Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft Luzern
Herausgeber: Naturforschende Gesellschaft Luzern

Band: 17 (1955)

Artikel: Verallgemeinerung des Begriffs der Dimension einer physikalischen
Grosse

Autor: Roth, E.

DOl: https://doi.org/10.5169/seals-523435

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-523435
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Verallgemeinerung
des Begrifts der Dimension

einer physikalischen Groke
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1. Die Dimension einer physikalischen Grofle

1.1 Gripengleichungen

Die Uberzeugung, da} die in der Physik auftretenden Gleichungen
nicht blof} Zahlenwertgleichungen (Beziehungen zwischen reinen
Zahlen) sind, sondern Beziehungen zwischen benannten Gréfen, also
Griflengleichungen darstellen, diirfte bald allgemein durchgedrungen
sein!). Da offenbar die physikalischen Erscheinungen unabhingig
sind von den willkiirlich wihlbaren Mafleinheiten, so ergibt sich die

1. Invarianzforderung: Die GroBengleichungen sollen in der Weise ge-
schrieben werden, daf} sie invariant sind gegeniiber beliebigen zulis-
sigen Transformationen der Mafeinheiten.

Es soll hier nicht niher auseinandergesetzt werden, welche Fol-
gerungen sich daraus fiir die zugehérigen Einheitensysteme ergeben.

1.2 Anzahl der Grundgrifen

Zwischen den verschiedenartigen Groflen gibt es qualitative Ver-
kniipfungen?), die sich allgemein in die Form 4-B = C bringen las-
sen. Sie definieren normalerweise eine neue Gréfle, indem zwel schon
definierte Grioflen mit einer neuen verkniipft werden, wie zum Bei-
spiel die Beschleunigung b mit Hilfe der Geschwindigkeit v und
der Zeit ¢t durch die Beziehung b-t = v erklirt wird. Es kénnen
aber auch drei schon definierte Gréflen verkniipft werden; eine solche
abhiingige Verkniipfung ist hier weiter nicht von Interesse. Schlief3-
lich konnen auch zwei neue Groflen auftreten; in diesem Falle er-

1) Bodea [1], Landolt [6], Langhaar [7], Wallot [14].
%) Fleischmann [5], Landolt [6].
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halten wir eine neue unabhingige Grifle. Daraus ergibt sich sofort die
Anzahl der unabhingigen Gréfien oder Grundgréfien. Ist ndmlich die
Anzahl der eingefithrten Gréfen m,, die Anzahl der unabhingigen
Verkniipfungen (Definitionen) m,, dann gilt fiir die Anzahl der
Grundgriéfien

(1.2.1) m=m, —m,

Je nach dem in Betracht stehenden Gebiet der Physik ist die Zahl
der GrundgroBlen 1 (Geometrie), 2 (Kinematik), 3 (Mechanik), 4 (Elek-
trodynamik) oder mehr. Mit dieser Frage werden wir uns nicht be-
fassen.

1.3 Dimensionsformeln

Jede Groflenart lafit sich in der Form eines Dimensionsproduktes
darstellen ®)

(1.3.1) [X]= B* B*-- B

m *
wo die B; (i = 1,...,m) die Grundgroflen, die a; (ganze Zahlen) die
Dimensionsexponenten sind. Die Dimensionen bilden eine freie Abel-
sche Gruppe, d. h. eine kommutative, torsionsfreie Gruppe mit einem
endlichen Erzeugendensystem (Basis). Auf diese Weise gelangt man
zu eindeutigen Dimensionssystemen und entsprechenden Einheiten-
systemen. Diese Dimensionssysteme gestatten iibrigens eine einfache
Darstellung in einem affinen Vektorraum E, ¢).

1.4 Der geometrische Charakter

Die physikalischen Gleichungen lassen sich unter Verwendung eines
entsprechenden Einheitensystems so formulieren, dafl sie invariant
gegeniiber den zulissigen Transformationen der MafBleinheiten sind.
Aber die Zuordnung der physikalischen Begriffe und der Dimensionen
ist nicht eindeutig, indem verschiedene physikalische Gréflen, wie
etwa Arbeit und Drehmoment, dieselbe Dimension erhalten konnen.
Soll auch hier die Eindeutigkeit hergestellt werden, dann muf} der
geometrische Charakter der physikalischen GrofBle beriicksichtigt wer-
den?®) . Wir stellen hier allgemein die -

%) Fleischmann [5].
4 Roth [9].
%) Dies ist moglich, im Gegensatz zur Auffassung von Wallot [14], S. 141.
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2. Invarianzforderung: Die Griofengleichungen sollen so formuliert
werden, daf} sie auch gegeniiber zulissigen Koordinatentransfor-
mationen invariant sind.

Um diese Forderung zu erfiillen, miissen die physikalischen Glei-
chungen als Affinorgleichungen geschrieben werden. Wir werden im
folgenden daher zunichst kurz untersuchen miissen, welche geometri-
schen Groflen (Objekte) in Betracht zu ziehen sind. Auf Einzelheiten
kann allerdings nicht eingegangen werden, sondern es muf} auf die
einschliagige Literatur verwiesen werden 6).

Das Ziel dieser Mitteilung besteht darin, den Begriff der Dimension
einer physikalischen Gréfle so zu erweitern, dal} aus den Dimensions-
formeln auch sofort der geometrische Charakter abgelesen werden
kann. Einen diesbeziiglichen, allerdings nicht vollig befriedigenden
Versuch machten auch P. Moon und D. E. Spencer 7).

2. Der geometrische Raum

2.1 Der affine Raum E,

In einem n-dimensionalen Raum (gewdhnlich wird n = 3 oder
n = 4 sein) seien beliebige (schiefwinklige) kartesische Koordinaten
x* eingefiihrt, die einer homogenen linearen Transformation unter-
worfen werden sollen )

’

(2.1.1) x = A x* .

Es ist Ai’ = const. und Det (Af) = A+ 0. Diese Transformationen
bilden die affine Gruppe G, , und der zugehorige Raum heif3t der affine
Raum E, .

In einem linearen Teilraum E, (p < n) des E, konnen wir eine
innere Orientierung definieren durch die Angabe der Reihenfolge von

%) Vgl. vor allem Schouten [10] und [11]; die in dieser Arbeit verwendete
Schreibweise lehnt sich eng an Schouten [11]. Ferner etwa Brillouin [2],
Duschek [4], Sokolnikoff [13].

) Moon [8].

%) Wir verwenden die Kern-Index-Methode. 4, x sind die Kernbuchstaben, die
sich hier, da es sich um eine Koordinatentransformation und nicht um eine
Punkttransformation handelt, nicht #indern. Die verschiedenen Koordinaten-
systeme werden durch verschiedene laufende Indizes x, x' (1,...,n;1',...,0")
angedeutet. — Es gilt immer die Einsteinsche Summationsvorschrift.
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p linear unabhingigen Richtungen. Eine innere Orientierung eines
nicht in E, enthaltenen Raumes E, , definiert im E, eine dufere
Orientierung. (Man vergleiche etwa die Figuren b und b’ oder ¢’ und ¢
der Abbildung 1.)

An Stelle der affinen Gruppe G, konnen auch Untergruppen be-
trachtet werden. Die wichtigsten sind:

1) Die Gruppe G., der inhaltstreuen linear homogenen Transfor-
mationen mit A = £ 1; sie legt ein Einheitsvolumen fest.

2) Die Gruppe G,, der inhaltstreuen Transformationen mit der
Determinante A = -+ 1; sie bestimmt ein Einheitsvolumen und eine
Orientierung.

3) Die Gruppe G, der homogenen orthogonalen Transformationen
(Drehungen und Spiegelungen) mit A = + 1. Sie ergibt sich durch
Einfithrung eines Fundamentaltensors gjx. Einen solchen Raum be-
zeichnen wir mit R, ; in ihm lassen sich Lingen und Winkel in der
bekannten Weise definieren.

4) Die Gruppe G,, der Drehungen mit A = + 1. Es ist ein Fun-
damentaltensor und eine Orientierung einzufiihren: Orientierter R, .
Die Koordinatensysteme sind alle orthogonale Rechtssysteme (oder
alle Linkssysteme) mit demselben Einheitsvolumen.

2.2 Die Riume X, und V,

Wir wihlen beliebige krummlinige Koordinaten $* (x = 1,...,n)
und fithren die Transformation

2.2.1) & = §(&)

xr 4

Funktionen von &* mit stetigen Ableitungen ge-
niigend hoher Ordnung sind. Es sei
’ 9 Ex’

(2.2.2) 4 = 75

aus, wo die &

zx!

und die Jacobische Determinante Det (Af) = Det (g—;—x> sei + 0.

In einem gewissen Bereich existieren dann die Umkehrfunktionen
(2.2.3) § = &% (&)

Wir erhalten so einen topologischen differenzierbaren Raum X, .
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Aus (2.2.1) folgt
(2.2.4) de¥ — Adé~.

Damit kann jedem Punkt $* des X, ein lokal affiner Raum E, zu-
geordnet werden. Im allgemeinen besteht zwischen den lokalen E, ,
die zu verschiedenen Punkten des X, gehoren, kein Zusammenhang.

Wird im X, ein Fundamentaltensor gy, eingefiihrt, dann erhalten
wir einen metrischen Raum V, (Riemannscher Raum).

3. Definition der geometrischen Grifie

3.1 Geometrische Grifien im E,

Definition °): Eine geometrische Grif3e ist ein geordnetes System von
N Zahlen z, (v = 1,...,N), fiir welche bei allen zulissigen Transfor-
mationen des Koordinatensystems (x) des E, folgendes gilt:

1) Zu jedem (x) gehirt genau ein System z, .

2) Das System z, in (x') lift sich

a) homogen linear durch z, und

b) homogen algebraisch durch A);’ ausdriicken.

Werden die Bedingungen 2a) und 2b) durch schwichere ersetzt,
dahin, daB} z, allein durch z, und Ai aber in irgendeiner Weise aus-

gedriickt werden kann, dann handelt es sich um ein geometrisches

Objekt.

3.2 Geometrische Griflen im X,

Die Definition der geometrischen Griofle des X, lautet entsprechend
wie im E, , nur ist zu beriicksichtigen, dal} die Grofle in einem be-
stimmten Punkt &* des X, zu erkliren ist; dazu kommt noch die
Forderung

2c¢) In den Transformationsformeln diirfen keine Ableitungen von
Ai' aufireten.

Auch in diesem Falle 1d8t sich der allgemeine Begriff des geometri-
schen Objektes einfiihren, doch bediirfen wir seiner im folgenden nicht.

%) Schouten [10], S. 2.
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4. Affinoren im FE,

4.1 Definition des Affinors

Ein Affinor ist eine geometrische Grole v*i---*pj, ..., , die sich
bei einer Koordinatentransformation (2.1.1.) nach dem Gesetz

x'...ox! o x'] x5 7'1,__ Aqax ... x
(41.1) %1 PZ{---).&_—AXI AXP;;A/'I' A%vl p7~1"'}~q

transformiert.

Genauer heifit diese Griofle entsprechend der Stellung der Indizes
ein p-fach kontravarianter und g¢-fach kovarianter Affinor der Stufe
r = p + q. Er hat im allgemeinen n” Komponenten.

Ist ¢ = 0, so ist der Affinor kontravariant, fiir p = 0 kovariant
und in den iibrigen Fillen gemischt.

4.2 Einfache Spezialfille

4.2.1 Skalar. Ein Skalar p besitzt eine einzige Komponente, die
bei einer Koordinatentransformation invariant bleibt. Ein Skalar
ist ein Affinor 0. Stufe.

4.2.2 Kontravarianter Vektor. Ein kontravarianter Vektor besitzt
n Komponenten v* mit dem Transformationsgesetz

(4.2.1) v = AY

Er kann durch eine gerichtete Strecke dargestellt werden; seine
Komponenten v* sind die Projektionen dieser Strecke auf die Ko-
ordinatenachsen.

4.2.3 Kovarianter Vektor. Der kovariante Vektor besitzt n Kom-
ponenten w, , die sich nach der Formel

(4.2.2) w,, = A’ w,

transformieren. Er lifit sich durch zwei parallele Hyperebenen
E,.; darstellen, mit festgelegter Reihenfolge dieser Hyperebenen.
Seine Komponenten sind durch die reziproken Abschnitte auf den
Koordinatenachsen festgelegt.

Die kontravarianten und kovarianten Vektoren sind Affinoren

1. Stufe.
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4.3 Die Mafvektoren des Koordinatensystems (x)

In jedem zuldssigen Koordinatensystem (x) des E, gibt es n kontra-
variante Vektoren ex (1 = 1,...,n) mit den Komponenten
A

(4.3.1) (9;: Kronecker-Symbol).

Wir nennen sie die kontravarianten Mafvektoren.
Entsprechend sind die kovarianten Maflvektoren erklart

X
(4.3.2) 6, = 0.

4.4 Zuordnung eines Symbols

Um einen allgemeinen Affinor charakterisieren zu kénnen, ordnen
wir ihm das folgende Zeichen zu

(4.4.1) |oams o | = |G

Daraus ersieht man sofort die Anzahl der kontravarianten und der
kovarianten Indizes. Es ist speziell:

Skalar [ c ]
Kontravarianter Vektor [ o ]
Kovarianter Vektor [ g ]

5. Algebra der Affinoren

5.1 Rechenoperationen

Mit den Affinoren lassen sich in bekannter Weise die Operationen
der linearen Algebra ausfiithren. Wir stellen sie hier kurz zusammen.

a) Addition

(5.1.1) UZZM = sx}U’” + tlfux.
b) Allgemeine Multiplikation
(5.1.2) b e =Ty 8 g

c) Verjiingung

(5.1.3) = E o=
u e [
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d) Uberschiebung

(5.1.4) P = sM":’“’#.
Als Spezialfall der Uberschiebung haben wir das Hinauf- und

Herunterziehen eines Indexes

(5.1.5)

5.2 Kriterium fiir den Affinorcharakter

Hat man beispielsweise eine von drei Indizes x, 4, p abhingige
GroBe t (x, A, u), ohne zu wissen, ob die x, 1, x kontravariante oder
kovariante Indizes seien, dann bildet man die ﬂberschiebungen der
Grofle mit drei beliebigen Vektoren derart, daB fiir alle Koordinaten-
transformationen eine Invariante entsteht. Sei diese etwa

5.2.1 t(x, A wv"w = invariant
( ) Aot 5 ;

dann ist die GroBe in der Form txl# zu schreiben.

Dieses Kriterium, das man ebensogut an Stelle von (4.1.1) zur
Definition des Affinors verwenden kann, ist oft niitzlich bei den An-
wendungen.

5.3 Das Rechnen mit den Symbolen [CI]

Aus den im Abschnitt 5.1 erklirten Operationen ergeben sich sofort
fiir das Rechnen mit den [C!] die folgenden Regeln:
a) Addition: Es konnen nur Affinoren mit demselben Symbol [CF]
addiert oder subtrahiert werden.
b) Multiplikation: Die entsprechenden Indizes der Symbole ad-

dieren sich.

(5.3.1) leal - Lei] = lenial:
¢) Verjiingung: Die Verjiingung iiber je einen Index ergibt
(5.3.2) [c] = [cia]
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und iiber je zwei Indizes
(5-3.3) [ci]' = [c=

und entsprechend fiir die Verjiingung iiber mehr als zwei Indizes.
Die Operation der Verjiingung ist durch einen Strich beim Symbol
angedeutet.

d) Uberschiebung: Aus (5.3.1) und (5.3.2) folgt ohne weiteres fiir
die Uberschiebung

(5 .3 41) [C’é’l] | [Cé’:] _ [Cp1+pz—l

1 q1tqe-1

und analog bei mehrfacher Uberschiebung.

6. Symmetrieeigenschaften von Affinoren

Die in der Physik auftretenden Affinoren zeichnen sich meist durch
gewisse Symmetrieeigenschaften aus.

6.1 Symmetrische Affinoren oder Tensoren

Ist ein rein kontra- oder kovarianter Affinor invariant gegeniiber
Permutationen seiner Indizes, dann heiflt er symmetrisch, und man
nennt ihn kurz Tensor. Beispiel:

sx}{ = S').x )

Ein symmetrischer Affinor p-ter Stufe besitzt genau ("*27) unab-
hiingige Komponenten. Die Symmetrieeigenschaft gilt in allen zulis-
sigen Koordinatensystemen. In einem zentrierten E, kann ein ko-

varianter (kontravarianter) Tensor durch eine Hyperfliche p-ten

Grades (Ordnung) dargestellt werden:
Ay xhtp —
(- 2p) ¥ x+p =1

t(xl"'xp)xxl...xxp = 1.

6.2 Schiefsymmetrische Affinoren oder p-Vektoren

Andert bei einem rein kontravarianten oder kovarianten Affinor
p-ter Stufe eine gerade Permutation seiner Indizes nichts, eine un-
gerade Permutation dagegen nur das Vorzeichen, dann heillt er
p-Vektor (oder Multivektor). Beispiel:
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Alle Komponenten mit zwei gleichen Indizes verschwinden. Ein
p-Vektor hat noch (;) unabhingige Komponenten, und es muf}
p = n sein.

Ein p-Vektor heilt einfach, wenn er das #ullere Produkt von
p Vektoren ist

1., P
] 1 1
6.2.1 1 = pt gl ] =
(6.2.1) i
tvxl....vxp
P P

Beispielsweise ist das Vektorprodukt im R; ein einfacher Bivektor.

txl — 9! v{x 'U}"] s g ’U)‘— 'U;L o~
Die p-Vektoren besitzen anschauliche geometrische Bilder. Fiir
den Fall des Ej; sind sie auf der linken Hilfte der Abbildung 1 wieder-

gegeben.

6.3 n-Vektoren

Ein n-Vektor ist darstellbar als ein mit einem Schraubsinn ver-
sehenes Volumen im E, . Er hat nur eine wesentliche Komponente, die
fir v!- '™ gleich dem Volumen, fiir w;..., gleich dem reziproken
Volumen ist. Das Transformationsgesetz lautet

(6.3.1) o R N
beziehungsweise
(6.3.2) T A_1'w1...n'

Man kann als n-Vektoren speziell die folgenden wihlen

Ea gl e[xl___exn]
1 n

(6.3.3) =)

(=) _ ’I n
ell---ln_ n. e[ll---eln],
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wo die g, e die im Abschnitt 4.3 eingefithrten MaBvektoren sind.

Die andern n-Vektoren unterscheiden sich davon nur durch einen
skalaren Faktor.

Es gilt
*)

(6.3.4) E-on =1, e..,=1
()

7. Affinor- A -Dichten

7.1 Skalare /\-Dichten

Die Komponente v! '™ eines kontravarianten n-Vektors ist kein
Skalar, denn es gilt das Transformationsgesetz (6.3.1), wofiir man
auch schreiben kann

(7.1.1) b[x] = A-9[x].
b ist eine skalare A-Dichte vom Gewicht —1 (auch A-Kapazitit ge-
nannt).

Das Analoge gilt fiir den kovarianten n-Vektor. Nach (6.3.2) gilt
(7.1.2) wix] = Al-w[«],
wo W eine skalare A-Dichte vom Gewicht -1 (oder kurz eine
A-Dichte) ist.

Allgemein ist eine skalare A\-Dichte vom Gewicht k durch das
Transformationsgesetz definiert

(7.1.3) P[] = A P[]

7.2 Afﬁnor; A-Dichten

Multiplizieren wir einen Affinor mit einer skalaren A\-Dichte vom
Gewicht k, dann erhalten wir eine Affinor- A\-Dichte vom Gewicht k
mit dem Transformationsgesetz
(7.2.1)

W EERE -k ! b A Ay e e %
(Y1 R J— A AP AN 4" p o
Ay Mg A xq Xp T Ay Aq R

Im besondern lassen sich die invarianten, dem Skalar 1 ent-
sprechenden n-Vektor- A-Dichten einfiithren
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@ » =1 (Gewicht +1)
;11...,. =1 (Gewicht -1).

(7.2.2)

Fiir die Affinor- A-Dichten gelten die analogen Gesetze wie sie im
Abschnitt 5 fir die gewohnlichen Affinoren angegeben wurden.
Von Bedeutung ist die aus der Definition (7.2.1) sich ergebende
Folgerung, dafl das Produkt aus einer Affinor- A-Dichte vom Ge-
wicht +1 und einer Affinor- A-Dichte vom Gewicht -1 einen
gewdhnlichen Affinor ergibt. Beispiele: :

~

.m — P
.t{,xl — vx),'

A&}

(7.2.3)

o=

7.3 Zuordnungen

Mit Hilfe der n-Vektor- A-Dichten lassen sich die p-Vektoren und
die (n—p)-Vektor- A-Dichten einander eindeutig zuordnen. Es gelten
die Beziehungen (n = 3)

~ ~

hA:_n ,UX,IL

Axpe
o — x gzéﬂ.xu
(7.3.1) o

W — = wA@M”

— 1 2 X[
w-A = nzxum ”

die sich leicht fiir ein beliebiges n verallgemeinern lassen. Unter Be-
riicksichtigung der Definitionen (7.2.2) von E1---*
erhalten wir auch kiirzer

nound W, ...,

— phptl---pn

by, ..
(7.3.2) far ke

WP = gy s

WO pq,---, M, eine gerade Permutation von 1,..., n ist.

Daraus ergibt sich, dal die geometrische Deutung der Multivektor-
A-Dichten dieselbe ist wie fiir die entsprechenden Multivektoren. Es
wurden somit keine neuen GroBen eingefiihrt, sondern nur eine andere
Schreibweise, die aber oft von Vorteil ist, weil man mit weniger
Indizes auskommt.
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7.4 Symbole

Einer Affinor- A-Dichte vom Gewicht k ordnen wir das folgende

Symbol zu
N k

(7.4.1) [barwa.a ] = [A7].

Man sieht sofort, daB die folgende Beziehung gilt

k k
(7.4.2) [ad]-[€f] = [A]]-
Es ist speziell firr die n-Vektoren v*1--- % | Wy .,
-1 +1
(7.4.3) [cf] = [nd]. [C)] = [2a]-
und fiir die n-Vektor- A-Dichten
vl...n +1n = -1

(7.4.4) [€ "] =[ad], [n....] = [2d]

Die Zuordnungen (7.3.1) ergeben

[20] = [&%1[c7]

. (6] = L2144

[47] = [G] 1[4
-1 +1

[C] =T[40 1148

Ferner zeigt sich, dafl auf Grund der Definition (7.2.1) allgemein gilt

-k 4k

(7.4.6) A A= C

Aus den Beziehungen (5.3.1), (7.4.2) und (7.4.6) liest man ab,
daBl sich die Symbole C und A\ verhalten wie die Zahlen +1 und
—1 bei der Multiplikation, mit der Einschrinkung, dal} im Falle, wo
beide Faktoren Dichten sind, diese von entgegengesetzt gleichem

Gewicht sein miissen.
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8. Gewohnliche Dichten und W-p-Vektoren !°)

8.1 Gewdhnliche Dichten

Die gewohnlichen oder Weylschen Dichten geniigen demselben
Transformationsgesetz (7.2.1) wie die A-Dichten, nur haben sie an
Stelle des Faktors /A den Faktor|\|. Beispiele:

W = A7 A A w?  (Gewicht + 1)

(8.1.1) S |
v, =I[Al 4540, (Gewicht -1).

Die Massendichte der Physik ist eine skalare Dichte vom Gewicht +1.
(8.1.2) mlx'] = [ Al-1m[«].
Fir A > 0 fallen die A\-Dichten und die Weylschen Dichten zu-

sammen.
Als Symbole fiir die Weylschen Dichten vom Gewicht +1 oder -1
verwenden wir die Zeichen
+1
[ ] = [DF]
1
[0 ] = [Dy]

und entsprechend fiir ein beliebiges Gewicht k.

(8.1.3)

8.2 W-p-Vektoren

Um die geometrische Darstellung der Weylschen Dichten vom Ge-
wicht +1 oder —~1 zu finden, definiert man den W-Skalar oder Pseu-
doskalar. Es handelt sich um eine geometrische Groéfle mit dem
Transformationsgesetz

(8.2.1) plv] = 2pld.

Der W-Skalar dndert das Vorzeichen bei einer Anderung der Orien-
tierung des Koordinatensystems.

Allgemein ergibt das Produkt aus dem W-Skalar p und einem
Affinor einen W-Affinor, und im besondern ist ein W-p-Vektor durch

10) Schouten [12].
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Geomeltrische Grossen

a Skalar p

n=3
° 1 -
Co = 2);',’ «’  Psevdoskalar Vg
= ;&; Wuan WOV

1 LY
/ Co = A: /
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Geometrische Grioken im dreidimensionalen Raum.
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(8.2.2) pacre = ponc e, pla] = +1

definiert. Man iiberlegt sich, dal beim kontravarianten W-p-Vektor
die dufere Orientierung invariant ist; entsprechend ist beim Fko-
varianten W-p-Vektor die innere Orientierung invariant. Das Trans-
formationsgesetz der W-p-Vektoren lautet

E’,x{""f};:MAxl...Axp' Pt p
(8.2.3) a Th T
U ~ ., Al 42 Ap
wzl.--/upzTARE---Axf;wxl---zP.

Wir ordnen ihnen die folgenden Symbole zu:

[ ] = [I7]
[407,. . .;{P] = [Fg] .
Auch hier kann wieder mit Hilfe der n-Vektor- A-Dichten G und n

eine Zuordnung von gewdhnlichen Dichten und W-p-Vektoren ge-
stiftet werden. Sie lautet in den einfachsten Fiéllen

(8.2.4)

1 = = xu
”z = nlx,u v
PR 1y Ee
v - bl@
(8.2.5) 1 &
e xu 4 At
1] BT wl@
~ L = xu
w, = nmm
Oder auch
by, ... = pHptl - fn
(8.2.6) { -;PH'“'P'M .
m‘ = wﬁh ceelp s
wenn y ,..., U, eine gerade Permutation von I,...,n ist.

Es handelt sich somit auch hier wieder wie bei den gewshnlichen Dich-
ten und den zugeordneten W-p-Vektoren um dieselben geometrischen
Groflen, die sich nur in der Schreibweise unterscheiden. Die einfach-
sten Deutungen dieser Gréflen im Ej sind in der Abbildung 1 wieder-
gegeben. — Vorzugsweise verwendet man die Weylschen Dichten.

Auf Grund der Definitionen (7.2.1), (8.1.1) und 8.2.3) erkennt
man, dal} fiir reelle Transformationen die folgenden, symbolisch ge-
schriebenen Beziehungen gelten
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41 +1
D=A-I
(8.2.7) o
I'=D- A

Schliefllich folgt noch

k k
(D3] - [¢h] = D3]

+h &

(D3] - [D%] = [eni]

und entsprechend fiir die Uberschiebungen der links stehenden

Groflen.

(8.2.8)

9. Identifikationen

Werden nur Untergruppen der affinen Gruppe G, betrachtet, dann
konnen verschiedene der in den vorhergehenden Abschnitten defi-
nierten Groflen identifiziert werden. Trotzdem wird es, um das an-
schauliche geometrische Bild beizubehalten, bei den physikalischen
Anwendungen oft zweckmiflig sein, nicht alle moglichen Identifi-
kationen wirklich durchzufiihren.

9.1 Gruppe G, der inhaltstreuen Transformationen

Ein Einheitsvolumen kann durch eine gewdhnliche skalare Dichte
g = £ 1 vom Gewicht + 1 eingefiithrt werden. Es fallen zusammen

Dichten —— Nichtdichten.

Es gilt
pt — qvx ﬁx _ q;)x
(9.1.1) ) . N
w, =% lwz W, =9 ]wz
oder
+1 +1
Pl p Pl «—s e

[Dy] ~—[ci] | [a]~—Ir].

Es sind im Ej; noch die folgenden Groflen zu unterscheiden: polare
Vektoren und Bivektoren, axiale Vektoren und Bivektoren, Skalare
und Pseudoskalare.
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9.2 Gruppe G, der orthogonalen Transformationen

Es wird der Fundamentaltensor g.,. eingefiihrt. Es sei ¢ = Det
(gx2) (gewohnliche skalare Dichte vom Gewicht 2). Die folgenden
Groflen sind zu identifizieren:

kovariante Gré6Ben = kontravariante GroBen
Dichten — Nichtdichten.

Dies ergibt sich auf Grund der Beziehungen

vt — xlw P "7“11;..
9.2.1) e R
V' = gg"mw, vt =4gg"mw,,

oder anders ausgedriickt

(] = [c;] | [1%] =—[17]

(9.2.1%) 41 £\ 41 4
(D8]~ [Dp] | [&f]=—[2].

Es gilt natiirlich auch (9.1.1), da der Fundamentaltensor auch

ein Einheitsvolumen festlegt. Im Rj; sind jetzt noch zu unterscheiden:

Skalar, polarer Vektor, axialer Vektor, Pseudoskalar.

9.3 Gruppe G, der affinen Transformationen mit /\ > 0

Wir fithren durch den W-Skalar & einen Schraubsinn ein. Der
Unterschied zwischen innerer und éullerer Orientierung verschwindet:

Innere Orientierung - &uflere Orientierung.

Es gilt

B8 V= ot vt = &b
o w;, = aw, Wy — OW;

oder auch

(9.3.1%) [ =— [C] [A] =— [D].

9.4 Gruppe G,, der Rotationen N\ = -+ 1

Es ist ein Fundamentaltensor und eine Orientierung einzufiihren.
In diesem Falle ergeben sich alle vorhin erwihnten Identifikationen,
und es sind im orientierten R; nur noch Skalare und Vektoren zu
unterscheiden!
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Es zeigt sich somit, daf} in jedem Falle genau angegeben werden
muf}, welches die Gruppe der zulissigen Transformationen ist, da es
sonst nicht méglich ist, zwischen den verschiedenen Gréflen zu unter-
scheiden. Die Unterlassung der Angabe der zulissigen Transfor-
mationen hat schon zu vielen unnétigen Auseinandersetzungen iiber
den geometrischen Charakter einer physikalischen Grofle gefiihrt.

10. Invariante Differentialoperationen (Affinoranalysis)

Es gibt im allgemeinen Falle im Raume X, nur die folgenden in-
varianten Ableitungen.

10.1 Gradient

Die Gradientenbildung kann nur auf Skalare und W-Skalare

angewandt werden.

wobei zur Abkiirzung o, = % gesetzt ist. Das Transformations-
gesetz lautet
(10.1.2) oyp = Ala,p.

Das Entsprechende gilt firr einen W-Skalar p.

10.2 Schiefe Ableitung (Rotation)

Es konnen nur kovariante g-Vektoren oder W-q-Vektoren schief
abgeleitet werden

(10.2.1) (g + 1)9[’!'“7;'1...1,1] = Wy g v - U
Es gilt

AL gA A
(10.2.2)  2p, w = A Ay AR o w, g

|

Al 14]

Durch schiefe Ableitung entsteht also aus einem kovarianten g-Vektor

ein kovarianter (¢ 4+ 1)-Vektor. Analog verhilt es sich mit einem

kovarianten W-q-Vektor w, . ., .
170 A
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10.3 Divergenz

Die Divergenz laf}t sich nur von kontravarianten p-Vektor-Dichten
(oder p-Vektor- A-Dichten) vom Gewicht + 1 bilden.

(10.3.1) e

Das Resultat ist eine kontravariante (p-—I1)-Vektor-Dichte vom Ge-
wicht - 1.

Ergebnis: Die Gradientbildung und die schiefe Ableitung ent-
sprechen bei den in den Abschnitten 4, 7 und 8 eingefithrten Sym-
bolen einer Multiplikation mit [C]], wihrend die Divergenz eine Uber-
schiebung mit [C}] bedeutet:

Gradient [C‘}] . [Cﬁ] = [ 0] [C?] . [Fg] = [F?]
(10.3.2); Rotation [C] - [C] = [ wnl. [Ci]- [1”0] [1"°+1]
Divergenz [C1] | [DP] = [Dp_] [Cl] ] [AP] = [/—\p_]

SchliefSlich sei hier noch auf die Integraltheoreme von Stokes hin-
gewiesen, ohne daf} darauf eingegangen werden soll. Treten in einer
physikalischen Beziehung Integrale auf, dann hat man zu beachten,
daB} fiir den geometrischen Charakter eines Integrals gilt

(10.3.3) [ fydx] — [yda].

11. Zusammenfassung

Lassen wir im Raum FE, die affinen Transformationen zu, dann
haben wir im wesentlichen die folgenden geometrischen Gréflen zu
unterscheiden (Abschnitt 4 und 8.1)

Affinoren [CP ] +1
Gewdhnliche p-Vektor-Dichten [DP ] [DP]

Um Indizes zu sparen, kénnen jedoch noch die folgenden Gréflen
eingefithrt werden (Abschnitt 7 und 8.2)

+1 =1,
p-Vektor- A-Dichten [A}S] ’ [Ag]
W-p-Vektoren [[W}f;] s [Fﬁ] :
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Die mit diesen Groflen auszufithrenden Operationen, nimlich
Addition, Multiplikation, Verjingung und Uberschiebung (Ab-
schnitt 5), bilden sich in einfacher Weise auf die zugeordneten Sym-
bole ab. Von besonderer Bedeutung fiir die physikalischen Anwen-
dungen sind die Formeln (5.3.1, 2, 4) und (8.2.8). In entsprechender
Weise fithren auch die affin invarianten Ableitungen der geometri-
schen GroBen im X, zu einer Multiplikation bzw. Uberschiebung mit

dem Symbol [C]] (Abschnitt 10).

12. Physikalische Groflen

12.1 Transformation der Einheiten

Zur numerischen Festlegung einer physikalischen Gréfle sind noch
Einheiten erforderlich, die sich, wie im Abschnitt 1 angedeutet wur-
de, aus einer bestimmten Anzahl von Grundeinheiten aufbauen lassen.
Wir wihlen hier zur Vereinfachung der Darstellung drei Grund-
einheiten fiir die Linge, Zeit und Masse, beschrinken uns also auf die
Dynamik. Die Grundeinheiten sollen der folgenden Transformation
unterworfen werden

(12.1.1) L'=0I"LT=2'T, M =m! M,

wo I, t, m beliebige reelle Konstanten == 0 bedeuten. Ein System von
Grundeinheiten, das auf diese Weise aus einem gegebenen System
hervorgeht, soll ein zuldssiges System genannt werden.

12.2 Definition der physikalischen Grifle ')

Unter einer physikalischen Grifie in einem bestimmiten Punkt &
des Raumes X, und bezogen auf ein System von Grundeinheiten L, T,
M wverstehen wir ein geordnetes System von N Komponenten v,
(v=1,...,N) mit den folgenden Eigenschaften: Zwischen den Kom-
ponenten vy, und den zulissigen Koordinatensystemen (x) in der Um-
gebung von §* und den zuldssigen Grundeinheitensystemen L, T, M
bestehen die nachstehenden Beziehungen.

11) Schouten [11], S. 126, Dorgelo [3], S. 45.
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1) Zu jedem (x) und jedem zuldissigen System von Grundeinheiten
gehirt ein einziges System vy .

2) Daszu ('), L', T', M’ gehorende System vy’ lif3t sich

a) homogen linear in den v, ,

b) homogen algebraisch in den A:' allein, also ohne deren Ab-
lettungen, und

c¢) allein in I, t, m ausdriicken.

3) In diesen Ausdriicken treten die Konstanten I, t, m nur in der
Form von Potenzprodukten [°tFm” auf, und dieser Faktor ist fiir alle
Komponenten y.' derselbe.

Schwiicht man die Bedingungen 2a) und b) wie im Abschnitt 3 ab,
so erhiilt man ein physikalisches Objekt.

12.3 Geometrisches Bild und absolute Dimension

Hilt man die Grundeinheiten L, T und M fest und transformiert
nur die Koordinaten, dann folgt aus der Definition 3.1, daB jeder
physikalischen GroBe eindeutig eine geometrische Grofle, ihr geo-
metrisches Bild, zugeordnet ist. Transformiert man umgekehrt nur
die Grundeinheiten, dann nehmen alle Komponenten des geometri-
schen Bildes einen Faktor [°t’m” an, welcher die absolute Dimension
[LeT#PM?] der physikalischen GréBe genannt wird. Die absolute Di-
mension gibt an, welche Grundeinheiten erforderlich sind, um das
geometrische Bild zu konstruieren. Sie stimmt nicht mit der iiblichen
physikalischen Dimension einer Grofle iiberein. Beispielsweise ist die
absolute Dimension einer Geschwindigkeit [v*] = [T']; es geniigt
ndmlich bereits eine Uhr, um den in einer Sekunde zuriickgelegten
Weg zu markieren.

12.4 Die relative Dimension

Die iibliche Dimension einer physikalischen Grofle ergibt sich,
wenn ein lokales kartesisches Koordinatensystem (im Raum V, ) zu-
grunde gelegt wird.

Definition: Wenn die Komponenten einer physikalischen Grofle in
einem lokalen kartesischen Koordinatensystem bei einer Transfor-
mation der Grundeinheiten (12.1.1) den Faktor I°#*mc erhalten,
dann heifit [L*T* M°] die relative Dimension dieser GroBe.
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Der Unterschied zwischen absoluter und relativer Dimension riihrt
daher, daB im Falle einer affinen Transformation die Koordinaten
mit der Lingeneinheit nicht zusammenhingen, wihrend in einem
orthogonalen System sich auch die Koordinaten transformieren bei
einer Anderung der Grundeinheiten. Man erkennt leicht, dafl die
absolute Dimension einen Faktor [ fiir jeden kontravarianten Index
und einen Faktor I fiir jeden kovarianten Index annimmt, womit
dann sofort die relative Dimension bestimmt ist. Fiir eine Dichte vom
Gewicht k ist der Faktor ™ hinzuzufiigen. Zu beachten ist ferner,
daB die Komponenten des Fundamentaltensors g bzw. g’* die rela-
tive Dimension [1] haben.

12.5 Erweiterung des Dimensionssymbols einer physikalischen Grifle

Im Abschnitt 1.3 wurde erwihnt, daf} jeder physikalischen GroBle
in bekannter Weise ein Symbol, die relative Dimension, zugeordnet
werden kann. Andererseits kann auch das der Gréfe zugeordnete
geometrische Bild mit einem Symbol versehen werden, wie dies in den
vorhergehenden Abschnitten 4, 7 und 8 geschehen ist.

Hat nun eine physikalische Griofle in einem lokalen kartesischen
Koordinatensystem die relative Dimension [L*T*M¢] und ist ihr geo-

k

metrisches Bild beispielsweise [C’;] oder [ij’], dann soll die verall-
gemeinerte Dimension dieser Grofle in der folgenden Weise geschrieben
werden

[L*T*M°; C7]
(12.5.1) i
[L*T°M”°; D] .

Wie mit diesen Symbolen zu rechnen ist, folgt sofort aus den Uber-
legungen in den Abschnitten 5 und 8.

Zur Vereinfachung der Schreibweise der Dimensionsformeln kann
man sich darauf beschrinken, nur die Exponenten anzugeben, so daf3

die Ausdriicke (12.5.1) nun lauten

[a, b, c; Cg]
(12.5.2)

k
[a, b, ¢; D’;] .
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12.6 Bestimmung des geometrischen Charakters einer physikalischen

Grifle

Der geometrische Charakter einer physikalischen Grofle 1if3t sich
aus ihrer Definition erhalten unter Beriicksichtigung des Kriteriums
fir den Affinorcharakter einer GroBe (Abschnitt 5.2) und der Al-
gebra und der Analysis der Affinoren und gewthnlichen Dichten vom
Gewicht k beziehungsweise den daraus abgeleiteten Regeln fiir das

k
Rechnen mit den Zeichen [Cﬁ] und [Df;]. Wichtig ist, dal} die physi-
kalischen Beziehungen zunichst in eine fiir die zugelassene Trans-
formationsgruppe invariante Form gebracht werden.

13. Beispiele

13.1 Die Kraft

Die Kraft ist von einem Index i abhingig, und es soll die vor-
liufige Schreibweise K () eingefithrt werden. Eine Verschiebung der
Kraft lings des Weges dx' ergibt die Arbeit 0.4, die eine invariante
skalare GroBe ist. Es gilt also

04 = 2 K(i)déx* = invariant,

und daraus folgt sofort nach dem Kriterium (5.2.1), daB die Kraft
durch einen kovarianten Vektor darzustellen ist: K(i) = K; . Das
geometrische Bild ist daher [C‘i]. Noch einfacher ist es, die Regeln fiir
das Rechnen mit den Symbolen C! anzuwenden:

[cl]1[Co] = [€7]

Zum gleichen Ergebnis gelangt man, wenn man die Kraft als
Gradient eines Potentials p betrachtet:

K; = %p.
Somit ergibt sich als Dimensionsformel fir die Kraft
(K] = [L'T*M"; Y] = [1,-2,1; CY].

170



13.2 Das Drehmoment

Um die allgemeinen Dimensionsformeln fir das Drehmoment zu
erhalten, kann man von der folgenden, fiir geradlinige Koordinaten
giltigen Beziehungen ausgehen

M (h, i) = 2 fm % dr.,

Nun ist fiir die auf der rechten Seite auftretenden Gréflen

Massendichte [m] = [-3, 0,1; D{]
Koordinaten [x*]=1[1, 0,0; C]]
Beschleunigung [ ] = [ 1, =2, 0; C]]
Volumenelement [dr] = [ 3, 0, 0; Dp].

Also wird
[MM] =1 2,-2,1; Cz].

Man beachte den Unterschied gegeniiber der Arbeit, die als skalare
Grofle die folgende Dimensionsformel hat

[4] = 2,-2,1; C'].

13.3 Elektrische Feldstirke und magnetische Fluf3dichte

Die beiden die elektrische Feldstirke und die magnetische Fluf}-
dichte enthaltenden Maxwellschen Gleichungen lauten in invarianter
affiner Form geschrieben 1)

2
() - Fy+9,By=0 2=
(b) oy Bgg = 0.
Um den geometrischen Charakter der Feldstirke F und der FluB-
dichte B zu bestimmen, ist zu bedenken, daBl nur die Rotation eines
kovarianten g-Vektors oder W-g-Vektors invariante Ableitungen sind.
Folglich ist die elektrische Feldstirke entweder ein kovarianter Vek-

tor oder W-Vektor; da aber die Orientierung des elektrischen Feldes
durch die Richtung der Stromlinien gegeben ist, mufl F ein kova-

12) Dorgelo [3], S. 252.
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rianter Vektor [ Fz | = [C}] sein. Aus der Gleichung (a) folgt nun nach
dem Homogenititsprinzip, daB B ein kovarianter Bivektor [C3] ist,
was mit der Gleichung (b) vertriglich ist.

Werden als Grundeinheiten L, T, M und Q (elektrische Ladung)
eingefiihrt, dann gilt

] =[1 1,0 0; ¢
[y] =[-1, 0,0, 0; Ci]
[Fs] = [-1, -2, 1, -1; Ci].
Also ist
= %QDFM] = [-1, -1, 1, -1; C3]
und mit [0.] =][-1, 0,0, 0; Co]
wird schlieBlich ~ [Byg] = [ 0, -1, 1, -1; C3].
13.4 Tabelle

Fiir eine Anzahl von Groflen aus verschiedenen Gebieten der Physik
sind — ohne nihere Erlduterungen — in der nebenstehenden Tabelle
die verallgemeinerten Dimensionsformeln wiedergegeben.

Um den anschaulichen geometrischen Charakter einer Gréfle deut-
lich anzugeben, sind oft nicht alle Identifikationen (Abschnitt 9) aus-
gefithrt worden, wie sie auf Grund der zugelassenen Transformations-
gruppe moglich gewesen wiren. Insbesondere konnen natiirlich nach
der Einfiihrung des Fundamentaltensors die Indizes beliebig herauf-
und hinuntergezogen werden durch Uberschiebung mit g* bzw. g,
und es besteht kein Unterschied mehr zwischen gewthnlichen Af-
finoren und Dichten (Multiplikation mit der Dichte g2 oder g-'"2, wo
g = | Det (gin)| eine skalare Dichte vom Gewicht + 2 ist).

E. Roth-Desmeules, Luzern
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Geometr.

Grofe Charakter Dimensionsformel
1. Geomeirie
Linge x* Cs [ s 0. D Cé]
mit innerer Orien-
. xA 2 2
Flache { 1er"nef™ Co [2, 0. 0; ]
mit dullerer Orien- i 3
tierung fx D) [ 2, 0, 0; DY
mit innerer Orien-
tierung v*** £ [3, 0, 0; C?,]
(Schraubsinn)
Volumeny . . :
mit dullerer Orien- 1 1
tierung b D [ 3, 0, 0; Dg]
(£ -Zeichen)
Winkel ¢ Cs [ 0, 0, 0; Cf]
2. Kinematik
Zeit t Cg [ 05 _]-a 0; Cg
Geschwindigkeit v* Co [ 1,-1, 0; Cp
Beschleunigung b* Cs [ 1,-2, 0; Co]
Geschwindigkeitspotential @ Ch [ 2,-1, 0; Cg]
Winkelgeschwindigkeit «® C; [ 0,-1, 0; Cg]
Winkelbeschleunigung &%* C; [ 0,-2, 0; Cs
3. Mechanik
Masse m Cs [0, 0, 1; Co
+1 +1
Massendichte m Dy [-3, 0, 1; Dq]
+1 +1
Materiestromdichte m* D. [—2, -1 1;’D111]

1

=
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Geometr.

Grofle Charakter Dimensionsformel

Energie, Arbeit E Co [ 2, -2, 1; CS]
Leistung L ci [ 2,-3, 1; Cg]

+1 +1
Energiedichte n Dy [-1,-2, 1; D)

+1 +1
Energiestromdichte n* D [ 0,-3, 1; D]
Wirkung W Co [ 2,-1, 1; Cg]
Impuls ¢ Co [ 1.-1, 1; G
Kraft K*, K, Co, C1|  [1,-2, 1; Ci]
Druck p* Co [-1,-2, 1; Cq)

+1 +1
Kraft pro Volumenelement f* Dy [—2, -2, 1: D;
Drehmoment M#* C: [ 9.8 1s O
Drall D Co [ 2,-1, 1; C§
Trigheitsmoment 6% Ee [ 2,-0, 1; Ci]
Spannungstensor T** Cs [—1, =2, 13

+1 +1
Spannungstensordichte ¥ D; [—1, -2, 1; D}
4. Elektrodynamik
(Grundeinheiten L, T, M, Q)
Elektrische Ladung Q Cy [ 0, 0, 0, 1; ch

+1 +1
Elektrische Dichte p D [—3, 0, 0, 1; Dg]
Elektrische Feldstirke Fj Ci [1,-2, 1,-1; o

+1 +1
Dielektrische Verschiebung ®° D; [—2, 0, 0, 1; D

+1 +1
Magnetische Feldstirke §% D} [—1, -1, 0, 1; D;
Magnetische Induktion Bg, G [ 0,-1, 1,-1; Cg]
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Geometr,

GroBle Charakter Dimensionsformel

+1 +1

Dielektrische Affinordichte e |  Dj [-3,2, -1, 2; D}
Affinordichte der Permeabili- 1 1
L[4, D; [ 1, 0, 1,-2; Di]
+1 +1

Elektrische Stromdichte & D [—2, -1, 0, 1; D;
Stromstirke J Co [ 0,-1, 0, 1; Cs
Elektrische Spannung U Co [ 2,-2, 1,-1; C;
Dipolmoment p’ Co [ 1, 0, 0, 1; C(l)]
Magnetisches Moment m™ C: [ 2,-1, 0, 1; CS]
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