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Yerallgemeinerung

des Begriffs der Dimension

einer physikalischen Größe
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1. Die Dimension einer physikalischen Größe

1.1 Größengleichungen

Die Uberzeugung, daß die in der Physik auftretenden Gleichungen
nicht bloß Zablenwertgleicbungen (Beziehungen zwischen reinen

Zahlen) sind, sondern Beziehungen zwischen benannten Größen, also

Größengleichungen darstellen, dürfte bald allgemein durchgedrungen
sein1). Da offenbar die physikalischen Erscheinungen unabhängig
sind von den willkürlich wählbaren Maßeinheiten, so ergibt sich die

1. Invariansforderung: Die Größengleichungen sollen in der Weise
geschrieben werden, daß sie invariant sind gegenüber behebigen zulässigen

Transformationen der Maßeinheiten.
Es soll hier nicht näher auseinandergesetzt werden, welche

Folgerungen sich daraus für die zugehörigen Einheitensysteme ergeben.

1.2 Anzahl der Grundgrößen

Zwischen den verschiedenartigen Größen gibt es qualitative
Verknüpfungen2), die sich allgemein in die Form A-B C bringen
lassen. Sie definieren normalerweise eine neue Größe, indem zwei schon
definierte Größen mit einer neuen verknüpft werden, wie zum
Beispiel die Beschleunigung b mit Hilfe der Geschwindigkeit v und
der Zeit t durch die Beziehung b -t v erklärt wird. Es können
aber auch drei schon definierte Größen verknüpft werden; eine solche

abhängige Verknüpfung ist hier weiter nicht von Interesse. Schließlich

können auch zwei neue Größen auftreten; in diesem Falle er-

*) Bodea [1], Landolt [6], Langhaar [7], Wallot [14],
2) Fleischmann [5], Landolt [6].
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halten wir eine neue unabhängige Größe. Daraus ergibt sich sofort die
Anzahl der unabhängigen Größen oder Grundgrößen. Ist nämlich die
Anzahl der eingeführten Größen mx, die Anzahl der unabhängigen
Verknüpfungen (Definitionen) ma, dann gilt für die Anzahl der

Grundgrößen

(1.2.1) m — m1 - m2

Je nach dem in Betracht stehenden Gebiet der Physik ist die Zahl
der Grundgrößen 1 (Geometrie), 2 (Kinematik), 3 (Mechanik), 4

(Elektrodynamik) oder mehr. Mit dieser Frage werden wir uns nicht
befassen.

1.3 Dimensionsformeln

Jede Größenart läßt sich in der Form eines Dimensionsproduktes
darstellen 3)

(1.3.1) [X] Bf Bf - Ba,
wo die Bt (i 1,. m) die Grundgrößen, die a; (ganze Zahlen) die

Dimensionsexponenten sind. Die Dimensionen bilden eine freie Abel-
sche Gruppe, d. h. eine kommutative, torsionsfreie Gruppe mit einem
endlichen Erzeugendensystem (Basis). Auf diese Weise gelangt man
zu eindeutigen Dimensionssystemen und entsprechenden Einheitensystemen.

Diese Dimensionssysteme gestatten übrigens eine einfache

Darstellung in einem affinen Vektorraum En 4).

1.4 Der geometrische Charakter

Die physikalischen Gleichungen lassen sich unter Verwendung eines

entsprechenden Einheitensystems so formulieren, daß sie invariant
gegenüber den zulässigen Transformationen der Maßeinheiten sind.
Aber die Zuordnung der physikalischen Begriffe und der Dimensionen
ist nicht eindeutig, indem verschiedene physikalische Größen, wie
etwa Arbeit und Drehmoment, dieselbe Dimension erhalten können.
Soll auch hier die Eindeutigkeit hergestellt werden, dann muß der

geometrische Charakter der physikalischen Größe berücksichtigt
werden5) Wir stellen hier allgemein die

s) Fleischmann [5].
*) Roth [9],
5) Dies ist möglich, im Gegensatz zur Auffassung von Wallot [14], S. 141.
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2. Invarianzforderung: Die Größengleichungen sollen so formuliert
werden, daß sie auch gegenüber zulässigen Koordinatentransformationen

invariant sind.
Um diese Forderung zu erfüllen, müssen die physikalischen

Gleichungen als Affinorgleichungen geschrieben werden. Wir werden im
folgenden daher zunächst kurz untersuchen müssen, welche geometrischen

Größen (Objekte) in Betracht zu ziehen sind. Auf Einzelheiten
kann allerdings nicht eingegangen werden, sondern es muß auf die

einschlägige Literatur verwiesen werden 6).

Das Ziel dieser Mitteilung besteht darin, den Begriff der Dimension
einer physikalischen Größe so zu erweitern, daß aus den Dimensionsformeln

auch sofort der geometrische Charakter abgelesen werden
kann. Einen diesbezüglichen, allerdings nicht völlig befriedigenden
Versuch machten auch P. Moon und D. E. Spencer 7).

2. Der geometrische Raum

2.1 Der affine Raum En

In einem n-dimensionalen Raum (gewöhnlich wird n 3 oder

n 4 sein) seien beliebige (schiefwinklige) kartesische Koordinaten
xx eingeführt, die einer homogenen linearen Transformation
unterworfen werden sollen 8)

(2.1.1) xx'=A*'xx.

Es ist A* const, und Det (M*) A 4= 0. Diese Transformationen
bilden die affine Gruppe Ga und der zugehörige Raum heißt der affine
Raum En

In einem linearen Teilraum Ep (p < n) des En können wir eine
innere Orientierung definieren durch die Angabe der Reihenfolge von

6) Vgl. vor allem Schouten [10] und [11]; die in dieser Arbeit verwendete
Schreibweise lehnt sich eng an Schouten [11]. Ferner etwa Brillouin [2],
Duschek [4], Sokolnikoff [13].

7) Moon [8].
8) Wir verwenden die Kern-Index-Methode. A, x sind die Kernbuchstaben, die

sich hier, da es sich um eine Koordinatentransformation und nicht um eine
Punkttransformation handelt, nicht ändern. Die verschiedenen Koordinatensysteme

werden durch verschiedene laufende Indizes x, x' (1,. .1',. .,n')
angedeutet. — Es güt immer die Einsteinsche Summationsvorschrift.
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p linear unabhängigen Richtungen. Eine innere Orientierung eines

nicht in Ep enthaltenen Raumes En_p definiert im Ep eine äußere

Orientierung. (Man vergleiche etwa die Figuren b und b' oder c' und c

der Abbildung 1.)

An Stelle der affinen Gruppe Ga können auch Untergruppen
betrachtet werden. Die wichtigsten sind:

1) Die Gruppe Geq der inhaltstreuen linear homogenen
Transformationen mit A it 1; sie legt ein Einheitsvolumen fest.

2) Die Gruppe Gsa der inhaltstreuen Transformationen mit der
Determinante A + 1; sie bestimmt ein Einheitsvolumen und eine

Orientierung.
3) Die Gruppe Gor der homogenen orthogonalen Transformationen

(Drehungen und Spiegelungen) mit A ± 1. Sie ergibt sich durch
Einführung eines Fundamentaltensors gXx. Einen solchen Raum
bezeichnen wir mit Rn ; in ihm lassen sich Längen und Winkel in der
bekannten Weise definieren.

4) Die Gruppe Gro der Drehungen mit A + 1. Es ist ein
Fundamentaltensor und eine Orientierung einzuführen: Orientierter _R„

Die Koordinatensysteme sind alle orthogonale Rechtssysteme (oder
alle Linkssysteme) mit demselben Einheitsvolumen.

2.2 Die Räume Xn und Vn

Wir wählen beliebige krummlinige Koordinaten (x 1,..., n)
und führen die Transformation

aus, wo die ~x' Funktionen von £* mit stetigen Ableitungen
genügend hoher Ordnung sind. Es sei

In einem gewissen Bereich existieren dann die Umkehrfunktionen

Wir erhalten so einen topologischen differenzierbaren Raum Xn

(2.2.1) e* ruäX)

sei 4= 0.

(2.2.3)
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Aus (2.2.1) folgt

(2.2.4) d$x' A*d$*.

Damit kann jedem Punkt >* des Xn ein lokal affiner Raum En

zugeordnet werden. Im allgemeinen besteht zwischen den lokalen E„
die zu verschiedenen Punkten des Xn gehören, kein Zusammenhang.

Wird im Xn ein Fundamentaltensor gr.x eingeführt, dann erhalten
wir einen metrischen Raum Vn (Riemannscher Raum).

3. Definition der geometrischen Größe

3.1 Geometrische Größen im En

Definition 9J: Eine geometrische Größe ist ein geordnetes System von
N Zahlen zv (v 1N), für welche bei allen zulässigen Transformationen

des Koordinatensystems (x) des En folgendes gilt:
1) Zu jedem (x) gehört genau ein System z„
2) Das System zv> in (x läßt sich

a) homogen linear durch zv und

b) homogen algebraisch durch A*x ausdrücken.

Werden die Redingungen 2 a) und 2 b) durch schwächere ersetzt,
dahin, daß zv< allein durch zv und Ay aber in irgendeiner Weise

ausgedrückt werden kann, dann handelt es sich um ein geometrisches
Objekt.

3.2 Geometrische Größen im Xn

Die Definition der geometrischen Größe des Xn lautet entsprechend
wie im En nur ist zu berücksichtigen, daß die Größe in einem
bestimmten Punkt £* des Xn zu erklären ist; dazu kommt noch die

Forderung
2 c) In den Transformationsformein dürfen keine Ableitungen von

A* auftreten.
Auch in diesem Falle läßt sich der allgemeine Begriff des geometrischen

Objektes einführen, doch bedürfen wir seiner im folgenden nicht.

9) Schouten [10], S. 2.
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4. Affineren im En

4.1 Definition des Ajfinors

Ein Affinor ist eine geometrische Größe v *1 • *p a, die sich
bei einer Koordinatentransformation (2.1.1.) nach dem Gesetz

(4.1.1) v*i-= A*'1 AxpA?-\ A*?vxi---xp
^ ' Ai ' ' ' Kq Xj Xp Aj Aq Aj • • • Ag

transformiert.
Genauer heißt diese Größe entsprechend der Stellung der Indizes

ein jo-fach kontravarianter und g-fach kovarianter Affinor der Stufe

r p + q. Er hat im allgemeinen nT Komponenten.
Ist q 0, so ist der Affinor kontravariant, für p 0 kovariant

und in den übrigen Fällen gemischt.

4.2 Einfache Spezialfälle

4.2.1 Skalar. Ein Skalar p besitzt eine einzige Komponente, die
hei einer Koordinatentransformation invariant bleibt. Ein Skalar
ist ein Affinor 0. Stufe.

4.2.2 Kontravarianter Vektor. Ein kontravarianter Vektor besitzt
n Komponenten v" mit dem Transformationsgesetz

(4.2.1) vx' A*'vx

Er kann durch eine gerichtete Strecke dargestellt werden; seine

Komponenten vx sind die Projektionen dieser Strecke auf die
Koordinatenachsen.

4.2.3 Kovarianter Vektor. Der koVariante Vektor besitzt n

Komponenten wf die sich nach der Formel

(4.2.2) wk,=A*,wÄ

transformieren. Er läßt sich durch zwei parallele Hyperebenen
En_! darstellen, mit festgelegter Reihenfolge dieser Hyperebenen.
Seine Komponenten sind durch die reziproken Abschnitte auf den
Koordinatenachsen festgelegt.

Die kontravarianten und kovarianten Vektoren sind Affinoren
1. Stufe.
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4.3 Die Maßvektoren des Koordinatensystems (x)

In jedem zulässigen Koordinatensystem (x) des En gibt es n kontra-
variante Vektoren e* (A 1,. ,n) mit den Komponenten

A

(4.3.1) ex (d*: Kronecker-Symbol).

"Wir nennen sie die kontravarianten Maßvektoren.
Entsprechend sind die kovarianten Maßvektoren erklärt

(4.3.2) lx *A.

4.4 Zuordnung eines Symbols

Um einen allgemeinen Affinor charakterisieren zu können, ordnen
wir ihm das folgende Zeichen zu

f4-4-1) M-
Daraus ersieht man sofort die Anzahl der kontravarianten und der
kovarianten Indizes. Es ist speziell:

Skalar [ (ß ]
Kontravarianter Vektor [ Co ]
Kovarianter Vektor [C?]-

5. Algebra der Affinoren

5.1 Rechenoperationen

Mit den Affinoren lassen sich in bekannter Weise die Operationen
der linearen Algebra ausführen. Wir stellen sie hier kurz zusammen.

a) Addition

(5-1-1) «**= V + 'A-
b) Allgemeine Multiplikation

f '

uX c ' uX(5.1.2) txP=r*sp\ ' ua «7 uX a

c) Verjüngung

(5.1.3) txl tX
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d) Überschiebung

(5.1.4) txp s^xt^.

Als Spezialfall der Überschiebung haben wir das Hinauf- und
Herunterziehen eines Indexes

(5.1.5)

5.2 Kriterium für den Affinorcharakter

Hat man beispielsweise eine von drei Indizes x, A, n abhängige
Größe t (x, A, fi), ohne zu wissen, ob die x, A, fi kontravariante oder
kovariante Indizes seien, dann bildet man die Überschiebungen der
Größe mit drei beliebigen Vektoren derart, daß für alle
Koordinatentransformationen eine Invariante entsteht. Sei diese etwa

(5.2.1) t (x, A, /j.) -u'v'w
^

invariant,

dann ist die Größe in der Form t f zu schreiben.
XA

Dieses Kriterium, das man ebensogut an Stelle von (4.1.1) zur
Definition des Affinors verwenden kann, ist oft nützlich bei den

Anwendungen.

5.3 Das Rechnen mit den Symbolen [C£]

Aus den im Abschnitt 5.1 erklärten Operationen ergeben sich sofort
für das Rechnen mit den [C£] die folgenden Regeln:
a) Addition: Es können nur Affinoren mit demselben Symbol [C,(]
addiert oder subtrahiert werden.

b) Multiplikation: Die entsprechenden Indizes der Symbole
addieren sich.

(5-3.1) [Cfj] • [C£]

c) Verjüngung: Die Verjüngung über je einen Index ergibt

(5.3.2) [C?]'=[C&]

: /V
t s ,rX XA
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und über je zwei Indizes

(5.3.3) [q]"= [Cfj]
und entsprechend für die Verjüngung über mehr als zwei Indizes.
Die Operation der Verjüngung ist durch einen Strich beim Symbol
angedeutet.
d) Überschiebung: Aus (5.3.1) und (5.3.2) folgt ohne weiteres für
die Uberschiebung

(5-3.4) [C£]I[C,P:] [C'ltZ1]

und analog bei mehrfacher Überschiebung.

6. Symmetrieeigenschaften von Affinoren

Die in der Physik auftretenden Affinoren zeichnen sich meist durch
gewisse Symmetrieeigenschaften aus.

6.1 Symmetrische Affinoren oder Tensoren

Ist ein rein kontra- oder kovarianter Affinor invariant gegenüber
Permutationen seiner Indizes, dann beißt er symmetrisch, und man
nennt ihn kurz Tensor. Beispiel:

Ein symmetrischer Affinor p-ter Stufe besitzt genau ("+p~')
unabhängige Komponenten. Die Symmetrieeigenschaft gilt in allen zulässigen

Koordinatensystemen. In einem zentrierten En kann ein
kovarianter (kontravarianter) Tensor durch eine Hyperfläche p-ten
Grades (Ordnung) dargestellt werden:

S/1 i X x*1 xaP — 1
V-1 Ap

t^-^xXl...Xxp =1.

6.2 Schiefsymmetrische Affinoren oder p- Vektoren

Ändert bei einem rein kontravarianten oder kovarianten Affinor
p-ter Stufe eine gerade Permutation seiner Indizes nichts, eine

ungerade Permutation dagegen nur das Vorzeichen, dann heißt er

p-Vektor (oder Multivektor). Beispiel:
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(x T A)

s — s 0.

Alle Komponenten mit zwei gleichen Indizes verschwinden. Ein
p-Vektor hat noch (p) unabhängige Komponenten, und es muß

p < n sein.

Ein p-Vektor heißt einfach, wenn er das äußere Produkt von

p Vektoren ist
in11 V

(6.2.1) Xp — T,! J>i .-,*p] _v"-1 xp p! v

*1
V 1

Beispielsweise ist das Vektorprodukt im R3 ein einfacher Bivektor.

.xX o t f* X"\ x X X xt 2!vlvJ=vv-vv.12 12 12
Die p-Vektoren besitzen anschauliche geometrische Bilder. Für

den Fall des E3 sind sie auf der linken Hälfte der Abbildung 1

wiedergegeben.

6.3 n- Vektoren

Ein n-Vektor ist darstellbar als ein mit einem Schraubsinn
versehenes Volumen im En Er hat nur eine wesentliche Komponente, die

für v1''' " gleich dem Volumen, für Wi n gleich dem reziproken
Volumen ist. Das Transformationsgesetz lautet

(6.3.1) A-f1'''",
beziehungsweise

(6.3.2) w A-2-w
N ' 1' n' 1 • • • n

Man kann als n-Vektoren speziell die folgenden wählen

EXl' Xn n! e[Xl • • • ex" ]

(6.3.3) M

(*) 1 n

eV--2„ ~~ e[A1"'eA„]'
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wo die e, e die im Abschnitt 4.3 eingeführten Maßvektoren sind.

Die andern re-Vektoren unterscheiden sich davon nur durch einen
skalaren Faktor.
Es gilt

(*)
(6.3.4) n lf ei n

M

7. Affinor-A-Dichten

7.1 Skalare A-Dichten

Die Komponente v1 ''' " eines kontravarianten n-Vektors ist kein
Skalar, denn es gilt das Transformationsgesetz (6.3.1), wofür man
auch schreiben kann

(7.1.1) i[x'] A-t>[*].

0 ist eine skalare A-Dichte vom Gewicht -1 (auch A-Kapazität
genannt).

Das Analoge gilt für den kovarianten n-Vektor. Nach (6.3.2) gilt

(7.1.2) A-M~»[*],

wo to eine skalare A-Dichte vom Gewicht +1 (oder kurz eine

A-Dichte) ist.
Allgemein ist eine skalare /\-Dichte vom Gewicht k durch das

Transformationsgesetz definiert

(7.1.3) $[*']= A-^M.

7.2 Affinor- A-Dichten

Multiplizieren wir einen Affinor mit einer skalaren A-Dichte vom
Gewicht k, dann erhalten wir eine Affinor- /\,-Dichte vom Gewicht k

mit dem Transformationsgesetz

(7.2.1)
A~kA^ Ax'>> Ah---A?fihxf-x?Aj • • • Aq Xj Xp A1 A<j Aj • • • Ag

Im besondern lassen sich die invarianten, dem Skalar 1

entsprechenden n-Vektor- A-Dichten einführen
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g1 " 1 (Gewicht +1)
1 »j... n

1 (Gewicht -1).

Für die Affinor-A-Dichten gelten die analogen Gesetze wie sie im
Abschnitt 5 für die gewöhnlichen Affinoren angegeben wurden.

Von Bedeutung ist die aus der Definition (7.2.1) sich ergebende
Folgerung, daß das Produkt aus einer Affinor- A-Dichte vom
Gewicht + 1 und einer Affinor-A-Dichte vom Gewicht -1 einen

gewöhnlichen Affinor ergibt. Beispiele:

(7'2'3)

7.3 Zuordnungen

Mit Hilfe der re-Vektor-A-Dichten lassen sich die p-Vektoren und
die (re-j9)-Vektor-A-Dichten einander eindeutig zuordnen. Es gelten
die Beziehungen (n 3)

*x i VXß

(7.3.1)
V

to*u= j-,

wx T, nxxß**" '

die sich leicht für ein behebiges n verallgemeinern lassen. Unter
Berücksichtigung der Definitionen (7.2.2) von •••"« und ttXj • xn

erhalten wir auch kürzer

(7.3.2)
9fr- -Mp =vMp+l---fn

'fr ßp '

wo fr, - /in eine gerade Permutation von 1,. n ist.
Daraus ergibt sich, daß die geometrische Deutung der Multivektor-

A-Dichten dieselbe ist wie für die entsprechenden Multivektoren. Es

wurden somit keine neuen Größen eingeführt, sondern nur eine andere

Schreibweise, die aber oft von Vorteil ist, weil man mit weniger
Indizes auskommt.
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7.4 Symbole

Einer Affinor-A-Dichte vom Gewicht k ordnen wir das folgende
Symbol zu

(7.4.1) [A*].
Man sieht sofort, daß die folgende Beziehung gilt

(7-4.2) [ Ao] • [C£] [ A£]

Es ist speziell für die n-Vektoren v'1 wAj • • An

(7.4.3) [C] [aZ], [Cü] [ Ao]

und für die n-Vektor- A-Dichten

(7.4.4) [g1 "] [Aö], J
Die Zuordnungen (7.3.1) ergeben

[AÜ]

(7.4.5)

[M =K]
[crp] [a;;]

[Ar] [c;]

[ca =[ii
Ferner zeigt sich, daß auf Grund der Definition (7.2.1) allgemein gilt

[er]
[a;]

[Ao]

i[Ar]-

-k
A A C.(7.4.6)

Aus den Beziehungen (5.3.1), (7.4.2) und (7.4.6) liest man ab,
daß sich die Symbole C und A verhalten wie die Zahlen +1 und
—1 bei der Multiplikation, mit der Einschränkung, daß im Falle, wo
beide Faktoren Dichten sind, diese von entgegengesetzt gleichem
Gewicht sein müssen.
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8. Gewöhnliche Dichten und IP-p-Vektoren 10)

8.1 Gewöhnliche Dichten

Die gewöhnlichen oder Weyischen Dichten genügen demselben

Transformationsgesetz (7.2.1) wie die A-Dichten, nur haben sie an
Stelle des Faktors A den Faktor | Al • Beispiele:

(8.1.1)
1 AI 1AxA^ivxX

X A

»Vx' lAl

(Gewicht + 1)

(Gewicht -1).

Die Massendichte der Physik ist eine skalare Dichte vom Gewicht +1.

(8.1.2) tn|V] lAl"Jm[z].

Für A > 0 fallen die A-Dichten und die Weyischen Dichten
zusammen.

Als Symbole für die Weyischen Dichten vom Gewicht +1 oder —1

verwenden wir die Zeichen

4" 1

[toxi •••xr ] [Dg]

[V--*,] [D°q]
(8.1.3)

und entsprechend für ein behebiges Gewicht k.

8.2 W-p- Vektoren

Um die geometrische Darstellung der Weyischen Dichten vom
Gewicht +1 oder -1 zu finden, definiert man den W-Skalar oder Pseu-

doskalar. Es handelt sich um eine geometrische Größe mit dem

Transformationsgesetz

(8.2.1) pW]= iALp[x].

Der IU-Skalar ändert das Vorzeichen bei einer Änderung der
Orientierung des Koordinatensystems.

Allgemein ergibt das Produkt aus dem TP-Skalar p und einem
Affinor einen JU-Affinor, und im besondern ist ein W-p-Vektor durch

10) Sehouten [12].
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Geometrische Grössen
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Abb. 1. Geometrische Größen im dreidimensionalen Raum.



(8.2.2) v"1''' xp pv"1''' xp p[z] +1

definiert. Man überlegt sich, daß beim kontravarianten JF-p-Vektor
die äußere Orientierung invariant ist; entsprechend ist beim ko-
varianten JF-p-Vektor die innere Orientierung invariant. Das

Transformationsgesetz der IP-p-Vektoren lautet

(8.2.3)
D"i "P

WX[ -?.p

I A I

A x.
•Axp v*i •'

P
1 ^ I A^"1...

/ip

Wir ordnen ihnen die folgenden Symbole zu:

WX1 Xp

(8.2.4)
[rs]

[m.^.-Xp] [r°]
Auch hier kann wieder mit Hilfe der re-Vektor-A-Dichten © und tt

eine Zuordnung von gewöhnlichen Dichten und JF-p-Vektoren
gestiftet werden. Sie lautet in den einfachsten Fällen

(8.2.5)

-ii
yXß L t) üfixp

1! X

4t W,
• A

x — -1- ft taP"
2! nXxßW

Oder auch

(8.2.6)

wenn

\ ßp

^ * * * Un —

yßp+1 • • ßn

Ü>ßx ßp t

un eine gerade Permutation von 1,. ,n ist.

Es handelt sich somit auch hier wieder wie bei den gewöhnlichen Dichten

und den zugeordneten JF-p-Vektoren um dieselben geometrischen
Größen, die sich nur in der Schreibweise unterscheiden. Die einfachsten

Deutungen dieser Größen im E3 sind in der Abbildung 1

wiedergegeben. — Vorzugsweise verwendet man die Weyischen Dichten.
Auf Grund der Definitionen (7.2.1), (8.1.1) und 8.2.3) erkennt

man, daß für reelle Transformationen die folgenden, symbohsch
geschriebenen Beziehungen gelten
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(8.2.7)

Schließlich folgt noch

(8.2.8)

4-1 ±1
d a • r

±1 4-1r d a.

M • [ca [Dpq\tpä
+k

M M
und entsprechend für die Uberschiebungen der links stehenden
Größen.

9. Identifikationen

Werden nur Untergruppen der affinen Gruppe Ga betrachtet, dann
können verschiedene der in den vorhergehenden Abschnitten
definierten Größen identifiziert werden. Trotzdem wird es, um das

anschauliche geometrische Bild beizubehalten, bei den physikalischen
Anwendungen oft zweckmäßig sein, nicht alle möglichen
Identifikationen wirklich durchzuführen.

9.1 Gruppe Geq der inhaltstreuen Transformationen

Ein Einheitsvolumen kann durch eine gewöhnliche skalare Dichte
<1 ± 1 vom Gewicht -f- 1 eingeführt werden. Es fallen zusammen

Es gilt

(9.1.1)

oder

(9.1.1*)

Dichten

b* qvx

h> 9 w
A A

[Ä]

K]
[c*]

[ca

Nichtdichten.

b* <\vx

»A ^
[ Ao] — [n]
[A3 — [^] •

Es sind im E3 noch die folgenden Größen zu unterscheiden: polare
Vektoren und Bivektoren, axiale Vektoren und Bivektoren, Skalare
und Pseudoskalare.
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9.2 Gruppe Gor der orthogonalen Transformationen

Es wird der Fundamentaltensor gxi eingeführt. Es sei g Det
(gx'i) (gewöhnliche skalare Dichte vom Gewicht 2). Die folgenden
Größen sind zu identifizieren:

kovariante Größen —!_ kontravariante Größen
Dichten < Nichtdichten.

Dies ergibt sich auf Grund der Beziehungen

„xA

(9.2.1)
w.

9, to.

vx gxlW-A

6* g gxl toA '

oder anders ausgedrückt

[CS] — [c°P]

(9.2.1*)
M- [Dl]

[n] — [/;!]

[Ao] [a;].
Es gilt natürhch auch (9.1.1), da der Fundamentaltensor auch

ein Einheitsvolumen festlegt. Im R3 sind jetzt noch zu unterscheiden:
Skalar, polarer Vektor, axialer Vektor, Pseudoskalar.

9.3 Gruppe Gu der affinen Transformationen mit A > 0

Wir führen durch den W- Skalar w einen Schraubsinn ein. Der
Unterschied zwischen innerer und äußerer Orientierung verschwindet:

Innere Orientierung äußere Orientierung.
Es gilt

[ vx — wvx
(9.3.1)

oder auch

(9.3.1*)

CJüW-i

hz «bx

to A _ ^A

in [C] [A] [D],

9.4 Gruppe Gro der Rotationen A + 1

Es ist ein Fundamentaltensor und eine Orientierung einzuführen.
In diesem Falle ergeben sich alle vorhin erwähnten Identifikationen,
und es sind im orientierten R3 nur noch Skalare und Vektoren zu
unterscheiden!
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Es zeigt sich somit, daß in jedem Falle genau angegeben werden
muß, welches die Gruppe der zulässigen Transformationen ist, da es

sonst nicht möglich ist, zwischen den verschiedenen Größen zu
unterscheiden. Die Unterlassung der Angabe der zulässigen
Transformationen hat schon zu vielen unnötigen Auseinandersetzungen über
den geometrischen Charakter einer physikalischen Größe geführt.

10. Invariante Differentialoperationen (Affinoranalysis)

Es gibt im allgemeinen Falle im Räume Xn nur die folgenden
invarianten Ableitungen.

10.1 Gradient

Die Gradientenbildung kann nur auf Skalare und IE-Skalare

angewandt werden.

(10.1.1) 3xp wx,
p

wobei zur Abkürzung 3y
^ gesetzt ist. Das Transformationsgesetz

lautet

(10.1.2) 3/l.p A^p.
Das Entsprechende gilt für einen W- Skalar p.

10.2 Schiefe Ableitung (Rotation)

Es können nur koVariante (/-Vektoren oder W-q-Vektoren schief

abgeleitet werden

(10.2.1) + 1)VV..AI] "W-.A, •

Es gilt

(10.2.2) V1 AU,A\) Ah Pr w,

Durch schiefe Ableitung entsteht also aus einem kovarianten g-Vektor
ein kovarianter (g + _Z)-Vektor. Analog verhält es sich mit einem
kovarianten JE-g-Vektor ^
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10.3 Divergenz

Die Divergenz läßt sich nur von kontravarianten p-Vektor-Dichten
(oder p-Yektor-A-Dichten) vom Gewicht + 1 bilden.

*2 * '(10.3.1) ''' *p i)

Das Resultat ist eine kontravariante (p-1)-Vektor-Dichte vom
Gewicht -f- 1.

Ergebnis: Die Gradientbildung und die schiefe Ableitung
entsprechen bei den in den Abschnitten 4, 7 und 8 eingeführten
Symbolen einer Multiplikation mit [C?], während die Divergenz eine

Überschiebung mit [C'i] bedeutet:

(10.3.2)

Gradient [C?] [Cg] [C?] [C?] [/'S] [/I]
Rotation [C?] • [Cj] [C?+1] [C?] • [üs°] [ü50+1]

Divergenz [C?] I [öS] [D^1] [cj] ] [Ao] [ Ao"1]

Schheßhch sei hier noch auf die Integraltheoreme von Stokes

hingewiesen, ohne daß darauf eingegangen werden soll. Treten in einer

physikalischen Beziehung Integrale auf, dann hat man zu beachten,
daß für den geometrischen Charakter eines Integrals gilt

(10.3.3) [jjdx\ [ydx].

11. Zusammenfassung

Lassen wir im Raum En die affinen Transformationen zu, dann
haben wir im wesentlichen die folgenden geometrischen Größen zu
unterscheiden (Abschnitt 4 und 8.1)

Affinoren [C'(j] +1 _i
Gewöhnliche p-Vektor-Dichten

Um Indizes zu sparen, können jedoch noch die folgenden Größen

eingeführt werden (Abschnitt 7 und 8.2)

+i -i
p-Vektor-A-Diehten [Ao] [Ap]
W-p-Vektoren [ / 'o ] [Cp]
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Die mit diesen Größen auszuführenden Operationen, nämlich
Addition, Multiplikation, Verjüngung und Uberschiebung
(Abschnitt 5), bilden sich in einfacher Weise auf die zugeordneten Symbole

ab. Von besonderer Bedeutung für die pbysikabschen Anwendungen

sind die Formeln (5.3.1, 2, 4) und (8.2.8). In entsprechender
Weise führen auch die affin invarianten Ableitungen der geometrischen

Größen im Xn zu einer Multiplikation bzw. Überschiebung mit
dem Symbol [Ci] (Abschnitt 10).

12. Physikalische Größen

12.1 Transformation der Einheiten

Zur numerischen Festlegung einer physikalischen Größe sind noch
Einheiten erforderlich, die sich, wie im Abschnitt 1 angedeutet wurde,

aus einer bestimmten Anzahl von Grundeinheiten aufbauen lassen.

Wir wählen hier zur Vereinfachung der Darstellung drei
Grundeinheiten für die Länge, Zeit und Masse, beschränken uns also auf die

Dynamik. Die Grundeinheiten sollen der folgenden Transformation
unterworfen werden

(12.1.1) L' T1 L, T tU T, M' m-1 M,

wo l, t, m beliebige reelle Konstanten 4= 0 bedeuten. Ein System von
Grundeinheiten, das auf diese Weise aus einem gegebenen System
hervorgeht, soll ein zulässiges System genannt werden.

12.2 Definition der physikalischen Größe n)

Unter einer physikalischen Größe in einem bestimmten Punkt ß
des Raumes Xn und bezogen auf ein System von Grundeinheiten L, T,
M verstehen wir ein geordnetes System von N Komponenten y>v

(v 1,. .,N) mit den folgenden Eigenschaften: Zwischen den

Komponenten tpv und den zulässigen Koordinatensystemen (x) in der

Umgebung von ß und den zulässigen Grundeinheitensystemen L, T, M
bestehen die nachstehenden Beziehungen.

1J) Schouten [11], S. 126, Dorgelo [3], S. 45.

167



1) Zu jedem (x) und jedem zulässigen System von Grundeinheiten

gehört ein einziges System yiv

2) Das zu (x L', T", M' gehörende System yv' läßt sich

a) homogen linear in den rpv,

b) homogen algebraisch in den A* allein, also ohne deren

Ableitungen, und
c) allein in l, t, m ausdrücken.

3) In diesen Ausdrücken treten die Konstanten l, t, m nur in der

Form von Potenzprodukten lat^m7 auf, und dieser Faktor ist für alle

Komponenten ipv' derselbe.

Schwächt man die Bedingungen 2a) und b) wie im Abschnitt 3 ab,
so erhält man ein physikalisches Objekt.

12.3 Geometrisches Bild und absolute Dimension

Hält man die Grundeinheiten L, T und M fest und transformiert
nur die Koordinaten, dann folgt aus der Definition 3.1, daß jeder
physikalischen Größe eindeutig eine geometrische Größe, ihr
geometrisches Bild, zugeordnet ist. Transformiert man umgekehrt nur
die Grundeinheiten, dann nehmen alle Komponenten des geometrischen

Bildes einen Faktor lat^m7 an, welcher die absolute Dimension

[L"T-f'M/] der physikalischen Größe genannt wird. Die absolute
Dimension gibt an, welche Grundeinheiten erforderlich sind, um das

geometrische Bild zu konstruieren. Sie stimmt nicht mit der üblichen
physikalischen Dimension einer Größe überein. Beispielsweise ist die
absolute Dimension einer Geschwindigkeit [i/ ] [ T~ ]; es genügt
nämlich bereits eine Uhr, um den in einer Sekunde zurückgelegten
Weg zu markieren.

12.4 Die relative Dimension

Die übliche Dimension einer physikalischen Größe ergibt sich,
wenn ein lokales kartesisches Koordinatensystem (im Raum Vn)
zugrunde gelegt wird.

Definition: Wenn die Komponenten einer physikalischen Größe in
einem lokalen kartesischen Koordinatensystem bei einer Transformation

der Grundeinheiten (12.1.1) den Faktor latbmc erhalten,
dann heißt [LaTbMc] die relative Dimension dieser Größe.
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Der Unterschied zwischen absoluter und relativer Dimension rührt
daher, daß im Falle einer affinen Transformation die Koordinaten
mit der Längeneinheit nicht zusammenhängen, während in einem

orthogonalen System sich auch die Koordinaten transformieren bei
einer Änderung der Grundeinheiten. Man erkennt leicht, daß die
absolute Dimension einen Faktor l für jeden kontravarianten Index
und einen Faktor l~ für jeden kovarianten Index annimmt, womit
dann sofort die relative Dimension bestimmt ist. Für eine Dichte vom
Gewicht k ist der Faktor 1" hinzuzufügen. Zu beachten ist ferner,
daß die Komponenten des Fundamentaltensors gxk bzw. g'x die relative

Dimension [I] haben.

12.5 Erweiterung des Dimensionssymbols einer physikalischen Größe

Im Abschnitt 1.3 wurde erwähnt, daß jeder physikalischen Größe

in bekannter Weise ein Symbol, die relative Dimension, zugeordnet
werden kann. Andererseits kann auch das der Größe zugeordnete
geometrische Bild mit einem Symbol versehen werden, wie dies in den

vorhergehenden Abschnitten 4, 7 und 8 geschehen ist.
Hat nun eine physikalische Größe in einem lokalen kartesischen

Koordinatensystem die relative Dimension [L"TbMc] und ist ihr geo-
k

metrisches Bild beispielsweise [C,] oder [D£], dann soll die
verallgemeinerte Dimension dieser Größe in der folgenden Weise geschrieben
werden

(12.5.1)
[.VThMc; Cpq |

[LaTbMc ;D£]

Wie mit diesen Symbolen zu rechnen ist, folgt sofort aus den
Überlegungen in den Abschnitten 5 und 8.

Zur Vereinfachung der Schreibweise der Dimensionsformeln kann
man sich darauf beschränken, nur die Exponenten anzugeben, so daß
die Ausdrücke (12.5.1) nun lauten

(12.5.2)
[o, b, c; Cf]

[o, b, c; Djj]
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12.6 Bestimmung des geometrischen Charakters einer physikalischen
Größe

Der geometrische Charakter einer physikalischen Größe läßt sich

aus ihrer Definition erhalten unter Berücksichtigung des Kriteriums
für den Affinorcharakter einer Größe (Abschnitt 5.2) und der
Algebra und der Analysis der Affinoren und gewöhnlichen Dichten vom
Gewicht k beziehungsweise den daraus abgeleiteten Regeln für das

k

Rechnen mit den Zeichen [C£] und [D£]. Wichtig ist, daß die
physikalischen Beziehungen zunächst in eine für die zugelassene
Transformationsgruppe invariante Form gebracht werden.

13. Beispiele

13.1 Die Kraß

Die Kraft ist von einem Index i abhängig, und es soll die

vorläufige Schreibweise K(i) eingeführt werden. Eine Verschiebung der
Kraft längs des Weges öxl ergibt die Arbeit öA, die eine invariante
skalare Größe ist. Es gilt also

6A K(i)dxi invariant,

und daraus folgt sofort nach dem Kriterium (5.2.1), daß die Kraft
durch einen kovarianten Vektor darzustellen ist: K(i) Kt Das

geometrische Bild ist daher [Cj. Noch einfacher ist es, die Regeln für
das Rechnen mit den Symbolen CJ anzuwenden:

[c!] i [ci] [Co]

Zum gleichen Ergebnis gelangt man, wenn man die Kraft als

Gradient eines Potentials p betrachtet:

3kP-

Somit ergibt sich als Dimensionsformel für die Kraft

[Kj [L'T-'M1; c?] [1,-2, 1; CS]
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13.2 Das Drehmoment

Um die allgemeinen Dimensionsformeln für das Drehmoment zu
erhalten, kann man von der folgenden, für geradlinige Koordinaten
gültigen Beziehungen ausgehen

M (h, i) 2 j in xV'x^dv.

Nun ist für die auf der rechten Seite auftretenden Größen

Massendichte [nt] [-3, 0, 1; D°]
Koordinaten [aA ] [ 1, 0,0; CJ]

Beschleunigung [£' ] [ 1, -2, 0; CJ]
Volumenelement [dr] [ 3, 0, 0; Djj].

Also wird
[Mhi] [ 2,-2, 1; C|].

Man beachte den Unterschied gegenüber der Arbeit, die als skalare
Größe die folgende Dimensionsformel hat

[A] =[ 2,-2,1; C«].

13.3 Elektrische Feldstärke und magnetische Flußdichte

Die beiden die elektrische Feldstärke und die magnetische
Flußdichte enthaltenden Maxwellschen Gleichungen lauten in invarianter
affiner Form geschrieben 12)

(a) - ~2[YFß] + d4Byß 0

(b) J[yBßa] — 0

Um den geometrischen Charakter der Feldstärke F und der
Flußdichte B zu bestimmen, ist zu bedenken, daß nur die Rotation eines

kovarianten f/-Vektors oder W-q-Vektors invariante Ableitungen sind.

Folglich ist die elektrische Feldstärke entweder ein kovarianter Vektor

oder W-Vektor; da aber die Orientierung des elektrischen Feldes
durch die Richtung der Stromlinien gegeben ist, muß F ein kova-

12) Dorgelo [3], S. 252.

C dt
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rianter Vektor [_F)j ] [C?] sein. Aus der Gleichung (a) folgt nun nach
dem Homogenitätsprinzip, daß B ein kovarianter Bivektor [C°] ist,
was mit der Gleichung (b) verträglich ist.

Werden als Grundeinheiten L, T, M und Q (elektrische Ladung)
eingeführt, dann gilt

[|] [-i, i, 0; cS]

[dy] [-1, 0, 0, 0; c!]
[Fß] [-1, -2, 1, -1; c?].

Also ist

[-4yd [-1- -1'-1' c°]

und mit [p4] [-1, 0, 0, 0; Co]

wird schließlich [jByjs] [ 0, —1, 1, -1; C"].

13.4 Tabelle

Für eine Anzahl von Größen aus verschiedenen Gebieten der Physik
sind — ohne nähere Erläuterungen — in der nebenstehenden Tabelle
die verallgemeinerten Dimensionsformeln wiedergegeben.

Um den anschaulichen geometrischen Charakter einer Größe deutlich

anzugeben, sind oft nicht alle Identifikationen (Abschnitt 9)
ausgeführt worden, wie sie auf Grund der zugelassenen Transformationsgruppe

möglich gewesen wären. Insbesondere können natürlich nach
der Einführung des Fundamentaltensors die Indizes beliebig herauf-
und hinuntergezogen werden durch Überschiebung mit gih bzw. ghi,
und es besteht kein Unterschied mehr zwischen gewöhnlichen Af-
finoren und Dichten (Multiplikation mit der Dichte C|l:'- oder wo
g | Det (gm) j eine skalare Dichte vom Gewicht + 2 ist).

E. Roth-Desmeules, Luzern
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Größe
Geometr.
Charakter

Dimensionsformel

1. Geometrie

Länge x*

mit innerer Orien¬

cj [ c o, 0; cl]

Fläche tierung f/l cl [ 2, 0, 0; CS]
mit äußerer Orien¬

-1 _1

tierung fx Dl [ 2, 0, 0; z>;]

mit innerer
Orientierung v**/* Co [ 3, 0, 0; cS]

Yolumen (Schraubsinn)
mit äußerer Orien-1 -i

tierung b Dl [ 3> 0, 0; Dl]
(± -Zeichen)

Winkel <p
ik Co [ 0' 0, 0; Co]

2. Kinematik

Zeit t cl [ o, -1, 0; Co]

Geschwindigkeit v" cl [ 1, -1, 0; CS]

Beschleunigung bx cl [ c -2, 0; cj]

Geschwindigkeitspotential <P cl [ 2, -1, 0; cS]

Winkelgeschwindigkeit wik cl [ o, -1, 0; cS]

Winkelbeschleunigung w'k cl [ o, -2, 0; cS]

3. Mechanik

Masse m r°
_l_ i

[ o, o, 1; cS]
+ 1

Dl]
_l_ l

Massendichte m Do
1

[-3, 0, l;
Materiestromdichte ttt* Dl [-2, -1, l; Di]
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Größe
Geometr.
Charakter

Dimensionsformel

Energie, Arbeit E O

O

[ 2, -2, 1; Co]

Leistung L f0̂0 [ 2, -3, 1; CS]
+ 1 +1

Energiedicbte tt Dl
+ 1

[-L -2, 1; Dg]
4-1

Energiestromdichte tt* Dl [ 0, -3, 1; Dl]

Wirkung W cl [ 2, -1, 1; cl]
Impuls cl [ 1,-L l; Cl]

Kraft Kx K? Cl, Cl [ 1, -2, 1; Cl]

Druck px Cl [-1, -2, 1; cl]
+1 +1

Kraft pro Yolumenelement f* Dl [-2, -2, 1; Dl]
Drehmoment Mik Co [ 2, -2, 1; cl]
Drall Dik Co [ 2, -1, 1; Cl]

Trägheitsmoment 6ik Cl [ 2, -0, 1; cS]

Spannungstensor TxA Cl [-1, -2, l; Cl]
+1 +1

Spannungstensordichte %xl Dl [-1, -2, l; Dl]

4. Elektrodynamik

(Grundeinheiten L, T, M, Q)

Elektrische Ladung Q r°l-'O
_i_ i

[ o, 0, o, 1; CS]
_L I

Elektrische Dichte p
"T1

Do [-3, 0, 0, l; DS]

Elektrische Feldstärke Fß c\ [ 1, -2, 1, -l; c!]
+i +i

Dielektrische Verschiebung S" Dl [-2, 0, 0, l; Dl]
+i

[-1, -1,
+ 1

Magnetische Feldstärke Syß Do 0, 1; Dl]

Magnetische Induktion Bßa cl [ 0, -1, 1, -l; CS]
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Größe
Geometr.
Charakter

Dimensionsformel

+ i +i
Dielektrische Affinordichte eaß Do [-3, 2, -1, 2; Dl]

Affinordichte der Permeabili- -1 -1

tät Peyfla Dl
+i
DJ

[ i, o, 1, -2; Dl]
4-1

Elektrische Stromdichte ö" [-2, -1, o, l; Dl]

Stromstärke J C°o [ 0, -1, 0, 1; CS]

Elektrische Spannung U c°0 [ 2, -2, 1, -1; cS]

Dipolmoment p' cl [ 1, o, 0, 1; cj]
Magnetisches Moment mik Co [ 2, -1, 0, 1; Cl]
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