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In unserm Sonnensystem ziehen sich alle Glieder desselben

gegenseitig an, wodurch die Ellipse, welche jeder Planet oder Komet,
wenn er allein existierte, um die Sonne beschreiben würde, gestört
und in eine andere, verwickelte krumme Linie verwandelt wird.
Diese Bahnstörungen sind indessen keineswegs Unregelmässigkeiten;
denn es erfolgen alle Bewegungen nach ein und demselben
unwandelbaren Naturgesetze, der allgemeinen Gravitation. Was die Grössen-

ordnung der Ungleichheiten in der Bewegung der einzelnen Teile
des Systems betrifft,, so ist zu bemerken, dass dieselben wenigstens
für die Hauptplaneten so klein sind, dass sie nur durch genaue
Beobachtungen, die überdies einige Jahre umfassen, wahrgenommen
werden können, ist doch die Masse der Planeten, verglichen mit
.jener der Sonne, des Centraikörpers, eine last verschwindend kleine
und ausserdem die gegenseitige Entfernung der Planeten eine
bedeutende. Aber noch zwei weitere Umstände, auf welche hier schon

wegen ihrer grossen Bedeutung in der nachstehend zu behandelnden

Stabilitätsfrage aufmerksam gemacht werden mag, bedingen die

Geringfügigkeit der Störungen, nämlich einesteils die geringen Excen-
trizitäten der Planetenbahnen und anderntcils deren geringe
Neigungen zur Ekliptik. In beiderlei Hinsicht bilden allerdings Merkur
und die meisten Asteroiden Ausnahmen; aber letztere sind so

ausserordentlich klein und Merkur der gewaltigen Sonnenmasse so nahe,
dass auch diese Himmelskörper keinen sehr störenden Einfluss im

Sonnensystem auszuüben vermögen. Etwas anders liegen die
Verhältnisse im System: Sonne -- Erde — Mond; die Masse des

störenden Körpers, der Sonne, übertrifft diejenige des ('entralkörpers,
der Erde, um das rund 324'000-fachc, welcher bedenklichen Grösse

allerdings die Tatsache entgegengesetzt werden kann, dass die Sonne

etwa 400-mal weiter vom Monde entfernt ist, als die Erde,
wodurch die störende Kraft zu einem geringen Teil der Ccntralkraft
herabsinkt. Dennoch bewirkt die Grösse dos störenden Körpers, dass

diese Störungen viel mehr hervortreten, als alle andern im Sonnen-
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system. Vollständig anders gestalten sich jedoch die Verhältnisse
bei den Kometen; bei ihnen können alle die genannten Bedingungen,
welche unter den Planetenbahnen nur geringe Abweichungen von
der Ellipse bestehen lassen, in Wegfall kommen; denn nicht nur
bewegen sich diese Himmelskörper in stark excentrischen Kurven,
sondern es besitzen ihre Bahnebenen überdies auch noch ganz
beträchtliche Neigungen gegen die Ekliptik. Wenn nun noch dazu

der Komet in bedeutende Nähe eines Planeten von grosser Masse

kommt, z. B. in diejenige Jupiters oder Saturns, so kann seine

Bahn eine derart starke Störung erleiden, dass sie nicht nur gänzlich
geändert wird, sondern ein nicht periodischer Komet periodisch werden
kann und umgekehrt. Zur Illustration diene folgendes, der
Wirklichkeit entnommenes Beispiel: Der Komet Lexvll 1770 H kam im

Jahre 1767 in parabolischer Bahn dem Jupiter nahe, wurde von
diesem in eine enge Ellipse geworfen, die er zweimal in je 5,f> Jahren
durchlief, bis er 1771) zum zweitenmale dem Jupiter nahe kam und

wiederum eine gänzliche Änderung erfuhr.
So bedeutend die Störungen der Kometen bahnen auch sein

können, so gering scheint der Einfluss der Kometenmassen auf die

Planeten oder deren Monde zu sein, wenigstens konnte man einen

solchen bisher in keinem Kalle nachweisen. So vermochte z. B. der

vorerwähnte Lexell'scho Komet nicht einmal die Monde Jupiters
zu stören, obwohl er doch 1771) mitten unter ihnen durchgegangen
war. Wir scldiessen hieraus mit einer der Gewissheit sehr nahe

kommenden Wahrscheinlichkeit, dass die unser Planetensystem
durchquerenden Kometen nicht im Stande sein können, die in demselben

herrschende Ordnung zu stören. Damit soll selbstverständlich nicht

gesagt sein, dass bei starker Annäherung eines Kometen an einen

Planeten es nicht etwa möglich wäre, dass sich das System: Sonne —

Komet—Planet in der Weise umgestalten könnte, dass Sonne und

Planet ihre Rollen gegenseitig tauschen, indem der Komet ein Trabant

des Planeten und die Sonne zum störenden Körper wird. Aber
selbst für den Fall, dass eine solche neue Gruppierung stattfinden
würde, — die Störungstheorie scldiesst die Möglichkeit einer solchen
nicht nur nicht aus, sondern sie bedient sich sogar bei der Berechnung

der speziellen Störungen der Kometen und Asteroiden
vorübergehend des Vorteils, den eine derartige Annahme in den

Rechnungen gestattet, — so könnte der leidende Teil des Systems doch

nur der Komet sein. Was hier von den Kometen gesagt wurde,
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kann auch, und zwar ohne irgend welche Modifikation auf die mit
ihnen so nahe verwandten Meteorschwärme übertragen werden. Wie

jene, so können auch diese kaum jemals als störende Körper
auftreten. Demnach verbleiben uns als störende Körper innerhalb unseres

Sonnensystems nur noch die K Hauptplaneten und die Sonne —
diese letztere allerdings nur dann, wenn es sich um die Störungen
der Monde handelt. — Alle übrigen Massen werden wir in der Folge
als verschwindend ansehen dürfen, die wohl Hahnstörungen erleiden,
nicht aber selbst solche bewirken können.

Wenn eingangs darauf hingewiesen wurde, dass die Ungleichheiten

in der Bewegung der Hauptplaneten — mit welchen wir
uns in diesem ersten Teil ausschliesslich befassen werden — äusserst

geringe sind, so ist damit noch keineswegs bewiesen, dass sich
dieselben im Verlaufe von Jahrhunderten, Jahrtausenden oder doch

Jahrmillionen nicht'derart summieren könnten, dass sich die Bahn-

curven, die jetzt sämtlich elliptisch sind, in Parabeln verwandeln,
auf welchen sich die in ihnen laufenden Planeten in ferne Ilimmels-
räume verlieren würden. Erwägt man indessen die Art, wie sich
unser Sonnensystem mutmasslich entwickelt hat und berücksichtigt
den Umstand, dass die Planeten intolge der InkommcusurabUiUH
ihrer Umlaufszeiten in alle möglichen relativen Stellungen zu
einander kommen, so scheinen solche Totaländerungen der Bahnen
kaum wahrscheinlich zu sein. Wir gewinnen vielmehr den Kindruck,
das System sei für den „ewigen" Bestand eingerichtet, d. h. es sei

stabil. Ob und in wie weit diese Vermutung richtig ist, soll durch
nachstehende Überlegungen gezeigt werden. Um die Vorstellung
zu fixieren, denken wir uns eine endliche Anzahl von Planeten
P, I", P", mit dem gemeinschaftlichen ('entralkörper S und den

Bahnelementen u, e, /,..., a', e', l',..., a", c", /",.•• Wir nehmen

nun an, dass ausser der anziehenden Kraft des Ocntralkörpers S

auf die Planeten keine andern Kräfte wirken. Dann wird gemäss
den Gesetzen der ('entralbewegung jeder einzelne Planet einen
Kegelschnitt beschreiben, der, je nachdem das (Quadrat seiner
Anfangsgeschwindigkeit oder

jdsV < 2 k'1 (L + rd'O)

\ dt)o > ?'ü

ist, eine Ellipse, eine Parabel oder eine Hyperbel sein wird, in deren
einem Brennpunkt der Centraikörper steht. Lassen wir aber diese
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Voraussetzung' fallen und tragen der Wirklichkeit Rechnung, so

geschieht, was schon eingangs bemerkt wurde: jeder Planet,
beschreibt unter dem Einfluss der übrigen eine Curve, die von den

'> obgcnannten um so stärker abweicht, je intensiver die störenden

Kräfte sind. Trotzdem kann aber seine Bewegung unter der
Annahme dargestellt werden, dass während er sich in einem
Kegelschnitt bewegt, die Elemente oder Abmessungen derselben in
fortwährend er Änderung begriffen sind.

Bedeutet nun Ii irgend eines der Bestimmungsstücke des von
P zur Zeit t beschriebenen Momentankegelschnittes — welchen er

genau innehalten würde, vorausgesetzt, dass im betrachteten Augenblick

alle störenden Kräfte aufhören würden zu wirken, — so

liefert die Störungstheorie für dasselbe eine Differentialgleichung
von der Form:

»
(l Ii \ isin— 2_Q ms (/H-i'/'-l 7'-''' "•). (1)

/.iE"....
in welcher Q

' und (/ von den Bahnelementen abhängige

Crossen, 1,1', l",... die mittleren Längen der Planeten P, I", P",...
und i, i', i",... beliebige ganze, positive oder negative Zahlen (0
nicht ausgeschlossen) bedeuten.

Die strenge Integration dieser Differentialgleichung dürfte
indessen wohl für immer ein ungelöstes Problem bleiben, handelt es

sich doch hier um die gliedweise Integration einer unendlichen Reihe,
Uber deren Convergenz wir a priori nicht das geringste aussagen
können und zwar deshalb nicht, weil solche Convergenzunt,ersuchungen
notwendig voraussetzen miissten, dass man die Minimal- und

Maximalwerte der in der Reihe auftretenden Elemente schon kennt.
Aber gerade das ist es ja, was wir durch die Integration von (1)
erfahren wollen. Die hier genannte Schwierigkeit bleibt auch dann
noch bestehen, wenn das ganz allgemein gefasste Vielkörperproblem
so modifiziert wird, wie es die in unserem Planetensystem bestehenden

Verhältnisse gestatten. Indessen gelingt es hier wegen der Kleinheit

der störenden Massen, der Excentrizitäten und der Bahnnei-
-

gungen, welche in Q als Faktoren auftreten, sehr gute
Annäherungen für die Elemente zu erhalten. Damit, scheint das
Problem nun allerdings zugänglicher zu sein, allein auch jetzt würde
die numerische Auswertung des Resultates auf kaum zu Uberwindende
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Schwierigkeiten stossen, wenn uns nicht, die schon früher erwähnte
Kleinheit der Störungen zu Hilfe käme. Die Erleichterung' besteht

nämlich darin, dass man nur diejenigen Störungen zu bestimmen

braucht, welche jeder einzelne Planet von jedem andern einzelnen

Planeten erleidet und dies unter der Annahme, dass der andere

Planet ungestört in rein elliptischer Dahn einhergeht, so dass man
auf einmal immer nur 13 Körper in Rechnung zu ziehen hat, nämlich
die Sonne, den störenden und den gestörten Planeten. Dieser
Umstand im Verein mit der vorhin genannten Erleichterung, welche

l %'

die Kleinheit der Grössen Q' ' nach sich zieht und die dadurch

dli
bedingte Kleinheit, der Diiterentialquotienten — gestatten nun eine

dl
unmittelbare Integration der Gleichung (1), welche nach den

besprochenen Voraussetzungen lautet:

(IE \ </ nin
— > Q- (il + (2)dl /_ COS

1 > ' ' r i

Da nach dem Vorausgehenden die Dil'ferentialquotienten klein
sein müssen, so sind auch, wenigstens für kürzere Zeit, die

Veränderungen der Elemente klein, und man kann in der ersten Annäherung

für a, c, l, in der rechten Seite von (2) constante "Werte

für dieselben annehmen, so dass man erhält:

(l Ii \ '/' sin
— — y Q» {il» 4-'i'1'0 H" J' (3)

welche Gleichung, da allgemein

lo Hol -1 - Ao

/'» llo't - |- /»'
ist, integriert ergibt:

*-« + y" l 7W77TT 2 + &, w
Z IIIo -|- I llo

worin P dasjenige Glied von (13) bedeutet, für welches i i' 0 ist.

Der Ausdruck (4) für das Element E besteht aus 2 qualitativ
durchaus verschiedeneu Teilen, nämlich

1. aus dem Glied P.t, das man die seciilareii Störungen des

Elementes nennt, und
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2. aus den Gliedern, welche durch

"\ —r Qo COS

/ -1 :—T^~, '
Z i«»-| Ho Sm

dargestellt sind und periodische Störungen genannt werden.
Die secularen Störungen, — vorausgesetzt, dass man solche

durch die Störungen der ersten Ordnung überhaupt erhält — wachsen
i, t'

mit der Zeit Uber alle Grenzen. Da aber Q die störende Masse

als Faktor enthält und nach obigem

'»u COS oo.
V — Qo ' (Qo '

sin

also ebenfalls mit dieser Masse multipliziert ist, so ist zu bemerken,
dass der Zuwachs der Elemente sehr langsam vor sich geht. So

klein er indessen aber auch sein mag, so ist er dennoch gross genug,
um nach Verlauf eines endlichen Zeitintcrvalls die Stabilität des

betrachteten Systems in Frage zu stellen.

Betrachten wir z. B. die Planetentafel von Leverrier für die

Epoche 1850, 1. Jan. O1' inittl. Zeit, so finden wir zur Berechnung
der Excentrizität des Mars die Formel

c 0,00326113 -I- 0,00000095408 l.

Angenommen, diese Formel entspreche der Wirklichkeit, so

würde sich die Marsbahn nach 954462 Jahren in eine Parabel mit
der Excentrizität 1 verwandelt haben. Nun hat aber schon

Lagrange darauf hingewiesen, dass diese Konsequenz nicht richtig ist,
sondern dass e nur für eine relativ kurze Zeit nach diesem Gesetze

zunimmt und sich in längern Zeiträumen in ganz anderer Weise

verhält. So überzeugend indessen Lagrange's Untersuchungen und
die daran geknüpften Schlussfolgerungen zu jener Zeit auch gewesen
sein mochten, so fehlte seinen Beweisführungen doch die Rigurosität,
die Dank der Fortschritte der Mathematik auf funktioneiitheoretischer
Grundlage den meisten derartigen Untersuchungen der letzten
Jahrzehnte eigen ist, ja eigen sein muss, wenn sie die mannigfachen
Prüfungen, die die Bewegungen im Weltall ihnen selbst fortwährend
auferlegen, bestehen wollen. Trotz der Mängel, die den genannten
Untersuchungen von Lagrange notwendig anhaften mussten, erwiesen
sich indessen seine Sclilussfolgerungen als durchaus richtig: Das
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serif/arc (Hied P.l in (4) kann, insofern unter Ii (lie Exccntriziliit
(•erstanden ist, nicht unbegrenzt wachsen, duijeijen wohl periodischen
Schwankungen ron im allgemeinen sehr langer Periode unterliegen.
Was hier zunächst, nur über die Exccntrizität ausgesagt wurde, hat
sich in der Eolge auch l'iir die übrigen Elemente als richtig
herausgestellt. In ganz besonders hohem Masse trifft dies l'iir die grosse
Axe zu; denn nicht nur ist bei dieser das seculare Glied von (4)
direkt gleich Xull, sondern es verschwinden audi in der zweiten

Annäherung der Elemente von der Form

Ii d» / |- Ho P — ^ (ao t + ß») -\-

-\- t .^Do'^lu'A |-//oJ \-Eo (5)

sowoiil der Coöffizient von t als auch derjenige von t'\ Dagegen
tritt hier ein anderes, der Zeit proportionales Glied auf, nämlich

sin (<l 1 rn' ((j)

welches sich ähnlich verhält, wie etwa die Funktion

// — x sin x,

von welcher wir wissen, dass sie bald wächst, bald abnimmt, trotzdem

aber jede vorgegebene Grösse M übersteigt und auch über dieser
Grösse bleibt, sobald x einen bestimmten, nur von 41 abhängigen
Wei t überschreitet.

Das Auftreten von Gliedern in der Form (<>) hat darum lange
Zeit grosses Aufsehen erregt, und Gelehrte wie Delaunay, Simon

Xcwcomb und namentlich Gylden zu einer Weihe höchst interessanter
und für die Stabilitätsfrage wichtiger Untersuchungen veranlasst,
welche unter anderm zu dem Schlüsse berechtigen: Die durch ((>)

dargestellten Glieder verdanken ihr Auftreten den ungewandten
Rechnnngsprozessen. In Wirklichkeit existieren solche weder bei

der grossen Axe noch bei den übrigen Elementen. Die Führung in
der weiteren Behandlung dieser Erage, besonders auch mit Hinsicht
auf Untersuchungen über die Xatur der für die Coordinate» der
Planeten geltenden Reihen, hat in den letzten Jahren namentlich
H. Poincare übernommen und dabei Resultate erzielt, die zur
definitiven Beantwortung der Stabilitätsfrage von eminenter Bedeutung
sind. Wir werden darauf noch zurückkommen.
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Ist also nach obigem die Schwierigkeit der Secularstönmgen
überwunden, so bleibt eine zweite noch weit bedenklichere.
Betrachten wir nämlich den mit

ro* (il -|- //' <iu' t
Hill ' ' '

multiplizierten Teil des in (4) gegebenen Integrals, so ergibt sich

notwendig, dass l'iir den Fall, dass

wo unter c eine endliche Grösse verstanden sein soll, auch die
periodischen Störungen eine obere endliche Grenze nicht überschreiten
können. Nun ist aber (7) nur dann möglich, wenn

77" -I- i'T
in I i'n' - TT

-| 0, (8)

'2 TT

oder auch
77" -|- jT-i- 0, (9)

ist, d. Ii. wenn die Umlaufszeitcn T und T des gestörten und des

störenden Planeten inkommensurabel sind. Die Bedingung ('.') ist
notwendig; sie ist aber auch hinreichend; denn nur wenn die Um-

iaui'szeiten in einem incommensurable!! Verhältnis stehen, wird es

nicht möglich sein, unter den Zahlen 7 und /' solche aufzufinden,
für welche genau

7 T

T -T ,10)

ist. Immerhin muss bemerkt werden, dass es theoretisch durchaus

möglich ist, die linke Seite von (9) der Null beliebig nahe zu bringen
und damit die in (7) auftretenden Divisoren beliebig klein zu machen,
braucht man doch nur die durch die mittleren Bewegungen oder
die Umlaufszeitcn der in Frage stehenden Planeten gegebenen Quo-

n' T
tienten —, bezw. — in Ivettenbrüche zu entwickeln und Zähler

n l
und Nenner irgend eines Näherungswertes hoher Ordnung als i —,
bezw. 7' — Wert zu verwenden. Wenn nun trotz der Einführung
derart gebildeter kleiner Divisoren die Glieder in (7) im allgemeinen
nicht über alle Grenzen wachsen, so hängt dies im wesentlichen
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damit zusammen, dass mit zunehmenden Werten von i und 7' die

ebenfalls in (7) auftretenden ('oel'fizientcn Q»
'' rasch abnehmen.

Zur Illustration diene folgendes, der Wirklichkeit entnommene

Heispiel:

Der Planet .Jupiter hat eine mittlere Bewegung ?i» 29!)", 1.

Betrachtet man die Störungen dieses Planeten von Saturn, für
welchen n» — 120",5 'W >s0 findet man:

«I. 1

=21— lm'
1

2 -I- —
13 -|-

mit den Näherungswerten

2 5 67

T ' T ' 27 '

Hieraus ergibt sich unter Berücksichtigung derjenigen /-Werte,
welche durch den zweiten Näherungsbruch geliefert werden:

2 »o — 5 n» — — 4", 3,

so dass dieser kleine Divisor 70mal kleiner als die mittlere Bewegung

des /Jupiters und 28mal kleiner als die mittlere Bewegung
von Saturn ist. llas entsprechende Glied in (7) wird demnach

70mal vergrössert (28mal, wenn Jupiter der störende Körper ist).

Denken wir uns den störenden Planeten des vorstehenden
Beispiels soweit hinausgeschoben, bis seine Umlaufzeit statt 10755 Tage

deren 10832, 5 oder genau — der Uinlaufszeit des Jupiters (4333
2

Tage) beträgt, was in einer mittleren Entfernung von 9,58320
Erdweiten der Fall ist, so werden Jupiter und Saturn nach 5 Umläufen
des Jupiter, zweien des Saturn wieder genau in dieselbe relative
Stellung zur Sonne zurückkehren. Was sich somit während dieser

Zeit an Störungen ergeben hat, das ergibt sich im selben Betrag
und Sinne auch während jedes folgenden doppelten Umlaufs Saturns.

Hier heben sich die Störungen augenscheinlich nicht auf, sondern

sie summieren sich. Nichts liegt somit näher als daraus zu scldiessen,

((aas die f/estörten Körper sämtlich ans den Commensurabilitälsstellen

herauspcirorfen werden oder mit andern Worten, dass sich ein

derartiges Si/slem im instabilen Zustande befinde. Diese Schlussweise
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ist in der Tat umso naheliegender, als sie mit den tatsächlichen
Verhältnissen in unserm Sonnensystem durchaus im Einklang steht;
denn nicht nur sind die Umlaufszeiten sämtlicher flauptplaneten
gegeneinander incommensurabel, sondern es bestehen in dem breit
zwischen Mars und Jupiter dahinziehenden Schwärm der Asteroiden
überall in denjenigen Entfernungen von der Sonne Lücken, in denen
die Umlaufszeiten in einem einlachen commensurablen Verhältnis zu
der des Jupiter stellen müssten. Noch mehr! Der Saturnring, der
nach Maxwell ähnlich wie der Asteroi'denring ebenfalls als ein dichter
Schwann einzelner, den Saturn als Centraikörper umkreisender Körper
gedacht, werden muss, enthält die sogenannte Cassinisehe Trennung
gerade an einer Stelle, entsprechend einer Umlaufszcit, deren 2-, 3-,
J- und (i-faches bezw. sehr nahe die Umlaufszeiten der 4 innersten
Monde des Saturn liefert. So berechtigt somit, die obige Srhlussfolgc-

rung zu sein scheint, so ist sie trotzdem unrichtig; denn seit bald
20 Jahren weiss man, gestützt auf die scharfsinnigen Untersuchungen
von Glyden, dass sich an den Commensurabilitätsstellen und ihren
unmittelbaren Umgebungen ganz neue Bewegungsformen einstellen
können. Zur Charakterisierung derselben bedienen wir uns, dem

Gedankengang Prof. Dr Schwarzschikls folgend, des in den
Argumenten der Sinus- bezw. Cosinusglicder von (2) auftretenden Winkels

<:-=// I

in welchen aber jetzt, entgegen der dortigen allgemeinen Annahme
die / und i' so gewählt sein mögen, dass zur Zeit / — o sowohl
/ als auch /' verschwinden. Es wird dann notwendig, wenn mit n
und »' die mittleren täglichen Bewegungen bezeichnet, werden,

t; (in |

Dies vorausgesetzt, lässt sich nun das ganze Resultat der
vorgenannten neuern Untersuchungen in der Hauptsache dahinaussprechen,
dass sich der Winkel ,C unter dem Einfluss der Störungen verhält
wie die Elongation eines Pendels aus seiner Ruhelage. Ist man weit
von der Commensurabilitätsstelle entfernt, so verhält sich ,C ähnlich
wie ein Pendel, das genügend Schwung hat, um schon nach kurzer
Zeit um seine Authängeachse rotieren zu können. Eine Annäherung
an die Commensurabilitätsstelle entspricht einer Verminderung der

Anfangsgeschwindigkeit des Pendels. Es wird die höchste Stelle
seiner Bahn noch erreichen, allein bereits mit einer solch geringen
Geschwindigkeit, dass es zur Potation um die Axe schon bedeutend
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mehr Zeit braucht, als unter der zuerst gemachten Voraussetzung.
Im System Sonnc-Jupiter-Satum erfolgt ein voller Umschwung erst
nach rund 850 Jahren. Alan wird auch an Fälle kommen, wo das

Pendel nur noch wenig Kraftiibcrschuss hat und den Scheitelpunkt
der Bahn nur noch sehr zögernd überwindet. Der Winkel ,C wird
dann eine sehr ungleichförmige, einmal rasche, dann langsame Rotation

ausführen. Damit wird dann eine entsprechende Schwankung
in den Winkeln l und /' verbunden sein. Schliesslich gelangt man
an die Pendelbewegung von asi/mptotisehem, Charakter. Das Pendel

entfernt sich unendlich langsam von der höchsten Stelle und schwingt
unter dem Aufhängepunkt herum, um die höchste Stelle erst nach

unendlich lunger Zeit von der andern Seite her wieder zu erreichen.
Die Richtigkeit dieser Behauptung ergibt sich unmittelbar aus

der in der Theorie des mathematischen Pendels auftretenden
Integralformel :

du

J (1 — ii~2) (l — k2 n2)

in welcher T die Schwinguugsdauer für eine gegebene Elongation
it 2 arena (sin k) bedeutet.

wegung des Pendels u n und somit A

Da für die asymptotische Be-

JT

-)
— sin i wird, so

erhält man für diese

limes T — limes
a — it Ic — 1

X

if J "

du // du

|/' (1—u2)(\—k'2u'')
,1 0 1 — I

oder

2
limes T

• U

w. z. b. w.

A 1

log
1 | u

Denan wie das Pendel verhält sich nun auch der Winkel ,C bei

den asymptotischen Bewegungen im Planetensystem. Bei weiterer
Annäherung an die Commensurabilität hat man es augenscheinlich
mit dem oszilierenden Pendel zu tun. ,C umläuft den Umkreis
überhaupt nicht mehr; die störenden Kräfte halten ihn fest und erlauben

ihm nur, Schwingungen mit beschränkter Amplitude auszuführen.
Die Astronomen nennen diese Erscheinung Libralion und den Punkt,
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bezw. den Mittelwert, um welchen die Schwingungen ausgeführt
werden, Librationspunkt oder gelegentlich auch Librationscenlruin.
Während bei den asymptotischen Bewegungsformen noch jeder Körper
unabhängig von andern alle möglichen Stellungen in seiner Balm
einnehmen konnte, ist im Falle von Libration gewissermassen jeder
Körper an den andern gebunden oder mit andern Worten, der Winkel
,C (im -[ i'm') l ist genötigt, inneidialb bestimmter Grenzen zu
bleiben.

Wird die Amplitude der Libration immer kleiner und kleiner,
so gelangt man schliesslich zum ruhenden Pendel. Für dasselbe
findet man, wenn in der Formel

da
T

Im
die Elongation a — 2 arena fain

- a'2) (\ — If if)
k) Xull und somit auch k o

gesetzt wird,

limea T — limes
a — o k—o

da

|/ (l — if) (1 — If if)
oder

/
da,

yü -llr

limea T -
tt u

— arena (sin — u)
JT

2
/±

ff
— Const.

Auf den Winkel ,C übertragen, heisst das wohl nichts anderes,
als dass eben auch er konstant ist oder, was auf dasselbe

hinauskommt, dass flie beiden Körper nach einer bestimmten, sich immer

gleichbleibenden Zeit genau in dieselbe relative Lage zu einander
zurückkehren.

Wir haben es in diesem Falle mit der vollständigen Konnnen-

surabilität der Umlaufszeiten der Körper zu tun, in welchem die

obgenannte librierende Bewegungsform in eine periodische übergeht.
Ein interessantes Beispiel von Librationsbewcgung bieten uns

die B innern Jupitermonde:
Bezeichnen der Leihe nach n, n', n" die mittleren Bewegungen

derselben, so ist
n — 203°,48805528
n' 101°,37472300
«"== 50°,317 00833.



Hieraus ergeben sieh nun:

.C —(n — 2n')t- 0°,739007:3(5

,C" ^ - (n! — 2n") l 0o,73S)»0730,

od er ,C — ,C — ,C" — (n — '.W \ - 2n") t — 0. (11)

Hedeuten jetzt /, l" die mittleren jovicentrisohen Längen zur Zeit
X. X', X" (liejcnigen zur Zeit t. -- to (Epoche), so wird

s — (i) — •')»' -|- 2u") l | X— :w -f 2X"

oder also unter Heaelitung von (11)

,C - - X — ?)X' -1 2/i" — Const. (12)

Diese Con,staute wurde schon von Laplaee zu ISO" bestimmt
und hat die Beobachtung die Richtigkeit dieses Wertes vollauf
bestätigt.

Die Libration bestellt somit darin, dass die 3 Monde nie. tjleich-
zeitii/ verfinstert werden können.

Ausser diesem Beispiel gibt es in unserem Planetensystem noch
höchst merkwürdige Fälle von Librationsbewegungen und zwar bei

den Monden des Saturn. Hier mögen indessen nur die beiden von
Sfruvc entdeckten Librationen im System Mimas-Thetis und im System
Enceladus-Dione Erwähnung finden. Für das erste dieser beiden

Systeme ist der librierende Winkel

,C - 4/' — 21 — (C/-I- H)

und die Libration besteht darin, dttss die, Conjnnktionen t/er beiden.

Monde um den Mittelpunkt des zwischen den au/steinenden Knoten

ihrer Bahnen liegenden Bönens des Saturn-Aet/nalors beständit/ üsci-
laiionen ausfuhren und dies in der Weise, dass sich die Linie der

Konjunktion nie über io" vom Lihralionscenlrum entfernen kann.
Für das System Enceladus-Dione wird

,C -- 2/' — l— <o(— 0),

woraus sich ergibt., dass die Konjunktionen dieser beiden Monde sich

immer in demjenitjen Punkte ereit/nen, in welchem Hncclattus dem

Saturn um nächsten ist. Mit der Erkenntnis der Bewegungsformen
im Fall der Commensurabilitäten sowohl als auch im Fall der siieu-

laren Störungen wurde für die Störungstheorie eine ganz neue Grundlage

geschaffen, auf welcher in den letzten Jahren eine Reihe

grossartiger Resultate erzielt werden konnten. Eines der wichtigsten



222

darunter ist unstreitig dasjenige, welches besagt, dass in der
modernen Störungstheorie Uberhaupt keine der Zeit proportionalen
Glieder mehr auftreten, sondern dass sich die Koordinaten der
Planeten in rein trigonometrische Reihen entwickeln lassen. Die Tragweite

dieses Resultates liegt offenbar; denn nun musste auch der

Befangenste einschen, dass unser Sonnensystem stabil sei, d. h. class

die Planeten ewig dieselben Regionen des Hinunelsraumes
durchkreuzen. Als man Ende der Achtziger Jahre des vergangenen
Jahrhunderts diesen Punkt erreicht hatte, durfte man das Vielkörpcr-
problem als gelöst betrachten.

Da trat 1800 der grosse französische Gelehrte II. Poineare
mit dem Nachweis vor die Öffentlichkeit, dass die Reihen, durch
welche man in der Astronomie seit fast einem Jahrhundert die

Bewegung der Himmelskörper darzustellen pflegt, im analgtischen
Sinne des Works, nicht convert/ieren und class alle Schlussfolgerungen,
die hinsichtlich der Stabilität im Planetensystem aus dem Aufbau
.jener Reihen gezogen wurden, unzulässig seien. Dass dieser Satz
Poincare's die Astronomen in Aufregung versetzen musste, ist um
so eher begreiflich, als die auf jene Reihen gegründeten Plancten-
tafeln nicht nur die seit 150 Jahren vorliegenden, bis auf die
Sekunde genauen teleskopischen Beobachtungen, sondern auch alle aus
dem Altertum überlieferten Aufzeichnungen innerhalb der
Beobachtungsgenauigkeit darzustellen vermögen.

So sehr hier augenscheinlich Theorie und Praxis auseinanderzugehen

scheinen, so lassen sich beide Standpunkte dennoch gar
wohl mit einander vereinigen:

Ks seien etwa die beiden Reihen

i

y — 1 -f 1000 -I- öOO'OOO I- • •

und

-ii-, i 4- 0,001 4- 0,000002 4-..../ iooo'

Trotz der sehr raschen Zunahme der Glieder der ersten dieser

beiden Reihen, ist dieselbe im anaig tischen Sinne des Wortes
convergent, weil von einem bestimmten Gliede an jedes folgende kleiner
ist, als das vorhergehende. Was die zweite Reihe betrifft, so

nennen sie die Analytiker divergent, weil von einem bestimmten
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Gliede an jedes folgende grösser ist, als das vorhergehende. Die
Astronomen dagegen betrachten die erste als divergent, weil die

1000 ersten Glieder zunehmen, und die zweite als convergent, weil
die 1000 ersten Glieder abnehmen!

Wenn also Rohware sagt, dass die von den Astronomen
verwendeten Reihen im analytischen Sinne des Wortes nicht conver-
gieren, so will dies oben nichts anderes heissen, als dass sie zu

theoretischen Untersuchungen nicht verwendet werden dürfen,
dagegen zu approximativen Wertbestimmungen wohl geeignet sein

können.
Xun verhalten sich die Reihen der Störungsrechnung analog

der Reihe

1 -[- 0,001 -| - 0,000002
1000

deren erste Glieder sehr rasch abnehmen und es können daher

angenäherte Werte dadurch erhalten werden, dass man nur diejenigen
Glieder mitnimmt, die noch zum abnehmenden Teil der Reihe

gehören; denn es gehört zu den Eigentümlichkeiten dieser sogenannten
semiconvergenten Reihen, dass die Genauigkeit des Resultates nicht
von den unendlich grossen, fortgelassenen Gliedern abhängt, sondern
vielmehr durch das letzte mitgenommene Glied wenigstens der Grössen-

ordnung nach gegeben wird. Demnach würde an die Astronomen die

Vorschrift zu ergehen haben, ihre Reihen nicht unbegrenzt
fortzusetzen. Das tun sie nun aber ohnehin aus praktischen Gründen nicht
und zwar sind sie fast ausnahmslos beim dritten Glicde stehen
geblieben. Der Unterschied zwischen einst und jetzt besteht somit

eigentlich einzig darin, dass die Astronomen heute das tun müssen,

was ihnen früher nur die Bequemlichkeit gebot. Solange es sich
also bloss darum handelt, die Störungen unserer I-fauptplaneten auf
Jahrhunderte hinaus und innerhalb der Beobachtungsgenauigkeit
darzustellen, solange wird der Astronom es kaum für notwendig
erachten, seinen Rechnungen strenge Convergenzuntcrsuchungen über
die von ihm benutzten Reihen vorausgehen zu hissen. Umso
unentbehrlicher werden solche aber, sobald ihm die Reihen auch über die
Grenzen Aufschluss geben sollen, innerhalb welcher die relativen
Uoordinaten der Planeten sich verändern können. Trotz der grossen
Bedeutung, die demnach solchen Untersuchungen augenscheinlich in
Stabilitätsfragen zukommen, liegt hier ein noch fast gänzlich unbe-

5
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bautes Held vor uns und zwar namentlich in der Hinsicht, dass es

noch nicht, gelungen ist, Ausdrücke für die Coordinateu im Drei-

körper-Problem zu finden, die für eine unbeschränkte Zeit ihre

Gültigkeit behalten, oder wenigstens, dass bis jetzt, der Beweis für
die Kxistenz soldier Ausdrücke noch nicht erbracht werden konnte.
Ks scheint daher nur begreiflich, dass man versuchte, jene Grenzen
auf andere Weise zu bestimmen. Von alien diesbezüglichen
Versuchen hat sich indessen nur derjenige als erfolgreich erwiesen, der
in der sogenannten Ifill'schen Grenzlcvroe seinen Ausgangspunkt hat
und durch welchen es Hill gelang, das erste Mal in der Geschichte
der Mechanik des Himmels einen strengen Stabilität,sbeweis für eine
Klasse Bewegungen im Dreikörper-Problem zu finden. Kr zeigte
nämlich, dass der Mond der Krdc sich niemals mehr als bis zum
Vierfachen seines jetzigen Abstandes von der Krde vom llaupt-
planeten entfernen kann. Dabei wurde allerdings vorausgesetzt,
dass ausser der Anziehung der Krde und der Sonne keine andern
Kräfte auf den Mond einwirken, und dass ausserdem die Bahn der
Krde um die Sonne genau kreisförmig sei, — alles Voraussetzungen,
die mit den wirklichen Verhältnissen wold nicht genau übereinstimmen,
ihnen aber doch zu nahe kommen, als dass sie das gefundene
Resultat, stark zu modifizieren vermöchten.

Die Hill'sche Grenzkurve hat in den letzten dahren eine mehrfache

Anwendung erfahren, namentlich ist ihre Bedeutung für das

allgemeine Dreikörper-Problem mehrfach untersucht worden. Bei

all' diesen Untersuchungen hat sich indessen gezeigt, dass sich aus

der Diskussion der Grenzkurve, bezw. Grenzfläche keine allgemeinen
Schlüsse über die Maximal- oder Minimalabstände der einzelnen Körper
des Systems ziehen lassen, nur lässt, sich ziemlich unmittelbar schliessen,
dass nicht alle Abstände gleichzeitig unendlich gross sein können.
Betrachtet man nämlich das integral der lebendigen Kraft

A1-' in.in

r
(13)

(i.j 1, 2, 3, 3 it; i | j)
so erkennt, man, dass wegen
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fiucli

\ k- m m.
y —J-L - a (15)

i J

beständig' grösser oder gleich null sein muss. Daraus folgt nun aber
in der Tat, dass sich die Mitglieder unseren Planetensj/stems im Laufe
der Zeit nicht alle unendlich weit von einander entfernen können.

Aus den bisherigen Überlegungen ergibt sich, dass die überaus

wichtige Frage von der Art der Grenzwerte der Coordinaten
im allgemeinen Drei- und Vielkörper-Problem noch keineswegs gelöst
ist; immerhin muss konstatiert werden, dass die Einführung der
Hill'schen Grenzkurve im Verein mit den von H. Poincare in seinem

klassischen Werke: „Des methodes nouvelles de la mecanique celeste,"
veröffentlichten modernen Hilfsmitteln der theoretischen Astronomie
für eine endgültige und abschliessende Antwort auf die Frage von
der Stabilität in unserem Planetensystem zu den schönsten

Hoffnungen berechtigt. Dass dem in der Tat so ist, soll indessen erst
im zweiten Teil der vorliegenden Arbeit (vergl. viertes Heft der

Mitteilungen der Nalurforschenden Gesellschaft) bewiesen werden.

lö
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