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Neues über die Pell'sche Qleichung

VON
J. BUCHER

LUZERN





I.

Den folgenden Betrachtungen ist der quadratische Zahlenkörper

k (Vpq) zugrundegelegt, wo entweder p und q Primzahlen
der Form 4w + 1 sind, oder q 2 ist. Unsere Entwicklungen
beziehen sich zunächst auf den ersten Fall, in Ergänzungssätzen
werden wir jeweils den zweiten Fall berücksichtigen.

Ist — 1 1, so existieren über die Norm der Grundeinheit
\97

die Sätze von Dirichlet (Werke 1. Bd., S. 219), die später mehrfach

ergänzt wurden, so von mir (Dissertation, Zürich 1919), von
Herrn L. Bedei (Journal für Mathematik Bd. 171), von Herrn A.
Scholz (Mathematische Zeitschrift Bd. 39). Wir wissen folgendes:
Ist der gegenseitige biquadratische Restcharakter der Zahlen p
und q bekannt, so läßt sich daraus schließen, ob die Klassenzahl
in k (Vpq) — stets Äquivalenz im engern Sinn vorausgesetzt —
durch 8 teilbar ist oder nicht; ferner läßt sich im letzteren Fall
die Norm der Grundeinheit genau charakterisieren.

In der folgenden Arbeit wird gezeigt, daß, wenn der
biquadratische Restcharakter gewisser irrationaler Primfaktoren in
quadratischen Zahlenkörpern bekannt ist, ferner die Anzahl der
quadratischen Reste in bestimmten Intervallen, wir daraus
schließen können, ob die Klassenzahl in k {Vpq) durch 16teilbar
ist oder nicht; im letztern Falle läßt sich die Norm der Grundeinheit

genau charakterisieren. Die Resultate von Dirichlet werden

also wesentlich erweitert.

II.
Mit den bisher bekannten Resultaten stehen gewisse Kon-

£ ^ y ^Y)Q

gruenzen in Zusammenhang. Es sei g -—, wobei t und
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4

px2 — qy2
4

px2 — qy2
4

u die kleinsten positiven ganzen Zahlen sind, für welche die
^2 riß Q /^2

Gleichung — 1 erfüllt ist. Aus der Definition folgt:

g ist positiv und 4~ ± 1 (modp) und (modg). g ist das Quadrat

einer Einheit und zwar der Grundeinheit e' (e >1) in k Vpq),
wenn N (e) — 1 ist oder einer Einheit im erweiterten Körper

CC r D 1/ r 0
k(Yp ,Yq) von der Form r\

1 wenn die Norm der

Grundeinheit in Je Ypq) 1 ist. Der besondern Form von AT(e),

bzw. N {rj) entsprechend, können drei Fälle unterschieden werden:

1.Fall. jy(e) 3;,-pgy'==-l

2. Fall. -qy2 -l;
3. Fall. N(rj)

Diesen drei Normen sind, wie man sofort sieht, folgende drei
Kongruenzen umkehrbar eindeutig zugeordnet:

1. Fall. 4- ^ + _ i (mod p) — 1 (mod q) ;

2. Fall. 4" ^X 4 ^ 1 (mod p) — 1 (mod q) ;

3. Fall. | ^X ^ ^ — 1 (mod p) 1 (mod g)

Ist q 2 betrachten wir entsprechend die Einheit: g t —
— uV2p und unterscheiden, wie oben die drei Fälle:

1.Fall. N(e)=x2— 2py2 =—1; t x2 -f- 2py2 —l(modp)
—1 (mod 4);

2. Fall. N(rj) px2 — 2y2=—1; t px2-\-2y2= l(modp)
—1 (mod 4);

3. Fall. N(rj)=px2 — 2 y2= 1; t px2-\-2y2 =—1 (modp)
1 (mod 4)

T— UYpq

wo
2

Betrachten wir statt g allgemein die Einheit gn

T / t \n T
1 — 1 (modpg). Ist n gerade, dann ist — =1 (mod pq),



T t
ist n ungerade, dann ist — (mod pq). Entsprechendes gilt

A A

für den Körper k(V2p), so daß folgender Satz gilt:
T—JJV'vq /—1. Satz. Ist g11 ——, bzw. =T—U V2p und sind

(&

T
die absolut kleinsten Reste von — bzw. T nach den Moduln p und

q, bzw. nach den Moduln p und 4 : (—1; —1), (1; —1) oder

(—1; 1), so liegt in bezug auf N (Vg) der erste, zweite oder dritte
Fall vor und n ist ungerade; sind aber diese Reste gleich (1; 1),

so ist n gerade.
Auf Grund dieses Satzes können nun die Sätze von Dirichlet

so formuliert werden:
Ist die Klassenzahl h durch 4 teilbar, so ist:

h h

p\ — (t
Iii {^2 j

4

(mod p); {^7T)
*

(m°d l) und für q 2

h_ h_

14 imod p); j t4 (mod 4).

Dabei bedeutet 1^-1 1, daß p von der Form: 1 (in A 1 und^^ \ 2 /4
—I =—1, daß p von der Form: 16n + 9 ist.
W.

III.
A. Wir setzen im folgenden stets voraus, daß| — | —| 1,

tp\ / 2 \
bzw. I — I I — | =1 ist, daß also die Klassenzahl durch 8

\2/4 \P1 4

teilbar ist.
Nehmen wir zuerst p und q ungerade an. Ich definiere dann

als »--Zahlen jene ^ Zahlen x < für welche (— | =1 ist
4 2 \p)

und als «/-Zahlen jene ^
^

1
Zahlen y < -|-, für welche j 1

ist. Ferner betrachte ich die Funktionen:

(OC 71 \ P 1 V 5

u — 4 sin2 1 u 4 -|- a1u 4 + -\-av—i
PI i

(2) f(u)=n(u — 4sin2-^^-j u 4 -|- b1u * + -j-6g—i

und ihre Resultante, das Doppelprodukt:



(3) BPi9 77 (4 sin2— 4sin2-^-) bzw.

(4) Rq p — II (4 sin2 4sin2-^-^
' \ # p

Ich definiere ferner die Zahlen A folgendermaßen:
(5) Ap( g q

I ^p, q
I

> hq, V -^q, V
I "^<7, P

I

Ist n die Anzahl der negativen Faktoren in RPi,,, so ist
(6) A,,4=(—1)».
Weil R,u v aus Rfp q hervorgeht, wenn alle Faktoren das Zeichen
ändern, so folgt:

(p-i) (g — 1)

(7) A4i p (— 1) 16 APi4

Beispiel. Wir berechnen A10i,5 indem wir die Anzahl der ne-

(OC 7C 7C \
4 sin2 —— 4 sin2 — I abzäh-

IUI ö /

len. Die Anzahl ist gleich der Anzahl der x-Zahlen < und
o

die Zahl beträgt 11. Es ist also nach (6) : A10i,s — 1 und nach
(7) : A5,ioi 1 •

Ich bezeichne die Grundeinheit e> 1 in k (Vp) mit sp und
die entsprechende Einheit in k(Vq) mit eQ, bilde die Produkte:
e,0 — Vp s'p und eQ — Vq e'q wobei ep und eQ total positive
Zahlen sind. Ferner zerlege ich p in k(Vq) in pp' und q in
k(Vp) in qq' und betrachte die biquadratischen Restsymbole:

und • Ersteres ist z. B. so definiert: e„ 4

(mod q). Wie sich später zeigen wird, können sie nur die Werte

-f-1 und —1 annehmen, und es ist j j •

Nach diesen Vorbereitungen können wir folgenden Satz für
ungerade p und q aussprechen:

Hauptsatz. Ist die Klassenzahl ink(Vpq) durch 8 teilbar, dann
h_ h_

ist a4, p (yjs (mod v); K, q (^— (y)* (mod 1) •

Zusammen mit dem 1. Satz läßt sich aus I — I — 1 und A

_ vp/« \q/4
bestimmen, ob die Klassenzahl in k(Vpq) durch 16 teilbar ist
oder nicht, und im letzteren Fall, welche Form N(Vg) hat..



Bemerkung. Da nach dem Ideal p die irrationale Zahl eq

einer rationalen Zahl kongruent ist, so kommt es bei der

Bestimmung von darauf an, ob eine rationale Zahl biquadratischer

Rest nach dem Modul p ist oder nicht.
Zahlenbeispiele. Die folgende Tabelle ist aufgestellt für die

5 kleinsten Primzahlen p, für welche die Klassenzahl in k(Vöp)
durch 8 teilbar ist. Ferner ist n und daraus XPt 5 und X-0t v berechnet.

Bei der Berechnung von p ist a>

D 1 + V V

1 + P5
ferner ist

(5,- Die Zahlen ev sind teilweise nur nach dem

_ n y5
Modul 5 angegeben. Ferner ist e5 —V5

Ts

V n ^•5, p P ep

101 11 —1 1 (101, 22+w) 101—10 l/IÖI
181 18 1 —1 (181, 13 + co) 1 (mod 5)

401 43 — 1 — 1 (401,111+co) 401—20 p401
461 48 1 —1 (461, 21 —|— to) •EE 1 (mod 5)

521 56 1 1 (521, 99+co) — 1 (mod 5)

(D CD. »CD >-5,i
es

p/4 iV(lD

II. Fall
III. „
II. „
16/h
I. Fall

B. Für q 2 betrachten wir an Stelle von (3):

(8) Rlh 2 n ^4 sin3 DD 4 sin2 D-j Die Anzahl der negativen

Faktoren n ist gleich der Anzahl der «-Zahlen, die kleiner als
V sind. Der Formel (6) entspricht:
8

(9) XPi 2 (— 1). Da in RIK 2 Faktoren vorkommen und

p die Form 16% + 1 hat, so ist:
(10) XPt 2 X2,p X Ferner ist e2 —V2(l— P2) 2'—V2.

D) ist in besonderer Weise zu definieren. ev —Vp e'p hat
'4

_die Form a — bVp, wobei, wie später bewiesen wird, a die Form

8% -)- 1, b die Form 8% hat. Wir definieren nun D wenn

a -f- b 1 (mod 16) und — D wenn a + b 9 (mod 16).

7



Wir erhalten dann folgenden:
Ergänzungssatz zum Hauptsatz: Ist die Klassenzahl in Je (V2p)

teilbar durch 8, dann ist :

t8 (mod p); t8 {mod 4)

Zahlenbeispiele. Unter den Primzahlen p, für welche in k{V2p)
die Klassenzahl durch 8 teilbar ist, hahen wir die ersten 3

gewählt und dazu noch p 1217, weil dieses die kleinste Primzahl
ist, für welche die Klassenzahl in k{V2p) durch 16 teilbar ist.
e,D ist mit einer Ausnahme nach dem Modul 16 angegeben.

p n X V ep (i). >(t), *(y). N(P?;

113 9 —1 (l 13, 51 +p2) 9+8l/Il3 (mod 16) 1 1 — 1 — 1 I. Fal.

257 20 1 (257, 60+P2) 257—I6I/257 1 — 1 1 — 1 III. Fal
337 25 —1 (337, 26+1/2) ^9+81/337 (mod 16) 1 — 1 — 1 1 II. Fal.

1217 84 1 (1217, 591 + 1/2) "" 1 (mod 16) 1 1 1 1 16/h

IV.

Wir gehen zu den Beweisen über und beweisen zunächst
folgenden

2. Satz. Ist die Klassenzahl in fc(Vpq): h — 8 hj, so ist:

(11) gÄ! \Rp<q\=lP,q RPt q „ Rtt p

pqBeweis. Wir teilen die zu p und q teilerfremden Zahlen <
Zt

in 4 Klassen ein:

1. die «-Zahlen, für welche gilt: 1

2. die /9-Zahlen, für welche gilt: —1

3. die y-Zahlen, für welche gilt: — (~pj 1

4. die AZahlen, für welche gilt: —1.

Die <x- und ß-Zahlen zusammengefaßt bezeichnen wir als A-
Zahlen, die y- und AZahlen als B-Zahlen und schließlich die
A- und B-Zahlen zusammengefaßt als C-Zahlen.

8



Die allgemeine Klassenzahlformel (E. Hecke, Theorie der
algebraischen Zahlen, S.209) ergibt für h — Äquivalenz im engern
Sinn vorausgesetzt — mit unsern Bezeichnungen:

II sin ^ 71

(12) S-T^-log "log C tt B 71° n sin
pq

oder, wenn wir von den Logarithmen zu den Grundzahlen
übergehen, h 8/t, setzen und radizieren:

nsin ^ 71

(13) e"i=
77sin -

J

pq
Für das Folgende brauchen wir verschiedene Formeln der

Winkelteilung, und entnehmen sie Webers Algebra, I. Bd.,
2. Aufl. Nach Formel 20, S. 478, gilt für jede ungerade Zahl n:

(14) 2 2 nsin
2 nV Vn (p 1, 2

U 1

n \ ' 2

Die Wurzel hat das positive Vorzeichen, weil alle Faktoren
links positiv sind. Setzen wir n pq und beachten, daß die

^ '
Zahlen, die kleiner als sind, sich zusammensetzen

2 ' 2

aus den — ^ --- zu p und q teilerfremden Zahlen (C-
Zi

V — 1 / p — 1 \
Zahlen), aus den Zahlen Xq I X 1, 2, —-—I und

aus den ^
2

*
Zahlen p p 1, 2, ~ ^ j. Es gilt daher

m—i o~„. (p—i)(s—i) p—12 nv _ 2jtC 2tzX
2 2 77sin 2 2 77sin 2 2 77 sin

pq pq p
Q — 1 ^

•2 2 77sin—. Die linke Seite ist wegen (14) Vpq, der

zweite und dritte Faktor rechts sind aus gleichem Grunde Vp
und Vq Daraus folgt:

(P — 1) — 9 rt
(15) 2 2 77sin =1,

pq
welche Gleichung sich auch schreiben läßt:

(P — 1)(<Z — 1) Q
(16) 2 2 77sin- =1

pq



Diejenigen D-Zahlen in der Formel (15) nämlich, für welche

VQ2D< —, ergeben in der Formel (16) die geraden D-Zahlen,
Li

VQ
diejenigen D-Zahlen in der Formel (15), für welche 2D >

Li

ist, ersetzen wir durch die D-Zahlen : pq— 2D und diese ergeben
in der Formel (16) die ungeraden D-Zahlen. Multiplizieren wir
(16) und (13) und radizieren, so folgt:

(v—i) (?—i)
(17) g2hi — 2 4 77sin

71A

pq

Wir betrachten nun folgende vier positiven Produkte:
(v —1)(8 — 1) (v —1)(9 —1)

a 7iP, 2 8 /7 sin 2212^
; p 2 8 77sin;pq pq

(P — 1) (9 — 1) \(P— 1) (g~1) s

P3 2 8 77 sin ; P4 2 8 77sin—.
pg pq

Vergleichen wir die «-Zahlen mit den Zahlen der Linearform:

L : qx + py, die entstehen, wenn x die früher definierten

x- und y die positiven und negativen ;y-Zahlen durchläuft.
Wir bemerken, daß die Zahlen der Linearform eindeutig den
a-Zahlen zugeordnet sind, in dem Sinne, daß jede Zahl der
Linearform einer und nur einer «-Zahl, mit positivem oder
negativem Vorzeichen^nach dem Modul pq kongruent ist. Es
folgt daraus:

(18) P1 z=^n^_{qx + vy)a (Doppelprodukt.)
pq

Wegen der trigonometrischen Identität: sin (« -j- ß) sin («—ß)
— sin2 a — sin2/? folgt, wenn wir noch die Potenzen von 2 in
das Produkt hineinnehmen:

(19) P1= 77 ^4 sin2-^- — 4 sin2^
Vergleichen wir in gleicher Weise die y-Zahlen mit den

Zahlen der Linearform: qx -j- pz, wo z die positiven und
negativen quadratischen Nichtreste mod q durchläuft, deren ab-

qsoluter Betrag < ist. Die Zahlen sind quadratische Reste
Li

10



mod p und quadratische Nichtreste mod q. Wie oben erhalten
wir entsprechend:

(20) P3 11 4 sin2
X 71

4 sin2
Z 71

p q

Multiplizieren wir P1 und P3, so ergibt sich:

(21) p p i—r 1 r 3,— II 4 sin2
X 71

P
4 sin2

U 71

Q 1

wo die «--Zahlen sämtliche Zahlen von 1 bis — durchlaufen.

Wir multiplizieren nun zuerst über die «-Zahlen und dieses

Produkt gibt nach Weber, Formel 29, S. 480, für ein festes

xqnsin
x: P

sm-
X 71

Multiplizieren wir noch über die x-Zahlen,

dann ist: Px P3
IIsin xq 7t

P

IIsin
X7C

V

1. Weil nämlich q quadra¬

tischer Rest mod p ist, durchläuft qx mit x die halben Reste
mod p. Weil qx nicht kongruent einer Zahl —qx nach dem
Modul p sein kann, so sind die Faktoren des Zählers und
Nenners, vom Vorzeichen und der Reihenfolge abgesehen, gleich.
Es ist also PXP3 1; vertauschen wir p und q so folgt:
Px P4 1 und schließlich wegen Px P2 P3 P4 1 : P2 P3 1

und P2P4= 1, woraus folgt: P4 P2; P3 P4. Die rechte
Seite der Gleichung (17) gibt P4 P2 Pf, und durch Radizieren

ergibt sich, wenn wir für Px Gleichung (19) setzen:

(22) —- -uVpqy1 | — ^p, q Pp, q ^•q, p Pq, p>

was zu beweisen war.

Ergänzungssatz zum 2. Satz. Ist die Klassenzahl in k(V2p)
h 8hi so ist:

(23) ghi (t—uV2p)hl= Il\4sin2
I Pp, 2

I ^ Pw. 2 X R

71 X

P
-4 sin2

p, 2 l2, V

11



Beweis. Wir teilen die zur Diskriminante d 8p
teilerfremden Zahlen < 4p in 4 Klassen ein:

1. die «-Zahlen, für welche gilt: j 1; l

2. die /S-Zahlen, für welche gilt: —1J j=—1

PW^I 13. die y-Zahlen, für welche gilt: j —1;

4. die (3-Zahlen, für welche gilt: 1;

Y.
\ / A \

—1.

Die A-, B-, D-Zahlen definieren wir entsprechend wie oben.
Die allgemeine Klassenzahlformel ergibt, Äquivalenz im engern
Sinne vorausgesetzt, wenn wir zu den Grundzahlen übergehen,
h 8hx setzen und radizieren, der Formel (13) entsprechend:

11 sin —-—
(24) (t — uV2p)ihl=— P

11 sin-7"5
8p

Setzen wir in (14) n p, so ergibt sich:

V~1 ^ TT V ,— / p 1P-1 2irv —l
(25) 2 2 IIsin———= Vp\v=\, 2,

und nach einer ähnlichen Überlegung wie bei der Ableitung
der Gleichung (16) aus (15) ergibt sich:

v — 1 / i* n _ izr _ 1 o V — 1
(26) 2 2 77sin— Vp 1, 2

g

Dividieren wir (25) durch (26) so ergibt sich wegen der Identität:
o o • a o • 71 — <*
2 sm « 2 sm — 2 sm

2 2

v—i (p 2v) 71
(27) 2 2 77sin — 1 Durch weitere zwei-

8p
malige Anwendung der obigen Identität auf (27) folgt:

(28) 2»<®-»77sin-^-= 1.v 1

8p
Multiplizieren wir (24) und (28) und radizieren, so erhalten wir:

(29) g2Ai 2f-177sinA7T-
8 p

12



OC TZ

Es sei wieder, wie oben, P1 2 2 77sin—— usw. Ver-
8p

gleichen wir die Zahlen der Linearform: 8 x + p y, wo diesmal

y die Werte -f- 1 und — 1 annehmen kann, mit den «-
Zahlen, so bemerken wir, daß die Zahlen der Linearform, vom
Vorzeichen abgesehen, den «-Zahlen nach dem Modul 8p
kongruent sind. Es folgt daraus ähnlich wie früher:

(30) Pi n (4 sin2 — 4 sin2
P ®

Die y-Zahlen entsprechen den Zahlen der Linearform:
8x -f- pz, wo z die Werte -f- 3 und —3 annehmen kann. Es
ist deshalb:

X 71 „ 3 71

(31) P3 II 4 sin2
p

4 sin2

geht: P1P3 [ TT (16 sin' X 71

772sin
8 71 X

p

„ X 71
•16sm2 1- 2)

p

woraus hervor-

4 nx772cos-
P

II 2sin
4 TT X

p

weil 2 quadratischer Rest mod p ist.

Ähnlich wie vorhin, ergibt sich schließlich: P1P2 -- P'i und aus

(29) folgt durch Radizieren:

(32) ghi=(t — u V2p)hl XII ^4si

womit der Ergänzungssatz bewiesen ist.

sim
X 71

P

V.

In (1) haben wir die Funktion <p (u) aufgestellt. Für die
Koeffizienten dieser Funktion beweisen wir folgenden

3. Satz. Die Koeffizienten av der Funktion cp (u) sind ganze
Zahlen in k{Vp) und durch Vp teilbar.

OC TZ
Beweis. Die Zahlen 4sin2—— sind ganze algebraische Zah-

J) \ <T) J
len vom Grade —-—. Die irreduzible Gleichung vom - - „—Ji Li

Grade, denen sie genügen, mit ganzzahligen rationalen
Koeffizienten, und dem Koeffizienten der höchsten Potenz 1,

13



ist in Webers Algebra (S. 480, Formel 28) aufgestellt. Es sind
TC TZ

deshalb auch die Zahlen, die aus den Zahlen 4 sin2 durch
P

Addition und Multiplikation entstehen, ganze Zahlen.

Nach Gauß ist E 2 cos ~XK —
\ -{-Vp ferner

p 2

2 X pN2cos wo z die Nichtreste mod® bedeuten,
p 2

Pdie < sind. Aus der trigonometrischen Identität: 4 sin2 a
Li

2 — 2 cos « folgt:

x 7t p—1 I—l + p—Vp
p 2

zn p -f Vp

(33) E 4 sin2

(34) E 4sin2 —v ' p 2

Zwischen x 2 cos q> und An(x) 2 cos n q> existiert nach
Weber (S. 475) das System von Gleichungen:

I. A1 (x) x ;

II. Ä2 (x) - - x' — 2 usw., mit der Rekursionsformel:

An+i (z) %An (x) — An_! (x).

Führen wir in das System dieser Gleichungen die Werte:

y 4 sin2 und Cn (y) 4 sin2 ein, so folgt wegen x 2 —y
Li Li

und An(x) 2 — Cn(y) das neue System von Gleichungen:

L Ci (y) y ;

II. C2(y) — y2 4y usw. mit der Rekursionsformel:

c«+i(y) (2—y) cn(y) + 2y—on^(y).
Die Rekursionsformel zeigt, daß auf der rechten Seite der

Reihe nach Funktionen vom 1., 2., usw. Grade vorkommen,
wobei — was wesentlich ist — kein von y unabhängiger
Summand vorkommt. Wir setzen nun in der ersten Gleichung für y:

7C TT 7C TT

y, 4 sin2 —1— ; w, 4 sin2 —— ; usw. und addieren über alleJ1
P P

P 1
Werte von y. Dasselbe machen wir bei der zweiten

4 J

Gleichung, bei der dritten usw. Die linken Seiten haben nach

14



V-{j)VV
(33) und (34) die Werte auf der rechten Seite

Zi

kommen der Reihe nach die Potenzsummen: Uyv; s2

Zyl usw. vor. Wir erhalten dann das System von Gleichungen:

Ti- g -*1'

p-(j)yp
II. ^f1 —+ 4Sl ;

p—U^\vp
III. s3 — 6s2 -j- 9s1 ; usw.

Aus der ersten Gleichung folgt, daß Sj durch Vp teilbar ist,
aus der zweiten Gleichung das nämliche für s2, usw. Die
Rekursionsformel zeigt, daß alle Potenzsummen durch Vp teilbar

sind.
Die Potenzsummen hängen mit den Koeffizienten durch die

Newton'sehen Gleichungen zusammen.

0 -f- a1

0 s2 a1Si 2a2

0 s3 -f a1s2 + a2s1 + 3a3 usw.,

woraus wir erkennen, daß alle Koeffizienten av durch Vp teilbar

sind.
Gleicherweise läßt sich natürlich auch beweisen, daß in (2)

die Koeffizienten bv durch Vq teilbar sind.

VI.

Es seien <p(u), ip(u) [vergl. (1), (2)] gegeben und ihre Resultante

(3). Dann ist bekanntlich RTK q eine Summe von Produkten

der Koeffizienten av und bv. Wie aus der Darstellung der
Resultante (3) hervorgeht, gibt es nur einen Summanden, der

q— 1
rg

nicht von den b„ abhängt, nämlich X 4 wo X 774 sin2
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und einen Summanden, der nicht von den av abhängt, näm-
(p-D(g-i) P-i

lieh (—1) 16 Y 4 wo Y II A sin2 - - --. Alle übrigen

Summanden sind Multipla, sowohl der Zahlen av als auch der
Zahlen bv, und mit Rücksicht auf den 3. Satz können wir ihre
Summe schreiben : Z Vpq.Multiplizieren wir die Resultante mit
Xpt q, so folgt wegen Satz 2 und Formel (7):

/1 qi npn \ h\ J? 1 L

(35) ^=)*,qX* ±ZVpq + XltVY*

Vermittels der Klassenzahlformel und wegen (14) ergibt sich

für X —Vp sphi> wo hv die ungerade Klassenzahl in k{Yp)
ist und ebenso für Y —Vq £/'' > wo hq die ungerade Klassenzahl

in k(Vq) ist. Wir können (35) in zwei Kongruenzen nach
den Moduln Vp und Vq zerlegen und erhalten:

I t\hl / t\h i Yzl
(36) I—j =ltiVY 4 (modFp); /

—j =lv^X 4 (mod Vq)

Bei der ersten Kongruenz steht links eine rationale Zahl,
rechts eine ganze Zahl aus k{ Vq), folglich muß die Kongruenz

v—i
auch nach dem Modul p gelten. Die irrationale Zahl Y 4

kann aber nur dann einer rationalen Zahl nach dem Modul p
kongruent sein, wenn die Differente der Zahl durch p teilbar

^ 1
_

/ 1—Vq\
ist, d.h. wenn Y 4 die Form hat: a-\-bpm- lco —-1

Dann gilt die Kongruenz sowohl nach dem Modul p, als auch
nach dem Modul p', wo p p • p' eine Zerlegung von p in
k( Vq) ist. Gehören nun die Zahl a und das Ideal p dem

gleichen Zahlenkörper an, und ist 1, ferner N (p) p, so

definieren wir das biquadratische Restsymbol -f- 1 oder

p — i
— 1, je nachdem <%

4 +1 oder —1 (mod p) ist. Wir
können also die erste Kongruenz schreiben:

<37) (2) =^.p(y)4=^p(^pr)4 (modp) •

16



Nun ist noch nachzuweisen, daß (— | { —i ist, wobei
\P/4 \P/4

eq —Vqe'q ist. Aus (37) folgt |^ 1. Fer¬

ner folgt aus |j 1 der Reihe nach: j U (~p~) 1,

1 und schließlich: • Fbenso folgt aus

der zweiten Kongruenz (36) j — XtK q j (mod q), womit

der Hauptsatz bewiesen ist.
Um den Ergänzungssatz für q 2 zu beweisen, schreiben

wir die Gleichung (32) als eine Kongruenz nach dem Modul
Vp oder, was wir dürfen, nach dem Modul p an und wir

erhalten :

(38) th*= X ^4sin2J^-j 4 (mod p)

Nun ist 4sin2^- 2 —V2= e2, und mit Benützung des bi-
8

quadratischen Restsymbols erhalten wir:

(39) th>- (modp), womit die Hälfte des

Ergänzungssatzes bewiesen ist.
Um den zweiten Teil zu beweisen, berechnen wir die Funktion

5. Grades mit den Nullstellen: 0, 4sin2-^-, 4sin2-^-,
8 8

4sin2-^-, 4sin2-^- Sie heißt: t (m) m5— 10 m4 + 34 m3—
8 8

— 44 m2 + 16 m. Wir dividieren die in (1) definierte Funktion
<p (m) durch t (u) und der Rest r (u) ist dann eine eindeutig
bestimmte Funktion vom 4. Grade. Die Koeffizienten von r(u)
sind ganze Zahlen in Jc{Vp)- Der Algorithmus der Division
zeigt nämlich, daß die Koeffizienten von r (u) aus den
Koeffizienten von <p (m) und von t (u) nur durch die Operationen der
Addition, Subtraktion und Multiplikation hervorgehen. Aus
<p(u) t (u) q (m) -f r (m) folgt für die Nullstellen uv von t (m) :

cp (m„) r (m„). Man findet so:
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r(O) 774sin2-^^ X —Vpe'php A — BVp(A undjBganz

und positiv)

r ^4sin2-^-j X(t —u V2p)hi X(T— UV2p), wegen (32)

r ^4sin2-^-j X(t + u V2p)h^ X(T + UV2p), (statt V2, — V2)

r ^4sin2-^-j 1 und r ^4sin2-^-j 1 nach leichter Ausrechnung.

Durch Interpolation läßt sich r(u) bestimmen und man findet

als Koeffizienten von u4: — ^ —4A T -f 3
^ ^yeji (Pe_

16
I ~y/ rvy

ser Ausdruck als ganze Zahl in k Vp) von der Form -
Ji

M N (mod 2) ist, folgt: B 0 (mod 8), A 1 (mod 8). Ferner

folgt aus XT 1 (mod 4) : A -)- B 1 (mod 16) und
umgekehrt, aus XT — 1 (mod 4) A + B 9 (mod 16) und
umgekehrt. Setzen wir —Vpe'p a — bVp so folgt, weil hv

ungerade ist A a (mod 16); B =6 (mod 16). Das Symbol

soll nun -f- 1 sein, wenn a + b 1 (mod 16) und — 1, wenn

a -)- b 9 (mod 16). Es ist dann: XT= (m°d 4) oder

T X (mod 4). Andererseits folgt aus der Gleichung

(t — uV2p)hl= T— ZJV2p, weil u und U gerade Zahlen sind:
tAi T (mod 2F2), bzw. fa T (mod 4). Aus den beiden
Kongruenzen für T folgt:

(40) th 1 X (mod 4), womit auch der zweite Teil

des Ergänzungssatzes bewiesen ist.

18


	Neues über die Pell'sche Gleichung

