheit fiir
die Krscheinungen der organischen und psychischen Welt aufzu-
stellen oder zu entdecken. Die Abstammungslehre mag als Aus-
nahme betrachtet werden, aber man darf nicht vergessen, dass die
organische Evolution nur die historische Entwicklung der Lebewesen
und nicht den Mechanismus des Lebens erklért.

Obschon Plato die Mathematik von der Philosophie ausge-
schlossen hatte, so betrachtete er sie doch als unentbehrliche Hilfs-
wissenschaft zum philosophischen Studium. Heute jedoch ist es rein
unmoglich, in verniinfticer Weige in das Wesen des Raumes und
der Zeit einzudringen, ohne dass das beziigliche Studium ebensowoht
mathematisch als philosophisch genannt werden kann. Wer mit dem
Inhalte der nichteuklidischen und mehrdimensionalen Geometrieen
vertraut ist, weiss, dass die Forschungen eines Lobatschewsky, eines
Bolyai und einer ganzen Anzahl neuerer Mathematiker notwendig
waren, um Licht in das Wesen des Raumes zu bringen.

H Arbeit und Rhythmus, Leipzig, Teubner, 1902,



Als Hauptsatz davt aufgestellt werden, dass unsere Rauman-
schauung nicht a priori nach Kantschem Muster bedingt ist, sondern
dasy sie sich allmilig aus der Krfahrung herausgebildet hat. Infolge
dieser Erkemntnis lisst sich denn auch der Raum, der Ort, wo sich
die Naturgegenstidnde befinden und wo sich die Vorginge der Natur
abspielen, geometrisch durch verschiedene Bilder darstellen') und
es darf nicht behauptet werden, dass nur ein bestimmtes unter diesen
Bildern der Wirklichkeit entspreche.

Hatten die antiken Volker das Bediirfnis, in ihren Betrachtungen
das Gresetzmiissige, die Zahl und die Iform herauszuschilen, so ist
das heute um so mehr der Fall. Neben dem wissenschaftlichen Selbst-
zweck, der dabei verfolgt wird, stellt sich aus praktischen Griinden
die absolute Notwendigkeit heraus, solche Studien zu unternehmen,
um in viele Gebiete der menschlichen Krkenntnis tiefer eindringen
zu konnen und um vieles besser zu begreifen. *)

Wenn nun von Mathematik in der Natur die Rede ist, so wird
man nach dem, was vorausgeht, nicht mehr iiber eine solche Pra-
tention erstaunt sein. Um so leichter wird die Krklirung zu der
folgenden diskreten Auswahl von Beispielen sein, welche gesetzmiissig
tormuliert ein mathematisches Geprige an sich tragen. Von da aus
ergibt sich dann der Ubergang zur Mathematik in der Kunst von selbst.

[1.

Es wiirde zu weit fiihren, auch nur auf die Hauptgesetze der
physikalischen und chemischen Erscheinungen und ihre mathematische
Formulierung einzutreten und es geniigt, hier in Evinnerung zu rufen,
dass die grossten Triumphe der Astronomie und teilweise auch der
Physik aus mathematischen Berechnungen hervorgingen. Die Kristall-
systeme- und -Formen liefern geradezu ein typisches Beispiel rein
geometrischer Zusammenhiinge. Alle kristallographischen Grund-
formen komnen aus der geometrischen Bewegungslehre und der
Spiegelung abgeleitet werden und es zeigt sich dabei, dass es
theoretisch 230 verschiedene regelmissige Punktgruppen gibt, welche
simtlichen moglichen Kristallformen entsprechen.”) Interessant und

B Poincaré: La Science el I'Hypothése,

®) Siehe Henri Poincaré: Der Werl der Wissenschaft, Leipzig,
Teubner, 1906.

N P, Groth: Physikalische Kristallographie, Leipzig, W. Engelmann, 1895,
A.Schoenflies: Kristalisysteme und Kristallstrulktur, Leipzig, Teubner, 1891,



HH0

fiir die Zuverlissigkeit mathematischer Iforschung charvalkteristisch
ist es jedoch, dass umgekehrt nicht alle Kristallformen, welche
theoretisch moglich sind, in der Natur bekannt sind und man ist
geneigt anzunehmen, dass dic vermissten IFormen wirklich existieren
und spitter gefunden werden mochten.

Bei der Bewegung der Gletscher in normaler Gestaltung springen
dem Beobachter auf den ersten Blick die Stromungslinien und Gletscher-
spalten in die Augen, welche in mathematischem Sinne ein System
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orthogonaler T'rajektorien bilden, wie in IFig. | angedeutet ist. Die
Spalten stellen hier teilweise die Linien gleicher Geschwindigkeit,
teilweise die Linien maximaler Zugspannung dar. Man hat es also
bei der Gletscherbewegung mit einer Kombination von Stromungs-
und Spannungstrajektorien zu tun. Die Spannungstrajektorien konnen
am einfachsten durch die projektive Involution der Schnittrichtungen
und Spannungen in einem Spannungsfelde erklirt werden.') In jeder
[nvolution kommt bekanntlich ein Rechtwinkelpar vor, welches der
maximalen und minimalen Spannung in jedem Punkte des Feldes

Y Ritter: Graphische Stulik, 1. B., S. 128—131L
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entspricht und dadurch evklivt siech die Orthogonalitit der Trajek-
torien. Als ausserordentlich interessantes Beispiel eines Spannungs-
feldes mit elliptischer Involution fiihre ich die Spaltenbildung auf-
trocknender Schlammfelder an, wie sie sich nach einer Uberschwem-
mung bilden.  Das gleiche gilt fiir die Spilltelung stark lackierter
oder bemalter Holzflichen, ') Ifig. 2. In beiden [fillen stehen die
zahlreichen Spalten und Spiltchen, welche sich beim Auftrocknen
hilden, fast ausnahmslos senkrecht aufeinander und haben ihren Grund
in der Involution ausschliesslicher Zugspannungen in jedem [PPunkte

1w ©
Fie. 2,

des betreffenden IFeldes.  Bei dieser Involution wirken auf das
Rechtwinkelpar nur Zugspanmungen. Kine davon ist die maximale,
die andere die minimale Spannung.  Man sollte deshalb erwarten,
dass die maximalen Zugspannungsspalten ein System mehr oder
weniger paralleler Kurven bildeten, was jedoch nicht der Fall ist.
Man kann diese Abweichung, wie sie in Fig. 2 zur Darstellung
kommt, auf folgende Weise erkliiven: Durch die Bildung einer Spalte
wird die maximale Zugspannung und Beanspruchung senkvecht auf
ihre Richtung aufgehoben, so dass nun die frithere minimale Span-

N A Emeh: An Infroduction lo Prajective Geomeltry and ils Applications,
S, 239 New York, John Wiley & Sons, 1905,
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nung in der Richtung der Spalte zur maximalen Spannung in diesem
Teile des Feldes wird. Der ndchste Riss wird sich deshalb senkrecht
zur ersten Spalte bilden.

Obschon der mechanischen Darstellung der Lebenserscheinungen
und der organischen Formen ausserordentliche Schwierigkeiten ent-
gegentreten und kaum an eine mathematische Formulierung biologischer
Probleme gedacht werden kann, so sieht der aufmerksame Beobachter
im Pflanzen- und Tierreich doch manches, was ein mathematisches
(eprdge an sich tragt.

Man denke nur an das Mendelsche Gesetz der Vererbung und
seine Verifikation durch die interessanten Untersuchungen von Prof.
L. Cuénot in Nancy iiber die Kreuzung weisser und grauer Miuse !)
und von Prof. A. Lang iiber Varietéitenbildung bei Gartenschnecken.?)

Durch die Kreuzung der gewtohnlichen grauen Maus mit der weissen
Albino Maus entstehen lauter graue Nachkommen; das graue Element
G dominiert, wéhrend das weisse Element W durch das graue ver-
borgen ist. Kreuzt man dann zwei der Nachkommen, so entstehen
nicht nur graue, sondern auch weisse Méiuse und zwar verhilt sich
die Anzahl der grauen zu der Anzahl der weissen, wie 3 : 1. Um
diese von Mendel allgemein beobachtete Tatsache zu erklidren, wird
die Voraussetzung gemacht, dass die elterlichen Elemente G und W
sich bei der Kreunzung nicht vereinigen, sie bleiben getrennt, eine
Hilfte besteht aus G-, die andere Hilfte aus W-Elementen. Bei
der Zeugung sind nun unter der G- und W-Elemente folgende Kom-
binationen in gleicher Anzahl moglich

G und G,
G und W,
W und G,
W und W.

Jede dieser Kombinationen gibt die Grundlage zu einem Nach-
kommen und wo ein G-Element in der Kombination ist, dominiert
das Grau. Unter den Nachkommen werden also durchschnittlich
drei grau und einer weiss sein, was quantitativ vollstindig mit den
Experimenten verschiedener Forscher auf diesem Gebiete iiberein-

") Revue Scientifique, Paris (28. April 1906).

2y Uber die Mendelschen Gesetze, Art und Varieldtenbildung, Mulation und
Variation, insbesondere bei unsern Hain- und Gartenschnecken. Verhandlungen
der Schweiz. Naturf. Gesellschaft in Luzern, 1905.
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stimmt. Das Resultat kann durch die Formel dargestellt werden
GW.GW=1GG +2GW 4+ 1 WW.

Dieses (esetz, dem in allgemeiner Formulierung wohl auch eine
grosse Bedeutung in der menschlichen (Gesellschaft zukommt, geht
also in seiner Begriindung aus der Kombinationslehre, einem rein
formalen mathematischen Gebiete hervor.

In der Biometrie ist bekannt, dass Grosse und Anzahl der Samen
einer Pflanze in einem gesetzméssigen Zusammenhang stehen. Trigt
man die Durchmesser der Samen als Abscissen und die Anzahl der
Samen von demselben Durchmesser als Ordinaten ab, so entstehen
Linienziige, welche sich mehr oder weniger der bekannten Fehler-
hiufigkeitskurve der Wahrscheinlichkeitsrechnung ') ndhern und fiir
die entsprechenden Pflanzen durchaus charakteristisch sind.

Auffallend in mathematischem Sinne ist auch die Anordnung
des Blatterstandes bei verschiedenen Pflanzen. Sie geschieht nach
ganz bestimmten Gesetzen und ist fiir jede Spezies konstant. Je
zwei aufeinarderfolgende Bliatter derselben Spezies sind stets durch

denselben Betrag ?n”— des Umfanges von einander getrennt. Die

Briiche %, welche wirklich bei der Anordnung alternierender Blédtter
erscheinen, sind die N#herungsbriiche des Kettenbruches

1
1 — :
1
L ~-
L
d.h. 1, — 2 2 2 2 . und sind die Glieder einer spe-
2 3 5 8 13

ziellen Lamé’schen Reihe. (*) Sie werden Divergenzen genannt und
weisen ein rationelles Verhédltnis zum Achsenumfang auf, so dass
auf der Grundspirale, auf der Schraubenlinie, welche die Blatter
trigt, nach einem bestimmten Cyclus jedes Blatt vertikal zu einem
tieferliegenden zu stehen kommt. Der Zweck der Natur in dieser
sozusagen raffiniert mathematischen Anordnung besteht in dermoglichst
oleichméssigen Verteilung der Blidtter an der gemeinsamen Achse.
Dadurch wird die beste Ausniitzung des Raumes, die gleichméssige
Belastung der Achse und bei vertikaler Stellung auch die beste Be-
nutzung der Beleuchtung erreicht. ?)

) J. Betrand: Calcul des Probabililés, S. 175—246 (Paris).
Y Strassburger: Lehrbuch der Botanik fiir Hochschulen, S. 31—35.




Die Schraubenbewegung kommt bei den Schlingpflanzen vor.
Mechanisch ist die Schraubung dadurch begriindet, dass der dem
Licht zugewandte Teil der Pllanzenachse sich besser entwickelt
und folglich auch mehr ausdehint und eine Biegung um die wmrankte
Stelle verursacht. Dass aber die meisten Schlinggewiichse mit wenigen
Ausnahmen (Hopten, Geisblatt, Polygonum (‘onvolvulus) Linkswinder
sind, wird durch den Geotropismus physiologisch bloss umschrieben,
aber mechanisch nicht erklirt. Eigentiimlich ist es nach meinen
eigenen Beobachtungen im I'elsengebirge auch, dass die Ifohren und
Bergtannen in der Nihe der Waldgrenze unter dem Kinflusse der
durch die Winde verursachten Torsion und Biegung eine linksgiingioe
Anordnung der Ifasern zeigen.

Was die Form der Pflanzenblitter anbelangt, so sind es nach
Bodo Habenicht ') vielfach dussere Kinfliisse der Witterung, mecha-
nische Kinwirkungen, welche die [form der Blitter bedingen. s
gelang diesem Forscher, die meisten Blattformen analytisch durch
(leichungen von der Iform

P (cos ¢
in Polarcoordinaten darzustellen, und er gibt sich der Hoffuung hin,
dass es mit der Zeit gelingen miisse, den physiologischen Bewels
fiir die Notwendigkeit dieser bestimmten Iformen zu erbringen.

Als ausgezeichnetes Beispiel mathematischer Notwendigkeit er-
withme ich die Anordnung des innern Bliitenstandes einer vollkom-
menen  Wucherblume (Chrysanthemum Leucanthemum) und der ge-
wohnlichen Kamille (Matvicaria Chamomilla).  Bei diesen Blumen
wachsen die Durelmesser der innern Bliitchen proportional mit der
Entfernung vom Mittelpunkt, wie es nach der radialen Vergrosserung
der [Fliche nach aussen ganz natiivlich erscheint.  Damit aber bei
diesem (esetz die grosst mogliche Ausniitzung der Gesamtfliche
durch die grosst mogliche Anzahl von Teilbliiten evzielt werde,
miissen je drei benachbarte Bliitenkreise einander gegenseitig beviihren,
wie es auch Dbel einer Anordnung gleich grosser Kreise in einemn
ebenen rechteckigen Kelde der IFall ist. Um diese Behauptung zu
beweisen, stellen wir zuerst fest, dass der I'ldcheninhalt irgend einer
Anordnung von Kreisen im Rechteck in der [form p .« . ¢ dargestellt
werden kann, wobei p alle moglichen Werte o ~_ p ~_ 1 annehnen
kann.  Durch irgend eine Transformation mit Ausschluss von Sin-

Y Beitrdge zur mathematischen Begriindung einer Morphologie der Blitler,
Berlin, Otto Salle, 1905.



galavitiitten geht nun der Ausdruck p . @ .y iiber in eine IFunktion
p . N )) des transformierten IFeldes. Ist nun m derjenige Wert
von p, welcher p ...y zu einem Maximum macht, so wird auch
mo LTCY, V) ein Maximum im neuen Ifelde sein.  Fasst man das
rechteckige Ield als in einer komplexen Zahlenebene gelegen auf
und macht die Transformation ')

b — (J: 2t (j.""’._%"l":'/ ,
so dass

XN =% cosy, ¥ =10¢" siny

Fig. 3.

wird, so geht das System der parallelen Geraden . -— konst. in
das System konzentrischer Kreise

N =%,
und dasjenige der Parailelen y — konst. in das Biischel
V= X . lang y
iiber. Die Funktion ¢* hat die Periode 2 i, so dass der Streifen
der z-Kbene zwischen y = 7 und yy — — & gerade einfach und voll-
stindig aul die Z - Ebene abgebildet wird. Teilt man diesen Streifen
in Teilstreifen von %T- Masseinheiten Abstand und betrachtet die

Teillinien als Orte gleichgrosser sich beriihrender Kreise, so betrigt
der Radius aller dieser Kreise nach Fig. 3

') Siche Fricke: Kurzgefasste Vorlesungen iiber verschiedene Gebiefe der
hihern Mathemaltif. Analytiscl -funklionen-theorelischer Teil.  Leipzig, Teub-
ner, 1900.
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: . TN D TS
AD=CD . tm 30 — — . — = —
3 3 24
Bezeichnet man den halben Winkel, welchen nach der T'ransformation
die gemeinschaftlichen Tangenten einer radialen Reihe sich berithrender
Kreise miteinander einschliessen mit «, so ist also

,/////

>

m. V3

und « — 12° 46" 28”7, Mit Hilfe dieses Winkels war es leicht mog-
lich, Fig. 4 zu zeichnen, welche genau die Anordnung des innern
Bliitenstandes einer vollkommenen Chrysanthemum Leucanthemum
darstellt. In Polarcoordinaten der Z-Ebeneist @ ==Y und o= V.\* |- }*

tan « —
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und der Geraden y = (@ — «a) m in der z-Kbene entspricht die lo-
garithmische Spirale

O = (log 0 — a) m,
oder wenn man die Konstanten @ = log & und m = 1/k setzt

y L. o
pe=b. e .

In Fig. 4 bilden die Mittelpunkte der Kreise, welche den sich
beriihrenden Kreisen in der Richtung von A nach ¢ und von B
nach € entsprechen logarithmische Spiralen, welche sich unter
Winkeln von 609, respektive 120° schneiden. Eine solche Spirale
ist durch die Mittelpunkte der schraffierten Kreise angedeutet.
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In der Zoologie sind noch die priachtigen Spiralen der Schnecken-
gehituse, Amoniten, der regelmiissigen Radiolarien etc. zu erwihnen.
Es gibt jedoch kaum ein Lebewesen, welches das geometrische Auge
in grosserem Masse anzieht, als der Plan eines ausgebreiteten Pfauen-
schwanzes, in welchem jede Feder vollkommen und am richtigen
Platze ist, I'ig. 5. Die Kurven, welche sich nach rechts und links
winden, sind archimedische Spiralen und die ganze Zeichnung ist
symmetrisch.

I11.

Wenden wir uns nun zur Kunst, so kann festgestellt werden,
dass in allen Gebieten derselben gewisse Gesetzmiissigkeiten, wie
sie aus Naturbetrachtungen hervorgehen, von grundlegender Be-
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deutung sind.  Wenn sich diese Gesetzmiissigkeiten auch nicht in
einen metaphysischen Formalismus auflosen lassen, wie es die Alten
taten, so konnen sie doch viellach zur Vereinfachung ihrer Auffassung
in mathematischem Gewande dargestellt werden, Bei der Musik und
Dichtung sind es rhythmische Bewegungen, periodische Wieder-
holungen, welche fiir den mechanischen Teil der effektiven Kunst
massgebend sind.  Mathematisch werden solche periodische Krschei-
nungen  durch  Fouriersche Reilhien dargestellt.  Karl Biicher hat
denn auch gezeigt, ') dass urspriinglich  Korperbewegung, Arvbeit,
Musik und Dichtung in engster Wechselbeziehung waren und dass
auch heute dieser durch Rhythmus hervorgebrachte Zusammenhang
noch besteht.  Man denke nur an die Masseniibungen bei den grossen
nationalen Turnfesten, an den Taktschritt des Militirs unter Musik-
oder Trommelbegleitung ete. In dieser Beziehung sagt I'r. Nietzsche
in setner | frohlichen Wissenschaftt® ®): | Der Rhythmus ist ein Zwang,
er erzeugt eine unitherwindliche Lust nachzugeben, mit einzustimmen;
nicht nur der Schritt der Fiisse, auch die Seele selber geht dem
Takte nach.*®

Kiir die bildenden Kiinste bildet die Aussenwelt die Hauptquelle
der artistischen Motive und ihre Wertschiitzung in isthetischer Be-
ziehung ist teilweise durch die Gesetzmiissigkeiten in der Erscheinungs-
welt, wie solche im zweiten Teile aufgedeckt wurden, teilweise durch
die Physiologie der menschlichen Sinne in ihrem psychologischen
Zusammenhange bedingt. Auch hier spielen gesetzmiissig wiederholte
Erscheinungen, eine rhythmische Wiederkehr bildlicher Kindriicke
eine bedeutende Rolle.

Beiw weitern Verfolgen dieser Zusammenhiinge werde ich mich
der Einfachheit halber auf die Betrachtung elementarer isthetischer
Formen beschriinken, um die Prinzipien zu illustrieren, welche solche
'ormen beherrschen und die unendlichen Erzeugnisse der Kinbildung
und Originalitiit beiseite lassen. ?*)

Damit ein freies organisches Wesen keinen unnatiirlichen Span-
nungen und Lagen unterworfen sei, ist notwendig, dass sein Schwer-

) Loe. eit. S, 342377,

5 Die frikliche Wissenschaft (Leipzig 1837), S, 105,

) Die folgenden Ausfiihrungen sind der Hauptsache nach meinem Artikel
sMathematical Principles of Isthetic Forms«< entnommen, welcher im » Moniste,
Vol. XI. Nr. 1, Oktober 1900, Chicago, The Open Court Publishing Co. erschien,
und mit Erlaubnis des Editors hier verdffentlicht.
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punkt in einer Senkrechten durch den Unterstiitzungspunkt sei. Die
Natur hat diese mechanische Bedingung in einfachster Weise dadurch
erfiillt, dass sie die Massen der meisten Lebewesen symmetrisch in
Bezug auf Punkte, Geraden und Ebenen angeordnet hat. Obschon
dieses Prinzip fiiv das Tierreich und fiiv einen grossen Teil der
Prlanzenwelt gilt, so ist ey doech nicht ganz allgemein; aber es
oeniigt, um darzutun, dass die Symmetrie eines der fundamentalen
Prinzipien ist, welche iisthetische Formen regieren. Symmetrie ein-
facher oder hoherer Art ist in den meisten I[fillen eine notwendige
Kigenschaft dsthetischer Iformen. Kin Mensch mit einem amputierten
Arm, oder nur mit einem Ohr ist keine dsthetische Krscheinung,
weil die Symmetrie zerstort ist. Aus demselben Grunde stimmt ein
Baum, welcher auf einer Seite all seiner Aste beraubt, oder geneigt
ist, nicht zu unserer Auffassung einer idealen Baumform.

Das grossenteils von der Natur diktierte Geliihl fiir symmetrische
[Fformen ist im menschlichen Geiste so stark entwickelt, dass es bei
der Schaffung kiinstlerischer Formen konventionell geworden ist.
s hat die Architektur durch Jahrhunderte bis zur heutigen Zeit
dominiert. Grosse Denkmiller der Baukunst, welche allgemein als
sechon betrachtet werden, stehen niemals im Widerspruch zu den
(tesetzen der Symmetrie,

Physiologisch ist die Wahimehmung symmetrischer Formen durch
die anatomische Struktur des Auges bedingt, wie Professor Mach
nachgewiesen hat.') Der ganze Apparat des Auges ist symmetrisch
in Bezug auf die Mittelebene des ICoples und ist fihig, vollkommen
symmetrische Bewegungen auszufithren. Visuelle Bewegungen dieser
Art erzeugen deshalb gleiche oder annidhernd gleiche Raumempfin-
dungen. Auf diese Weise kann die Gleichheit symmetrischer Figuren
in Bezug auf eine vertikale Axe leicht erkannt werden. Das Prinzip
der Symmetrie macht sich ferner auch bei gewissen Bewegungen von
Handen und Fiissen geltend, so lange sie nicht durch das Bewusst-
sein kontrolliert werden.

Kbenso wichtig als das Prinzip der Symmetrie ist fiiv die Be-
urteilung dsthetischer Formen dasjenige der Repetition, des schon
erwithnten Rhythmus visueller Krscheinungen, welcher psychologisch
offenbar dieselbe Quelle hat, wie Musik und Dichtung.

Y Gontribulions lo the Analysis of the Sensalions, S. 41--81. Popular
Science Lectures.  On Symmelry, 8. 89—106. —— Beides publiziert von »The
Open Court Publishing (o.¢, Chicago.
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Bei der wrspriinglichen Entwickelung des menschlichen Geistes
werden iguren durch physiologische Kigenschaften und nicht durch
coeometrische Betrachtungen unterschieden. Die (Geometrie ist jedoch
ein Produkt des menschlichen Geistes und griindet sich axiomatisch
auf primitive Gesichts- und Muskelempfindungen.  Diese wichtige
Tatsache macht es moglich, rein geometrische Gesetze aufzustellen,
welche zum Teil iisthetische Iformen regieren. [hre Vertriglichkeit
mit den fundamentalen Erfahrunestatsachen gewisser angenchmer
Empftindungen fiithrt uns auf eine geometrische T'heorie, welche im
Stande ist, einige der Grundlagen arvtistischer Formen zu erkliren.')

Bemerkenswert ist dabei, dass Miss Kthel Puffer vom Wellesley
('ollege, Mass. durch rein psychologische Betrachtungen zu Resultaten
celangte, welche sich der Hauptsache nach mathematisch formulievt
mit den unsrigen decken.?)

Welches ist nun in erster Linie das abstrakte Gesetz der Syi-
metrie?  Um diese [frage zu beantworten, muss beachtet werden,
dass es in der Geometrie zwei Methoden gibt, um geometrische
Formen zu untersuchen.®) Die erste umlasst den Gruppenbegrift,
welcher e einfachsten Falle darin besteht, dass zwel oder mehrere
lineare Bewegungen im Raume immer durch eine einzige Bewegung
derselben Art crsetzt werden konnen. Die Bewegune ist die funda-
mentale ldee dieser Geometrie. Die zweite gritndet sich aul den
sichtbaren Raum und braucht Lichtstrahlen oder Geraden als aul-
bauende Klemente. Diese eignet sich besser zur Diskussion det-
jenigen Formen, welche sich auf axiale und zentrale Symmetrie
eriinden.  Metrische Kigenschaften ergeben sich hier als hestimmte
[funktionen des Doppelverhiiltnisses von vier linearen IKlementen,

Y Uber weitere Faktoren, welche bei der Beurteilung ciner Kunstform
in Betracht kommen, findet der Leser Aunfschluss in Professor Wundt’s Physio-
logische  Psychologie, S, 179, Man konsultiere auch Sovet: Des conditions
physiyues de Lo perceplion duw beaie, Gent, 1892.

5 Auf diese Ubereinstimmung wurde der Verfasser durch die Rede des
Herrn Professor .J. Royce von der Harvard Universitiit am Kongress der Kiinste
und Wissenschaften in St. Louis, sowie in verdankenswerter Weise durch briet-
liche Mitteilung anfmerksam gemacht. Die Untersuchungen Miss Puffers wurden
unter dem Titel »The Psychology of Beauty< bei Houghton Mifflin & Co.,
Joston, verdffentlicht.

*) Niiheves dariitber bei Poinearc: «On the Foundations of (ieometry,
The Monist, Vol. [X, Nr. 1. Ferner Sophus Liie: Theorie der Transformalions-
gruppen und Theorie der Beriilirungstransformationen.
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Nimmt man z B. vier aufeinanderfolgende Punkte 4 BC D einer
Geraden, so kann eines der Doppelverhiiltnisse dieser Punkte durch

oder durch das gleich-
bebedeutende Symbol
(ABCD) definiert wer-
den. Wihlt man einen
der Punkte, etwa D, un-
endlich fernund dasSeg-
ment B als Lingenein-
heit, so ist der Wert des
Doppelverhiltnisses
(ABGD)gleich dem Liin-
genmasse des Segmentes
AL Der einfachste Ifall
axialer Symmetrie, der-
jenige zweier Punkte 4
und £ in Bezug auf einen
Punkt € (auch radiale
Symmetrie) geht alsspe-
zieller I*all aus dem Dop-
pelverhiiltnis (A B G D)
==-— 1 hervor. Die vier
Punkte sind involuto-
risch und gehen in die
verlangte  Symmetrie
itber, wenn der Punkt D
ins Unendliche viickt. In
der Geometrie bedeutet
das  Wort Involution,
dass in einer gegebenen
Konfiguration eine Ver-
wandtschaft zwischen
den Klementen besteht,
welche sichnicht édndert,

A0 AD
BC  BD

!

Tig. 6b.

wenn man irgendwelche Elemente durch ihve entsprechenden ersetzt.
Die Involution ist also eines der hauptsiichlichsten Merkmale der
Symmetrie. Kine andere wichtige Kigenschaft der Symmetrie ist die
Unverdnderlichkeit ihres mathematischen Ausdruckes durch die pro-
jektiven Transformationen des Raumes und deckt sich mit dem funda-



mentalen (resetz der Perspektive. Aus diesem Grunde geht die
Svinmetrie in unserem Anschauungsraume nicht verloren, wie das
deutlich aus einer IFrontalansicht und einer Perspektive eines sym-
metrischen Bauwerkes(Bogen
des Titus), Fig. 6a und 6D,
sowie der zentralen Sym-
metrie, Kig. 7, hervorgeht.
Kin zweiter unerliisslicher
Iaktor beim Studium &sthe-
tischer ['ormen ist das Prinzip
der Repetition, des visuellen
Rhythmus, und ist mathe-
matisch durch die Gruppen-
theorie begriindet. Ui dieses
Prinzip zu illustrieren, wollen wir zuerst zwei Bewegungsgruppen
der Translation und der Rotation betrachten.  Die Dreiecke
A, B, G, ..., K, Fig. 8, nehmen alle Stellen ein, welche ihnen
durch die Translationen einer Gruppe angewiesen werden. Iu der

Fig. 7.

% ¢ E ’ E s % "
- Fig. 8.
Tat konnen irgend zwel dieser Dreiecke durch eine einzige 'I'rans-
lation und ihre inverse verwechselt werden. Irgend eine Folge

von Translationen, z. B. A DG G F kann durch eine einzige Trans-
lation ./ dieser Gruppe ersetzt werden. Dasselbe gilt fiir eine
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Rotationsbewegung eines Klementes wn ein bestimmtes Zentrum,
[fig, 9, und, wie schon erwiihnt, fiiv eine perspektivische Trans-
formation einer solchen, INig, 7.

In der Dekorationsmalerei, besonders in der Ornamentik werden
ICombinationen von I'ranslationen, Rotationen und Symmetricen sehr
hiufig zur Anwendung gebracht. Die Beziehungen zwischen solchen
kombinierten regelmiissigen Anordnungen sind in Iig. 10 gezeigt, in
welcher drei sich unter je 60° in cinem Punkte sclineidenden Sym-
metrieaxen /, [I1, I/I angenommen wurden. Spiegelt man (axiale
Symmetrie) das Formelement an allen drei Axen, so werden die
netien gleichen Formen A/, As, As" evzeugt. Spiegelt man jede der-

IFig. 1O.

selben an denselben Axen, so entsteht die komplete [fig. 10, wobei
jedoch noch drei andere Symmetrie — oder Spiegelungsachsen a, 4, ¢
entstehen. Zwei Spiegelungen von Ai, an [/ und [/ nacheinander
ausgefithrt, erzeugen As und sind gleichbedeutend mit einer Rotation
von 120° von Ai, um das Zentrum (. In der Reihe aufeinander-
folgender Spiegelungen (Ar A1"), (A1 As), (As B2), (B2 Bs), (Bs Bs") sind
Ay’ und By in radialer Symmetrie. Daraus geht hervor, dass diese
Figur gewissermassen die Prinzipien der Strahlen- und Bewegungs-
geometrie vereinigt und als charakteristischer Ifall einer grossen
Klasse ornamentaler Formen betrachtet werden kann, bei welchen
irgend cine Anzahl rveguliir verteilter Axen als Grundlage dient.
Wie in der Ebene, so werden auch regelmiissige Wiederholungen
von Punkten, Geraden und Flichen im Raume von Gruppen- und



Symmetriceigenschatten beherrscht, so z. B. die veguliren Polyeder
nd die iibrigen Kristallformen, wie bei den Naturtormen erwihnt
wurde. Alserstklassiges Beispiel dieser Avt soll
hier das [kosaeder angefiihrt werden.?)

Das Tkosaeder, Iig. L1, wird von 20 re-
gelmissigen Dreiecken, 30 Kanten und 12 eken
begrenzt. Jedem Dreieck, jeder [Kante und jeder
Heke entsprieht ein um 60 gedrehtes gegen-
iiberliegendes Dreieck, eine gegeniiberliegende
Kante und eine gegeniiberliegende Icke, so
dass der Korper 10 IFlichenmittelaxen, 10 IKan-
tenmittelaxen und 6 Hauptaxen hat. Iiiv jede

S

Fig. 12,
Fliichenaxe gibt es drei verschiedene Rotationen, durch welche der
Korper mit sich selbst zur Deckung gelangt. Jede Hauptaxe ldsst

NI Klein: Vorlesungen diber dus lkosaeder, Teipzig, 188D,
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fiinf und jede Kantenaxe zwei Rotationen mit derselben Kigenschaft
zu. Jede durch zwei gegeniiberliegende Kanten gehende Kbene ist
cine Symmetriecbene und es gibt 15 dieser Arvt.  Macht man eine
stereographische Projektion des lkosaeders in Bezug aul cine wm-
eeschriebene Kugel und eine Keke als Zentrum, Mg, 12, so gehen
daraus die Gruppeneigenschalten dieses aussevordentlich schonen und
interessanten  Korpers in leichtverstindlicher Weise hervor.  Die
LD Symmetricebenen schneiden die nmgeschriebene Kugel in 15 Kyeisen,
welche n Ifig. 12 alle dargestellt, sind. I%iinf derselben, diejenigen
welche durch Vogehen, werden als Geraden projiciert. Iine Spiegelung
an jeder dieser Axen und eine Rotation von 72 % um ) transformieren
die ganze [Migur jedesmal in sich selbst.

Es wurde Dbereits lestgestellt, dass perspektivische Transforma-
tionen den Eindruck axialer und zentraler Symmetrie nicht zerstoren.
Dasselbe ist der IFall in Bezug auf die
cruppenmiissige Anordnmung clementarer
[Yormen in einer Konficuration und threr
Perspektive, wie bereits aus I'ie. 7 und
hier aus [ig. 13 hervorgeht.

Die Transformation durch veciproke
Radien") ist eine weitere geometrische
Verwandtschaftt, welche den Charakter
einer gesetzmissigen Wiederholung un-
verdndert lisst. |

Diese Transformation ist eine un- Fig. 13.
erschopfliche Quelle fir das Entwerfen von Ornamenten; es ist
jedoch unwahrscheinlich, dass sie jemals in bewusster Weise zu

') Die Aufstellung des geometrischen Prinzipes der reciproken Radien
(Inversion) ist verhiltnismiissig neuern Datums und ist in manchem Gebiet der
neuern mathematischen Forschung von grésster Bedeutung.  Von gleicher
Wichtigkeit ist es fiir die mathematische Physik, wie durch Lord Kelvin in
seinem  7Trealise of Natwral Philosophy wnd eine Anzahl anderer Physiker
gezeigt wurde.

Um die Inversion im Raume zu definieren, wird eine Kinheitskugel in
fixer Stellung angenommen. Kin Punkt A und ein anderer 4’ sind dann in
der Tnversion entsprechend;, wenn 0 A . 0 a’ = 1 ist. Sind (o, y, 2) und (7, y’, =)
die Carterischen Koordinaten von A und A7, so wird die Transformation der
Inversion analytisch ausgedriickt durch

,.
p o ———————— ) ol it

ERITNE

% e=
=9 ) 2

— .‘(."') i’ f’,‘.‘ l = a® I ”‘3 ! :2 .

Bei der Transformation in der Kbene fallen einfach die 7 aus.



diesem Zwecke verwendet wurde. Die Wirkune einer solchen Um-
formung auf Kreisreihen, [Fig. 13, kommt in Ifig. 14 zur Darstellung.

Kine der charakteristischen Kigenschaltsen der Inversion besteht
darin, dass sie Kreise in andere Kreise und unendlich kleine [figuren
in dhnliche unendlich kleine Figuren verwandelt, kurz die Schnitt-
winkelverhiiltnisse von Iiguren unverindert lisst. Kine solche Trans-
formation ist auch die stereographische Projektion, wie sie auf das
Tkosaeder angewandt wurde. Alle solche Transformationen gehoren
zur Klasse der zirkularen Transformationen und zeichnen sich da-
durch aus, dass sie Kreise in Kreise und Kugeln in Kugeln iiber-
fiihren, oder dass sie das ,Absolute® im Raume invariant lassen.
Daraus liisst sich der
Schluss ziehen, dassdas
Absolute 1m  Rawme,
obschon es 1maginir
ist und iiber unser
Vorstellungsvermogen
hinausgeht, ein wich-
tiger Iaktor bei der
Evolution sthetischer
[Formen ist. Diese T'at-
sache geht auch aus
der merkwiirdigen Hr-
scheinung hervor, dass
diejenigen Linien und
Flichen, welche durch
das  Absolute gehen,
durch die Gefilligkeit ihrer Formen und durch ihre enge Beziehung
mit Kreissystemen ausgezeichnet sind. Fig. 15 stellt eine Kurve
dar, welche diese Eigenschaft besitzt. Sie erscheint als Umhiillung
aller Kreise, welche durch einen festen Punkt gehen und deren
Mittelpunkte auf einem festen Kreise liegen und ist eine bizirculare
Kurve 4. Ordnung wmit endlichem Doppelpunkt. Man vergleiche
damit z B. auch Fig. 4, ein solches System von Kreisen, wie es
in der Natur vorkommt. s ist jedoch nicht notwendig, dass alle
gefilligen Formen mathematisch die imaginiren Kreispunkte der
KEbene, oder den imaginidren Kugelkreis des Raumes enthalten
miissen. Irgend eine FForm, welche durch ein einheitliches geome-
trisches Gesetz bestimmt ist, kann als Element einer gefilligen An-

Fig. 14.
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ordnung oder eines Ornamentes dienen. Ifs gibt Anndherungen zu
dieser Regel, welche das Auge tiuschen mogen und welche aus
diesem Grunde gervechtfertict sind.  Aber gar oft werden grobe
Annidherungen substituiert, nur um die Unkenntnis wahrer Methoden
und  Tatsachen zu verdecken. Ks gibt Maler und Dekorateure,
welche Ellipsen durch plumpe Ovale ersetzen, wo Ellipsen am
richtigen Platze wiren; Durchdringungskurven zylindrischer und
konischer Iflichen durch unmogliche Produkte einer fehlerhalten

Anschauung; und richtige Gesetze der Perspektive durch seichte,
der Natur falsch abgeguckte Regeln.

Kiirzlich wurden auch geometrische Methoden entwickelt, ')
welche ermoglichen, die abstrakten Gesetze einer gewissen Klasse
von Ornamenten aufzustellen, die zum Gebiete der Dekorationskunst
gehdren. Ks wiirde jedoch zu weit fithren, darauf weiter einzu-
ogehen und es soll nur erwidhnt werden, dass der Zweck dieser
Untersuchungen darin besteht, geschlingelte kountinuierliche Linien
zu konstruieren, welche keine Tangente zulassen und eine gegebene
Region vollstindig dicht ausfiillen. Fig. 16 stellt analysierte Teile

Y E. H. Moovre, On Certain Crinkly Gurves, Transactions of the American
Mathematical Society, Vol. I, Nr. L.
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solcher Linienziige dar und Lisst thren Zusammenhang mit dekora-
tiven Kuntwiirfen deutlich genug erkennen.

Aus dem Ganzen geht hervor, dass das was wir Grundlagen
der Geometrie nennen implicite durch die Naturanschauung bedingt,
und diktiert ist.  Die Kigenschaften, welche wir in vollkommenen
Naturformen entdecken, sind gewissermassen auch mit den Kunst-
formen verbunden. [Tolglich miissen letztere im allgemeinen mit
den fundamentalen Gesetzen der Natur und ihren mathematischen
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Fig. 16.

Bildern iibereinstimmen. Asthetische Formen miissen so gezeichnet
werden, dass sie durch das Auge das Gefithl des Gleichgewichts
und der harmonischen Anordnung erwecken. Alnlich verhiilt es
sich mit den iibrigen [Faktoren der bildenden Kiinste, wie Ifarbe,
Inhalt w. s. w., sowie mit den Kiinsten iiberhaupt.

Sollen dieselben nicht der Sterilitiit anheimfallen, so miissen
dieselben ihve urspriingliche Kraft von Zeit zu Zeit aus dem Schosse
der Natur holen und die natiirlichen Gesetzmissigkeiten ohne Pe-
danterie und tnnerhalb verniinftiger Grenzen zur Anwendung bringen.
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