Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft Solothurn
Herausgeber: Naturforschende Gesellschaft Solothurn

Band: 3 (1904-1906)

Artikel: Uber Stabilitat dynamischer Systeme in der Mechanik des Himmels
Autor: Mauderli, S.

DOl: https://doi.org/10.5169/seals-543208

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-543208
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber

Stabilitat dynamischer Systeme

i der

Mechanik des Himmels

Prof. S. Mauderli.
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[n unserm Sonnensystem ziehen sich alle Glieder desselben
gegenseitie an, wodurch die Kllipse, welche jeder Planet oder Komet,
wenn er allein existierte, um die Sonne beschreiben wiirde, gestort
und in eine andere, verwickelte krumme Linie verwandelt wird.
Diese Bahnstorungen sind indessen keineswegs Unregelmiissigkeiten;
denn es erfolgen alle Bewegungen nach ein und demselben unwan-
delbaren Naturgesetze, der allgemeinen Gravitation. Was die Grossen-
ordnung der Ungleichheiten in der Bewegung der einzeluen Teile
des Systems betrifft, so ist zu bemerken, dass dieselben wenigstens
fiir die Hauptplaneten so klein sind, dass sie nur durch genaue
Beobachtungen, die iiberdies einige Jahre umfassen, wahrgenonmen
werden konnen, ist doch die Masse der Planeten, verglichen mit
jener der Sonne, des Centralkorpers, eine fast verschwindend kleine
und ausserdem die gegenseitige Kntfernung der Planeten cine be-
deutende. Aber noch zwei weitere Umstiinde, aul welche hier schon
wegen ihrer grossen Bedeutung in der nachstchend zu behandelnden
Stabilitiitsfrage aufmerksam gemacht werden mag, bedingen die Ge-
ringtiigiglkeit der Storungen, nimlich einesteils die geringen Iixcen-
trizititen der Planetenbalmen und andernteils deren geringe Nei-
gungen zur Kkliptik. In beiderlei Hinsicht bilden allerdings Merkur
und die meisten Asteroiden Ausnahmen; aber letztere sind so ausser-
ordentlich klein und Merkur der gewaltigen Sonnenmasse so nahe,
dass auch diese Himmelskorper keinen sehr storenden Kintluss im
Sonnensystem auszuiiben vermigen. Ktwas anders liegen die Ver-
hiiltnisse im System: Sonne — Krde — Mond; die Masse des sto-
renden Korpers, der Sonne, iibertrifft diejenige des Centralkorpers,
der Krde, um das rund 324’000-fache, welcher bedenklichen Grosse
allerdings die Tatsache entgegengesetzt werden kann, dass die Sonne
etwa 400-mal weiter vom Monde entfernt ist, als die Irde, wo-
durch die storende Kraft zu einem geringen Teil der Centrvalkraft
herabsinkt. Dennoch bewirkt die Grisse des storvenden Korpers, dass
diese Storungen viel mehr hervortreten, als alle andern im Sonnen-
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system.  Vollstindig anders gestalten sich jedoch die Verhiiltnisse
bei den Kometen; bei ihmen konnen alle die genannten Bedingungen,
welche unter den Planetenbahnen nur geringe Abweichungen von
der Ellipse bestehen lassen, in Wegfall kommen; denn nicht nur
bewegen sich diese Himmelskorper in stark excentrischen Curven,
sondern es besitzen ihre Bahnebenen iiberdies auch noch ganz be-
tricchtliche Neigungen gegen die Ekliptik. Wenn nun noch dazu
der Komet in bedeutende Nihe eines Planeten von grosser Masse
kommt, z B. in diejenige Jupiters oder Saturns, so kamn seine
Bahn eine derart starke Storung erleiden, dass sie nicht nur gédnzlich
ceidndert wird, sondern ein nicht periodischer Komet periodiseh werden
kann und umgekehrt.  Zur Illustration diene folgendes, der Wirk-
lichkeit entnommenes Beispiel: Der Komet Lexel 1770 11 kam im
Jahrve 1767 in parabolischer Bahn dem Jupiter nahe, wurde vou
diesem in eine enge Ellipse geworfen, die er zweimal in je 5,5 Jahren
durchlief, bis er L7719 zum zweltenmale dem Jupiter nahe kam und
wiederum eine ginzliche Anderung erfulr,

So bedeutend die Storungen der Kometenbahnen auch sein
konnen, so gering scheint der Kinfluss der Kometenmassen auf die
Planeten oder deren Monde zu sein, wenigstens konnte man einen
solchen bisher in keinem [Falle nachweisen. So vermochte z. B. der
vorerwithnte Lexell’sche Komet nicht einmal die Monde Jupiters
zu storen, obwohl er doch 1779 mitten unter ihnen durchgegangen
war.  Wir schliessen hieraus mit einer der Gewissheit sehr nahe
kommenden Wahrscheinlichkeit, dass die unser Planetensystem durch-
querenden Kometen nicht im Stande sein konnen, die in demseclben
herrschende Ordnung zu storen. Damit soll selbstverstiindlich nicht
oesagt sein, dass bei starker Anniherung eines Kometen an einen
Planeten es nicht etwa moglich wiire, dass sich das System: Sonne —
Komet—Planet in der Weise umgestalten konnte, dass Sonne und
Planet ihre Rollen gegenseitig tauschen, indem der Komet ein Tra-
bant des Planeten und die Sonne zum storenden Korper wird. Aber
selbst fiir den Ifall, dass eine solche neue Gruppierung stattfinden
wiirde, — die Storungstheorie schliesst die Moglichkeit einer solchen
nicht nur nicht aus, sondern sie bedient sich sogar bei der Berech-
nung der speziellen Storungen der Kometen und Asteroiden vor-
ilbergehend des Vorteils, den eine derartige Annahme in den Rech-
nungen gestattet, — so konnte der leidende Teil des Systems doch
nuwr der Komet sein. Was hier von den Kometen gesagt wurde,
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kann auch, und zwar ohmne irgend welche Modifikation aul die mit
ilimen so nahe verwandten Meteorschwiirme iibertragen werden. Wie
jene, so komnen auch diese kaum jemals als storende Korper aul-
treten. Demnach verbleiben uns als stovende Korper innerhalb unseres
Sonnensystems nur noch die 8 Hauptplaneten und die Sonne —
diese letztere allerdings nur dann, wenn es sich um die Storungen
der Monde handelt. — Alle iibrigen Massen werden wir in der Ifolge
als verschwindend ansehen diirfen, die wohl Bahnstorungen erleiden,
nicht aber selbst solche bewirken konnen.

Wenn eingangs daraut hingewiesen wurde, dass die Ungleich-
heiten in der Bewegung der Hauptplaneten — mit welchen wir
uns in diesem ersten l'eil ausschliesslich befassen werden — fusserst
geringe sind, so ist damit noch keineswegs bewiesen, dass sich die-
selben im Verlaufe von Jahrhunderten, Jahrtausenden oder doch
Jahrmillionen nicht *derart summieren konnten, dass sich die Bahn-
curven, die jetzt sdmtlich elliptisch sind, in Parabeln verwandeln,
auf welchen sich die in ithnen laulenden PPlaneten in ferne Himmels-
viiume verlieren wiirden.  Krwigt man indessen die Art, wie sich
unser Sonnensystem mutmasslich entwickelt hat und beriicksichtigt
den Umstand, dass die Planeten intolge der Inkommensurabililiil
threr Umlaufszeiten in alle moglichen relativen Stellungen zu ein-
ander kommen, so scheinen solche Totaliinderungen der Bahnen
kaum wahrscheinlich zu sein. Wir gewiunen vielmehr den Eindruck,
das System sei flir den pewigen* Bestand eingerichtet, d. h. es sei
stabil. Ob und in wie weit diese Vermutung vichtig ist, soll durch
nachstehende Uberlegungen gezeigt werden. Um die Vorstellung
zu fixieren, denken wir uns eine endliche Anzahl von Dlaneten
e, P, P70 mit dem gemeinschaftlichen Centralkorper S und den
Bahnelementen «, e, {,..., «, ¢, I',..., a”, ¢, {",... Wir nchmen
nun an, dass ausser der anziehenden Kralt des Centralkorpers S
auf die Planeten keine andern Kriifte wirken. Dann wird gemiss
den (resetzen der Centralbewegung jeder einzelne Planet einen Kegel-
schnitt beschreiben, der, je nachdem das Quadrat seiner Anfangs-
geschwindigkeit oder

ds\* S 2 kK (L -} m("))
dt /o < (AL

ist, eine Kllipse, eine Parabel oder eine Hyperbel sein wird, in deren
einem Brennpunkt der Centralkorper steht. Tassen wir aber diese
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Voraussetzung fallen und tragen der Wirklichkeit Rechnung, so
eeschieht, was schon eingangs bemerkt wurde: jeder [Planet be-
schreibt unter dem Einfluss der iibrigen eine Curve, die von den
3 obgenanuten um so stirvker abweicht, je intensiver die stérenden
Kriifte sind. Tvotzdem kann aber seine Bewegung unter der An-
nahme dargestellt werden, dass wiihrend er sich in einem Kegel-
schunitt bewegt, die Klemente oder Abmessungen derselben in fort-
withrender Anderung begriffen sind. |

Bedeutet nun /£ irgend eines der Bestimmungsstiicke des von
P zur Zeit £ beschriebenen Momentankegelschnittes — welchen er
oenau innehalten wiirde, vorausgesetzt, dass im betrachteten Augen-
blick alle storenden Kriilte aufhoren wiirden zu wirken, — so0
liefert die Storungstheorvie fiir dasselbe eine Differentialgleichung

von der Form:
*

g ()i’i,fi”"" st il Wi 7 P |
at ) * ppg WO gt (1)

in welcher ()M T i (/“ *7" Yon den Bahnelementen abliin-
oige Grossen, 4, 7, 7, ... diemittleren Lingen der Planeten 2, 17, P, ...
und ¢, ¢, ¢”, ... beliebige ganze, positive oder negative Zahlen (0
nicht ausgeschlossen) bedeuten.

Die strenge Integration dieser Dilferentialgleichung diirfte in-
dessen wohl [iir immer ein ungelostes Problem bleiben, handelt es
sich doch hier um die gliedweise Integration einer unendlichen Reihe,
iiber deren Convergenz wir a priori nicht das gervingste aussagen
konnen und zwar deshalb nicht, weil solche Convergenzuntersuchungen
notwendig voraussetzen miissten, dass man die Minimal- und Maxi-
malwerte der in der Reihe auftretenden Klemente schon kennt.
Aber gerade das ist es ja, was wir durch die Integration von (1)
erfaliren wollen. Die hier genannte Schwierigkeit bleibt auch dann
noch bestehen, wenn das ganz allgemein gefasste Vielkorperproblem
so modifiziert wird, wie es die in unserem Planetensystem bestehenden
Verhiiltnisse gestatten. Indessen gelingt es hier wegen der Klein-
heit der storenden Massen, der Excentrizitiiten und der Bahunei-

s 3l

tJ'!’ t gim = =y z
oungen, welche in Q" als IPaktoren auftreten, sehr gute An-

niherungen fiir dic Elemente zu erhalten. Damit scheint das Pro-
blem nun allerdings zugiinglicher zu sein, allein auch jetzt wiirde
die numerische Auswertung des Resultates auf kaum zu iiberwindende




Schwierigkeiten stossen, wenn uns nicht die schou frither erwihnte
Kleinheit der Storungen zu Hilfe kiime. Die Krleichterung besteht
nimlich darin, dass man nuwr diejenigen Storungen zu  bestimmen
braucht, welche jeder einzelne Planet von jedem andern cinzelnen
Planeten erleidet und dies unter der Annahme, dass der andere
Planet ungestort in rein elliptischer Bahn einhergeht, so dass man
aul einmal immer nur 3 Kovrper in Rechnung zu ziehen hat, némlich
die Sonne, den storenden und den gestorten Planeten. Dieser Um-
stand im Verein mit der vorhin genannten Krleichterung, welche

v . L A T . . )
die Kleinheit der Grossen 0 nach sich zieht und die dadurch
, e e _ , al ,
bedingte ICleinheit der Differentialquoticnten m gestatten nun eine
dl

unmittelbare Integration der Gleichung (1), welche nach den be-
sprochenen Voraussetzungen lautet:

@ B Uz’,g' Sin RNT, i) -
di < eos U == i (£)

Da nach dem Vorausgehenden die Differentialquotienten klein
sein miissen, so sind auch, wenigstens fiiv kiirzere Zett, die Verin-
derungen der Elemente klein, und man kann in der ersten Auniihe-
rtung fir @, e, £, .. in der rechten Seite von (2) coustante Werte
[liv dieselben annehmen, so dass man erhilt:

dl p iLsin o - ) o
1 === Jo - - (I.u “l“ Vo -['- o y (. )

welche Gleichung, da allgemein

lo == 10l ~}* Ao
o = 't »|* Ao’
ist, integriert ergibt:

: - (‘M, 08 . . i ‘
B = Pt |- E oL o (il = o - ) Ee, (4)

ino *|ﬁ o’

worin P dasjenige Glied von (3) bedeutet, fiir welches ¢ = " = 0 ist,
Der Ausdruck (4) fiiv das Klement £ besteht aus 2 qualitativ
durchaus verschiedenen Teilen, nimlich
1. aus dem Glied P.¢4, das man die secnlaren Storungen des
Klementes nennt, und



2. aus den Gliedern, welche durch

oy

0o’ cos i

. (Jo it . ’ 4,

E = — (il -V A )
o'’ sin

dargestellt sind und periodische Stérungen genannt werden.
Die secularen Storungen, — vorausgesetzt, dass man solche
durch die Storungen der ersten Ordnung tiberhaupt erhiilt — wachsen

. . . - ix'l" % . .
mit der Zeit iiber alle Grenzen. Da aber (0  die storende Masse
als Ifaktor enthiilt und nach obigem

P o ™ i
Sin
also ebenfalls mit dieser Masse multipliziert ist, so ist zu bemerken,
dass der Zuwachs der Klemente sehr langsam vor sich geht. So
klein er indessen aber auch sein mag, so ist er dennoch gross genug,
um nach Verlaut eines endlichen Zeitintervalls die Stabilitiit des
betrachteten Systems in [rage zu stellen.

Betrachten wir z. B. die Planetentafel von Leverrier fiir die
Epoche 1850, 1. Jan. O" mittl. Zeit, so finden wir zwr Berechnung
der Excentrizitit des Mars die Formel

¢ — 0,00326113 -} 0,00000095408 ¢,

Angenommen, diese [formel entspreche der Wirklichkeit, so
wiirde sich die Marsbahn nach 954462 Jahven in eine Parabel mit
der Excentrizitit | verwandelt haben. Nun hat aber schon La-
orange daraul hingewiesen, dass diese Konsequenz nicht richtig ist,
sondern dass e nur fiir eine relativ kurze Zeit nach diesem (esetze
zunimmt und sich in Lingern Zeitriiumen in ganz anderer Weise
verhiilt. So iiberzeugend indessen Lagrange’s Untersuchungen und
die daran gekniipften Schlussfolgerungen zu jener Zeit auch gewesen
sein mochten, so fehlte seinen Beweisftiithrungen doch die Rigurositiit,
die Dank der Fortschritte der Mathematik auf funktionentheoretischer
Grundlage den meisten derartigen Untersuchungen der letzten Jahr-
zehnte eigen ist, ja eigen sein muss, wenn sie die mannigfachen
Priifungen, die die Bewegungen im Weltall ihnen selbst fortwiihrend
auferlegen, bestehen wollen. Trotz der Mingel, die den genannten
Untersuchungen von Lagrange notwendig anhatten mussten, erwiesen
sich indessen seine Schlussfolgerungen als durchaus richtig: Das
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secilare Glied Pl in (4) kan, insofern unter 15 die Iixeentrizitil
verstanden ist, wicht unbegrenzt wachsen, dugegen woll periodischen
Scheanfkungen con i allyemeinen sehr langer Periode unlerliegen.
Was hier zunéchst nur tiber die Excentrizitit ausgesagt wurde, hat
sich in der Folge auch fiir die iibrigen Klemente als richtig heraus-
gestellt. In ganz besonders hohem Masse trifft dies liir die grosse
Axe zu; denn nicht nur ist bei dieser das seculare Glied von (4)
divekt gleich Null, sondern es verschwinden auch in der zweiten
Annitherung der Klemente von der Form

e ol f Bl > 00 (ol 4 fh)

et E Do ;g; (ot |- f'o) - Fo (5)

sowohl der Coéffizient von ¢ als auch derjenige vou /% Dagegen
tritt hier ein anderes, der Zeit proportionales (xlied auf, niimlich

Cos e L F M 2
/. % Do . () L-|- ), (6)

welches sich @hmlich verhitlt wie etwa die Funktion
Y — & . sin @,

von welcher wir wissen, dass sie bald wichst, bald abnimmt, trotz-
dem aber jede vorgegebene Grosse M iibersteigt und auch iiber dieser
Grosse bleibt, sobald . einen bestimmten, nur von M abhiingigen
Wert, iiberschreitet.

Das Auftreten von Gliedern in der Iform (6) hat darum lange
Zeit grosses Aufsehen erregt und Gelehrte wie Delaunay, Simon
Neweomb und namentlich Gyldén zu einer Reihe hiochst interessanter
und fiir die Stabilitiitsfrage wichtiger Untersuchungen veranlasst,
welche unter anderm zu dem Schlusse bervechtigen: Die direl (6)
dargestellten  Glieder verdanken ihr  Auftreten den angewandten
Rechnungsprozessen. I Wirklichleit existieren  solche weder bei
der grossen Axe noch bei den dibrigen [lementen. Die Fiihrung in
der weiteren Behandlung dieser Ifvage, besonders auch mit Hinsicht
auf Untersuchungen iiber die Natur der fiir die Coordinaten der
Planeten geltenden Reihen, hat in den letzten Jahren namentlich
H. Poincaré iibernommen und dabei Resultate evzielt, die zur defi-
nitiven Beantwortung der Stabilititsfrage von eminenter Bedeutung
sind.  Wir werden daraut noch zuriickkonumen.
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Ist also nach obigem die Schwierigkeit der Sccularstérungen

iberwunden, so bleibt eine zweite noch weit bedenklichere. Be-
trachten wir nimlich den mit

Cos ry i1 -

(g )

.S"I,‘)l;(' | o
multiplizierten Teil des in (4) gegebenen Integrals, so ergibt sich
notwendig, dass fiiv den IMall, dass

(}'i’i’ ;
g | <S¢ (7)
in - i'n

wo unter ¢ eine endliche Grosse verstanden sein soll, auch die perio-
dischen Storungen eine obere endliche Grenze nicht iiberschreiten
konnen.  Nun ist aber (7) nur dann moglich, wenn

T - 7T

mn i = S (8
| rlv f[v ] ? ( )
2o
oder auch
1" - 7T 4= 0, (9)

ist, d. h. wenn die Umlaufszeiten 7 und 77 des gestorten und des
storenden Planeten déncommensirabel sind.  Die Bedingung (4) ist
notwendig; sie ist aber auch hinveichend; denn nur wenn die Um-
laufszeiten in einem incommensurablen Verhiiltnis stehen, wird es
nicht moglich sein, unter den Zahlen ¢ und ¢ solche aufzutinden,
tiir welche genau

I T

7T
ist.  Tmuerhin muss bemerkt werden, dass es theoretisch durchaus
moglich ist, die linke Seite von (V) der Null beliebig nahe zu bringen
und damit die in (7) auftretenden Divisoren beliebig klein zu machen,
braucht man doch nur die durch die mittleren Bewegungen oder
die Umlaufszeiten der in Frage stehenden Planeten gegebenen (Quo-

. n T, :

tienten —, bezw. 7 in Kettenbriiche zu entwickeln und Zihler
n ,

und Nenner irgend eines Ndherungswertes hoher Ovdnung als i —,

bezw. ¢ — Wert zu verwenden. Wenn nun trotz der Einfiihrung

derart gebildeter kleiner Divisoren die Glieder in (7) 1m allgemeinen

nicht tiber alle Grenzen wachsen, so hingt dies im wesentlichen

(10)



damit zusammen, dass mit zunehmenden Werten von ¢ und ¢ die
ebenfalls in (7) auftretenden Coétflizienten Q”“, aseh abnehmen.
Zur Illustration diene folgendes, der VWirklichkeit entnommene
Beispiel :
Der Planet Jupiter hat eine mittlere Bewegung o == 2997 1.
Betrachtet man die Storungen dieses Planeten von Satwn, [iirv
welchen no” — 1207,5 ist, so findet man:

o 9 I 1 |
' g
13 .
mit den Niherungswerten
2 B 67

2 et
Hievaus ergibt sich unter Beriicksichtigung derjenigen 7- Werte,
welche durch den zweiten Niherungsbruch gelielert werden:

Q90 — D’ — — 4, 3
)

so dass dieser kleine Divisor 70mal kleiner als die mittlere Bewe-
oung des Jupiters und 28mal kleiner als die mittlere Bewegung
von Satwrn ist.  Das entsprechende Glied in (7) wird demnach
T0mal vergrossert (28mal, weun Jupiter der storende Korper ist).

Denken wir uns den storenden Plancten des vorstehenden Bei-
spiels soweit hinausgeschoben, bis seine Umlaufzeit statt 10755 Tage
)

P

deren 103852, b oder genau der Umlaufszeit des Jupiters (4333

Tage) betriigt, was in einer mittleren Kntfernung von 9,538320 Krd-
weiten der Ifall ist, so werden Jupiter und Saturn nach b Umliufen
des Jupiter, zweien des Saturn wieder genau in dieselbe relative
Stellung zur Sonne zuriickkehven.  Was sich somit withrend dieser
Zeit an Storungen ergeben hat, das ergibt sich im selben Betrag
und Sinne auch wihrend jedes folgenden doppelten Umlanfs Saturns.
Hier heben sich die Storungen augenscheinlich nicht auf, sondern
sie summieren sich. Nichts liegt somit nither als daraus zu schliessen,
dass dic gestinten Kirper samtlich ais den Commensurabilititsstellen
herausyeworfen werden oder mit andern Worten, dass sich ein der-
artiges System im instabilen Zustande befinde.  Diese Schlussweise
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ist in der Tat umso naheliegender, als sie mit den tatsiichlichen
Verhiltnissen in unserm Sonnensystem durchaus im Kinklang steht;
denn nicht nuwr sind die Umlaufszeiten simtlicher Hauptplaneten
gegeneinander incommensurabel, sondern es bestehen in dem breit
zwischen Mars und Jupiter dahinziehenden Schwarm der Asteroiden
itberall in denjenigen Entfernungen von der Sonne Liicken, in denen
die Umlaufszeiten in einem einfachen commensurablen Verhiiltnis zu
der des Jupiter stehen miissten. Noch mehr! Der Saturnving, der
nach Maxwell ihnlich wie der Asteroidenring ebenfalls als ein dichter
Schwarm einzelner, den Saturn als Centralkorper umkreisender Korper
gedacht werden muss, enthilt die sogenannte Cassinische Trennung
gerade an einer Stelle, entsprechend einer Umlaufszeit, derven 2-, 3-
4- und G-faches bezw. sehr nahe die Umlaufszeiten der 4 innersten
Monde des Saturn liefert. So berechtigt somit die obige Schlussfolge-
rung zu sein scheint, so ist sie trotzdem unrichtig; denn seit bald
20 Jahren weiss man, gestiitzt auf die scharfsinnigen Untersuchungen
von Glyden, dass sich an den Commensurabilititsstellen und ihrven
unmittelbaren Umgebungen ganz neue Bewegungsformen einstellen
kénnen.  Zur Charakterisierung derselben bedienen wir uns, dem
(redankengang Prof. D Schwarzsehilds folgend, des in den Argu-
menten der Sinus- bezw. Cosinusglieder von (2) auftretenden Winkels
=il |- /F,
in welchen aber jetzt, entgegen der dortigen allgemeinen Annahme
die / und / so gewilhlt sein mogen, dass zur Zeit £ — o sowohl
¢ als auch ¢ verschwinden. s wird daun notwendig, wenn mit 2
und 2’ die mittleren tidglichen Bewegungen bezeichnet werden,
C=(in-|-in)t

Dies vorausgesetzt, lisst sich nun das ganze Resultat der vor-
genannten neuern Untersuchungen in der Hauptsache dahinaussprechen,
dass sich der Winkel ¢ unter dem Einfluss der Storungen verhilt
wie die Elongation eines Pendels aus seiner Ruhelage. Tst man weit
von der Commensurabilitiitsstelle entfernt, so verhilt sich ¢ dhnlich
wie ein Pendel, das geniigend Schwung hat, wm schon nach kurzer
Zeit um seine Aufhiingeachse votieren zu konnen. Eine Anniiherung
an die Commensurabilitiitsstelle entspricht einer Verminderung der
Anfangsgeschwindigkeit des Pendels. Es wird die hochste Stelle
seiner Bahn noch erreichen, allein bereits mit einer solch geringen
(reschwindigkeit, dass es zur Rotation um die Axe schon bedeutend



mehr Zeit braucht, als unter der zuerst gemachten Voraussetzung.
[m System Sonne-Jupiter-Saturn erfolgt ein voller Umschwung erst
nach rund 850 Jahren. Man wird auch an Ifdlle kommen, wo das
Pendel nur noch wenigr Kraftiiberschuss hat und den Scheitelpunk®
der Bahn nur noch sehr zogernd iiberwindet. Der Winkel ¢ wird
dann eine sehr ungleichformige, einmal rasche, dann langsame Rota-
tion ausfithren. Damit wird dann eine entsprechende Schwankung
in den Winkeln / und # verbunden sein. Schliesslich gelangt man
an die Pendelbewegung von asymplotischem Chavakter. Das Pendel
entfernt sich unendlich laugsam von der hichsten Stelle und schwingt
unter dem Aufhiingepunkt herum, um die hochste Stelle erst nach
unendlich langer Zeit von der andern Seite her wieder zu erveichen.

Die Richtigkeit dieser Behauptung ergibt sich unmittelbar aus
der in der Theorie des mathematischen Pendels auftretenden Inte-
oralformel :

r[’ l/’ /2 " {[”’
| g0 1 (0 —w) (1 — & u2)

in welcher 7' die Schwingungsdauer fiir eine gegebene Klongation

(0 == 2 arcus (sin == k) bedeutet. Da fiir die asymptotische Be-
. : . T .
wegung des Pendels « =— & und somit A — sin g == 1 wird, so

e

erhillt man finr diese:

: v pl oy ;
limes T == limes l//“ ’ i — L/ 2 ! S (i ]

_ e q .oy s g .o 1 —a?
asa W=l VBT A ey et 9

oder
[ .

- [ /: [ -
lies T == / . log —
g 2 L —u

|-

0
(==Jr

w. 7. b. w.

(renau wie das Pendel verhiilt sich nun auch der Winkel ¢ bei
den asymptotischen Bewegungen im Planetensystem. Bei weiterer
Anniherung an die Commensurabilitit hat man es augenscheinlich
mit dem oszilierenden Pendel zu tun. ¢ umliduft den Umkreis iiber-
haupt nicht mehr; die storenden Kriifte halten ihn fest und erlauben
ithm nur, Sehwingungen mit beschriinkter Amplitude auszuliibven.
Die Astronomen nennen diese Erscheinung Libration und den Punkt,
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bezw. den Mittelwert, um welchen die Schwingungen ausgefiihrt
werden, Librationspunkt oder gelegentlich auch Librationscentrum.
Wiihrend bei den asymptotischen Bewegungsformen noch jeder Korper
unabhiingig von andern alle moglichen Stellungen in seiner Bahn
einnehimen konnte, ist im Ialle von Libration gewissermassen jeder
Korper an den andern gebunden oder mit andern Worten, der Winkel
$ == (inv -} ¢'no’) ¢ ist gendtigt, innerhalb bestimmter Grenzen zu
bleiben.

Wird die Amplitude der Libration immer kleiner und kleiner,
so gelangt man schliesslich zwm ruhenden Pendel.  Fiir dasselbe
findet man, wenn in der Formel

, 'l/ p ,” tlit
P Yo —w i — e

die Klongation « = 2 arews (sin = k) Null und somit auch & =0
gesetzt wird,

=0 E=0T 000V 1 —u?) (L= k) ydo ‘/ 1—as?2
oder
R ! f——‘
limes 1" = V Lo arens (St =)= £ L/ £ — Conslt.
t==A) 4 e 2 g

Auf den Winkel ¢ iibertragen, heisst das wohl nichts anderes,
als dass eben auch er konstant ist oder, was auf dasselbe hinaus-
kommt, dass die beiden Korper nach einer bestimmten, sich immer
gleichbleibenden Zeit genau in dieselbe rvelative Lage zu einander
zuritckkehren.

Wir haben es in diesem [Falle mit der vollstindigen Kommen-
surabilitiit der Umlaufszeiten der Korper zuw tun, in welchem die
obgenannte librierende Bewegungstorm in eine periodische iibergeht.

Kin interessantes Beispiel von Librationsbewegung bieten uns
die 3 innern Jupitermonde:

Bezeichnen der Reihe nach n, n/, 2”7 die mittleren Bewegungen
derselben, so ist

n —203"48895528
n = 101°,37472396
' — HOY 31760853,



Hieraus ergeben sich nun:
& =(n —2n" ){=0°73950736

"= — 20" ) ¢ = 0"73950730,

oder = —§"=m—3n" 20" )t{=0. (L1)
Bedeuten jetzt 4, £, I die mittleven jovicentrischen Lingen zur Zeit
t: A, A, A digjenigen zur Zeit £ — fo (Kpoche), so wird

S=(n—3an" 20" )t -| A— 34 24"
oder also unter Beachtung von (11)
C—=A—3X | 24" = Consl. (12)

Diese Constante wurde schon voun Laplace zu 180" bestimmt
und hat die Beobachtung die Richtigkeit dieses Wertes vollaul De-
stitigt.

Die Libration bestelit somit davin, dass dic 3 Monde nic gleich-
zeiliy) verfinstert werden kinnen.

Ausser diesem Beispiel gibt es in unserem Planetensystem noch
5 hochst merkwiirdige Iflle von Librationsbewegungen und zwar bei
den Mounden des Satwrn.  Hier miégen indessen nur die beiden von
Struve entdeckten Librationen im System Mimas-Thetis und im System
Ionceladus-Dione Krwithnung finden.  Fiir das erste dieser beiden
Systeme ist der librierende Winkel

§= Al — 20— (6 - 6)

und die Libration besteht davin, duss dic Conjunktionen der beiden
Monde wm den Mittelpunkt des zvischen den avfsteigenden Knoten,
ihrer Balnen liegenden Bogens des Satwrn-dAeguators bestitndig Osei-
lationen ausfithren wnd dies i der Weise, dass sich dic Linie der

Conjunklion nic idther 45" vom Librationscentrion enlfernen kann.
[fiiv das System Inceladus-Dione wird

‘(: e 2[’ —_— J""‘ ) (7: ())y

woraus sich ergibt, dass die Congunhilionen dieser beiden Monde sich
immer in demgenigen Punkle ercignen, in awvelchem Iinceladus dem
Satwrn wimn ndichsten ist. Mit der Hrkenntnis der Bewegungsformen
im Fall der Commensurabilititen sowohl als auch im Fall der sicu-
laren Storungen wurde Liir die Storungstheovie eine ganz neue Grund-
lage geschaffen, auf welcher in den letzten Jahren cine Reihe gross-
artiger Resultate erzielt werden komnten. Kines der wichtigsten



darunter ist unstreitie dasjenige, welches besagt, dass in der mo-
dernen Storungstheorie itberhaupt keine der Zeit proportionalen
Glieder mehr auftreten, sondern dass sich die Koordinaten der Pla-
neten in rein trigonometrische Reihen entwickeln lassen. Die ‘I'rag-
weite dieses Resultates liegt offenbar:; denn nun musste auch der
Befangenste einsehen, dass unser Sonnensystem stabil sei, d. h. dass
die Planeten ewig dieselben Regionen des Himmelsraumes durch-
kreuzen. Als man Ende der Achtziger Jahre des vergangenen Jahr-
hunderts diesen Punkt errveicht hatte, durfte man das Vielkorper-
problem als gelost betrachten.

Da trat 1890 der grosse franzosische Gelehrte H. Poincard
mit dem Nachweis vor die Offentlichkeit, dass die Reilen, durch
welehe man in der Astronomie seit fast einem Jahrhundert die
Bewegung der Himmelskorper davzustellen ptlegt, im analytischen
Sinne des Wortes, nicht convergieren und dass alle Schlussfolgerungen,
die hinsichtlich der Stabilitit im Planetensystem aus dem Aufbau
jener Reihen gezogen wurden, unzuliissig seien. Dass dieser Satz
Poincard’s die Astronomen in Aufregung versetzen musste, ist um
so eher begreiflich, als die auf jene Reihen gegriindeten Planeten-
tafeln nicht nur die seit 150 Jahren vorliegenden, bis auf die Se-
kunde genauen teleskopischen Beobachtungen, sondern auch alle aus
dem Altertum iiberlieferten Aufzeichnungen innerhalb der Beobach-
tungsgenaunigkeit darzustellen vermogen.

So sehr hier angenscheinlich Theorie und Praxis auseinander-
zugehen scheinen, so lassen sich beide Standpunkte dennoch gar
wohl mit einander vereinigen:

s seien etwa die beiden Retihen

1000 — 1} 1000 -|- 500000 |- -

i!

) !
—2 = 1 - 0,001 4 0,000002 |-
E 1000

Trotz der sehr raschen Zunahme der Glieder der ersten dieser
beiden Reihen, ist dieselbe ¢m analytischen Sinne des Wortes con-
vergent, weil von einem bestimmten (iliede an jedes folgende kleiner
ist, als das vorhergehende. Was die zweite Reihe betrifft, so
nennen sie die Analytiker divergent, weil von einem bestimmten

und



(+liede an jedes folgende grosser ist, als das vorhergehende. Die
Astronomen dagegen betrachten die erste als divergent, weil die
1000 ersten Glieder zunehmen, und die zweite als convergent, weil
die 1000 ersten Glieder abnehmen!

Wenn also Poincaré saet, dass die von den Astronomen ver-
wendeten Reilien im analytischen Sinne des Wortes nicht conver-
gieren, so will dies eben nichts anderes heissen, als dass sie zu
theoretischen Untersuchungen nicht verwendet werden diirfen, da-
cegen zu approximativen Wertbestimmungen wohl geeignet sein
konnen.

Nun verhalten sich die Reihen der Storungsrechnung analog

der Reihe
f‘ ,
E ~E s 120,001+ 0,000002 |- -,
000

deren erste Glieder sehr rasch abnehmen und es konnen daher an-
oenitherte Werte dadurch erhalten werden, dass man nur diejenigen
Glieder mitnimmt, die noch zum abnehmenden Teil der Reihe ge-
horen; denn es gehort zu den Kigentiimlichkeiten dieser sogenannten
semiconvergenten Reihen, dass die GGenauigkeit des Resultates nicht
von den unendlich grossen, fortgelassenen (liedern abhiingt, sondern
vielmehr durch das letzte mitgenommene Glied wenigstens der Grossen-
ordnung nach gegeben wird. Demnach wiirde an die Astronomen die
Vorschrift zu ergehen haben, ithre Reihen nicht unbegrenzt tortzu-
setzen. Das tun sie nun aber ohnehin aus praktischen Griinden nicht
und zwar sind sie fast ausnahmslos beim dritten Gliede stehen ge-
blieben. Der Unterschied zwischen einst und jetzt besteht somit
eigentlich einzig darin, dass die Astronomen heute das tun miissen,
was ihnen frither nur die Bequemlichkeit gebot. Solange es sich
also bloss darum handelt, die Storungen unserer Hauptplaneten auf
Jahrhunderte hinaus und innerhalb der Beobachtungsgenauigkeit dar-
zustellen, solange wird der Astronom es kaum fiir notwendig or-
achten, seinen Rechnungen strenge Convergenzuntersuchungen iiber
die von ilim benutzten Reihen vorausgehen zu lassen. Umso unent-
behrlicher werden solche aber, sobald ihm die Reihen auch iiber die
Grenzen Aufschluss geben sollen, innerhalb welcher die relativen
Coordinaten der Planeten sich verindern kionnen. Trotz der grossen
Bedeutung, die demnach solchen Untersuchungen augenscheinlich in
Stabilitiitsfragen zukommen, liegt hier ein noch fast giinzlich unbe-



bautes Feld vor uns und zwar namentlich in der Hinsicht, dass es
noch nicht gelungen ist, Ausdriicke fiir die Coovdinaten im Drei-
korper-Problem zu finden, die fiir eine unbeschriinkte Zeit ihre
Giiltigkeit behalten, oder wenigstens, dass bis jetzt der Beweis fiir
die Kxistenz solcher Ausdriicke noch nicht erbracht werden konnte.
s scheint daher nur begreiflich, dass man versuchte, jene Grenzen
auf andere Weise zu bestimmen. Von allen diesbeziiglichen Ver-
suchen hat sich Indessen nur derjenige als erfolgreich erwiesen, der
in der sogenanunten /fill’schen Grenzhurve seinen Ausgangspunkt hat
und durch welchen es Hill gelang, das erste Mal in der Geschichte
der Mechanik des Himmels einen strengen Stabilititsbeweis fiir eine
Klasse Bewegungen im Dreikorper-Problem zu finden.  IWr zeigte
niamlich, dass der Mond der Erde sich niemals mehr als bis zum
Vierfachen seines jetzigen Abstandes von der Krde vom Haupt-
planeten entfernen kann. Dabei wurde allerdings vorausgesetzt,
dass ausser der Anzichung der HKrde und der Sonne keine andern
Krifte aut den Mond einwirken, und dass ausserdem die Bahn der
Hrde um die Sonne genau kreisformig sei, — alles Voraussetzungen,
die mit den wirklichen Verhiltnissen wohl nicht genau itbereinstimmen,
thnen aber doch zu nahe kommen, als dass sie dag gefundene Re-
sultat stark zu moditizieren vermochten.

Die Hill'sche Grenzkurve hat in den letzten Jahren eine mehr-
fache Anwendung erfahren, namentlich ist thre Bedeutung [(iir das
alleemeine Dreikorper- Problem mehrfach untersucht worden.  Bel
all” diesen Untersuchungen hat sich indessen gezeigt, dass sich aus
der Diskussion der Grenzkurve, bezw. Grenzfliche keine allgemeinen
Schliisse iiber die Maximal- oder Minimalabstiinde der einzelnen Korper
des Systems ziehen lassen, nur Eisst sich ziemlich unmittelbar schliessen,
dass nicht alle Abstinde gleichzeitiz unendlich gross sein konnen.
Betrachtet man nimlich das Integral der lebendigen Kralt
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bestindig grosser oder gleich null sein muss. Daraus folgt nun aber
in dev Tat, dass sich die Mitglieder inseres Planelensystems im Laife
der Zeil nicht alle wnendlich weil von ewnander entfernen kinnen.

Aus den bisherigen Uberlegungen ergibt sich, dass die iiber-
aus wichtige Ifrage von der Art der Grenzwerte der Coordinaten
im allgemeinen Drei- und Vielkdrper-Problem noch keineswegs gelost
ist; immerhin muss konstatiert werden, dass die Einflihvung der
Hill’schen Grenzkurve im Verein mit den von H. Poincaré in seinem
klassischen Werke: ,,L.es méthodes nouvelles de la mécanique céleste,
veroffentlichten modernen Hilfsmitteln der theorvetischen Astronomie
fiir eine endgiiltige und abschliessende Antwort aufl die Ifrage von
der Stabilitit in unserem Planetensystem zu den schonsten Hofl-
nungen berechtigt. Dass dem in der T'at so ist, soll indessen erst
im zweiten Teil der vorliegenden Arbeit (vergl. viertes Heft der
Mitteilungen der Naturforschenden Gesellschaft) bewiesen werden.
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