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Vom Aussterben der Geschlechter

Einige Betrachtungen tiber Markoffsche Ketten

mit Beispielen aus der Familienstatistik

von ROBERT INEICHEN, Luzern






1. Einleitung

Evidernment tous les noms doivent s’éteindre. .. Un mathématicien pourrait
calculer comment la réduction des noms ou titres aurait lieu, d’aptés la
probabilité des naissances toutes féminines ou toutes masculines ou mé-
langées et la probabilité du défaut de naissances dans un couple quelconque.

So schreibt Alphonse de Candolle (1806—1893) in seiner « Histoire des
sciences et des savants depuis deux si¢cles» [13]7; der Genfer Natur-
forscher — tibrigens ein Sohn des den Botanikern wohlbekannten
Augustin-Pyramus de Candolle - zitiert in diesem Zusammenhang den
englischen Anthropologen Francis Galton, der sich intensiv mit der
Frage beschiftigt hat, wieso einst verbreitete Geschlechter mit der Zeit
nur noch wenige Vertreter haben oder sogar ganz aussterben. —Ist dies
nun wirklich so «évident», wie de Candolle schreibt? Was 143t sich mit
Hilfe der Wahrscheinlichkeitsrechnung iiber die Verminderung oder
die Zunahme der Anzahl der Triger eines Familiennamens aussagen,
welches ist insbesonders die Wahrscheinlichkeit dafir, dal3 ein Ge-
schlecht ausstirbt?

Mit diesen Fragen wollen wir uns im folgenden etwas beschiftigen.
Zwei Griinde haben uns veranlafit, diesen Problemen nachzugehen:
Einmal der, dal3 derartige Uberlcgungen auf Grund von Zahlenmaterial
aus der Schweiz wohl noch kaum angestellt worden sind?, und im
weitern, weil — wie in den letzten Jahrzehnten erkannt worden ist —
Fragestellung und Losungsmethoden eine Ubertragung oder Erwei-
terung in Bereiche gestatten, die von der Familienstatistik recht weit
abliegen, so etwa in die Theorie chemischer oder physikalischer Ketten-
reaktionen, in die Unternehmungsforschung (Operations research) bei
der Theorie der Warteschlangen oder schlieSlich auf gewisse biolo-
gische Probleme, vor allem in der Genetik. — Da vielleicht diese Zu-
sammenhinge auch fir einen grofleren Leserkreis von einem gewissen
Interesse sind, sollen sie im folgenden ebenfalls gestreift werden. Dazu
ist es notwendig, etwas weiter auszuholen.

1 Diese Bezeichnungen in eckiger Klammer verweisen auf die am Schlusse angefiihrte Literatur.
?  Die Anregung zu diesen Uberlegungen verdanke ich Herrn Professor Dr. E. Batschelet, Basel/Washington.
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2.Vom Schema der unabhingigen Versuche 3u den Markoffschen Ketten

In den Naturwissenschaften werden hiufig zufillige Prozesse (stocha-
stische Prozesse) beobachtet. Man denke an die Brownsche Bewegung,
jene zufallsartige Bewegung kleiner Teile in einer Fliissigkeit, erzeugt
durch die auftreffenden bewegten Molekiile der Flissigkeit, oder an
den Austritt von Elektronen aus der Glihkathode einer Réhre oder
schlieBlich an den radioaktiven Zerfall.

Wir wollen zunichst einen wesentlich einfacheren zufilligen Prozel3
betrachten. Wir denken uns eine Urne, die eine Anzahl Kugeln ent-
halte, welche zum Teil mit Eq, zum Teil mit Ep, ... usw. bis Eg be-
zeichnet sind; im tibrigen seien die Kugeln vollig gleich gestaltet und
die Urne gut durchmischt. Wir ziehen eine Kugel und achten auf die
Aufschrift, dann legen wir die Kugel wieder zuriick, mischen und
fihren einen weitern Zug aus, usw. Wir stellen fest: Die Wahrschein-
lichkeit, daf3 in einem Versuch die Kugel E; erscheint, 1 = 1 = s, hdngt
nicht von der Nummer des Versuches und nicht von den in friiheren 1 ersuchen
eingetroffenen Ereignissen ab. Diese Wahrscheinlichkeit werde mit p; be-
zeichnet. Dieses Schema einer Folge unabhingiger 1VVersuche ist eines der
wichtigsten Schemata der Wahrscheinlichkeitsrechnung. — Die Wahr-
scheinlichkeit, dal} in n derartigen unabhingigen Versuchen das Er-
eignis Eq genau my-mal, das Ereignis E3 genau mp-mal, . . . das Ereignis
Es genau mg-mal eintritt, wobei natiitlich my + m2 +...+ mg = n,
148t sich elementar berechnen. Sie ist gegeben durch die Formel

n!

(1) W, (ml, my; ... M) = : ! p1™ pafz... ps™s

mi! mp! ... mg!
Den wichtigsten Spezialfall von nur gwei moglichen Ereignissen, die
sich gegenseitig ausschlieBen, hat bekanntlich als erster Jakob Bernoulli
(1655—1705) behandelt; man spricht dann vom Bernonllischen Schema;
die Bernoullische Formel stellt einen Sonderfall von Formel (1) dar.

Nun nehmen wir eine naheliegende Verallgemeinerung vor: Die Wahr-
scheinlichkeit, daB in einem Versuch E; erscheint, 4ange davon ab, welches
Ereignis im unmittelbar vorangegangenen Versuch eingetreten ist. Wir denken
uns nun s verschiedene Urnen, jede enthalte wieder eine Anzahl solcher
Kugeln, die zum Teil mit Eq, mit E3 ... mit E¢ beschriftet seien. Die
Zusammensetzung der Urnen mit diesen Kugeln sei aber verschieden.
Wir bezeichnen die Wahrscheinlichkeit, aus der Urne Nummer i eine
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Kugel mit der Aufschrift Ex zu ziehen, mit Pj,. Wir gehen nun so vor:
Zu Beginn der Versuchsfolge sei die Wahrscheinlichkeitsverteilung der
E; gegeben. Wenn nun E; eingetreten ist, so ziehen wir aus der Urne
Nummer i eine Kugel. Mit der Wahrscheinlichkeit Pj; erscheint dann
E1, mit der Wahrscheinlichkeit Pjp erscheint Ey, ... mit der Wahrschein-
lichkeit Pjs erscheint Es. — Die Pix sind also bedingte Wahrscheinlich-
keiten, es ist
Py =W (Ex/E;)

Ein solches Versuchsschema ist zuerst vom russischen Mathematiker
A.A.Markoff (1856—1922) systematisch untersucht worden; man
nennt es eine Markoffsche Kette.

Allgemein spricht man im folgenden Falle von einet Markoffschen Kette :
Es sei eine Folge von Versuchen gegeben; als Ergebnis eines Versuches
moge genau eines der endlich oder abzihlbar unendlich vielen Ereig-
nisse E1, Ep, E3 ... eintreten; diese Ereignisse sollen sich paarweise
ausschlieBen. Die Wahrscheinlichkeit fiir den Eintritt des Ereignisses B
in irgendeinem Versuch hangt nun nur davon ab, welches Ereignis im voran-
gegangenen Versuch eingetreten ist und nicht von den in noch fritheren Versuchen
eingetretenen Ereignissen.

In einer etwas andern Terminologie spricht man oft von einem phys:-
kalischen System, das sich in einem bestimmten Zeitpunkt in einem der
Zustinde oder Phasen E;, miti = 1, 2, ... befinden kann und nur in den
gegebenen Zeitpunkten ty, tz, ... von einem Zustand in einen andern
ibergehen kann. Die bedingte Wahrscheinlichkeit Pjx = W (Ex/E;)
heiBt dann die Ubergangswahrscheinlichkeit, also die Wahrscheinlichkeit
des Uberganges vom Zustand E; in den Zustand Eg.

Diese Ubergangswahrscheinlichkeiten lassen sich iibersichtlich in der
Ubergangsmatrix anordnen:

P11 P12 P13 .......
Py1 PppPo3.......
(2) My = Pog Pap Paz winmwsns

-------

-------

3 Genauer: eine einfache, homogene Markofische Kette. Einfach, weil nur vom Etgebnis des unmittelbar vorangehenden
Versuches abhiingig und nicht wie in komplizierteren Fillen vom Ergebnis von m> 1 vorangehenden Versuchen;
homoyen, weil unabhingig von der Nummer des Vetrsuches, Vgl. [2], [3].
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Offenbar ist diese Matrix quadratisch; ihre Elemente sind nicht negativ
und die Summe der Elemente einer Zeile ist 1.

Zusammen mit der Wahrscheinlichkeitsverteilung der Zustinde Eq,
Ep, ... zu Beginn der Versuchsfolge definiert die Ubergangsmatrix die
Markoffsche Kette vollstindig.

Ein einfaches Beispie/: Das Wetter eines Ortes, das wihrend eines Tages
herrscht, lasse sich durch zwei Zustinde «schlecht» (E1) und «gut»
(E2) charakterisieren. Die Ubergangswahrscheinlichkeiten wiren dann
gegeben durch

P11 P12

M =
! ‘ P21 P22

Hier gibt also zum Beispiel P12 die Wahrscheinlichkeit eines Uberganges
von einem Schlechtwettertag zu einem Gutwettertag. Allerdings setzen
wir dabei voraus, dafl die Wahrscheinlichkeit fiir gutes oder schlechtes
Wetter an einem Tage nur davon abhingt, welcher Zustand am voran-
gehenden Tage geherrscht habe. Die Meteorologen sagen uns iibrigens,
dal3 P11 > P12 und P2 > Po1. Hier kommt eine gewisse Beharrungs-
tendenz der Wetterlagen zum Ausdruck.

Fiir das weitere Vorgehen bringen wir noch die folgenden Formeln
aus der Theorie der Markoflschen Ketten: ' S
Mit Pj(n) wollen wir die Ubergangswahrscheinlichkeit bezeichnen, in
n Versuchen vom Zustand E; in den Zustand E; zu gelangen.

Nun ist

3) Pij(2) = EPikij ,

denn fiir ein festes k ist die Wahrscheinlichkeit des Uberganges E; —>-
Ex = E; gegeben durch PjPyj; anschlieBend hat man einfach tber
alle k zu summieren. Aus (3) erkennt man nun sofort, dal3 die Matrix
der Ubergangswahrscheinlichkeit in zwei Schritten gegeben ist dutch

My = M1-M; = M;2.
Durch entsprechende Uberlegungen findet man die Markoffsche Gleichung
4) Pjj(n) = E Pjx(m) Pyj(n—m),

wobei m eine natiirliche Zahl mit 1 < m < n ist.
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Mit Hilfe von (4) 1iBt sich fiir die Matrix der Ubergangswahrscheinlich-
keiten in n Schritten die Formel gewinnen

5 M, = M1". — Man vergleiche [2] oder [3].

3. Der Galton-W atson-Progeff

Wir wollen nun versuchen, das einleitend skizzierte Problem als eine

Markoffsche Kette mit gewissen besondern Eigenschaften aufzufassen.

Wir kommen dann auf einen stochastischen Prozef3, den wir im An-

schluB3 an T. Harris in [5] als Galton-Watson-Prozgeff* bezeichnen und

wie folgt definieren:

a) Wir denken uns Objekte, die weitere Objekte derselben Arz, ihre
Nachkommen, erzeugen konnen, also zum Béispiel Minner und
ihre minnlichen Nachkommen.

b) Die am Anfang gegebene Menge solcher Objekte nennen wir die
nullte Generation, ihre Nachkommen bilden die erste Generation,
deren Nachkommen die zweite Generation usw.

c) Wir richten unser Augenmerk auf die .A#nzak/ solcher Objekte jeder
Generation und bezeichnen mit Zg, Z1, Z2 ... die Anzahl dieser
Objekte in der nullten, ersten, zweiten ... Generation. Diese Z;, mit
i=0,1,2,..., sollen gufillige Variable darstellen. Wir werden stets
Zo = 1 voraussetzen; die Wahrscheinlichkeit, dal} Z1 = k, mitk =
0,1,2,..., bezeichnen wir mit p:

W(Zi=R)=pc, Ipe=1

Fiir jedes Objekt in irgendeiner Generation sei nun die Wahrscheinlichkert,
im Laufe seines gangen Lebens & Nachkommen u haben (£ = 0, 1, 2,...),
wieder durch das obige py gegeben. Diese Wahrscheinlichkeit hinge also
nicht etwa davon ab, wieviel Objekte schon vorhanden sind, sie
variiere auch nicht mit der Zeit.

4 Nach F. Galton, der sich — wie in der Einleitung erwihnt — mit dem Problem des Aussterbens der Geschlechter
befalit hat und H. W, Watson, der eine erste mathematische Losung dieses Problems gegeben hat (1874). — Der
Galton-Watson-Prozel3 stellt einen besonders einfachen Typ eines Verzweigungsprozesses (branching process) dar; man
vergleiche das Buch [5] von T. Harris.
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d) Zo, Z1, Za, ... sollen eine (einfache, homogene) Markoffsche Kette
bilden. Die Wahrscheinlichkeit, daf3 in der (n+1)ten Generation
eine Anzahl Objekte, zum Beispiel j, vorkommen werden, hingt
also nur davon ab, wie grol} die Anzahl i der Objekte der n-ten
Generation war: |

(6) W (Zay1=j]/Za=1)=Pj, 1,j,n=0,1,2...;Zg=1

Diese Pj; stellen also wieder die im vorangehenden Abschnitt definier-
ten Ubergangswahrscheinlichkeiten dar.

Diese Ubetgangswahrscheinlichkeiten sollen nicht mit der Zeit vet-
andetlich sein. Ist Z, = 0, so ist offenbar mit der Wahrscheinlichkeit
1 auch Z,4+1=0:

(7) W (Zay1=0]Zq=0)=Pgo=1

Als bedingte Wahrscheinlichkeit ist die Ubergangswahrschcinlichkeit
(6) nicht definiert fiir jene i, fir die W (Z, = 1) = 0.

In dieser allgemeinen Formulierung ist das durch den Galton-Watson-
ProzeB gegebene Schema auf recht verschiedenartige Beispiele an-
wendbar.

Wir werden in den weitern Ausfithrungen vor allem das folgende Bei-
spiel betrachten: Wir nehmen einen mdnnlichen Neugeborenen als
Stammuater eines Geschlechtes, als Begriinder einer Linie (0. Generation).
pk stelle die Wahrscheinlichkeit dar, dal3 dieser Neugeborene im Laufe
seines Lebens k mannliche Nachkommen erzeuge, k = 0,1, 2... Seine
Nachkommen bilden die 1. Generation. Unabhingig von Einfliissen
der Vererbung, der Zeit oder der Umwelt bestehe nun fiir jeden minn-
lichen Neugeborenen der 1. Generation wieder die Wahrscheinlichkeit
Pk, genau k midnnliche Nachkommen zu haben, wiederumk = 0, 1, 2,
... Die Menge aller minnlichen Nachkommen der 1. Generation bilden
die 2. Generation; fiir jeden minnlichen Neugeborenen der 2. Gene-
ration bestehe wieder die Wahrscheinlichkeit pg, k minnliche Nach-
kommen zu haben usf., Wir fragen nach der Wahrscheinlichkeit, in
einer Generation eine bestimmte Anzahl mannlicher Nachkommen zu
finden, vor allem nach der Wahtscheinlichkeit, daf3 in einer Generation
0 minnliche Nachkommen sein werden, dal3 also die Linie etlischt, das
Geschlecht ansstirbt.



Es mag iiberraschen, daB ein solches Schema auch auf gewisse physikalische Vorginge paBt;
A. Weinberg und E. Wigner schreiben in [11], «The physical Theoty of Neutron Chain
Reactorsy: «lt is iniresting to note that some of the basic mathematical methods developed by
A. Lotkas and V. Violterra to deal with multiplication in biological populations are applicable
20 the study of fluctuations in neutron chain reactors» Bei einer solchen Kettenreaktion wird
durch ein Neutron (0. Generation) geeigneter Energie ein schwerer Kern gespalten.
Dabei entstehen einige neue Neutronen, beim Uran 235 zum Beispiel zwei bis drei
(1. Generation). Besitzen diese wieder die geeignete Energie, so vermdgen sie neue
Kerne zu spalten, wobei wieder neue Neutronen entstehen (2. Generation), usf. Die
Zahl der Neutronen kann lawinenartig anwachsen, falls nicht so viele Neutronen aus
dem ProzeB herausgelost werden konnen, dall sich dieser stabilisiert. Solche Betrach-
tungen hat zum Beispiel E. Schrodinger in [9] angestellt.

Wie N. Semenoff [10] gezeigt hat, konnen auch chemische Kettenreaktionen in gewissen
Fillen durch einen Galton-Watson-Prozel3 beschrieben werden.

Schliellich weisen wir noch auf folgende Situation aus einem ganz andern Bereich von
Anwendungen hin: An einem Schalter, an dem immer nur ein Kunde abgefertigt werden
kann, wird ein Kunde bedient (0. Generation). Alle Kunden, die wihrend der Zeit
eintreffen, da dieser Kunde abgefertigt wird, gelten als seine « Nachkommen» und bil-
den die etste Genetation; es sei p; die Wahrscheinlichkeit, daB3 wihrend der Bedienungs-
zeit des Kunden der 0. Generation k weitere Kunden ankommen und Schlange stehen
miissen, Fiir jeden Kunden der ersten Generation bestehe wieder die Wahrscheinlichkeit
Pi, daB wihrend seiner Bedienungszeit k weitere Kunden eintreffen; k=0, 1, 2, ... Alle
Kunden, die eintreffen, wihrend ein Kunde bedient wird, der der 1. Generation angehort,
bilden die 2. Generation usw. Natiirlich stellt sich gerade hier die Frage, ob das Schema
des Galton-Watson-Prozesses hier nicht zu vereinfachend sei: die p) konnten beispiels-
weise zeitlich variieren. Wir kommen darauf unten noch zuriick., Eine dhnliche Situation
mag sich beim Anfall von Reparaturen einer bestimmten Warengattung stellen: Ein
Stiick wird repariert (0. Generation), wihrend dieser Zeit kommen mit der Wahrschein-
lichkeit py k weitere Stiicke an (1. Generation) und missen warten usw. Es stellt sich
unter anderm die Frage nach der Wahtscheinlichkeit dafiir, da3 die Warteschlange ab-
bricht, Die Theorie der Warteschiangen, ein bedeutsames Gebiet der Unsernehmensforschung,
untersucht derartige Probleme; man vergleiche etwa [1]. Wir miissen es uns versagen,
hier noch weitere Beispiele anzufiihren; Hinweise auf analoge Problemstellungen in
der Genetik gibt zum Beispiel W. Feller in [2].

Wit skizzieren indessen noch kurz eine Situation, auf die unser Schema schlecht passen
wiirde: Vor dem roten Licht einer Verkehrsampel warte ein Fahrzeug (0. Generation).
Alle Fahrzeuge, die wihrend des Wartens dieses Fahrzeuges eintreffen, bilden die erste
Generation; p, sei die Wahrscheinlichkeit, dal3 wihrend dieses Wartens k Fahrzeuge
eintreffen, k = 0, 1, 2, ... Nun erscheint kurz griines Licht, das Fahrzeug der 0. Gene-
ration und wohl auch etliche Fahrzeuge der 1. Generation konnen weiterfahren, einzelne
kommen vielleicht nicht mehr dutch. Alle Fahtzeuge, die jetzt eintreffen, wihrend noch
Fahrzeuge der 1. Generation weiter warten, bilden die zweite Generation usf. Hier
wird im allgemeinen unser Schema nicht anwendbar sein: Die ersten Fahrzeuge der
1. Generation werden in der Regel beim Aufleuchten von Griin sofort durchkommen,
fiir sie ist dann pg = 1, pp = 0 fir k = 1, 2, ...; fiir gewisse spitere Fahrzeuge der
1. Generation diirfte hingegen py == 1 sein und damit auch py 0 firk = 1, 2, ... Da-
mit sind die Voraussetzungen fiir den Galton-Watson-Prozef3 nicht mehr gegeben.

¥ Vgl zum Beispicl [6].
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Wir wollen abschlieBend noch ausdriicklich auf die vereinfachenden An-
nahmen hinweisen, die dem Galton-Watson-Proze3 zugrunde liegen:
Wir setzen die pi als geitunabhingig voraus. Wenn die pi also etwa die
Wahrscheinlichkeit eines minnlichen Neugeborenen angeben, im Laufe
seines Lebens k minnliche Nachkommen zu haben, so soll diese Waht-
scheinlichkeit im Laufe der Zeit nicht indern. Bestimmen wir nun die
relativen Hiufigkeiten von minnlichen Neugeborenen mitk = 0, 1, 2,
... minnlichen Nachkommen, um Schitzwerte fiir die px zu erhalten,
so miissen wir indessen darauf hinweisen, daf diese relativen Haufig-
keiten im Laufe der Jahre ziemlichen Schwankungen unterworfen sind,
wie zum Beispiel A.Burckhardt in der Arbeit [12] sehr schon zeigt.
Diese pi sollen weiter auch nicht davon abhingen, wze viele Objekte der
betreflfenden Art schon vorhanden sind. Die einzelnen Objekte erzeugen
also unabhingig voneinander weitere Objekte derselben Art. Diese
Voraussetzung kann sicher bei der Beschreibung gewisser biologischer
Populationen nicht gemacht werden, wo in verschiedenen Fillen die
Gesamtzahl der schon vorhandenen Objekte auf die Erzeugung von
Nachkommen einen Einfluf3 haben kann.

SchlieBlich setzen wir voraus, daf die px auch nicht davon abhingen
sollen, ob das Objekt, das Nachkommen erzeugt, aus einer Familie mit
vielen oder mit wenigen Nachkommen stammt. Diese Voraussetzung diitfte
fir unser Problem des Aussterbens der Geschlechter nur bedingt zu-
treffen; es ist durchaus denkbar, daf3 ein Nachkomme aus einer Familie
mit vielen Briidern die Tendenz haben konnte, auch eine grofiere An-
zahl von Nachkommen zu haben als ein anderer aus einer kleineren
Familie.

4. Erzengende Funktionen

Wir betrachten die Folge {Zo, 74,72, } von Zufallsvariablen, wobei
wie im vorangehenden Abschnitt ausgefiihrt, Z; die Anzahl Objekte
der i-ten Generation angibt. Wiederum sei ferner Zo= 1 und es sei die
Wahrscheinlichkeitsverteilung fiir Z1 gegeben durch{ P0s P1> P25+ - - Peo } R
wenn o die gro3tmogliche Anzahl vonNachkommen eines Objektes ist.

Man fithrt nun zweckmiBig eine ergengende Funktion ein (vgl. zum Bei-
spiel Feller in [2]): '
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(8) f(s) = po+ p1s + p2s? + ... + pws®

Wir bemerken sofort:
9) f’(l):p1+2p2—]—3p3+...+mpm:Ekpk:m

stellt den Erwartungswert der Zahl der direkten Nachkommen eines
Objektes dar; ferner ist

(10) f()=2pi=1 und £0)=rpo.

Nun suchen wir die erzeugenden Funktionen fiir Zp, Z3, ...; wir stellen
fest:

a) Nach den bekannten Sitzen tiber Multiplikation und Addition von
Wahrscheinlichkeiten und unter Verwendung von Formel (1) gibt
r!

(1) iy ey pr ) S i

die Wahrscheinlichkeit w dafiir, da3 r Objekte genau t Nachkom-
men im Laufe ihres Lebens haben, wenn sich die Summation iiber
allem, k= 0,1,2... o, erstreckt mit

my-+mqi4+mp-- ...+ my=r und
O mo+41-my+2-mp-... - w-muy=t.

Nach dem polynomischen Lehrsatz (E. Netto [7]) ist nun aber die
Summe (11) mit den beiden obigen Summationsbedingungen gerade
der Koeffizient von st in [f(s)]*.

b) Die Wahrscheinlichkeit, dall das Objekt der 0. Generation (der
«Stammvater») gerade r Nachkommen in der 1. Generation («S6h-
ne») und t Nachkommen in der 2. Generation (« Enkel») habe, 1483t
sich aus (11) durch p,-w berechnen, das heil3t durch den Koeffi-
zienten von st in p[f(s)]".

c) Somit ergibt sich die Wahrscheinlichkeit dafiir, dal3 der Begriinder
des Geschlechtes, der Stammvater, in der 2. Generation t Nach-
kommen hat, welches auch immer die Zahl seiner Nachkommen in
der 1. Generation sei, also die Wahrscheinlichkeit W(Zy=1t) als
Koeffizient von s* in der Summe

po + pif(s) + p2f(s)I* + ... + polf(s)] = f[f(s)] = fa(s)
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Das heif3t doch: Die erzeugende Funktion fiir Z; ist die zusammen-
gesetzte Funktion

fa(s) = £ [£(s)].

d) Durch vollstindige Induktion finden wir, daB die erzeugende Funk-
tion fiir Zy 11, also fiir die Zahl der Objekte der (n+1)ten Genera-
tion rekursiv gegeben ist durch

(12) fi(s)=f(s) und fay1(s)=f[fa(s),n=1,2,...

Wir bemerken noch, dafi sich diese Ergebnisse auch durch die Beniit-
zung allgemeiner Sitze iliber erzeugende Funktionen von Summen

gleich verteilter Zufallsvariablen beweisen lassen; diese finden sich zum
Beispiel bei W. Feller in [2].

Beispiel: Es sei pg = 0,5; p1 = 0,25; p2 = p3 = 0,125; ppy = O fiirk >
3; also m = 0,875.

Dann ist f(s) = 0,5 + 0,25s + 0,125 s2 ++ 0,125 §3; f(s) = f [f(s)]
ergibt dann die erzeugende Funktion fiir Zp, aus der wir die Wahr-
scheinlichkeiten W(Zz = k), k = 0, 1...9 finden kénnen. Die Rech-
nung ergibt zum Beispiel

W(Z2=0)=6,7-10—1; W(Z;=1)=1,2-10—1; W(Zy=2)=7,8-10—2,
usf. schlieBlich W(Zp = 9)=2,4-10—4,

Analog ergibt f3(s) = f [f2(s)] die Wahrscheinlichkeiten W(Z3 = k),
k=0,1,...27, etwa W(Z3=0)=7,6-10—1; W(Z3 = 1) = 6,9- 102,
usf., schlieBlich W(Z3 = 27 =)1,8-10—12,

5. Die Wahrscheinlichkeit des Aussterbens der Linze

Wir gehen wieder aus von der Folge der Zufallsvariablen {Zo, 74, Z2,
}, wobei also Z;i die Anzahl Glieder der i-ten Generation darstellt
und Zop = 1 ist. Wenn ein Glied dieser Folge, etwa Z,, den Wert 0
annimmt, dann nehmen wegen Gleichung (7)

W(Za+1=0/Za=0)=Pyp=1

auch alle folgenden mit Sicherheit ebenfalls den Wert 0 an: Die Linse
stirbt aus, das Geschlecht erlischt.
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Dieses Etloschen des Geschlechtes ist offenbar nur mdéglich, wenn
po #0; wir setzen deshalb im folgenden 0 < pp < 1 voraus.

Nun suchen wir die Wahrscheinlichkeit qq, dall das Geschlecht in oder
vor der n-ten Generation erlischt:

Gn = W(Zq = 0).

Nach unsern Ausfithrungen iiber erzeugenden Funktionen im vorigen

Abschnitt 1st
qn = W(Zn = 0) = £,(0).

w
Da f(s) = = pisk im Intervall 0 <s <1 mit zunehmendem s ebenfalls

zunimmit, folgt (vgl. W.Feller in [2]) aus
q1 = £(0) = po, dald q2 = £[f(0)] = £(q1) > {0) = qu,

und durch vollstindige Induktion

dn+1=f(gn) > f(qn—1) = gn.

Das heil3t aber: Die Folge der q, strebt monoton gegen ein q, das der
Gleichung

(13) q=f(q) = po+ p1q + p2q? + ... + peq® geniigt.

Dieses der Gleichung (13) gentigende q stellt somit die Wakrscheinlich-

keit dafiir dar, daff das Geschlecht inz Lanfe der Zeit ausstirbt.

Ubrigens 146t sich Gleichung (13) im Anschluf an J. Steffensen [8] sehr

anschaulich deuten:

Die Wahrscheinlichkeit q des Aussterbens des Geschlechtes ist eine

zusammengesetzte Wahrscheinlichkeit aus

— der Wahrscheinlichkeit pg, daB3 in der 1. Generation 0 minnliche
Nachkommen vorhanden sind,

— der Wahrscheinlichkeit p1q, daB in der 1. Generation 1 méinnlicher
Nachkomme vorhanden ist und die dadurch begriindete Linie aus-
stirbt,

— der Wahrscheinlichkeit ppq?, daB in der 1. Generation 2 minnliche
Nachkommen vorhanden sind und beide dadurch begriindete Linien
aussterben usf., schlieBlich aus der Wahrscheinlichkeit p,q®, daf}
in der 1. Generation « minnliche Nachkommen vorhanden sind
und alle dadurch begriindeten Linien aussterben.
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Um dieses q zu finden, haben wir somit die imIntervall0 =s =<1 liegen-
den Wurzeln der Gleichung

(14) s = f(s) = po -+ p15 + p2s2 + ... + Pe 8©
w
zu suchen. Sicher ist (wegen X px=1) s=1 eine Losung.
k=0

Nun gilt der folgende grundlegende Satz (vgl. zum Beispiel T. Hartis [5]):

Wenn m = ¥ kpy < 1, dann ist die Wahrscheinlichkeit fiir das Exls-
k=0

schen des Geschlechtes 1. — Wenn m > 1, dann ist diese Wahrschein-

lichkeit q die einzige nicht-negative Losung, die kleiner als 1 ist, die die

Gleichung (14) besitzt.

Auch dieser Satz 1Bt sich anschaulich deuten: Wir betrachten dazu die
Graphen der beiden Funktionen y = s und y = {(s), die sich wegen
f(1) = 1 im Punkte (1/1) schneiden. Der Graph von y = £(s) ist konvex,
somit sind nur die drei folgenden Fille denkbar:

Y -t(s
l T y = a) Zweiter Schnitt-
punkt auBlerhalb
f e 0=s=1
Pe
/ s
7
y-F(s) . b) Beriihrung in P(1/1)
/ P
Po
/ s
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Y ‘ c) Zweiter Schnitt-
y=1s) punkt innerhalb
y=s 0ss=1

=
/ s

Betrachten wir nun die Steigung von y = f(s) im Punkte P(l /1), so
erkennen wir, dal3 die beiden Fille a) und b) durch f’(1) = E kpk =

m = 1 und der dritte Fall ¢) durch (1) = Z kpk=m > 1 charakten-
k=0

siert sind; mit andern Worten: Die Wahrscheinlichkeit g, dal3 ein Ge-
schlecht ausstirbt, ist dann und nur dann kleiner als 1, wenn der Erwar-
tungswert der direkten Nachkommen eines Objektes grifier als 1 ist, wenn
also die «mittlere Anzahl von Nachkommen» groQer als 1 ist.

6. Numerische Beispiele fiir das Aunssterben der Geschlechter

a) Wir wollen nun die im Intervall 0 = s = 1 liegenden Wurzeln der
Gleichung

(14) s = f(s) = po + p1s + p2s? + ... + Pew 8

suchen, wobei also die p, k=0, 1,2, ... ®, die Wahrscheinlichkeiten
dafiir darstellen, dal3 ein Vertreter einer Generation im Laufe seines
ganzen Lebens genau k minnliche Nachkommen hat; ferner erin-
nern wir an die im dritten Abschnitt aufgefiihrten vereinfachenden
Annahmen.

Um nun numerische Beispiele betrachten zu kénnen, miissen wir fiir
die px geeignete Zahlen einsetzen. Um Schitzwerte flir diese py zu
finden, nehmen wir eine passend ausgewihlte Menge von N minn-
lichen Neugebornen. Wir stellen fest, dal3 Ny davon im Laufe ihres
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Lebens k minnliche Nachkommen haben, k=0, 1, 2, ... », und be-
rechnen die relativen Hiufigkeiten fi = Ni/N. Mit diesen fi, oder
wenn notwendig mit ausgeglichenen Werten bauen wir dann ein
Modell fiir die oben geschilderte vereinfachte Sitnation.

b) Obwohl die Fragestellung fiir diese f; = N /N auBerordentlich einfach ist, ist es
nicht ohne weiteres moglich, aus vorhandenen Unterlagen eine Antwort zu gewin-
nen. Stichproben auf den Zivilstandsimtern sind infolge der getrennten Fiihtung
der Geburten- und Familienregister mit zahlreichen Schwierigkeiten verbunden. Aus
den einliBlichen bevolkerungsstatistischen Publikationen des Eidgenossischen Stati-
stischen Amtes liBt sich fiir unsere Frage auch nichts entnehmen. Das statistische
Material von Versicherungskassen fihrt in der Regel nicht alle Kinder auf, sondern
nur jene unterhalb einer gewissen Altersgrenze; zudem wire die Anzahl minnlicher
Versicherter durch zusitzliche Annahmen zu jener oben genannten Menge N von
Neugeborenen zu erweitern. Zahlreiche Publikationen familienstatistischer Art
schlieBlich, so die sehr reichhaltige Studie von A. Moser [19] und die Atbeiten von
A. Burckhardt [12], F. Kaufmann [16], A. Miller [17] und L. Solari [21], haben
andere Zielsetzungen und ergeben deshalb zum Teil wenig fiir unsere Frage.
Immerhin zeigen gerade die zitierten Arbeiten von A. Moser und A. Burckhatrdt,
wie unsere f;, Anderungen unterwotfen sind, so etwa deshalb, weil infolge des
Riickganges det Sterblichkeit immer mehr Neugeborene das heiratsfahige Alter
erreichen und weil sich deutlich eine sikulare Steigerung der Heiratsfihigkeit fest-
stellen liBt; man vergleiche auch die Arbeit [20] von A. Moser. — Wir weisen deshalb
nochmals darauf hin, daB3 unsere Beispiele Modelle fiir stark vereinfachte Situationen
darstellen. Es konnte das Ziel einer besondern Arbeit sein, entsprechende Uber-
legungen durchzufihren fiir py, die zum Beispiel mit der Zeit variieren.

c) Infolge der besondern Art der Registerfithrung der Korporations-
verwaltung Luzern® lieBen sich fur Lugerner Korporationsbiirger die
fi. = Nk /N einfach erheben. Wir lieBen anfangs 1964 fiir die N = 225
in den Jahren 1880... 89 geborenen Korporationsbiirger die Anzahl
minnlicher Nachkommen feststellen und erhielten folgende Tabelle:

k 0 1 2 3 4 5
(15) f,=N,/N | 0630 |09 |0,102 | 0,058 | 0,009 | 0,005
5
S £, = 1,000

k=0

Setzen wir nun diese Werte fiir die pi in die Gleichung (14) ein, so
stellen wir sofort fest, dafl die Gleichung

s = 0,630 4 0,196s 4 0,102s2 - ... 4 0,005s5

8 Die Korporationsgemeinde entspricht der « Burgergemeinde» in andern Stidten,
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im Intervall 0 = s = 1 nach dem im finften Abschnitt mitgeteilten
Satz nur die eine Wurzel s =1 hat, da m = 0,635 < 1, das heil3t Ge-
schlechter, deren py die durch Tabelle (15) gegebenen Werte auf-
weisen, sterben unter den von uns gemachten Voraussetungen mit Sicherheit
ans.

Aufzeichnen auf einfach logarithmischem Papier legt den Versuch
nahe, durch diePunkte (k/fi) fiirk=1 eine Gerade nach der Methode
der kleinsten Fehlerquadratsumme zu legen. Die Rechnung ergibt

16 = 0,654.e—0.977k —p;.0377k—1 k=1,
p p

Dieser Ausgleich bewirkt natiitlich, dal im so verinderten Modell
auch fiir k > 5 eine nicht verschwindende Wahrscheinlichkeit vor-

handen ist. Fir po ergibt sich dann aus po= 1—1:201 Pk der Wert
po= 0,605. — Die pg stellen also in diesem Falle fiir k =1 eine geo-
metrische Folge mit dem Quotienten Q = 0,377 dar.
An Stelle von Gleichung (14) haben wir dann die Gleichung
(17) s= po -+ p1s + pzs?-+...odermitBeriicksichtigung von (16)
s=po+ p1s+ p1 0,377s2 ... zu untersuchen.
[ee)
chenkZ Opkz 1 ist die rechts stehende Reihe in unserm Intervall
0 =s =1 konvergent.
Setzen wir fiir pp und p1 die eben angegebenen Werte ein und sum-

mieren wir die geometrische Reihe, so erhalten wir schlief3lich die
quadratische Gleichung 0,377s2 — 0,982s + 0,605 = 0, die wieder-

um in 0 = s = 1 nur die Lésung s=1 hat. Auch m :kE Okpk =

0-po+ 1-p1 + 2:0,377 p1 + 3-0,3772 p1 -+ ... liBt sich einfach be-

n
rechnen: Fiirx = 0,377 wird lim S, berechnet, wobei S;; = 3 kxk—1
n—y= oo k=1
1—xn nx? n—1
- el () Sy e B ok
12 L (1—x) Sq nx® 4 o

Man findet wieder m = 0,635.



d) Um ein anderes Modell untersuchen zu kénnen, haben wir 1961 in
den Familienregistern des Zzvilstandskreises Romerswil die 449 Fami-
lien der vor 1896 geborenen Minner in bezug auf die Anzahl der
minnlichen Nachkommen untersucht; die gro3e Mehrzahl der dabei
untersuchten Minner ist in der zweiten Hilfte des 19. Jahrhunderts
geboren. Wir haben die folgenden Zahlen erhalten:

Anzahl
minnliche 0 1 2 3 4 5 6 7 8 9 |10
Nachkom.

Anzahl 102 |111 [107 |62 |42 |14 |8 |1 |1 |o |1
Familien

relative | 5171 0,247|0,238| 0,138 | 0,094/ 0,031 0,018 0,002| 0,002 0 [0,002
Hiufigkeit

Aus den Angaben von A. Moser in [20] diirfen wir schlieBen, dal3
in diesem Zeitraum vielleicht etwa 55 Prozent der Gebotrenen im
Laufe ihres Lebens eine Familie gegriindet haben. Somit 143t sich
ungefihr der Prozentsatz der Geborenen betechnen, die im Laufe
ihres Lebens k=0, 1, 2, ... 10 minnliche Nachkommen erhalten
haben. Aufzeichnen auf einfach logarithmischem Papier legt es hier
nahe, die Werte fiir k = 2 nach der Methode der kleinsten Fehler-
quadratsumme linear auszugleichen. Dann kénnen wir unserm Mo-
dell die folgenden Zahlen fiir die py zu Grunde legen:

(18) pi=0,53-e =070k = p,.0,497k~2 |k = 2.
Dann wird po+p1=1 —kg zpk-_- 0,74; fiir po und p1 nehmen wir

dementsprechend und gemil den obigen Berechnungen pg = 0,60
und p1 = 0,14.

Setzen wir diese Zahlen fiir py in Gleichung (17) ein, so fithren ana-
loge Betrachtungen wie im vorangehenden Beispiel auf die quadra-
tische Gleichung

0,5652— 1,165 4+ 0,60 = 0,

die im Intervall 0 = s = 1 wiederum nur die Lésung s =1 hat. Das
heiBt, daf3 auch in diesem Modell die Linien mit Sicherheit erléschen.

e) In den letzten Jahren sind auch Untersuchungen iiber die «zdeale
Familiengroffe» durchgefiihrt worden; A. Miller berichtet in [17] und
[18] dariiber, D.Hanhart in [15]. A.Miller zitiert in [17] die in der
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nachstehenden Tabelle aufgefithrten Ergebnisse einer deutschen
Umfrage aus dem Jahre 1958 ; er weist darauf hin, dal wirannehmen
diirfen, eine Umfrage in der Schweiz wiirde nicht wesentlich ver-
schiedene Resultate liefern.

Als ideale Familiengrifie wird betrachtet:

von 0,6 Prozent aller Befragten die kinderlose Ehe;
von 3,5 Prozent aller Befragten die Ehe mit 1 Kind;
von 46,4 Prozent aller Befragten die Ehe mit 2 Kindern;
von 37,9 Prozent aller Befragten die Ehe mit 3 Kindern;
von 10,1 Prozent aller Befragten die Ehe mit 4 Kindern.

Da A. Miller ferner die enge Begiehung zwischen der «idealen» oder
also der «gewiinschten» FamiliengréBe und der tatsichlichen Kin-
derzahl feststellt, ist es gegeben, auch die obigen Zahlen zur Kon-
struktion eines Modells zu beniitzen. Nach A. Moser [20] diitfen
witr annehmen, dal3 im Zeitraum, in dem die Befragten geboren
worden sind, etwa 70 Prozent im Laufe ihres Lebens heiraten. Das
gibt uns die Moglichkeit, den Prozentsatz der Geborenen zu be-
rechnen, die im Laufe ihres Lebens 0, 1, 2, ... Kinder (minnliche
und weibliche Nachkommen!) haben. Wir verwenden in unserm
Modell die so erhaltenen Zahlen fiir die Wahrscheinlichkeit =i eines
Neugeborenen, im Laufe seines Lebens k Kinder zu haben; wir
bekommen so

mo=0,30;t1 =0,02; 7o = 0,33; 73 = 0,27 ; t4 = 0,07;
4

wir setzen w5=1—23 w; = 0,01.
k=0

Die gesuchten Werte fiir die py finden wir nun, wenn wir mit Hilfe
der =i die Wahrscheinlichkeit berechnen, daf} ein Neugeborener im
Laufe seines Lebens k = 0, 1, 2, ... mdannliche Nachkommen erhilt.
Es gentigt fiir diese Untersuchung, anzunehmen, die Wahrschein-
lichkeit, daB3 eine Geburt eine Knabengeburt sei, betrage 1/,.

Dann ist nach den elementaren Sitzen der Wahrscheinlichkeits-
rechnung

po=mo+ Yo w1+ Yy w2+ s w34 Yo ma+ sy w5 =10,43
pr=1rm1 421y m243 g3+ 41/ a4+ 51375 = 0,30
p2="4 72+ 3-g: 73+ 6-"/,s w4+ 10-1/5,- 75 = 0,21

analog p3 = 0,053, p4 = 0,005, ps = 0,002.
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Bilden wir nun Gleichung (14), so ist im Intervall 0 = s =< 1 wieder-

5
um nur die Wurzel s=1 vorhanden,dam = T kpx = 0,91 < 1; auch
k=0
solche Linien erloschen mit Sicherheit.— Zu dhnlichen Ubetlegungen
konnten Zahlen herangezogen werden, die D. Hanhart in [15] gibt.

f) Man kann noch einen grundsitzlich andern Weg einschlagen, um
zu Werten fiir die px zu kommen: Wir untersuchen die Nackkommen-
Schafft eines Stammpyaters und bestimmen in jeder Generation die An-
zahl minnlicher Nachkommen, die im Laufe ihres Lebens k = 0, 1, 2,
... » minnliche Nachkommen erhalten haben. Wir bezeichnen mit
zmk die beobachtete Anzahl von Vertretern der m-ten Generation,
die in der (m—+-1)ten Generation genau k minnliche Nachkommen
gehabt haben. Nach T. Harris [4] gilt dann der Satz, da3 die Maxi-
mum-Likelihood-Schitzung fir die px gegeben ist durch

n
(19) Pk=E Zmk/N.
m=0
Dabei haben die zyk die oben angegebene Bedeutung; (n-1) ist die
Anzahl der beobachteten Generationen und N die Gesamtzahl, der
in diesen Generationen beobachteten minnlichen Glieder, also N =
1+ 21+ 22+ ...2,, wenn zj die in der i-ten Generation beobachtete
Anzahl von minnlichen Gliedern ist.
Die zmk kénnen dann aus genealogischen Handbiichern gewonnen
werden. So verfolgen etwa die Binde des «Genealogischen Hand-
buches zur Schweizergeschichte» [14] unter anderm das Ziel, in
ihren Stammtafeln eine vollstindige Deszendenz der minnlichen
Generationen der angefithrten Familien zu bringen.
Wir haben zum Beispiel die Stammtafel der Familie Segesser von Brun-
egg ausgezihlt vom Ende des 13. Jahrhunderts bis zur Generation,
deren letzte Vertreter um 1900 gestorben sind. Nach den Ausfiih-
rungen in [14] besitzen tibrigens nur wenige schweizerische Fami-
lien eine so vollstindige Genealogie wie die Familie der Segesser
von Brunegg. Die Ergebnisse sind die folgenden:
po = 0,631, p1 = 0,102, p2 = 0,057, p3 = 0,080, p4 = 0,063, p5s =
0,029, pg = 0,023; es ist p7+ pg—+ ... + pw = 0,015; die Zahl 7 fiir
die midnnlichen Nachkommen tritt nicht auf, 8 und 9 treten je einmal
auf, schlieBlich tritt als grofite Zahl minnlicher Nachkommen 15
einmal auf; N betrdgt 176.
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Natiirlich miissen wir hier wieder an die Problematik dieser Schit-
zung erinnern; die Maximum-Likelihood-Funktion von T. Harris
ist unter den einschrinkenden Voraussetzungen aufgestellt worden,
die wir oben fiir die py als erfiillt angenommen haben.

In einem Modell, das auf diesen Schitzwerten fiir die py aufgebaut
wiirde, wire iibrigens m > 1; nach dem im fiinften Abschnitt mit-
geteilten grundlegenden Satz, wire die Wahrscheinlichkeit q des
Erloschens der Linie also kleiner als 1. Mit andern Worten: Mit
diesen Werten als py ergibt sich eine gewisse von Null verschiedene
Wahrscheinlichkeit 1—q, dalB3 die Linie nicht erlischt,

So gewonnene Schitzwerte konnen sehr verschieden sein, je nach
der Stammtafel, die ausgezihlt wird. Fiir die Familie der Meyer von
Knonan zum Beispiel finden wir in [14] fir den Zeitraum vom 14.
Jahrhundert bis zur Generation, deren letzte Vertreter um 1900 ge-
storben sind:

po= 0,436, p1 = 0,179, pz = 0,308, p3 = 0,077;
3

Z prk=1; N=39.
k=0

g) Zu Vergleichszwecken erwihnen wir noch die von A. Lotka in [6]

mitgeteilten Ergebnisse aus Untersuchungen an Hand der Statistik
der US A; er findet fiir unsere py:

po = 0,4825; p1 = 0,2126; px = p1-0,5893k—1 k = 1;
m = 1,260.

Diese Resultate basieren auf der Bevolkerungsstatistik der Jahre
1920 und 1930, die weille Rasse betreffend.

7. Zur Ubergangsmatrix dieses Progesses

Wir haben durch Gleichung (6) die Ubergangswahrscheinlichkeit
Pij=W(Zat1=]/Za=1)

definiert und bereits im zweiten Abschnitt darauf hingewiesen, wie sich
die Ubergangswahrscheinlichkeiten in einer Matrix darstellen lassen.
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Es sei nun

Poo Pot Po2 ... ...
Pio P11 P12 ......
Prg P21 Pop ......

=
I

Die Pj; lassen sich nach (11) berechnen; es ist also

i!

Pj =X ,- po™o p1™1... pu™e, dabei ist

mo! mq! ... mg!
zu summieren iiberallemy, k =0,1,2,...,mitmg + m1 |+ ... mg = 1
und 0-mg + 1-my + ... + w-my = j. Pjj finden wir somit als Koeffi-
zienten von s/ in der i-ten Potenz der erzeugenden Funktion f(s), also

in [f(s)]\.

Einige Zeilen und Spalten von Mj lassen sich ohne grofie Rechnung
durch die py ausdriicken, zum Beispiel

Pyj — 1 fiir j — 0 und Poj = 0 fiir j + 0,

Py = pj fiit 0 < | < w, und Py; = 0 fiir j > o,

Pio = po' und Pj1 = ipo' ~1-p1 fiiri=0,1,...; weiteristetwa
P22 = 2pop2+ p12 P32 = 3pe?p2 + 3 pop1? usf.

Somit hat My fiir unsern Proze$3 folgendes Aussehen

1 0 0 0 cosmsrmssns ensans

Po P1 p2 Pd sotpin e cms vws

POZ 2pop1 (2popz+p1%) e

My — po®  3po’p1 (3po?pz + 3pop1?) .ot
1= 4 4po3

Po POPL - cvveeiiii it

.....................................

.....................................
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In der Terminologie der Markoffschen Ketten heiflt der Zustand
Zn =0 ein absorbierender Zustand, da er offenbar nicht mehr verlassen
werden kann.

Mit Hilfe von Formel (5) a3t sich nun weiter fiir jedes natiirliche g > 1
die Wahrscheinlichkeit

| W(Zatg=]/Zn=1i)=Pi(g)
als Element der Matrix Mg=Mi8 finden.

Wir bemerken noch, daf3 lim W(Z, =k)=0firk=1,2,..., wenn
n—y

nur der Erwartungswert von 71, also m, endlich ist. Ferner geht Zy—» oo

mit der Wahrscheinlichkeit 1—q und Zo—>» 0 mit der Wahrscheinlichkeit q.

In diesen Aussagen kommt die /nstabilitit der Folge der Zy, zum Aus-

druck; fir den Beweis vgl. T. Harris [5].
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