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Neues tiber die Pell'sche Gleichung

VON
J.BUCHER
LUZERN






L.

Den folgenden Betrachtungen ist der quadratische Zahlen-
kérper k (Vpq) zugrundegelegt, wo entweder p und ¢ Primzahlen
der Form 4n -+ 1 sind, oder ¢ = 2 ist. Unsere Entwicklungen be-
ziehen sich zunédchst auf den ersten Fall, in Ergdnzungsséitzen
werden wir jeweils den zweiten Fall beriicksichtigen.

Ist (g) = 1, so existieren iiber die Norm der Grundeinheit

die Sitze von Dirichlet (Werke 1. Bd., S. 219), die spater mehr-
fach ergénzt wurden, so von mir (Dissertation, Ziirich 1919), von
Herrn L. Rédei (Journal fiir Mathematik Bd. 171), von Herrn A.
Scholz (Mathematische Zeitschrift Bd. 39). Wir wissen folgendes:
Ist der gegenseitige biquadratische Restcharakter der Zahlen p
und ¢ bekannt, so la3t sich daraus schlieflen, ob die Klassenzahl
in k (Vpg) — stets Aquivalenz im engern Sinn vorausgesetzt —
durch 8 teilbar ist oder nicht; ferner lif3t sich im letzteren Fall
die Norm der Grundeinheit genau charakterisieren.

In der folgenden Arbeit wird gezeigt, dall, wenn der biqua-
dratische Restcharakter gewisser irrationaler Primfaktoren in
quadratischen Zahlenkorpern bekannt ist, ferner die Anzahl der
quadratischen Reste in bestimmten Intervallen, wir daraus
schlieBen kénnen, ob die Klassenzahl in & (Vp_q) durch 16 teilbar
ist oder nicht; im letztern Falle 146t sich die Norm der Grund-
einheit genau charakterisieren. Die Resultate von Dirichlet wer-
den also wesentlich erweitert.

14 8
Mit den bisher bekannten Resultaten stehen gewisse Kon-
. : t—uVpg .
gruenzen in Zusammenhang. Es sei ¢ = —%ﬂ, wobei ¢t und
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uw die kleinsten positiven ganzen Zahlen sind, fiir welche die
2 — pqu?

Gleichung 1

= 1 erfiillt ist. Aus der Definition folgt:

¢ ist positiv und —g— = + 1 (mod p) und (modg). ¢ ist das Quadrat

einer Einheit und zwar der Grundeinheit ¢’ (¢ > 1) in k (Vpgq),
wenn N (¢) = — 1 ist oder einer Einheit im erweiterten Korper
aVp—yVq

2
Grundeinheit in & (Vpg) = 1 ist. Der besondern Form von N (¢),
bzw. NN () entsprechend, koénnen drei Félle unterschieden wer-
den:

k(Vp,Vq) von der Form 5 = , wenn die Norm der

1. Fall. N (e) :x_L—quy_*:_l ;
2 _ 2
2. Fall. N (=272 —

2 2
3. Fall. N (n) :P_x#:l .

Diesen drei Normen sind, wie man sofort sieht, folgende drei
Kongruenzen umkehrbar eindeutig zugeordnet:

2 972

1. Fall. —;—zf—-i_fiz—l(mod p) = —1(modg) ;
2 2

2. Fall. %:fm_:—qyz 1 (mod p) = — 1 (mod gq) ;
2 2

3. Fall. %:WE— 1 (mod p)= 1(modgq) .

Ist ¢ = 2 betrachten wir entsprechend die Einheit: ¢ = ¢ —
— 1V 2p und unterscheiden, wie oben die drei Fiille:

1. Fall. N(e)=a2—2py?=—1; t =22+ 2py?*=—1 (mod p) =
= —1 (mod 4);

2. Fall. N(n) =pa?—2y*=—1,; t=p2*+ 2y*= 1 (modp)=
= —1 (mod 4);

3.Fall. N(n) =pa?—2y%= 1; t=pa?+2¢y?=—1 (modp)=
= 1 (mod 4) .

T—UVpq

Betrachten wir statt ¢ allgemein die Einheit ¢" =

-

D)

-

WO %_ = (%)n (mod pq). Ist n gerade, dann ist % =1 (mod pgq),
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_jzl = % (mod pg). Entsprechendes gilt

fiir den Korper & (V2p), so daB folgender Satz gilt:
1. Satz. Ist o» = E;Lpi, baw. =T—UV2p und sind

~

ist » ungerade, dann ist

die absolut kleinsten Reste von % , bzw. T nach den Moduln p und

q, bzw. nach den Moduln p und 4 : (—1; —1), (I; —I) oder
(—1; 1), so liegt in bezug auf N (V¢ ) der erste, zweite oder dritte
Fall vor und n vst ungerade; sind aber diese Reste gleich (1; 1),
so st n gerade.

Auf Grund dieses Satzes kénnen nun die Sétze von Dirichlet
so formuliert werden:

Ist die Klassenzahl h durch 4 teilbar, so ust:
h h

_(t\* (4 1A A
(7) (mod p); (5—)4 ( 2) (mod q) und fir q = 2
B, %
(—223—)4 = ¢ (mod p); (%)4 = 4" (mod 4).
Dabei bedeutet (%) ,= 1, dal} p von der Form: 16n + 1 und

I

/___\
LS
\‘—/
M

I

(%) = —1, daBl p von der Form: 16n -+ 9 ist.
4
II1.
A. Wir setzen im folgenden stets voraus, daf3 (ﬁ) = (%) = 1,
2 4 4
bzw. (%) = (Z—J) = 1 ist, daB also die Klassenzahl durch 8
4 4

teilbar ist.
Nehmen wir zuerst p und ¢ ungerade an. Ich definiere dann

als z-Zahlen jene P Z : Zahlen z < %, fir welche (%) —1ist
) o 4 q ¥\ _
und als y-Zahlen jene 1 Zahlen y < o5 fiir welche = A 1

ist. Ferner betrachte ich die Funktionen:
p—1 »—>5

(1) (p(u)EH(u—éLsinzx—;z—)Eu i t4a,u 1 +...4ap
1
__|_

q—5

—1
(2) qp(u)EH(u—éLsmzyTn)Eun + byu 4

ee. +ba—1
4
und ihre Resultante, das Doppelprodukt:



(3) R,,=11 (4 sin2%‘ —4sin? &’f) bzw.

(4) R, ,=11I (4 sinzﬂql 4 sinsz”) .
Ich definiere ferner die Zahlen 4 folgendermafen:
(5) Ao Bp o =1 By g5 AgpBop=1Bgp| .

Ist n die Anzahl der negativen Faktoren in R, ,, so ist
(6) bp, g = (—1)" .
Weil R, , aus E, , hervorgeht, wenn alle Faktoren das Zeichen

dndern, so folgt:
p—1(@—1)

(7) Zq,?ﬂ = (—1) = 2;0,(1 ¢
Beuisprel. Wir berechnen 4, 5, indem wir die Anzahl der ne-

(9]

gativen Faktoren im Produkt 77 (4 sin? Elg()il — 4 sin? —iz—) abzih-

len. Die Anzahl ist gleich der Anzahl der x-Zahlen <% und

die Zahl betrdagt 11. Hs ist also nach (6) : 415 = — 1 und nach
(M) : A0 =1 .

Ich bezeichne die Grundeinheit ¢ > 1 in k(¥p) mit &, und
die entsprechende Einheit in &(Vyq) mit &, bilde die Produkte:
e, =-—Vpe,und e,= —Vq &, wobei e, und e, total positive
Zahlen sind. Ferner zerlege ich p in k(¥g) in pp’ und ¢ in
kE(Vp) in qq’ und betrachte die biquadratischen Restsymbole:

e e ; . e R =)
—2) und | %) . Ersteres ist z. B. so definiert: {-*) =e¢, 4
q/a P/a q/a

(mod q). Wie sich spéter zeigen wird, konnen sie nur die Werte

+1 und —1 annehmen, und es ist (e_@) pres (Eﬁ'—) : (&) = (if) .
G/a \O /o \P/a \P /4

Nach diesen Vorbereitungen kénnen wir folgenden Satz fiir un-

gerade p und ¢ aussprechen:

Hauptsatz. Ist die Klassenzahl in k(Vpq) durch 8 teilbar, dann

h

h
; t\s t\s
18t Ag, p (%)45 (—2—) ’ (mod p); 4, , (%”)45 (?) ’ (mod q) .

Zusammen mit dem 1. Satz 148t sich aus 3 e—”) und A
4

bl

L 4 q
bestimmen, ob die Klassenzahl in £(Vpg) durch 16 teilbar ist

oder nicht, und im letzteren Fall, welche Form N (V¢ ) hat..
6



Bemerkung. Da nach dem Ideal p die irrationale Zahl e,
einer rationalen Zahl kongruent ist, so kommt es bei der Be-

stimmung von (%—) darauf an, ob eine rationale Zahl biquadra-
4

tischer Rest nach dem Modul p ist oder nicht.

Zahlenbeispiele. Die folgende Tabelle ist aufgestellt fir die
5 kleinsten Primzahlen p, fiir welche die Klassenzahl in &(V5p)
durch 8 teilbar ist. Ferner ist » und daraus 4, ; und 4; , berech-
1+V5
2

net. Bei der Berechnung von p ist w = , ferner ist

5 ) . Die Zahlen e, sind teilweise nur nach dem

_Vg(l—l/g) B 5—1/5.

Modul 5 angegeben. Ferner ist e, — 3 3

JhE T e (@)@l
101 [11}—1| 1] (101, 224+ w)|101—10 Y101 1 1| —1 11. Fall
181(18| 1]—1| (181,134 )| = 1 (mod 5) 1 1 1 = L.
401 [43}—1 |—1{ (401,111 4+ ) |401—20 }/401 Lf—31] — I ,,
461 (48| 1|—1| (461,21 +w)| — 1 (mod 5) 1| —1 1 16/h
521(56| 1| 1| (521,9940)|=—1(mod5) — 1| — 1| — — 1. Fall

B. Fiir ¢ = 2 betrachten wir an Stelle von (3):
(B) By o= (4 sinz % 4 gin? % . Die Anzahl der negativen

y4
Faktoren n ist gleich der Anzahl der x-Zahlen, die kleiner als

% sind. Der Formel (6) entspricht:

(9) Ap2=(—1)".Dain R, , gI—]LF.'smld:orelrl vorkommen und

p die Form 16n + 1 hat, so ist: B

(10) A, 5 =2y, = A. Ferner iste, = —V2(1—V2)=2—V2.

(522) ist in besonderer Weise zu definieren. e, = —V¥p ¢, hat
4

die Form ¢ —b Vﬁ, wobei, wie spéter bewiesen wird, @ die Form

8n -+ 1, b die Form 8n hat. Wir definieren nun (5;1) =1, wenn

4
a + b=1 (mod 16) und (%”) =—1, wenn a 4+ b = 9 (mod 16).
4
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Wir erhalten dann folgenden:

Ergiinzungssatz zum Hauptsatz: Ist die Klassenzahlin k(V 2p)
terlbar durch 8, dann ist:

h n
A(ﬁ) =17 (mod p); A(e—“’) =15 (mod 4)

P /4 2 )4 L
Zahlenbeispiele. Unter den Primzahlen p, fiir welche in k(¥V2p)
die Klassenzahl durch 8 teilbar ist, haben wir die ersten 3 ge-
wihlt und dazu noch p = 1217, weil dieses die kleinste Primzahl
ist, fiir welche die Klassenzahl in %(V2p) durch 16 teilbar ist.
e, ist mit einer Ausnahme nach dem Modul 16 angegeben.

€p €2 ép €2 —
l —_— — ——a e c
P u “ (2)4 (9)4 1(2)4 l(p)4 NV
113 9|—1| (113,514¥2) | = 948113 (mod 16) | 1 { =1 |- =13 1. Fal
257|120 1| (257,60+-V2) | 257—16)257 1 |—1 1 | — 1 |IIL Fal
337(25|—1| (337,26+¥2) | =9+8)337(mod16) | 1 | — 1| — 1 1 | IL Fal
1217|184 1/(1217,5914+¥2)| =1 (mod 16) 1 1 1 1 {16/h
IV.
Wir gehen zu den Beweisen tiber und beweisen zunéchst fol-
genden
2. Satz. Ist die Klassenzahl in k(Vpg): h = 8hy, so ist:

t—uVpg\h
(11) Chl:(““‘éﬂ) :‘Rp,qlzap,qu,q:lq,qu,p %

Beweis. Wir teilen die zu p und ¢ teilerfremden Zahlen < 19241

(3)=
(7)=—
(7)1

4. die §-Zahlen, fiir welche gilt: ( p) (E) = —1.

Die x- und g-Zahlen zusammengefal3t bezeichnen wir als A-
Zahlen, die y- und ¢-Zahlen als B-Zahlen und schlieflich die
A- und B-Zahlen zusammengefal3t als C-Zahlen.

8

in 4 Klassen ein:
1. die x-Zahlen, fiir welche gilt: (

I

7)
P
2. die g-Zahlen, fiir welche gilt: (—gm)

7)

3. die p-Zahlen, fiir welche gilt: (



Die allgemeine Klassenzahlformel (#.Hecke, Theorie der al-
gebraischen Zahlen, S.209) ergibt fiir A — Aquivalenz im engern
Sinn vorausgesetzt — mit unsern Bezeichnungen:

5 ]hmig
12 h = lo -
+15) log ¢ S Tein Bx

oder, wenn wir von den Logarithmen zu den Grundzahlen iiber-
gehen, A = 84, setzen und radizieren:

(13) g4h1 —

Fiir das Folgende brauchen wir verschiedene Formeln der
Winkelteilung, und entnehmen sie Webers Algebra, I. Bd.,
2. Aufl. Nach Formel 20, S. 478, gilt fiir jede ungerade Zahl n:

n—1

(14) 2 2 [lsin 2;” — Vn . (v:l,Z, %;1)

Die Wurzel hat das positive Vorzeichen, weil alle Faktoren
links positiv sind. Setzen wir n = pg und beachten, dafl die

pg—1 Zahlen, die kleiner als %q— sind, sich zusammensetzen

2
(p—1)(g—1)
2

Zahlen), aus den p; L Zahlen Aq (}l: 1,2, ... }7;
qg—1
2

aus den

zu p und ¢ teilerfremden Zahlen (C-
1

) und

aus den

Zahlenyp(,u: L2 wus qgl).Es gilt daher

pqg—1 (p—1) (9—1) p—1

B o . 2 sl . 2mC = . 2m@A

2 2 [Isin aw:2 2 Ilsin i 2 2 Jlsin iy
qg—1

.22 [Isin 2:;’“ . Die linke Seite ist wegen (14) = Vpg, der

zweite und dritte Faktor rechts sind aus gleichem Grunde Vp
und Vg . Daraus folgt:

w—1) (g—1)
(15) 2 *  [Isin %;ijzz 1,
welche Gleichung sich auch schreiben 146t:
»—1)}(¢—1) oz O
(16) 2 2 Ilsin =1 .




Diejenigen C-Zahlen in der Formel (15) namlich, fiir welche
2(C <p—g, ergeben in der Formel (16) die geraden C-Zahlen,

diejenigen C-Zahlen in der Formel (15), fiir welche 2C >—p2—q

ist, ersetzen wir durch die C'-Zahlen : p¢g—2C und diese ergeben
in der Formel (16) die ungeraden C'-Zahlen. Multiplizieren wir
(16) und (13) und radizieren, so folgt:

(p—1) (q—1)

(17) @m—2 4 [[sin’

Wir betrachten nun folgende vier positiven Produkte:

(p—1)(g—1) (r—1)(¢—1)
Py=3 8 Hsin%;z; Py= 2 8 Hsin‘f)—:;;
(r—1)(g—1) Ip—1) (¢ —1)
P,—2 s  IsintT. P,—2 3 el 22
pq Pq

Vergleichen wir die x-Zahlen mit den Zahlen der Linear-
form: L:qx + py, die entstehen, wenn x die frither definier-
ten x- und y die positiven und negativen y-Zahlen durchliduft.
Wir bemerken, dafl die Zahlen der Linearform eindeutig den
«-Zahlen zugeordnet sind, in dem Sinne, dafl jede Zahl der
Linearform einer und nur einer x-Zahl, mit positivem oder ne-
gativem Vorzeichen nach dem Modul pg kongruent ist. Es
folgt daraus:

r—1)(@—1)

(18) P, = ‘2 8 I sin g2 Z;ﬂy) = (Doppelprodukt.)

Wegen der trigonometrischen Identitit: sin (x4 f)sin (a—f)=
= sin® « —sin2?f folgt, wenn wir noch die Potenzen von 2 in
das Produkt hineinnehmen:

(19) Pl:‘n(4sin2ﬂ—4sinzy—“)
p q

Vergleichen wir in gleicher Weise die y-Zahlen mit den
Zahlen der Linearform: gz + pz, wo z die positiven und ne-
gativen quadratischen Nichtreste mod ¢ durchliduft, deren ab-

soluter Betrag < —q2— ist. Die Zahlen sind quadratische Reste

10



mod p und quadratische Nichtreste mod q. Wie oben erhalten
wir entsprechend:

(20) P e \H(4sin2ﬂ—4sin2—z—£) \
p q
Multiplizieren wir P; und P,, so ergibt sich:
(21) P, Pl= !0(4 sin? -2 __ 4sin? f‘—“) B
p q
wo die u-Zahlen simtliche Zahlen von 1 bis L — 1 durchlaufen.

Wir multiplizieren nun zuerst iiber die w-Zahlen und dieses
Produkt gibt nach Weber, Formel 29, S. 480, fiir ein festes

sin 247
=2 Multiplizieren wir noch iiber die x-Zahlen,
sin .
Isin 247
dann ist: P, P, = —5— = 1. Weil nidmlich ¢ quadra-
sin ==

tischer Rest mod p ist, durchlauft g mit x die halben Reste
mod p. Weil gx nicht kongruent einer Zahl — gz nach dem
Modul p sein kann, so sind die Faktoren des Zihlers und
Nenners, vom Vorzeichen und der Reihenfolge abgesehen, gleich.
Es ist also P, P;=1; vertauschen wir p und ¢ so folgt:
P, Py, =1 und schlieBlich wegen P, Py P, P,—=1:P,P; =1
und P, P, = 1, woraus folgt: P, = P,; P,= P,. Die rechte
Seite der Gleichung (17) gibt P; P, = Pji, und durch Radizie-
ren ergibt sich, wenn wir fiir P, Gleichung (19) setzen:

t—uVpg\ ™
(22) gl = (Tpg) = | By, | = Ap, g Bp g = g, p By,

was zu beweisen war.

Ergiinzungssatz zum 2. Satz. Ist die Klassenzahl in k(V2p)
h = 8h;, so ist:

(23) ¢h= (t—uV2p)™ ‘H(4sm2 ﬂp —4sin? ) ‘_..
= | Bpa]l =48 a=L M5, .
11



Beweis. Wir teilen die zur Diskriminante d = 8p teiler-
fremden Zahlen < 4p in 4 Klassen ein:
)

1. die x-Zahlen, fiir welche gilt: (3) = 1% (
-

o
’ ( p )
. = : 2 d
4. die ¢-Zahlen, fiir welche gilt: (T) =1; ( ) (—5):—1.
Die A-, B-, C-Zahlen definieren wir entsprechend wie oben.
Die allgemeine Klassenzahlformel ergibt, Aquivalenz im engern

Sinne vorausgesetzt, wenn wir zu den Grundzahlen iibergehen,
h = 8k, setzen und radizieren, der Formel (13) entsprechend:

|

|
e
Sl e|e

2. die f-Zahlen, fiir welche gilt: (%) =

l
|
I

S —" —  —
I

3. die y-Zahlen, fiir welche gilt: (%) =

]

ol R w|w R

I7sin w4
8p

(24) it — ({—uVap)h —

xB

I/sin 3

Setzen wir in (14) n = p, so ergibt sich:

p—1 - -
(25) 57T [Isin 2;” — V2 (v: 1 2, 2_2_1_)

und nach einer dhnlichen Uberlegung wie bei der Ableitung
der Gleichung (16) aus (15) ergibt sich:

p—1

(26) 9 2 Hsin%:l/ﬁ. (v=1,2...p_2—1).
Dividieren wir (25) durch (26) so ergibt sich wegen der Identitét:

: LK, . T—«
2811’104——2811’1?28111 5

2= —

(27) 2 2 [Isin (L—é—gv)—% = 1. Durch weitere zwei-
malige Anwendung der obigen Identitat auf (27) folgt:
(28) 9201 [Tgin -%”- =1.
Multiplizieren wir (24) und (28) und radizieren, so erhalten wir:
(29) (i = 901 [Tsin £

12



=1
Es sei wieder, wie oben, P, = 9 z JT sin%% , usw, Ver-
gleichen wir die Zahlen der Linearform: 8z + py, wo dies-
mal y die Werte 4+ 1 und — 1 annehmen kann, mit den «-
Zahlen, so bemerken wir, dal3 die Zahlen der Linearform, vom
Vorzeichen abgesehen, den «-Zahlen nach dem Modul 87 kon-
gruent sind. Es folgt daraus &hnlich wie friiher:

' _ ing 22 dgime
(30) Pl—'ﬂ(4sm 5 4 sin 8)

Die y-Zahlen entsprechen den Zahlen der Linearform:
8x + pz, wo z die Werte + 3 und — 3 annehmen kann. Es
ist deshalb:

i . o O7
(31) Py == H(4sm2 ki — 4 8in® %)L , woraus hervor-
4

geht: P, P, — [U(16sin4~y;—ﬂ——163in2%;r—+2)|: T2c0s 225 | —
. 8@
[T 2sin >

T | = 1, weil 2 quadratischer Rest mod p ist.

12sin =~

Ahnlich wie vorhin, ergibt sich schlieBlich: P,P, = P} und aus
(29) folgt durch Radizieren:
(32) = (t —uV2p)r = AH(4 sin‘z%—tlsin?%) ,

womit der Erginzungssatz bewiesen ist.

V.

In (1) haben wir die Funktion ¢ (u) aufgestellt. Fiir die
Koeffizienten dieser Funktion beweisen wir folgenden

3. Satz. Die Koeffizienten a, der Funktion ¢ (u) sind ganze
Zahlen in k(Vp) und durch Vp teilbar.

Beweis. Die Zahlen 4sin2% sind ganze algebraische Zah-

P— p—1
2

Grade, denen sie geniigen, mit ganzzahligen rationalen Ko-
effizienten, und dem Koeffizienten der hochsten Potenz = 1,

13

len vom Grade

. Die irreduzible Gleichung vom




ist in Webers Algebra (S. 480, Formel 28) aufgestellt. Es sind
deshalb auch die Zahlen, die aus den Zahlen 4sin2 *7 Qurch

P
Addition und Multiplikation entstehen, ganze Zahlen.

Nach Gaufi ist 2 2cos 2;ﬂ .= j v , ferner

2z —1—Vp

2’ 2cos
2

, wo z die Nichtreste mod p bedeuten,

die < —}21 sind. Aus der trigonometrischen Identitédt: 4sin? « =

= 2 — 2cos « folgt:

., & p—1 —14+Vp _ p—Vp
(33) 2 4sin s 2 ( 5 =
(34) Z4sinz 27 — p+Vp ,
P 2

Zwischen x = 2cos ¢ und 4, (z) = 2cos n g existiert nach
Weber (S. 475) das System von Gleichungen:

I. 4,(x) = =x;
II. 4,(x) = a?—2 usw., mit der Rekursionsformel:
An+1 (IL‘) - xA'n ((E) _Afn41 (w) .

Fithren wir in das System dieser Gleichungen die Werte:

y=4 sin2-¥ und C, (y) = 4sin? n2<p ein, so folgt wegen & = 2 —y

2
und A4, () =2—0C,(y) das neue System von Gleichungen:
LG =v;
II. Cy(y) = —y?®+ 4y usw. mit der Rekursionsformel:

Conn(y) = 22— 0, () + 20 —C,a(y) -

Die Rekursionsformel zeigt, dal auf der rechten Seite der
Reihe nach Funktionen vom 1., 2., usw. Grade vorkommen,
wobei — was wesentlich ist — kein von y unabhéngiger Sum-
mand vorkommt. Wir setzen nun in der ersten Gleichung fiir y:

Ty 7 Ty T

y, = 4sin? ; usw. und addieren tiber alle

p._

; Yy = 4s1in®

Werte von y. Dasselbe machen wir bei der zweiten

Gleichung, bei der dritten usw. Die linken Seiten haben nach
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n —
—|— |V
r=(3)"
2
kommen der Reihe nach die Potenzsummen: s; = Xy,; s, =

= Xy usw. vor. Wir erhalten dann das System von Gleichun-
gen:

, auf der rechten Seite

(33) und (34) die Werte

= 83 — 63, + 98, ; usw.

Aus der ersten Gleichung folgt, daB s, durch Vp teilbar ist,
aus der zweiten Gleichung das nédmliche fiir s,, usw. Die Re-
kursionsformel zeigt, daB alle Potenzsummen durch Vp teil-
bar sind.

Die Potenzsummen hingen mit den Koeffizienten durch die
Newton’schen Gleichungen zusammen.

0=s+a
0=¢+ a8 + 2a,
0 =28, + a,;8 + a,s; + 3a, usw.,

woraus wir erkennen, daf alle Koeffizienten a, durch Vp teil-
bar sind.

Gleicherweise 1Bt sich natiirlich auch beweisen, dall in (2)
die Koeffizienten b, durch Vg teilbar sind.

VI

Es seien ¢ (u), w(u) [vergl. (1), (2)] gegeben und ihre Resul-
tante (3). Dann ist bekanntlich B, , eine Summe von Produk-
ten der Koeffizienten @, und b,. Wie aus der Darstellung der

Resultante (3) hervorgeht, gibt es nur einen Summanden, der
g—1
nicht von den b, abhéngt, nimlich X * | wo X = I]4sin? %
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und einen Summanden, der nicht von den a, abhéngt, nim-
—1)(g—1) p—1

lich (—1) 1 Y 1, wo Y:H4sin2~y—§~.Alle iibrigen

Summanden sind Multipla, sowohl der Zahlen a, als auch der
Zahlen b,, und mit Riicksicht auf den 3. Satz kénnen wir ihre
Summe schreiben : Z ¥ pq. Multiplizieren wir die Resultante mit
Ap, ¢, 80 folgt wegen Satz 2 und Formel (7):

f— ]/—— hi g1 — r—l,
(35) (#) —Ap o X ¢ £ZVpg+ 4, Y ¢ .

Vermittels der Klassenzahlformel und wegen (14) ergibt sich
fir X = —Vpeltr, wo h, die ungerade Klassenzahl in k(Vp)
ist und ebenso fir ¥ = —Vgela, wo b, die ungerade Klassen-
zahl in k(V¢q) ist. Wir konnen (35) in zwei Kongruenzen nach
den Moduln ¥p und Vq zerlegen und erhalten:

£\ r—1 - £\ 1 g1 _
(36) (?) =1,,Y % (modVp); (E) =12,,X * (modVy) .

Bei der ersten Kongruenz steht links eine rationale Zahl,

rechts eine ganze Zahl aus k( V¢q), folglich muB die Kongruenz

p—1
auch nach dem Modul p gelten. Die irrationale Zahl Y ¢
kann aber nur dann ewner rationalen Zahl nach dem Modul p

kongruent sein, wenn die Differente der Zahl durch p teilbar

: . 1—Vyq
ist, d.h. wenn ¥ ¢ die Form hat: a +bpw- o= 5 ) .

Dann gilt die Kongruenz sowohl nach dem Modul p, als auch
nach dem Modul p’, wo p=p-p’ eine Zerlegung von p in
k(Vq) ist. Gehoren nun die Zahl x und das Ideal p dem glei-

chen Zahlenkorper an, und ist (%) = 1, ferner N (p) = p, so

definieren wir das biquadratische Restsymbol (%) = + 1 oder
4

p—1
= —1, jenachdem & * = -1 oder = —1 (mod p) ist. Wir
koénnen also die erste Kongruenz schreiben:
t hy Y Y
(37) (E) = A »p (?)45 A5 5 (7)4 (mod p) .

16



Nun ist noch nachzuweisen, dal (1) = (e—") ist, wobei
4 4

=y —Vage'h
e, = —Vqe, ist. Aus (37) folgt (%) = (—%) = 1. Fer-
e 'h ’
ner folgt aus (di) =1 der Reihe nach: (Eq q) = I, (ﬁ)z 1,
p p p
> . o1 Y €q
—) = 1 und schlieBlich: {—) = |-} . Ebenso folgt aus
P /s P /4 P/a

der zweiten Kongruenz (36) (%)h1 = Ay (%)—)4 (mod q), womit
der Hauptsatz bewiesen ist.

Um den Erginzungssatz fiir ¢ = 2 zu beweisen, schreiben
wir die Gleichung (32) als eine Kongruenz nach dem Modul
Vj? oder, was wir diirfen, nach dem Modul p an und wir er-
halten:

»—1

(38) thi= 4 (4 sin? %) 4 (mod p) .

Nun ist 4sin2—g—- — 2 —V2 = ¢,, und mit Beniitzung des bi-

quadratischen Restsymbols erhalten wir:

(39) th = A(%) (mod p), womit die Hélfte des Ergén-
4

zungssatzes bewiesen ist.

Um den zweiten Teil zu beweisen, berechnen wir die Funk-

tion 5. Grades mit den Nullstellen: 0, 4sin2%, 4sin2—2—n,

8
. . 3 . . .
4sm2Tn, 4sm2Tﬂ . Sie heiBt: ¢ (u) = u® —10u* + 34us—

— 44 u? 4 16u. Wir dividieren die in (1) definierte Funktion
@ (u) durch ¢(u) und der Rest r(u) ist dann eine eindeutig be-
stimmte Funktion vom 4. Grade. Die Koeffizienten von r(u)
sind ganze Zahlen in k£(Vp). Der Algorithmus der Division
zeigt ndmlich, daBl die Koeffizienten von r(u) aus den Koeffi-
zienten von ¢ (u) und von ¢(u) nur durch die Operationen der
Addition, Subtraktion und Multiplikation hervorgehen. Aus
@ (u) =t(u) - g(u) + r(u) folgt fiir die Nullstellen «, von ¢ (u):
¢ (uy) = r(u,). Man findet so:
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7 (0) = H4sin2% =X = —Vpe,'» = A — BVp(4Aund Bganz
und positiv)

r (flsin2 %) —At—u V@)"l = AT — UV.‘Z—p) , wegen (32)

g (mm%) — 2t + wV2p)m=A(T + UV3p), (statt V2,—V3)

.22 4 i
r (4 sin? Tn) =1 und r (4 sin2 Tn) = 1 nach leichter Ausrech-

nung. Durch Interpolation 148t sich r(u) bestimmen und man fin-
A—BVp—4T+3  weil gie-

det als Koeffizienten von u?: 16
M+NVp

ser Ausdruck als ganze Zahl in % (V'p) von der Form

M = N (mod 2) ist, folgt: B = 0 (mod 8), 4 = 1 (mod 8). Fer-
ner folgt aus A7 =1 (mod4): 4 + B=1 (mod 16) und um-
gekehrt, aus A7 = —1(mod 4) 4 + B =9 (mod 16) und um-
gekehrt. Setzen wir —Vpe, —a —bVp, so folgt, weil A, un-
gerade ist 4 = a (mod 16); B = b (mod 16). Das Symbol (%”)

4

soll nun + 1 sein, wenn a@ 4+ b =1 (mod 16) und — 1, wenn

a+b=9 (mod 16). Es ist dann: 1 7' = (%) (mod 4) oder
4
T=1 (%) (mod 4). Andererseits folgt aus der Gleichung
4

(t—uV2p)"=T — UV2p, weil u und U gerade Zahlen sind:
th = T (mod 2V2), bzw. t1 = T (mod 4). Aus den beiden
Kongruenzen fiir 7' folgt:

(40) thr = 4 (—622) (mod 4), womit auch der zweite Teil
4

des Erginzungssatzes bewiesen ist.
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