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Vom Aussterben der Geschlechter

Einige Betrachtungen über Markolffsche Ketten

mit Beispielen aus der Familienstatistik

von ROBERT INEICHEN, Luzern





1. Einleitung

EZvidemment tous les noms doivent s'eteindre... Un mathematicien pourrait
calculer comment la reduction des noms ou titres aurait lieu, d'apres la

probabihte des naissances toutes feminines ou toutes masculines ou me-
langees et la probability du defaut de naissances dans un couple quelconque.

So schreibt Alphonse de Candolle (1806—1893) in seiner «Histoire des

sciences et des savants depuis deux siecles» [13]1; der Genfer
Naturforscher - übrigens ein Sohn des den Botanikern wohlbekannten

Augustin-Pyramus de Candolle - zitiert in diesem Zusammenhang den

englischen Anthropologen Francis Galton, der sich intensiv mit der

Frage beschäftigt hat, wieso einst verbreitete Geschlechter mit der Zeit
nur noch wenige Vertreter haben oder sogar ganz aussterben. - Ist dies

nun wirklich so «evident», wie de Candolle schreibt? Was läßt sich mit
Hilfe der Wahrscheinlichkeitsrechnung über die Verminderung oder
die Zunahme der Anzahl der Träger eines Familiennamens aussagen,
welches ist insbesonders die Wahrscheinlichkeit dafür, daß ein
Geschlecht ausstirbt
Mit diesen Fragen wollen wir uns im folgenden etwas beschäftigen.
Zwei Gründe haben uns veranlaßt, diesen Problemen nachzugehen:
Einmal der, daß derartige Überlegungen aufGrund von Zahlenmaterial
aus der Schweiz wohl noch kaum angestellt worden sind2, und im
weitern, weil - wie in den letzten Jahrzehnten erkannt worden ist -
Fragestellung und Lösungsmethoden eine Übertragung oder Erweiterung

in Bereiche gestatten, die von der Familienstatistik recht weit
abliegen, so etwa in die Theorie chemischer oder physikalischer
Kettenreaktionen, in die Unternehmungsforschung (Operations research) bei
der Theorie der Warteschlangen oder schließlich auf gewisse
biologische Probleme, vor allem in der Genetik. - Da vielleicht diese

Zusammenhänge auch für einen größeren Leserkreis von einem gewissen
Interesse sind, sollen sie im folgenden ebenfalls gestreift werden. Dazu
ist es notwendig, etwas weiter auszuholen.

1 Diese Bezeichnungen in eckiger Klammer verweisen auf die am Schlüsse angeführte Literatur.
2 Die Anregung zu diesen Überlegungen verdanke ich Herrn Professor Dr. E. Batschelet, Basel/Washington.
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2. Vom Schema der unabhängigen Versuche s>u den Markoffsehen Ketten

In den Naturwissenschaften werden häufig zufällige Prozesse (stocha-
stische Prozesse) beobachtet. Man denke an die Brownsche Bewegung,
jene zufallsartige Bewegung kleiner Teile in einer Flüssigkeit, erzeugt
durch die auftreffenden bewegten Moleküle der Flüssigkeit, oder an
den Austritt von Elektronen aus der Glühkathode einer Röhre oder
schließlich an den radioaktiven Zerfall.
Wir wollen zunächst einen wesentlich einfacheren zufälligen Prozeß
betrachten. Wir denken uns eine Urne, die eine Anzahl Kugeln
enthalte, welche zum Teil mit Ei, zum Teil mit E2, usw. bis Es
bezeichnet sind; im übrigen seien die Kugeln völlig gleich gestaltet und
die Urne gut durchmischt. Wir ziehen eine Kugel und achten auf die

Aufschrift, dann legen wir die Kugel wieder zurück, mischen und
führen einen weitern Zug aus, usw. Wir stellen fest: Die Wahrscheinlichkeit,

daß in einem Versuch die Kugel Ej erscheint, 1 U i U s, hängt
nicht von der Nummer des Versuches und nicht von den in früheren Versuchen

eingetroffenen Ereignissen ab. Diese Wahrscheinlichkeit werde mit p;
bezeichnet. Dieses Schema einer Folge unabhängiger Versuche ist eines der

wichtigsten Schemata der Wahrscheinlichkeitsrechnung. - Die
Wahrscheinlichkeit, daß in n derartigen unabhängigen Versuchen das

Ereignis Ei genau mi-mal, das Ereignis E2 genau m2-mal, das Ereignis
Es genau ms-mal eintritt, wobei natürlich mi + m2 + + ms n,
läßt sich elementar berechnen. Sie ist gegeben durch die Formel

n!
(1) Wn (mi, m2,... ms) -—-—- pim' p2m2... psms

mi! m2! ms!

Den wichtigsten Spezialfall von nur %wei möglichen Ereignissen, die
sich gegenseitig ausschließen, hat bekanntlich als erster Jakob Bernoulli
(1655—1705) behandelt; man spricht dann vom Bernoullischen Schema;

die Bernoullische Formel stellt einen Sonderfall von Formel (1) dar.

Nun nehmen wir eine naheliegende Verallgemeinerung vor: Die
Wahrscheinlichkeit, daß in einem Versuch E; erscheint, hänge davon ab, welches

Ereignis im unmittelbar vorangegangenen Versuch eingetreten ist. Wir denken

uns nun s verschiedene Urnen, jede enthalte wieder eine Anzahl solcher

Kugeln, die zum Teil mit Ei, mit E2 mit Es beschriftet seien. Die
Zusammensetzung der Urnen mit diesen Kugeln sei aber verschieden.
Wir bezeichnen die Wahrscheinlichkeit, aus der Urne Nummer i eine
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Kugel mit der Aufschrift Et zu ziehen, mit P^. Wir gehen nun so vor:
Zu Beginn der Versuchsfolge sei die Wahrscheinlichkeitsverteilung der

Ei gegeben. Wenn nun Ej eingetreten ist, so ziehen wir aus der Urne
Nummer i eine Kugel. Mit der Wahrscheinlichkeit Pn erscheint dann

Ei, mit derWahrscheinlichkeit Pj2 erscheint E2,... mit derWahrscheinlichkeit

Pjs erscheint Es. - Die Pik sind also bedingte Wahrscheinlichkeiten,

es ist
Pik W(Eu/Ei)

Ein solches Versuchsschema ist zuerst vom russischen Mathematiker
A. A. Markoff (1856—1922) systematisch untersucht worden; man
nennt es eine Markoffsche Kette.

Allgemein spricht man im folgenden Falle von einer Markoffschen Kette3:

Es sei eine Folge von Versuchen gegeben; als Ergebnis eines Versuches

möge genau eines der endlich oder abzählbar unendlich vielen Ereignisse

Ei, E2, E3 eintreten; diese Ereignisse sollen sich paarweise
ausschließen. Die Wahrscheinlichkeit für den Eintritt des Ereignisses Ei
in irgendeinem Versuch hängt nun nur davon ab, welches Ereignis im

vorangegangenen Versuch eingetreten ist und nicht von den in noch früheren Versuchen

eingetretenen Ereignissen.

In einer etwas andern Terminologie spricht man oft von einem
physikalischen System, das sich in einem bestimmten Zeitpunkt in einem der
Zustände oder Phasen E;, mit i 1,2,... befinden kann und nur in den

gegebenen Zeitpunkten ti, t2, von einem Zustand in einen andern

übergehen kann. Die bedingte Wahrscheinlichkeit Pjk W (Ek/E;)
heißt dann die Übergangswahrscheinlichkeit, also die Wahrscheinlichkeit
des Überganges vom Zustand E; in den Zustand Ek-

Diese Übergangswahrscheinlichkeiten lassen sich übersichtlich in der
Übergangsmatrix anordnen:

(2) Mi

Pll Pl2 Pl3
P21 P22 P23

P31 P32 P33

3 Genauer, eine einfache, homogene Markoffsche Kette. Einfach, weil nur vom Ergebnis des unmittelbar vorangehenden
Versuches abhangig und nicht wie in komplizierteren Fallen vom Ergebnis von m> 1 vorangehenden Versuchen,
homogen, weil unabhängig von der Nummer des Versuches. Vgl. [2], [3],
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Offenbar ist diese Matrix quadratisch; ihre Elemente sind nicht negativ
und die Summe der Elemente einer Zeile ist 1.

Zusammen mit der Wahrscheinlichkeitsverteilung der Zustände Ei,
E2,... zu Beginn der Versuchsfolge definiert die Übergangsmatrix die
Markoffische Kette vollständig.

Ein einfaches Beispiel: Das Wetter eines Ortes, das während eines Tages
herrscht, lasse sich durch zwei Zustände «schlecht» (Ei) und «gut»
(E2) charakterisieren. Die Übergangswahrscheinlichkeiten wären dann

gegeben durch

Mi Pll P12

P21 P22

Hier gibt also zum Beispiel P12 die Wahrscheinlichkeit eines Überganges

von einem Schlechtwettertag zu einem Gutwettertag. Allerdings setzen
wir dabei voraus, daß die Wahrscheinlichkeit für gutes oder schlechtes

Wetter an einem Tage nur davon abhängt, welcher Zustand am
vorangehenden Tage geherrscht habe. Die Meteorologen sagen uns übrigens,
daß P11 > P12 und P22 > P21- Hier kommt eine gewisse Beharrungstendenz

der Wetterlagen zum Ausdruck.

Für das weitere Vorgehen bringen wir noch die folgenden Formeln
aus der Theorie der Markoffschen Ketten:
Mit Pij(n) wollen wir die Übergangswahrscheinlichkeit bezeichnen, in
n Versuchen vom Zustand Ej in den Zustand Ej zu gelangen.
Nun ist

(3) Pij (2) £ PikPkj
k

denn für ein festes k ist die Wahrscheinlichkeit des Überganges E; —

Ek —> Ej gegeben durch PikPkj; anschließend hat man einfach über
alle k zu summieren. Aus (3) erkennt man nun sofort, daß die Matrix
der Übergangswahrscheinlichkeit in zwei Schritten gegeben ist durch

M2 Mi • Mi Mi2.

Durch entsprechende Überlegungen findet man die Marköpfsehe Gleichung

(4) Pij(n) £ Pjk(m) Pkj(n—m),
k

wobei m eine natürliche Zahl mit 1 sS m < n ist.
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Mit Hilfe von (4) läßt sich für die Matrix der Übergangswahrscheinlichkeiten

in n Schritten die Formel gewinnen

(5) Mn Min. - Man vergleiche [2] oder [3].

3. Der Galton-Watson-Pro^eß

Wir wollen nun versuchen, das einleitend skizzierte Problem als eine
Markoffsche Kette mit gewissen besondern Eigenschaften aufzufassen.

Wir kommen dann auf einen stochastischen Prozeß, den wir im
Anschluß an T. Harris in [5] als Galton-Watson-Pro^eß4 bezeichnen und
wie folgt definieren:
a) Wir denken uns Objekte, die weitere Objekte derselben Art, ihre

Nachkommen, erzeugen können, also zum Beispiel Männer und
ihre männlichen Nachkommen.

b) Die am Anfang gegebene Menge solcher Objekte nennen wir die
nullte Generation, ihre Nachkommen bilden die erste Generation,
deren Nachkommen die zweite Generation usw.

c) Wir richten unser Augenmerk auf die Anzahl solcher Objekte jeder
Generation und bezeichnen mit Zo, Zi, Z2 die Anzahl dieser

Objekte in der nullten, ersten, zweiten Generation. Diese Z;, mit
i 0,1, 2,..., sollen zufällige Variable darstellen. Wir werden stets
Zo 1 voraussetzen; die Wahrscheinlichkeit, daß Zi k, mit k
0, 1, 2, bezeichnen wir mit pk:

W(Zi k) pk, Zpk=lk
Fürjedes Objekt in irgendeiner Generation sei nun die Wahrscheinlichkeit,
im Laufe seinesganzen Lebens k Nachkommen £u haben (k= 0,1,2,.
wieder durch das obige pk gegeben. Diese Wahrscheinlichkeit hänge also

nicht etwa davon ab, wieviel Objekte schon vorhanden sind, sie

variiere auch nicht mit der Zeit.

* Nach F. Galton, der sich — wie in der Einleitung erwähnt — mit dem Problem des Aussterbens der Geschlechter

befaßt hat und H. W. Watson, der eine erste mathematische Losung dieses Problems gegeben hat (18741 — Der
Galton-Watson-Prozeß stellt einen besonders einfachen Typ eines Ver^weigungspro^esses (branching process) dar, man

vergleiche das Buch [5] von T. Harris.
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d) Zo, Zj, Z2, sollen eine (einfache, homogene) Markoffsehe Kette
bilden. Die Wahrscheinlichkeit, daß in der (n-f-l)ten Generation
eine Anzahl Objekte, zum Beispiel j, vorkommen werden, hängt
also nur davon ab, wie groß die Anzahl i der Objekte der n-ten
Generation war:

(6) W (Zn+i j/Zn i) Pjj, i, j, n 0,1, 2 ...; Zo 1

Diese Pjj stellen also wieder die im vorangehenden Abschnitt definierten

Übergangswahrscheinlichkeiten dar.

Diese Übergangswahrscheinlichkeiten sollen nicht mit der Zeit
veränderlich sein. Ist Zn 0, so ist offenbar mit der Wahrscheinlichkeit
1 auch Zn+i 0:

(7) W(Zn+i 0/Zn 0) P00=l

Als bedingte Wahrscheinlichkeit ist die Übergangswahrscheinlichkeit
(6) nicht definiert für jene i, für die W (Zn i) 0.

In dieser allgemeinen Formulierung ist das durch den Galton-Watson-
Prozeß gegebene Schema auf recht verschiedenartige Beispiele
anwendbar.

Wir werden in den weitern Ausführungen vor allem das folgende
Beispiel betrachten: Wir nehmen einen männlichen Neugeborenen als

Stammvater eines Geschlechtes, als Begründer einer Linie (0. Generation),
pk stelle die Wahrscheinlichkeit dar, daß dieser Neugeborene im Laufe
seines Lebens k männliche Nachkommen erzeuge, k 0,1, 2 Seine

Nachkommen bilden die 1. Generation. Unabhängig von Einflüssen
der Vererbung, der Zeit oder der Umwelt bestehe nun für jeden männlichen

Neugeborenen der 1. Generation wieder die Wahrscheinlichkeit

pk, genau k männliche Nachkommen zu haben, wiederum k 0,1, 2,
Die Menge aller männlichen Nachkommen der 1. Generation bilden

die 2. Generation; für jeden männlichen Neugeborenen der 2. Generation

bestehe wieder die Wahrscheinlichkeit pk, k männliche
Nachkommen zu haben usf. Wir fragen nach der Wahrscheinlichkeit, in
einer Generation eine bestimmte Anzahl männlicher Nachkommen zu
finden, vor allem nach der Wahrscheinlichkeit, daß in einer Generation
0 männliche Nachkommen sein werden, daß also die Linie erlischt, das

Geschlecht ausstirbt.
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Es mag uberraschen, daß ein solches Schema auch auf gewisse physikalische Vorgänge paßt;
A. Weinberg und E. Wigner schreiben in [11], «The physical Theory of Neutron Chain
Reactors»: «/1 is intresting to note that some of the basic mathematical methods developed by

A. Lotka5 and V. Volterra to deal with multiplication in biological populations are applicable
to the study of fluctuations in neutron chain reactors.» Bei einer solchen Kettenreaktion wird
durch ein Neutron (0. Generation) geeigneter Energie ein schwerer Kern gespalten.
Dabei entstehen einige neue Neutronen, beim Uran 235 zum Beispiel zwei bis drei
(1. Generation). Besitzen diese wieder die geeignete Energie, so vermögen sie neue
Kerne zu spalten, wobei wieder neue Neutronen entstehen (2. Generation), usf. Die
Zahl der Neutronen kann lawinenartig anwachsen, falls nicht so viele Neutronen aus
dem Prozeß herausgelost werden können, daß sich dieser stabilisiert. Solche Betrachtungen

hat zum Beispiel E. Schrodinger in [9] angestellt.
Wie N. Semenoff [10] gezeigt hat, können auch chemische Kettenreaktionen in gewissen
Fallen durch einen Galton-Watson-Prozeß beschrieben werden.
Schließlich weisen wir noch auf folgende Situation aus einem ganz andern Bereich von
Anwendungen hin: An einem Schalter, an dem immer nur ein Kunde abgefertigt werden
kann, wird ein Kunde bedient (0. Generation). Alle Kunden, die während der Zeit
eintreffen, da dieser Kunde abgefertigt wird, gelten als seine «Nachkommen» und
bilden die erste Generation; es sei pt die Wahrscheinlichkeit, daß wahrend der Bedienungszeit

des Kunden der 0. Generation k weitere Kunden ankommen und Schlange stehen
müssen. Fur jeden Kunden der ersten Generation bestehe wieder die Wahrscheinlichkeit

pk, daß während seiner Bedienungszeit k weitere Kunden eintreffen; k 0, 1, 2, Alle
Kunden, die eintreffen, wahrend ein Kunde bedient wird, der der 1. Generation angehört,
bilden die 2. Generation usw. Naturlich stellt sich gerade hier die Frage, ob das Schema
des Galton-Watson-Prozesses hier nicht zu vereinfachend sei: die pk konnten beispielsweise

zeitlich variieren. Wir kommen darauf unten noch zurück. Eine ähnliche Situation

mag sich beim Anfall von Reparaturen einer bestimmten Warengattung stellen: Ein
Stuck wird repariert (0. Generation), während dieser Zeit kommen mit der Wahrscheinlichkeit

pk k weitere Stucke an (1. Generation) und müssen warten usw. Es stellt sich

unter anderm die Frage nach der Wahrscheinlichkeit dafür, daß die Warteschlange
abbricht. Die Theorie der Warteschlangen, ein bedeutsames Gebiet der Unternehmensforschung,

untersucht derartige Probleme; man vergleiche etwa [1], Wir müssen es uns versagen,
hier noch weitere Beispiele anzuführen; Hinweise auf analoge Problemstellungen in
der Genetik gibt zum Beispiel W. Feller in [2].
Wir skizzieren indessen noch kurz eine Situation, auf die unser Schema schlecht passen
würde: Vor dem roten Licht einer Verkehrsampel warte ein Fahrzeug (0. Generation).
Alle Fahrzeuge, die während des Wartens dieses Fahrzeuges eintreffen, bilden die erste

Generation; pt sei die Wahrscheinlichkeit, daß wahrend dieses Wartens k Fahrzeuge
eintreffen, k 0, 1, 2, Nun erscheint kurz grünes Licht, das Fahrzeug der 0. Generation

und wohl auch etliche Fahrzeuge der 1. Generation können weiterfahren, einzelne
kommen vielleicht nicht mehr durch. Alle Fahrzeuge, die jetzt eintreffen, wahrend noch
Fahrzeuge der 1. Generation weiter warten, bilden die zweite Generation usf. Hier
wird im allgemeinen unser Schema nicht anwendbar sein: Die ersten Fahrzeuge der
1. Generation werden in der Regel beim Aufleuchten von Grün sofort durchkommen,
fur sie ist dann po 1, Pk 0 fur k 1, 2, ...; fur gewisse spätere Fahrzeuge der
1. Generation durfte hingegen p0 =f 1 sein und damit auch pt 0 fur k 1, 2, Damit

sind die Voraussetzungen fur den Galton-Watson-Prozeß nicht mehr gegeben.

* Vgl. zum Beispiel [6].
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Wir wollen abschließend noch ausdrücklich auf die vereinfachenden
Annahmen hinweisen, die dem Galton-Watson-Prozeß zugrunde liegen:
Wir setzen die pk als %eitunabhängig voraus. Wenn die pk also etwa die
Wahrscheinlichkeit eines männlichen Neugeborenen angeben, im Laufe
seines Lebens k männliche Nachkommen zu haben, so soll diese
Wahrscheinlichkeit im Laufe der Zeit nicht ändern. Bestimmen wir nun die
relativen Häufigkeiten von männlichen Neugeborenen mit k 0,1, 2,

männlichen Nachkommen, um Schätzwerte für die pk zu erhalten,
so müssen wir indessen darauf hinweisen, daß diese relativen Häufigkeiten

im Laufe der Jahre ziemlichen Schwankungen unterworfen sind,
wie zum Beispiel A.Burckhardt in der Arbeit [12] sehr schön zeigt.
Diese pk sollen weiter auch nicht davon abhängen, wie viele Objekte der
betreffenden Art schon vorhanden sind. Die einzelnen Objekte erzeugen
also unabhängig voneinander weitere Objekte derselben Art. Diese

Voraussetzung kann sicher bei der Beschreibung gewisser biologischer
Populationen nicht gemacht werden, wo in verschiedenen Fällen die
Gesamtzahl der schon vorhandenen Objekte auf die Erzeugung von
Nachkommen einen Einfluß haben kann.
Schließlich setzen wir voraus, daß die pk auch nicht davon abhängen
sollen, ob das Objekt, das Nachkommen erzeugt, aus einer Familie mit
vielen oder mit wenigen Nachkommen stammt. Diese Voraussetzung dürfte
für unser Problem des Aussterbens der Geschlechter nur bedingt
zutreffen; es ist durchaus denkbar, daß ein Nachkomme aus einer Familie
mit vielen Brüdern die Tendenz haben könnte, auch eine größere
Anzahl von Nachkommen zu haben als ein anderer aus einer kleineren
Familie.

4. Erzeugende Funktionen

Wir betrachten die Folge { Zo, Zi, Z2,...} von Zufallsvariablen, wobei
wie im vorangehenden Abschnitt ausgeführt, Z; die Anzahl Objekte
der i-ten Generation angibt. Wiederum sei ferner Zo 1 und es sei die

Wahrscheinlichkeitsverteilung für Zi gegeben durch{po, pi, p2,... pM },
wenn to die größtmögliche Anzahl vonNachkommen eines Objektes ist.
Man führt nun zweckmäßig eine erzeugende Funktion ein (vgl. zum
Beispiel Feller in [2]):
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(8) f(s) po + pis + p2S2+ + po)S"

Wir bemerken sofort:

(9) f'(l) pi + 2p2 + 3p3 + + to pu 2 kpk m
k

stellt den Erwartungswert der Zahl der direkten Nachkommen eines

Objektes dar; ferner ist

(10) f(l) 2pk=l und f(0) p0.
k

Nun suchen wir die erzeugenden Funktionen für Z2, Z3,...; wir stellen
fest:

a) Nach den bekannten Sätzen über Multiplikation und Addition von
Wahrscheinlichkeiten und unter Verwendung von Formel (1) gibt

(11) w 2 ; y pom° pim'... P(omu
mo! mi!... mu!

die Wahrscheinhchkeit w dafür, daß r Objekte genau t Nachkommen

im Laufe ihres Lebens haben, wenn sich die Summation über
alle mk, k 0,1, 2 to, erstreckt mit

mo + mi + m2 + + mM r und
0 • mo + 1 • mj -)- 2 • m2 -j- -j- to • mB t.

Nach dem polynomischen Lehrsatz (E. Netto [7]) ist nun aber die
Summe (11) mit den beiden obigen Summationsbedingungen gerade
der Koeffizient von s' in [f(s)]r.

b) Die Wahrscheinlichkeit, daß das Objekt der 0. Generation (der
«Stammvater») gerade r Nachkommen in der 1. Generation («Söhne»)

und t Nachkommen in der 2. Generation («Enkel») habe, läßt
sich aus (11) durch pr-w berechnen, das heißt durch den
Koeffizienten von s' in pr[f(s)]r.

c) Somit ergibt sich die Wahrscheinhchkeit dafür, daß der Begründer
des Geschlechtes, der Stammvater, in der 2. Generation t
Nachkommen hat, welches auch immer die Zahl seiner Nachkommen in
der 1. Generation sei, also die Wahrscheinlichkeit W(Z2 t) als

Koeffizient von sl in der Summe

PO + Plf(s) + P2[f(s)]2 + + p4f(s)]B f [f(s)] f2(s)
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Das heißt doch: Die erzeugende Funktion für Z2 ist die zusammengesetzte

Funktion

f2(s) f[f(s)].

d) Durch vollständige Induktion finden wir, daß die erzeugende Funktion

für Zn_|_i, also für die Zahl der Objekte der (n-fl)ten Generation

rekursiv gegeben ist durch

(12) fi(s) f(s) und fn+i(s) f[fn(s)],n= 1,2,...

Wir bemerken noch, daß sich diese Ergebnisse auch durch die Benützung

allgemeiner Sätze über erzeugende Funktionen von Summen

gleich verteilter Zufallsvariablen beweisen lassen; diese finden sich zum
Beispiel bei W. Feller in [2].

Beispiel: Es sei po 0,5; pi 0,25; p2 p3 0,125; pt 0 für k >
3; also m 0,875.
Dann ist f(s) 0,5 + 0,25s + 0,125 s2 + 0,125 s3; f2(s) f [f(s)]
ergibt dann die erzeugende Funktion für Z2, aus der wir die
Wahrscheinlichkeiten W(Z2 k), k 0, 1... 9 finden können. Die Rechnung

ergibt zum Beispiel
W(Z2=0)=6,7-10-1;W(Z2=1) 1,2-10-1;W(Z2= 2)= 7,8-10-2,
usf. schließlich W(Z2 9) 2,4-10"4.
Analog ergibt f3(s) f [f2(s)J die Wahrscheinlichkeiten W(Z3 k),
k 0,1,... 27, etwa W(Z3 0) 7,6 • lO"1; W(Z3 1) 6,9 • 10"2,
usf., schließlich W(Z3 27 1,8-10~12.

5. Die Wahrscheinlichkeit des Aussterbens der Linie

Wir gehen wieder aus von der Folge der Zufallsvariablen { Zo, Zi, Z2,

...}, wobei also Z; die Anzahl Glieder der i-ten Generation darstellt
und Zo 1 ist. Wenn ein Glied dieser Folge, etwa Zn, den Wert 0

annimmt, dann nehmen wegen Gleichung (7)

W(Zn+1 0/Zn=0) P00=l
auch alle folgenden mit Sicherheit ebenfalls den Wert 0 an: Die Linie
stirbt aus, das Geschlecht erlischt.
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Dieses Erlöschen des Geschlechtes ist offenbar nur möglich, wenn
pO =f0; wir setzen deshalb im folgenden 0 < po < 1 voraus.

Nun suchen wir die Wahrscheinlichkeit qn, daß das Geschlecht in oder

vor der n-ten Generation erlischt:

qn=W(Zn 0).

Nach unsern Ausführungen über erzeugenden Funktionen im vorigen
Abschnitt ist

qn=W(Zn=0) fn(0).
CO

Da f(s) E pksk im Intervall 0 < s < 1 mit zunehmendem s ebenfalls
k=0

zunimmt, folgt (vgl. W. Feller in [2]) aus

qi f(0) po, daß q2 f[f(0)] f(qi) > f(0) qi,
und durch vollständige Induktion

qn+i f(qn) > f(qn-i) qn-

Das heißt aber: Die Folge der qn strebt monoton gegen ein q, das der

Gleichung

(13) q f(q) po + piq + P2q2 + • • • + P^q" genügt.

Dieses der Gleichung (13) genügende q stellt somit die Wahrscheinlichkeit

dafür dar, daß das Geschlecht im Laufe der Zeit ausstirbt.

Übrigens läßt sich Gleichung (13) im Anschluß an J. Steffensen [8] sehr
anschaulich deuten:
Die Wahrscheinlichkeit q des Aussterbens des Geschlechtes ist eine

zusammengesetzte Wahrscheinlichkeit aus

- der Wahrscheinlichkeit po, daß in der 1. Generation 0 männliche
Nachkommen vorhanden sind,

- der Wahrscheinlichkeit piq, daß in der 1. Generation 1 männlicher
Nachkomme vorhanden ist und die dadurch begründete Linie
ausstirbt,

- der Wahrscheinlichkeit p2q2, daß in der 1. Generation 2 männliche
Nachkommen vorhanden sind und beide dadurch begründete Linien
aussterben usf., schließlich aus der Wahrscheinlichkeit p^q01, daß

in der 1. Generation co männliche Nachkommen vorhanden sind
und alle dadurch begründeten Linien aussterben.
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Um dieses q zu finden, haben wir somit die im Intervall 0 s ^ 1 liegenden

Wurzeln der Gleichung

zu suchen. Sicher ist (wegen S pk 1) s 1 eine Lösung.
k=0

Nun gilt der folgendegrundlegende Sat^ (vgl. zum Beispiel T. Harris [5]):

Wenn m S kpk Sä 1, dann ist die Wahrscheinlichkeit für das Erlö-
k=0

sehen des Geschlechtes 1. - Wenn m > 1, dann ist diese Wahrscheinlichkeit

q die einzige nicht-negative Lösung, die kleiner als 1 ist, die die

Gleichung (14) besitzt.

Auch dieser Satz läßt sich anschaulich deuten: Wir betrachten dazu die

Graphen der beiden Funktionen y s und y f(s), die sich wegen
f(l) 1 im Punkte (1 /l) schneiden. Der Graph von y f(s) ist konvex,
somit sind nur die drei folgenden Fälle denkbar:

(14) s f(s) po + pis + p2S2 + • • • + pco s"
CO

CO

y -s a) Zweiter Schnitt¬

punkt außerhalb

O^s^l

/ s

y
b) Berührung in P(l/1)

s
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c) Zweiter Schnittpunkt

innerhalb

O^s^l

P-

s

Betrachten wir nun die Steigung von y f(s) im Punkte P(l/1), so

erkennen wir, daß die beiden Fälle a) und b) durch f'(l) 2 kpt
k=0

m ^ 1 und der dritte Fall c) durch f'(l) 2 kpk m > 1 charakteri-
k=0

siert sind; mit andern Worten: Die Wahrscheinlichkeit q, daß ein
Geschlecht ausstirbt, ist dann und nur dann kleiner als 1, wenn der
Erwartungswert der direkten Nachkommen eines Objektes größer als 1 ist, wenn
also die «mittlere Anzahl von Nachkommen» größer als 1 ist.

6. Numerische Beispiele für das Aussterben der Geschlechter

a) Wir wollen nun die im Intervall 0 s Sa 1 liegenden Wurzeln der

Gleichung

suchen, wobei also die pk, k= 0,1,2,... to, die Wahrscheinlichkeiten
dafür darstellen, daß ein Vertreter einer Generation im Laufe seines

ganzen Lebens genau k männliche Nachkommen hat; ferner erinnern

wir an die im dritten Abschnitt aufgeführten vereinfachenden
Annahmen.
Um nun numerische Beispiele betrachten zu können, müssen wir für
die pk geeignete Zahlen einsetzen. Um Schätzwerte für diese pk zu
finden, nehmen wir eine passend ausgewählte Menge von N männlichen

Neugebornen. Wir stellen fest, daß Nk davon im Laufe ihres

<0

(14) s f(s) po + pis + p2S2 + • • • + pco s"
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Lebens k männliche Nachkommen haben, k= 0,1, 2,... w, und
berechnen die relativen Häufigkeiten fk Nk/N. Mit diesen fk, oder

wenn notwendig mit ausgeglichenen Werten bauen wir dann ein
Modellfür die oben geschilderte vereinfachte Situation.

b) Obwohl die Fragestellung fur diese fk Nk/N außerordentlich einfach ist, ist es

nicht ohne weiteres möglich, aus vorhandenen Unterlagen eine Antwort zu gewinnen.

Stichproben auf den Zivilstandsamtern sind infolge der getrennten Führung
der Geburten- und Familienregister mit zahlreichen Schwierigkeiten verbunden. Aus
den einlaßlichen bevölkerungsstatistischen Publikationen des Eidgenossischen
Statistischen Amtes laßt sich fur unsere Frage auch nichts entnehmen. Das statistische
Material von Versicherungskassen fuhrt in der Regel nicht alle Kinder auf, sondern

nur jene unterhalb einer gewissen Altersgrenze; zudem ware die Anzahl mannlicher
Versicherter durch zusatzliche Annahmen zu jener oben genannten Menge N von
Neugeborenen zu erweitern. Zahlreiche Publikationen familienstatistischer Art
schließlich, so die sehr reichhaltige Studie von A. Moser [19] und die Arbeiten von
A. Burckhardt [12], F. Kaufmann [16], A. Miller [17] und L. Solari [21], haben
andere Zielsetzungen und ergeben deshalb zum Teil wenig fur unsere Frage.
Immerhin zeigen gerade die zitterten Arbeiten von A. Moser und A. Burckhardt,
wie unsere fk Änderungen unterworfen sind, so etwa deshalb, weil infolge des

Rückganges der Sterblichkeit immer mehr Neugeborene das heiratsfähige Alter
erreichen und weil sich deutlich eine sakulare Steigerung der Heiratsfahigkeit
feststellen laßt; man vergleiche auch die Arbeit [20] von A. Moser. - Wir weisen deshalb
nochmals darauf hin, daß unsere Beispiele Modelle fur stark vereinfachte Situationen
darstellen. Es konnte das Ziel einer besondern Arbeit sein, entsprechende
Überlegungen durchzuführen fur pk, die zum Beispiel mit der Zeit variieren.

c) Infolge der besondern Art der Registerführung der Korporationsverwaltung

Lu^ern(> ließen sich für Lu^erner Korporationsbürger die

fk Nk/N einfach erheben. Wir ließen anfangs 1964 für die N 225

in den Jahren 1880... 89 geborenen Korporationsbürger die Anzahl
männlicher Nachkommen feststellen und erhielten folgende Tabelle:

(15)

Setzen wir nun diese Werte für die pk in die Gleichung (14) ein, so
stellen wir sofort fest, daß die Gleichung

s 0,630 + 0,196s + 0,102s2 + + 0,005s5

6 Die Korporationsgemeinde entspricht der «Burgergemeinde» in andern Städten.

k 0 1 2 3 4 5

ft Nk/N 0,630 0,196 0,102 0,058 0,009 0,005

5

2 fk
k=0

1,000
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im Intervall 0 ^ s ^ 1 nach dem im fünften Abschnitt mitgeteilten
Satz nur die eine Wurzel s 1 hat, dam 0,635 < 1, das heißt
Geschlechter, deren pk die durch Tabelle (15) gegebenen Werte
aufweisen, sterben unter den von unsgemachten Voraussetzungen mit Sicherheit

aus.

Aufzeichnen auf einfach logarithmischem Papier legt den Versuch
nahe, durch die Punkte (k/fk) fürk^ 1 eine Gerade nach der Methode
der kleinsten Fehlerquadratsumme zu legen. Die Rechnung ergibt

(16) pk 0,654-e—°>977k pi-0,377k~1, k^l.
Dieser Ausgleich bewirkt natürlich, daß im so veränderten Modell
auch für k > 5 eine nicht verschwindende Wahrscheinlichkeit vor-

00

handen ist. Für po ergibt sich dann aus po= 1 — S pk der Wert

pO 0,605. - Die pk stellen also in diesem Falle für k S; 1 eine
geometrische Folge mit dem Quotienten Q 0,377 dar.

An Stelle von Gleichung (14) haben wir dann die Gleichung

(17) s po + pis -f- p2S2+... odermitBerücksichtigungvon(lö)

s po + pis + pi 0,377s2 + • • • zu untersuchen.
00

Wegen £ pk= 1 ist die rechts stehende Reihe in unserm Intervall
k=0

0 ^ s ^ 1 konvergent.

Setzen wir für po und pi die eben angegebenen Werte ein und
summieren wir die geometrische Reihe, so erhalten wir schließlich die

quadratische Gleichung 0,377s2 — 0,982s + 0,605 0, die wieder-
00

um in 0 ^ s sS 1 nur die Lösung s= 1 hat. Auch m £ kpk —
k=0

0 • po + 1 • pi + 2 • 0,377 pi 3 • 0,3772 pi -f- läßt sich einfach be-
n

rechnen: Für x 0,377 wird lim Sn berechnet, wobei Sn £ kxk~1
n—oo k 1

^nXn n 1

r weil (1—x) Sn= —nxn 4- £ xk.
(1 x) 1—X

V J n ^k=0

Man findet wieder m 0,635.
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d) Um ein anderes Modell untersuchen zu können, haben wir 1961 in
den Familienregistern des Zivilstandskreises Römerswil die 449 Familien

der vor 1896 geborenen Männer in bezug auf die Anzahl der
männlichen Nachkommen untersucht; die große Mehrzahl der dabei
untersuchten Männer ist in der zweiten Hälfte des 19. Jahrhunderts
geboren. Wir haben die folgenden Zahlen erhalten:

Anzahl
mannliche
Nachkom.

0 1 2 3 4 5 6 7 8 9 10

Anzahl
Familien

102 111 107 62 42 14 8 1 1 0 1

relative
Häufigkeit

0,227 0,247 0,238 0,138 0,094 0,031 0,018 0,002 0,002 0 0,002

Aus den Angaben von A. Moser in [20] dürfen wir schließen, daß

in diesem Zeitraum vielleicht etwa 55 Prozent der Geborenen im
Laufe ihres Lebens eine Familie gegründet haben. Somit läßt sich

ungefähr der Prozentsatz der Geborenen berechnen, die im Laufe
ihres Lebens k 0, 1, 2, 10 männliche Nachkommen erhalten
haben. Aufzeichnen auf einfach logarithmischem Papier legt es hier
nahe, die Werte für k sä 2 nach der Methode der kleinsten
Fehlerquadratsumme linear auszugleichen. Dann können wir unserm Modell

die folgenden Zahlen für die pk zu Grunde legen:

(18) pk 0,53 • e-VOk p2.0,497k~2, k ^ 2.
00

Dann wird po + pi 1 — 2 pk= 0,74; für po und pi nehmen wir

dementsprechend und gemäß den obigen Berechnungen po 0,60
und pi 0,14.
Setzen wir diese Zahlen für pk in Gleichung (17) ein, so führen
analoge Betrachtungen wie im vorangehenden Beispiel auf die quadratische

Gleichung

0,56s2 —1,16s+ 0,60 0,

die im Intervall 0 ^ s Sa 1 wiederum nur die Lösung s 1 hat. Das

heißt, daß auch in diesem Modell die Linien mit Sicherheit erlöschen.

e) In den letzten Jahren sind auch Untersuchungen über die «ideale

Familiengröße» durchgeführt worden; A. Miller berichtet in [17] und
[18] darüber, D. Hanhart in [15]. A. Miller zitiert in [17] die in der
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nachstehenden Tabelle aufgeführten Ergebnisse einer deutschen

Umfrage aus dem Jahre 1958; er weist daraufhin, daß wir annehmen

dürfen, eine Umfrage in der Schweiz würde nicht wesentlich
verschiedene Resultate liefern.

Als ideale Familiengröße wird betrachtet:

von 0,6 Prozent aller Befragten die kinderlose Ehe;
von 3,5 Prozent aller Befragten die Ehe mit 1 Kind;
von 46,4 Prozent aller Befragten die Ehe mit 2 Kindern;
von 37,9 Prozent aller Befragten die Ehe mit 3 Kindern;
von 10,1 Prozent aller Befragten die Ehe mit 4 Kindern.

Da A. Miller ferner die enge Begehung zwischen der «idealen» oder
also der «gewünschten» Familiengröße und der tatsächlichen Kin-
derzahl feststellt, ist es gegeben, auch die obigen Zahlen zur
Konstruktion eines Modells zu benützen. Nach A. Moser [20] dürfen
wir annehmen, daß im Zeitraum, in dem die Befragten geboren
worden sind, etwa 70 Prozent im Laufe ihres Lebens heiraten. Das

gibt uns die Möglichkeit, den Prozentsatz der Geborenen zu
berechnen, die im Laufe ihres Lebens 0, 1,2, Kinder (männliche
und weibliche Nachkommen!) haben. Wir verwenden in unserm
Modell die so erhaltenen Zahlen für die Wahrscheinlichkeit eines

Neugeborenen, im Laufe seines Lebens k Kinder zu haben; wir
bekommen so

7TO 0,30; 7TI 0,02; 772 — 0,33; 773 0,27; 714 0,07;
4

wir setzen 715 1 — S 7tk 0,01.
k=o

Die gesuchten Werte für die pk finden wir nun, wenn wir mit Hilfe
der 7tk die Wahrscheinlichkeit berechnen, daß ein Neugeborener im
Laufe seines Lebens k 0, 1, 2, männliche Nachkommen erhält.
Es genügt für diese Untersuchung, anzunehmen, die Wahrscheinlichkeit,

daß eine Geburt eine Knabengeburt sei, betrage I/2.

Dann ist nach den elementaren Sätzen der Wahrscheinlichkeitsrechnung

p0= 770+ 7z" 771 + I/4"7r2+ V8-773+ 7,6-774+ I/32-7T5= 0,43

Pl= 72*771 +2-74-TT2+3-V8-T3 + 4-7i6-774+ 5-732-775 0,30

P2= 74-772+ 3-78-"3+ 6" 7,6-7*4+ 10-732-775= 0,21

analog p3 0,053, p4 0,005, ps 0,002.
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Bilden wir nun Gleichung (14), so ist im Intervall 0 ^ s sS 1 wieder-
5

um nur die Wurzel s=l vorhanden, da m 21 kpk 0,91 < 1; auch
k=0

solche Linien erlöschen mit Sicherheit.-Zu ähnlichen Überlegungen
könnten Zahlen herangezogen werden, die D. Hanhart in [15] gibt.

f) Man kann noch einen grundsätzlich andern Weg einschlagen, um
zu Werten für die pk zu kommen: Wir untersuchen die Nachkommenschaft

eines Stammvaters und bestimmen in jeder Generation die
Anzahl männlicher Nachkommen, die im Laufe ihres Lebens k 0,1,2,

co männliche Nachkommen erhalten haben. Wir bezeichnen mit
zmk die beobachtete Anzahl von Vertretern der m-ten Generation,
die in der (m-f-l)ten Generation genau k männliche Nachkommen
gehabt haben. Nach T. Harris [4] gilt dann der Satz, daß die Maxi-
mum-Likelihood-Schät^ung für die pk gegeben ist durch

(19) pk= E zmk/N.
m —0

Dabei haben die zmk die oben angegebene Bedeutung; (n+l) ist die
Anzahl der beobachteten Generationen und N die Gesamtzahl, der
in diesen Generationen beobachteten männlichen Glieder, also N
1 -j- z\ -|- Z2 + zn, wenn z; die in der i-ten Generation beobachtete
Anzahl von männlichen Gliedern ist.
Die zmk können dann aus genealogischen Handbüchern gewonnen
werden. So verfolgen etwa die Bände des «Genealogischen
Handbuches zur Schweizergeschichte» [14] unter anderm das Ziel, in
ihren Stammtafeln eine vollständige Deszendenz der männlichen
Generationen der angeführten Familien zu bringen.
Wir haben zum Beispiel die Stammtafel der Familie Segesser von Brunegg

ausgezählt vom Ende des 13. Jahrhunderts bis zur Generation,
deren letzte Vertreter um 1900 gestorben sind. Nach den Ausführungen

in [14] besitzen übrigens nur wenige schweizerische Familien

eine so vollständige Genealogie wie die Familie der Segesser

von Brunegg. Die Ergebnisse sind die folgenden:
po 0,631, pi 0,102, p2 0,057, p3 0,080, p4 0,063, ps
0,029, p6 0,023; es ist p7 -)- ps +... + p« 0,015; die Zahl 7 für
die männlichen Nachkommen tritt nicht auf, 8 und 9 treten je einmal

auf, schließlich tritt als größte Zahl männlicher Nachkommen 15

einmal auf; N beträgt 176.
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Natürlich müssen wir hier wieder an die Problematik dieser Schät-

2ung erinnern; die Maximum-Likelihood-Funktion von T. Harris
ist unter den einschränkenden Voraussetzungen aufgestellt worden,
die wir oben für die pk als erfüllt angenommen haben.
In einem Modell, das auf diesen Schätzwerten für die pk aufgebaut
würde, wäre übrigens m > 1; nach dem im fünften Abschnitt
mitgeteilten grundlegenden Satz, wäre die Wahrscheinlichkeit q des

Erlöschens der Linie also kleiner als 1. Mit andern Worten: Mit
diesen Werten als pk ergibt sich eine gewisse von Null verschiedene
Wahrscheinlichkeit 1—q, daß die Linie nicht erlischt.
So gewonnene Schätzwerte können sehr verschieden sein, je nach
der Stammtafel, die ausgezählt wird. Für die Familie der Meyer von

Knonau zum Beispiel finden wir in [14] für den Zeitraum vom 14.

Jahrhundert bis zur Generation, deren letzte Vertreter um 1900
gestorben sind:

po 0,436, pi 0,179, p2 0,308, p3 0,077;

S pk=l;N 39.
k=0

g) Zu Vergleichs^wecken erwähnen wir noch die von A. Lotka in [6]
mitgeteilten Ergebnisse aus Untersuchungen an Hand der Statistik
der USA; er findet für unsere pk:

po 0,4825; pt 0,2126; pk pi •0,5893k~1, k ^ 1;

m= 1,260.

Diese Resultate basieren auf der Bevölkerungsstatistik der Jahre
1920 und 1930, die weiße Rasse betreffend.

7. Zur Übergangsmatrix dieses Prozesses

Wir haben durch Gleichung (6) die Übergangswahrscheinlichkeit

Pij W(Zn_|_i j /Zn i)

definiert und bereits im zweiten Abschnitt daraufhingewiesen, wie sich
die Übergangswahrscheinlichkeiten in einer Matrix darstellen lassen.
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Es sei nun

Mi

Poo Pol P02

Pio Pll Pl2
P20 P21 P22

Die Pjj lassen sich nach (11) berechnen; es ist also

i!
P» S • p0m° pim"... pcomu, dabei ist

mo! mi! mw!

zu summieren über alle mt, k 0,1, 2,..., mit mo + mi -|- mw i
und 0-mo + 1-mi j 4- w m6) j. Pjj linden wir somit als
Koeffizienten von si in der i-ten Potenz der erzeugenden Funktion f(s), also
in [f(s)]k

Einige Zeilen und Spalten von Mi lassen sich ohne große Rechnung
durch die pt ausdrücken, zum Beispiel

P0j 1 für j 0 und Poj 0 für j 4= 0,

Plj pj für 0 iS j sS w, und Pij 0 für j > to,
PiO pO1 und Pii ipo'~~1 • pl für i 0,1,...; weiter ist etwa
P22 2 po p2 + pl2, P32 3po2p2 + 3 po pi2 usf.

Somit hat Mi für unsern Prozeß folgendes Aussehen

1 0 0 0

PO pl p2 p3 po,
pO2 2popl (2pop2 + pl2)

_ po3 3po2pi (3po2p2 + 3popi2)
1

po4 4po3pi
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In der Terminologie der Markoffschen Ketten heißt der Zustand
Zn 0 ein absorbierender Zustand, da er offenbar nicht mehr verlassen
werden kann.

Mit Hilfe von Formel (5) läßt sich nun weiter für jedes natürliche g > 1

die Wahrscheinlichkeit

W(Zn+ g =r j /Zn i) Pij(g)

als Element der Matrix Mg Miß finden.

Wir bemerken noch, daß hm W(Zn k) 0 für k 1,2,..., wenn
n—>- oo

nur der Erwartungswert von Zi, also m, endlich ist. Fernergeht Zn—>- oo

mit der Wahrscheinlichkeit 1—q und Zn—>- 0 mit der Wahrscheinlichkeit q.
In diesen Aussagen kommt die Instabilität der Folge der Zn zum
Ausdruck; für den Beweis vgl. T. Harris [5].
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