Zeitschrift: Jahresbericht der Naturforschenden Gesellschaft Graubünden

Herausgeber: Naturforschende Gesellschaft Graubünden

Band: 122 (2022)

Artikel: Einfluss der Schafsömmerung auf die Nahrungsverfügbarkeit für den

Alpensteinbock (Capra ibex) im Winter

Autor: Koch, Tanja / Signer, Claudio / Graf, Roland F.

DOI: https://doi.org/10.5169/seals-981212

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Jber. Natf. Ges. Graubünden 122 (2022), Seiten 87-98

Einfluss der Schafsömmerung auf die Nahrungsverfügbarkeit für den Alpensteinbock (*Capra ibex*) im Winter

von Tanja Koch, Claudio Signer, Roland F. Graf

Zürcher Hochschule für Angewandte Wissenschaften ZHAW Institut für Umwelt und Natürliche Ressourcen IUNR Forschungsgruppe Wildtiermanagement WILMA Grüental, Postfach CH-8820 Wädenswil

Zusammenfassung

Die Beweidung von Sömmerungsflächen mit Nutztieren spielt für die Landschaftspflege eine wichtige Rolle und bringt Lebensräume mit einer einmaligen Pflanzenvielfalt hervor. Speziell Schafalpen befinden sich aber oft in hohen, steilen Lagen und überschneiden sich mit bevorzugten Einstandsgebieten von Wildhuftieren, zum Beispiel dem Alpensteinbock (*Capra ibex*). Dabei kann es zu einer Konkurrenz um Futter oder andere Ressourcen kommen und Wildtiere können aus einem Lebensraum verdrängt werden.

Im Naturpark Beverin (Kanton Graubünden, Schweiz) zeigten bis ins Jahr 1991 zurückreichende Zählreihen einen Bestandsrückgang beim Alpensteinbock zwischen 1998 und 2004, gefolgt von einer Stabilisierung auf tieferem Niveau. Als möglicher Grund für diese Entwicklung wurde die partielle Überlappung von Schafalpen mit Steinbock-Wintereinständen identifiziert. Mittels eines Auszäunungsversuchs haben wir deshalb den Einfluss der Schafbeweidung auf die Nahrungsverfügbarkeit für den Alpensteinbock auf zwei Schafalpen im Naturpark Beverin untersucht. Die Nahrungsverfügbarkeit wurde mithilfe der zwei Parameter «Vegetationshöhe» und «oberirdische Biomasse» quantifiziert. Mittels eines Fotofallenmonitorings wurde zudem die

Schafabundanz als Mass für die Beweidungsintensität erhoben.

Auf beiden Alpen war am Ende der Sömmerungsperiode die mittlere Vegetationshöhe resp. die oberirdische Biomasse unter den Drahtkäfigen im Mittel rund doppelt so gross wie auf den beweideten Kontrollflächen. Die relativen Differenzen zwischen Kontrollflächen und Drahtkäfigen unterschieden sich zwischen den Alpen jedoch nicht, weder bei der Vegetationshöhe noch bei der Biomasse. Das bedeutet, dass die Beweidungsintensität auf beiden Alpen etwa gleich gross war. Dies konnte auch mit dem Fotofallenmonitoring bestätigt werden, denn die Schafabundanzen unterschieden sich kaum zwischen den Alpen.

Mit durchschnittlich rund 11 cm überständiger Vegetation resp. 1200 kg Trockensubstanz pro Hektare und in Anbetracht der zahlreichen alternativen Einstandsgebiete ohne Schafbeweidung kommen wir zum Schluss, dass für den Alpensteinbock in den untersuchten Gebieten im Herbst nach der Schafsömmerung noch genügend Nahrung vorhanden ist. Insgesamt scheinen die beiden Alpen heute an den Standort angepasst bewirtschaftet und moderat beweidet zu werden. Gemäss einschlägiger Literatur kann die Qualität des Futters durch eine massvolle Schafbeweidung sogar erhöht und die Produktivität angekurbelt werden. Zudem können Wildhuftiere

von einer verbesserten Weideführung und der damit verbundenen Trennung der Nutz- und Wildtierlebensräume profitieren. Dies bringt nicht nur in Bezug auf die Konkurrenz um Ressourcen Vorteile, sondern auch im Hinblick auf die Übertragung von Krankheitserregern.

Schlagworte: Nahrungskonkurrenz, Beweidung, Alpensteinbock (*Capra ibex*), Schafe, Naturpark Beverin, Graubünden

Summary

Traditional summer grazing with livestock creates diverse and species-rich habitats in subalpine grasslands. However, conflicts may occur if areas with livestock grazing, especially sheep grazing, overlap with wildlife habitats in high altitudes. Competition for food or other resources can result and wildlife can be displaced to suboptimal habitats.

In the Beverin Nature Park (Canton of Grisons, Switzerland), the population of the Alpine ibex (*Capra ibex*) has declined between 1998 and 2004 and stabilised at a considerably lower level since then. The partial overlap of sheep grazing areas and Alpine ibex winter habitats has been assumed to be a potential driver for this development. In our study, we have conducted an exclusion experiment at two pastures within the Nature Park to examine the influence of sheep grazing on the food availability for Alpine ibex. Food availability was quantified using the parameters «vegetation height» and «aboveground biomass». We further calculated sheep abundance by camera traps to assess sheep grazing intensity.

At the end of the summer grazing period, mean vegetation height and aboveground biomass increased by a factor two under the exclusion cages compared to the grazed control sites at both pastures. However, the relative differences between control sites and cages were similar at the two pastures, both for vegetation height as well as aboveground biomass. This indicates similar grazing intensity at both pastures, which was also confirmed by the sheep abundance calculated from camera trapping data.

We conclude that with an average vegetation height of 11 cm, 1200 kg dry matter per hectare and numerous alternative feeding grounds, there is sufficient winter forage remaining for the Alpine ibex in our study sites. In regard to the prevailing elevation and soil properties, today both pastures seem to be managed appropriately and grazed moderately. Ac-

cording to the relevant literature, the forage quality and productivity may even be increased by moderate sheep grazing. Moreover, wild ungulates can benefit from improved livestock grazing management, including a separation of livestock grazing areas and wildlife habitats. This reduces the competition for resources as well as the transmission of diseases.

Keywords: Forage competition, Grazing, Alpine ibex (*Capra ibex*), Domestic sheep, Beverin Nature Park, Swiss Alps

1 Einleitung

Die Schafsömmerung hat in der Schweiz eine lange Tradition. Rund 50% der in der Schweiz gehaltenen Schafe verbringen den Sommer auf der Alp (BLW 2019). Bei einer guten Weideführung und einem an den Standort angepassten Besatz können Sömmerungsflächen eine enorm hohe Artenvielfalt hervorbringen (Boggia & Schneider 2012, Koordina-TIONSSTELLE BIODIVERSITÄTS-MONITORING SCHWEIZ 2006). Da sich Schafweiden im Schweizer Alpenraum im Gegensatz zu Rinderweiden oft in sehr steilen und hohen Lagen befinden (LAUBER ET AL. 2014), besteht jedoch die Möglichkeit von Nahrungskonkurrenz zwischen Nutztieren und Wildhuftieren, insbesondere der Gämse (Rupicapra rupicapra) und dem Alpensteinbock (Capra ibex). Dies nicht zuletzt, weil sich die Nahrungsspektren von Schafen, Gämsen und Steinböcken beträchtlich überlappen (ANDER-WALD ET AL. 2013, HOFMANN 1989, LA MORGIA & BASSANO 2009, TRUTMANN 2009). Die Nutztiere sind den Wildhuftieren gebietsweise zahlenmässig oft deutlich überlegen, und es kann zu zeitgleicher Nahrungskonkurrenz kommen oder zu zeitlich verschobener, wenn die Nutztiere im Sommer bevorzugte Wintereinstände der Wildhuftiere abweiden (Erlacher 2017, SHRESTHA & WEGGE 2008). Einige internationale Studien zeigten, dass Wildhuftiere aus gewissen günstigen Gebieten verdrängt werden bei gleichzeitiger Anwesenheit von Nutztieren (Acevedo et al. 2007, BAGCHI ET AL. 2004, MISHRA ET AL. 2004, REBOLLO 1993). Untersuchungen zu diesem Thema wurden in der Schweiz vor allem mit Gämsen durchgeführt (RÜEGG 2009, STRUCH ET AL. 2003), da sich diese während des Alpsommers häufig auf alpwirtschaftlich genutzten Wiesen aufhalten. Doch speziell im Winter sucht auch der Steinbock tiefergelegene, süd-exponierte Gebiete auf, wo der Schnee schneller schmilzt und abrutscht und die darunterliegende Vegetation zum Vorschein kommt (Abderhalden 2005). Bei einer

intensiven Bestossung mit Nutztieren im Sommer könnten solche Flächen dementsprechend im Winter für den Steinbock nur noch in reduzierter Form als Nahrungsquelle zur Verfügung stehen.

Die bis ins Jahr 1991 zurückreichenden Zählreihen des Amts für Jagd und Fischerei Graubünden zeigten in der Steinbock-Teilkolonie «Safien-Rheinwald» einen Bestandsrückgang zwischen 1998 und 2004, aber auch eine Stabilisierung des Bestands auf tieferem Niveau in den letzten zehn Jahren (AJF 2020). Als möglicher Treiber für diese Entwicklung wurde Konkurrenz mit den dort gesömmerten Schafen um Futter oder andere Ressourcen identifiziert. Bislang war aber unbekannt, wie viel Nahrung am Ende eines Alpsommers tatsächlich für die Steinböcke und andere Wildtiere übrig bleibt. In unserer Studie haben wir deshalb einen Auszäunungsversuch durchgeführt mit dem Ziel, die Nahrungsverfügbarkeit für den Steinbock auf zwei Schafalpen zu quantifizieren. A priori wurde angenommen, dass die beiden Alpen unterschiedlich intensiv beweidet werden. Die genauen Bestossungszahlen waren aber unklar, und es war Bestandteil dieser Studie, diese abzuklären. Im Auszäunungsversuch wurden Flächen mit einem Drahtkäfig vor Beweidung geschützt und die Vegetation darin mit der Vegetation auf ungeschützten Kontrollflächen verglichen. Die Hypothese unserer Studie lautete, dass die relative Differenz der Vegetationshöhe resp. der oberirdischen Biomasse zwischen den Flächen unter dem Drahtkäfig und den Kontrollflächen bei höherem Beweidungsdruck grösser ist als bei niedrigerem Beweidungsdruck. Die Beweidungsintensität haben wir mittels eines Fotofallenmonitorings erhoben und daraus die Schafabundanzen auf den 24 Versuchsflächen geschätzt.

2 Material und Methoden

2.1 Studiengebiete

Die Untersuchungen wurden auf zwei Schafalpen im Naturpark Beverin, Kanton Graubünden, durchgeführt. Die Auswahl erfolgte nach Absprache mit der Wildhut und dem Naturpark Beverin. Beide Schafalpen befinden sich in Wintereinstandsgebieten von Steinböcken der Teilkolonie «Safien-Rheinwald».

2.1.1 Alp Scalutta, Safiental

Die Alp Scalutta befindet sich ostseitig im hinteren Teil des Safientals. Die weitgehend westexponierten Alpflächen erstrecken sich über eine Höhenlage zwischen 1800 und 2200 m ü.M. Die Alp wurde 2014 mit den Alpen Inner- und Ausserbruschg fusioniert, so dass die heutige Gesamtfläche rund 137 ha beträgt. Für die gesamte Alpfläche sind 84 Normalstösse vorgesehen (ein Normalstoss entspricht der Sömmerung einer raufutterverzehrenden Grossvieheinheit [RGVE] während 100 Tagen [SR 910.13 2013]). Der Versuchsstandort unserer Studie befand sich in einem der insgesamt sechs Weidesektoren der Alp Scalutta/Bruschg und war rund 20 ha gross (Abb. 1). Während der Sömmerungsperiode 2019 verbrachten 598 Schafe rund 20 Tage in diesem Weidesektor. Die Alp wird seit jeher von einheimischen Schafbesit-

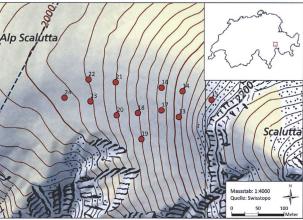


Abb. 1: Studiengebiet Alp Scalutta am 8. Juni 2019 (oben; Foto: T. Koch) und Übersichtskarte der sich darin befindenden Versuchsflächen 13 bis 24 (unten; Karte: T. Koch).

zern bestossen. Der Zaun gegen oben, der die Schafe davon abhält, in die Felsen zu steigen, besteht seit ca. 30 Jahren. Seit 2008 werden die Schafe in Koppelhaltung gealpt und seit der Fusion 2014 gilt die Alp als Umtriebsweide, die mit Herdenschutzhunden bewirtschaftet wird. Da die Weideführung in der Vergangenheit gut geregelt und der Besatz eher tief war, wurde die Alp im Vorfeld dieser Studie als eher extensiv bewirtschaftet eingestuft.

2.1.2 Stutzalp, Splügen

Die Stutzalp befindet sich oberhalb des Dorfs Splügen und erstreckt sich über eine Höhenlage zwischen 1900 und 2400 m ü.M. Die Schafalp befindet sich auf der süd-/südwestexponierten steilen Seite des Stutzbachs und umfasst eine Fläche von rund 200 ha. Für die Stutzalp sind 64 Normalstösse vorgesehen. Der Versuchsstandort unserer Arbeit befand sich in einem der acht Weidesektoren der Schafalp und wies eine Fläche von rund 9 ha auf (Abb. 2). Während der Sömmerungsperiode 2019 verbrachten 658 Schafe rund neun Tage in diesem Weidesektor. Bis 1969/70 gab es auf der Stutzalp viele Besitzer von Kleinstparzellen, und es wurden bis 1998 auch Schafe aus dem Schams auf der Stutzalp gesömmert. 1977 wurde eine Alpgenossenschaft gegründet mit dem Ziel, auswärtige Schafhalter für die Bestossung zu finden. In der Folge wurde die Stutzalp während fast 20 Jahren mit Schafen aus dem Rheintal bestossen. Ab 2013 wurde die Alp erstmals verpachtet und zum ersten Mal gehörte ein Grossteil der Schafe einem Besitzer. Er sömmerte Weidelämmer unter ständiger Behirtung. 2019 wurde ein Weideplan erstellt und die Alp in acht Sektoren eingeteilt, um eine gleichmässige Beweidung zu gewährleisten und selektiven Frass durch die Schafe zu verhindern. Gemäss der Einschätzung der Wildhut war die Weideführung vor Erstellung des Weideplans mangelhaft. Aufgrund ihrer Vergangenheit mit mangelhafter Weideführung und den daraus resultierenden teils über- und unternutzten Gebieten sowie dem auch früher hohen Besatz wurde die Stutzalp für diese Studie als eher intensiv bewirtschaftet eingestuft.

2.2 Felderhebungen

Die Felderhebungen fanden während der Sömmerungsperiode 2019 von Juni bis Mitte Oktober statt. Die Auswahl der Versuchsstandorte auf den zwei Schafalpen erfolgte aufgrund der Angaben über die Wintereinstände der Steinböcke (BAFU 2018) sowie in Absprache mit der lokalen Wildhut und unter Berücksichtigung der Erreichbarkeit und Sicherheit. Auf beiden Alpen wurden zwölf Versuchsflächen zufällig

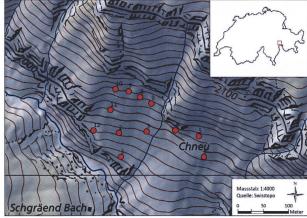


Abb. 2: Studiengebiet Stutzalp am 9. Juni 2019 (oben; Foto: N. Tirro) und Übersichtskarte der sich darin befindenden Versuchsflächen 1 bis 12 (unten; Karte: T. Koch).

in Abständen von 50 m errichtet (mit Ausnahme der Versuchsflächen 7 bis 10, die nachträglich verschoben werden mussten). Eine Versuchsfläche bestand aus einem selbstgebauten Drahtkäfig (LxBxH = 1x1x0,5 m) in der Mitte und jeweils einer Kontrollfläche links und rechts davon. Die Kontrollflächen wurden parallel zum Gelände ausgerichtet, jeweils mit einem Abstand von 1 m zum Drahtkäfig (Abb. 3).

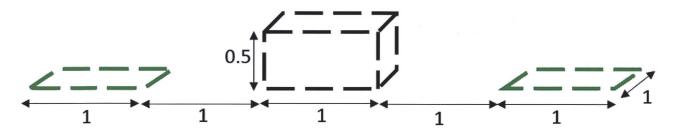


Abb. 3: Schematische Anordnung einer Versuchsfläche: Ein Drahtkäfig (schwarz) und jeweils zwei Kontrollflächen (grün). Die Zahlenangaben beziehen sich auf Meter.

Der Drahtkäfig wurde mit Heringen im Boden verankert, die Kontrollflächen an zwei diagonalen Ecken mit Holzpfählen im Boden markiert (Abb. 4). Es wurden jeweils zwei Kontrollflächen pro Versuchsfläche gewählt, um einer allfälligen ungleichmässigen Beweidung durch die Schafe besser Rechnung zu tragen. Für die Analysen wurde dann jeweils der Mittelwert der beiden Kontrollflächen verwendet.

Abb. 4: Beispiel einer Versuchsfläche auf der Alp Scalutta am 8. August 2019 (Foto: T. Koch).

Einmal kurz vor der Alpung der Schafe (8./9. Juni) sowie zweimal im Verlauf der Sömmerungsperiode (8./9. August, 10. bis 13. Oktober) wurde unter den Drahtkäfigen und auf den Kontrollflächen die Vegetationshöhe nach der Methode nach Stewart et al. (2001) gemessen. Die Erhebung der Vegetationshöhe erfolgte jeweils einmal in jedem 0,25-m²-Quadranten. Für die Analysen wurde später der Mittelwert aus den vier Quadranten verwendet. Der Zuwachs der Vegetation war im August mehrheitlich abgeschlossen, aber die Höhe konnte im Herbst durch die Beweidung noch reduziert werden, und deshalb

war die letzte Messung wichtig, um die verfügbare Nahrung für den Steinbock im Winter zu ermitteln. Entsprechend wurden für die meisten Auswertungen nur die Oktober-Messungen verwendet. Nach der letzten Messung der Vegetationshöhe wurde vom 10. bis 13. Oktober die oberirdische Biomasse unter den Drahtkäfigen und auf den Kontrollflächen auf jeweils 0,25 m² bis auf eine Höhe von 1 cm geerntet (Abb. 5). Die Biomasse wurde später im Trockenschrank bei 60 °C über Nacht getrocknet und gewogen.

Abb. 5: Entnahme der oberirdischen Biomasse (0,25 m²) auf 1 cm Höhe im Zentrum der 1 m² grossen Grundfläche (Foto: T. Koch).

Jede der 24 Versuchsflächen (ausser Versuchsfläche Nr. 16) wurde ausserdem mit einer Fotofalle (Hersteller Reconyx, Modell HC600) ausgestattet, um die Schafabundanz zu ermitteln. Die Fotofallen generierten von 5 bis 22 Uhr Bilder im Viertelstundenintervall und zeichneten ohne zeitliche Einschränkung zudem Bilder auf, wenn sich Tiere innerhalb

des Erfassungsbereichs von 30 m bewegten. Um bei einer temporär hohen Schafdichte auf den Versuchsflächen die Anzahl Bilder zu limitieren, wurde nach jeder Auslösung eine «Quiet Period» von 5 Minuten verwendet. Zur Bestimmung der Schafabundanz auf den Versuchsflächen wurde folgende Formel verwendet:

Mittlere Schafabundanz pro Versuchsfläche während 24 h Anzahl Schafe auf Intervallfotos x Weidesektorfläche x 24

Totale Aufnahmedauer der Fotofalle in h x Total Schafe im Weidesektor

3 Resultate

3.1 Vegetationshöhe

Erwartungsgemäss war im Juni vor dem Beginn der Sömmerungsperiode auf beiden Alpen noch kein Unterschied in der Vegetationshöhe zwischen den Drahtkäfigen und den Kontrollflächen vorhanden (Tab. 1). Dies änderte sich im Verlauf der Saison: Sowohl im August wie auch im Oktober war die Vegetation unter den Drahtkäfigen signifikant höher als auf den Kontrollflächen, wobei die Vegetation unter den Drahtkäfigen auf beiden Alpen im Mittel rund doppelt so hoch war wie auf den Kontrollflächen. Die mittlere relative Höhendifferenz (Kontrollfläche zu Drahtkäfig) betrug auf der Alp Scalutta 51,77% (Standardabweichung SD ± 37,83%) und auf der Stutzalp 48,47% (± 14,76%). Ausserdem war die Vegetation unter den Drahtkäfigen im Oktober im Studiengebiet Alp Scalutta signifikant höher als im Studiengebiet Stutzalp (p < 0,001, Abb. 6). Auf den Kontrollflächen gab es diesbezüglich keinen signifikanten Unterschied (p = 0.065).

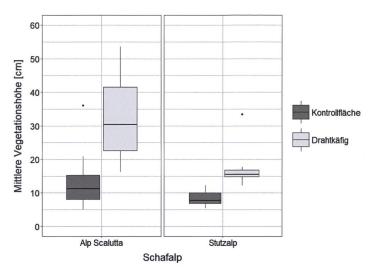


Abb. 6: Vergleich der mittleren Vegetationshöhen im Oktober auf den Kontrollflächen und unter den Drahtkäfigen auf der Alp Scalutta und der Stutzalp.

3.2 Oberirdische Biomasse

Das Gewicht der getrockneten oberirdischen Biomasse betrug unter den Drahtkäfigen auf der Alp Scalutta durchschnittlich 59,22 g (± 18,71 g) und von den Kontrollflächen 30,97 g (± 13,71 g). Auf der Stutzalp betrug die Biomasse unter den Drahtkäfigen im Mittel 57,13 g (± 12,75 g) und von den Kontrollflächen 30,01 g (± 14,65 g). Damit war die Biomasse im Oktober unter den Drahtkäfigen auf beiden Alpen etwa doppelt so gross wie auf den Kontrollflächen (jeweils p < 0,001). Die mittlere relative Biomassendifferenz (Kontrollfläche zu Drahtkäfig) betrug auf der Alp Scalutta 45,47% (± 29,92%) und auf der Stutzalp 48,19% (± 19,13%). Das Gewicht der Biomasse unter den Drahtkäfigen auf der Alp Scalutta unterschied sich nicht signifikant vom Gewicht der Biomasse unter den Drahtkäfigen auf der Stutzalp

Tab. 1: Mittlere Vegetationshöhen (\overline{x} in cm \pm Standardabweichung SD) unter den Drahtkäfigen und auf den Kontrollflächen pro Alp und Messmonat sowie Resultate des Wilcoxon Rangsummen-Tests (p).

Studiengebiet	Messmonat	x ± SD Drahtkäfig	x ± SD Kontrollfläche	р
Alp Scalutta	Juni	6,29 ± 2,45	5,95 ± 1,74	1,000
	August	35,28 ± 14,91	23,71 ± 14,00	0,007
	Oktober	32,63 ± 12,20	13,53 ± 8,52	<0,001
	Juni	6,61 ± 3,78	6,22 ± 3,12	0,848
Stutzalp	August	25,02 ± 5,30	15,87 ± 2,12	<0,001
	Oktober	16,95 ± 5,42	8,41 ± 2,19	<0,001

(p = 0.753, Abb. 7). Auch auf den Kontrollflächen gab es keinen signifikanten Unterschied zwischen den beiden Alpen (p = 0.870).

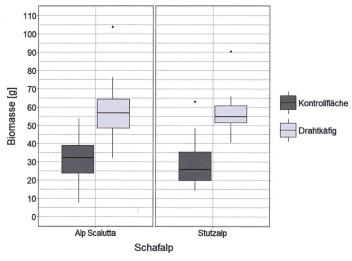


Abb. 7: Vergleich der getrockneten oberirdischen Biomassen im Oktober auf den Kontrollflächen und unter den Drahtkäfigen auf der Alp Scalutta und der Stutzalp.

3.3 Schafabundanz und Beweidungsintensität

Auf der Stutzalp verbrachten die Schafe neun Tage im Weidesektor, was in einer maximalen Aufnahmedauer der Fotofallen von 156 h resultierte. Auf der Alp Scalutta verbrachten die Schafe 20 Tage im Weidesektor, was in einer maximalen Aufnahmedauer von 340 h resultierte. Bei einem Ausfall und/oder Verschiebung einer Fotofalle durch die Schafe war die Aufnahmedauer entsprechend kürzer.

Die Auswertungen der Fotofallenbilder ergaben eine hohe Variabilität bezüglich Schafabundanz pro Versuchsfläche (Tab. 2), die mittleren Schafabundanzen auf der Stutzalp (0,159 \pm 0,074 Tiere pro 24 h) und der Alp Scalutta (0,120 \pm 0,070 Tiere pro 24 h) unterschieden sich jedoch nicht signifikant (p = 0,113).

Die relativen Differenzen der Vegetationshöhe zwischen Drahtkäfigen und Kontrollflächen konnten insgesamt nicht mit Unterschieden in der Schafabundanz erklärt werden (p = 0,761). Ebenso konnten die relativen Differenzen der Biomasse zwischen Drahtkäfigen und Kontrollflächen nicht mit unterschiedlichen Schafabundanzen erklärt werden (p = 0,359).

Tab. 2: Mittlere Schafabundanz auf den Versuchsflächen der Alp Scalutta und Stutzalp während 24 h.

	151	,		
	Versuchs- fläche Nummer	Schafe auf Intervallfotos	Aufnahme- dauer (h)	Schaf- abundanz (pro 24 h)
Stutzalp	1	34	90	0,124
	2	117	156	0,246
	3	62	156	0,13
	4	7	105	0,022
	5	96	156	0,202
	6	93	156	0,196
	7	Totalausfall	Totalausfall	Totalausfall
	8	49	61	0,264
	9	22	47	0,154
	10	22	101	0,072
	11	38	101	0,124
	12	42	65	0,212
Alp Scalutta	13	47	340	0,111
	14	29	230	0,101
	15	129	340	0,305
	16	keine Fotofalle	keine Fotofalle	keine Fotofalle
	17	Totalausfall	Totalausfall	Totalausfall
	18	59	340	0,139
	19	19	138	0,111
	20	38	340	0,09
	21	23	277	0,067
	22	38	239	0,128
	23	28	239	0,094
	24	21	340	0,05

4 Diskussion

4.1 Vegetationsparameter und Beweidungsintensität

Am Ende der Sömmerungsperiode waren auf beiden Alpen sowohl die Vegetationshöhe wie auch die Biomasse unter den Drahtkäfigen rund doppelt so hoch wie auf den Kontrollflächen. Dies widerspricht der in der Einleitung aufgeführten Hypothese, wonach die relative Differenz der Vegetationshöhe resp. der Biomasse zwischen Drahtkäfig und Kontrollflächen auf der Stutzalp aufgrund des a priori angenommenen höheren Beweidungsdrucks höher sein sollte als auf der Alp Scalutta. Tatsächlich scheint der Beweidungsdruck auf der Stutzalp nicht höher zu sein als auf der Alp Scalutta, und beide Alpen scheinen heute ähnlich intensiv bewirtschaftet zu werden.

Tatsächlich ist die Beurteilung der Beweidungsintensität komplex und hängt neben der Grösse der Weidefläche, der Anzahl und Rasse der Tiere und der Sömmerungsdauer unter anderem auch von der Höhenlage und der Produktivität eines Gebiets ab. Für die Berechnung des Normalbesatzes, der für jede Schafalp vom Kanton gemacht wird, fliessen diese Parameter mit ein (ALG 2018, SR 910.13 2013). Die Alp Scalutta befindet sich durchschnittlich auf einer tieferen Höhenlage, ist weniger steil und weniger von Felsen durchzogen als die Stutzalp und wird deshalb als produktiver eingestuft. Sie gilt gemäss

der Direktzahlungsverordnung im Gegensatz zur Stutzalp nicht als Magerweide. Die Einteilung in intensiv und extensiv ist generell problematisch, weil eine zu intensive Weide durch Trittschäden und Erosion gekennzeichnet wäre und eine zu extensive Nutzung durch einwachsende Stellen und Verbuschung. Bei beiden von uns untersuchten Alpen konnte weder das eine noch das andere festgestellt werden, und dies lässt den Schluss zu, dass beide Alpen optimal genutzt werden. Gemäss Simon Hasler (BLW, mündl. Mitteilung) handelt es sich bei beiden Alpen denn auch um mittel-intensive, aber nicht extensive Schafalpen.

Der Umstand, dass die Vegetation auf den vor Beweidung geschützten Flächen auf der Alp Scalutta signifikant höher war als auf der Stutzalp, scheint die oben gemachte Einschätzung zu bestätigen, dass die Alp Scalutta wüchsiger und damit produktiver ist als die Stutzalp. Interessanterweise war die Biomasse unter den Drahtkäfigen auf der Alp Scalutta je-

Abb. 8: Fotofallenbild einer Versuchsfläche auf der Alp Scalutta mit einem dichten Bestand von Aconitum napellus subsp. vulgare.

doch in etwa gleich gross wie auf der Stutzalp. Diese Ergebnisse können mit einem Unterschied in den Lebensraumtypen erklärt werden. Eine Lebensraumbestimmung nach ALL-EMA (BUHOLZER ET AL. 2015, DELARZE ET AL. 2008) erbrachte für alle zwölf Versuchsflächen auf der Alp Scalutta den Lebensraumtyp Bergfettweide Poion alpinae, während neun von zwölf Versuchsflächen auf der Stutzalp dem Lebensraumtyp Blaugrashalde Seslerion zugeordnet wurden, die zu den Kalkmagerrasen zählt. Die übrigen drei Versuchsflächen auf der Stutzalp wurden ebenfalls als Bergfettweiden identifiziert. Auf fünf Versuchsflächen der Alp Scalutta kam der Dichtblütige Blau-Eisenhut (Aconitum napellus subsp. vulgare) vor. Diese Pflanze ist typisch für eutrophierte Lägerstellen. Sie wird wegen ihrer Giftigkeit von den Nutztieren gemieden und dominiert deshalb bald eine Fläche, so dass darin kaum andere Arten vorkommen (Abb. 8). Die Art ist hochwüchsig, aber im Verhältnis zur Höhe eher leicht. Damit lässt sich erklären, warum die Vegetationshöhe unter den Drahtkäfigen auf der Alp Scalutta signifikant höher war als auf der Stutzalp, die oberirdische Biomasse jedoch in etwa gleich gross.

4.2 Schafabundanz und Beweidungsintensität

Auf beiden Alpen gab es eine grosse Streuung bei den Schafabundanzen, was bedeutet, dass die Nutzung des Weidesektors durch die Schafe nicht homogen war. Dies war zu erwarten und hängt sowohl mit der Erreichbarkeit der einzelnen Versuchsflächen wie auch mit den Präferenzen der Schafe zusammen. Die Nutzung bestimmter Wege wird von den älteren Schafen übernommen, und es werden immer wieder dieselben Weideplätze angesteuert (von Wyl et al. 1985). Diese werden dann auch weitergenutzt, wenn sie bereits stark abgegrast sind (Kaulfers 2009). Schafe halten sich zudem oft in den obersten Abschnitten einer Weide auf, da sie junge, nährstoffreiche und hochverdauliche Pflanzen bevorzugen (Hofer et al. 2002, Lutz 1990).

Die nachgewiesenen Schafabundanzen waren auf der Alp Scalutta und der Stutzalp etwa gleich hoch. Dies deckt sich mit unseren anderen Ergebnissen, dass es keinen nennenswerten Unterschied in der Beweidungsintensität zwischen den beiden Alpen gibt. Obwohl es bezüglich der Schafabundanzen wie auch der relativen Differenzen der Vegetationshöhe resp. der Biomasse zwischen Drahtkäfig und Kontrollflächen keinen signifikanten Unterschied zwischen den Alpen gab, konnten die relativen Differenzen nicht mit der Schafabundanz erklärt werden. Ein möglicher Grund dafür ist, dass der Datensatz

mit insgesamt 24 Versuchsflächen eher klein ist und ein Ausreisser den Test so stark beeinflussen kann, dass kein Zusammenhang mehr festgestellt werden kann. Versuchsflächen mit dem Dichtblütigen Blau-Eisenhut hätten allenfalls von den Auswertungen ausgeschlossen werden müssen. Damit wäre aber der Datensatz noch weiter verkleinert worden und beim Versuchsaufbau Anfang Juni war die Bestimmung der Pflanzen relativ schwierig. Eine weitere mögliche Erklärung für den fehlenden Zusammenhang zwischen den relativen Differenzen der Vegetationshöhe resp. der Biomasse zwischen Drahtkäfig und Kontrollflächen ist, dass eine hohe Schafabundanz nur bedeutet, dass sich viele Schafe auf einer Fläche aufgehalten haben, aber nicht zwingend, dass diese Tiere viel oder überhaupt auf der Versuchsfläche geweidet haben. Diesbezüglich müssten allenfalls Anpassungen in der Methodik zur Bestimmung der Beweidungsintensität auf den Versuchsflächen gemacht werden, ähnlich der Methodik von PASARI ET AL. (2014).

4.3 Bedeutung für den Steinbock im Naturpark Beverin

Mit dem Auszäunungsversuch konnte die überständige Vegetation nach dem Ende der Sömmerungsperiode im Oktober in den zwei Studiengebieten quantifiziert werden. Die Vegetation wurde sowohl in Bezug auf die Vegetationshöhe wie auch bezüglich des Gewichts der oberirdischen Biomasse von den Schafen ungefähr halbiert. Auf der Alp Scalutta betrug die durchschnittliche überständige Vegetation auf den Kontrollflächen 13,53 cm resp. 30,97 g Trockensubstanz pro 0,25 m², was 12,39 Dezitonnen (dt) Trockensubstanz (TS) pro Hektare entspricht. Auf der Stutzalp betrug sie auf den Kontrollflächen 8,41 cm resp. 30,01 g/0,25 m², was 12 dt TS/ha ergibt. Hinsichtlich des Futterbedarfs von Steinböcken schätzt BUBENIK (1984) den täglichen Bedarf eines 65 kg schweren Steinbocks im Winter auf 6,9 bis 8,6 kg, resp. unter Abbau der Fett- und Gewebereserven auf 4,4 bis 5,5 kg. Gemäss Leoni (1985) muss die Vegetation eine Mindesthöhe von 2 cm haben, damit sie vom Steinbock genutzt werden kann. Ein Teil der 12,39 resp. 12 dt TS/ha würden den Steinböcken also nicht als Nahrung zur Verfügung stehen. Natürlich kommt es auf die Rudelgrösse, das Gelände und alternative Nahrungsgründe an, aber es scheint, dass den Steinböcken auf den zwei Versuchsstandorten genügend Nahrung zur Verfügung steht.

Neben dem Gewicht der überständigen Vegetation spielt auch die Qualität des Futters eine Rolle. Der Steinbock gehört zu den Raufutterverzehrern

und ist im Vergleich zu anderen Wildhuftierarten eher anspruchslos, was beispielsweise den Proteingehalt seiner Nahrung anbelangt (HOFMANN 1989). Panseninhaltsanalysen von Steinböcken aus verschiedenen Bündner Kolonien ergaben die tiefsten Anteile an Rohproteinen und die höchsten Anteile an Rohfasern von allen vier untersuchten Wildhuftierarten Rothirsch, Reh, Gämse und Steinbock (Ta-TARUCH & ONDERSCHEKA 1996). Der Steinbock scheint also bestens an die geringe Qualität der überständigen Vegetation im Herbst und Winter angepasst zu sein. Der Nährstoffgehalt der Nahrung gewinnt speziell im Sommer für die laktierenden weiblichen Tiere an Bedeutung (GROSS ET AL. 1995) und deshalb stellt sich die Frage, ob langjährige Schafbeweidung einen Einfluss auf die Futterqualität und die Produktivität eines Lebensraums hat. Tatsächlich stellten RHODES & SHARROW (1990) im Oktober einen höheren Proteingehalt und eine höhere Verdaulichkeit bei den meisten Gräsern und Kräutern auf beweideten Flächen im Vergleich zu unbeweideten Flächen fest. BAKKER ET AL. (1983) stellten ebenfalls einen höheren Proteinanteil fest und begründeten dies damit, dass junge Blätter einen höheren Proteingehalt und weniger Zellwandsubstanz haben als ältere Blätter. Durch die Beweidung wird die Alterung der Pflanzen unterbrochen und sie müssen mit verstärkter Biomassenproduktion auf die Entlaubung reagieren. Im Gegensatz dazu beschrieben Komac et al. (2014) eine mögliche Abnahme der Futterqualität resp. des Energiegehalts, weil der Anteil an Lignin bei starker Beweidung zunahm. Bezüglich der Produktivität konnten Bardgett & Wardle (2003) in einem Review zeigen, dass diese durch moderate Beweidung angeregt wird.

Insgesamt schlussfolgern wir, dass die Nahrungsverfügbarkeit für den Alpensteinbock sowohl auf der Alp Scalutta wie auf der Stutzalp gewährleistet ist und dass die Qualität des Futters durch eine moderate Schafbeweidung sogar verbessert und die Produktivität angekurbelt werden kann. Wir können aber nicht abschliessend sagen, dass es keine Nahrungskonkurrenz gibt. Unser Eindruck nach dieser Studie ist, dass die Schafsömmerung auf den von uns untersuchten Alpen zunehmend professioneller wird und die Alpbetreiber auch mehr Kontrollen unterworfen sind. Die grösste Gefahr für eine Konkurrenz zwischen Nutztieren und Wildhuftieren geht von Nutztieren mit freiem Weidegang aus, insbesondere, wenn diese in grossen Höhenlagen sich selbst überlassen werden. Eine solche Praxis gefährdet ferner auch die sensible Vegetation in hohen Lagen. Auch im Hinblick auf die Übertragung von Krankheiten,

wie z.B. der Moderhinke oder der Gämsblindheit, ist eine gute Weideführung und die Trennung von Nutz- und Wildtierlebensräumen während der Sömmerungszeit zu begrüssen.

5 Dank

Wir danken den zahlreichen Helferinnen und Helfern beim aufwendigen Versuchsauf- und -abbau, den Alpbewirtschaftern für den Zugang zu ihren Flächen sowie den Alpmeistern für ihre Auskünfte über die Geschichte der beiden Alpen. Der Wildhut und dem Amt für Jagd und Fischerei Graubünden danken wir für die Zurverfügungstellung der Steinbock-Zähldaten sowie weiterer Informationen. Riet Pedotti (ALG) und Simon Hasler (BLW) danken wir für ihre Expertise in Gesetzesfragen sowie Stefan Widmer von der ZHAW für seine Unterstützung bei den Vegetationsaufnahmen. Für Material- und Transportkosten sind die ZHAW und der Naturpark Beverin aufgekommen.

6 Literaturverzeichnis

ABDERHALDEN, W., 2005. Raumnutzung und sexuelle Segregation beim Alpensteinbock *Capra ibex ibex*. Nationalpark-Forschung Schweiz 92. Lüdin AG. Zernez.

Acevedo, P., Cassinello, J., Gortazar, C., 2007. The Iberian ibex under an expansion trend but displaced to suboptimal habitats by the presence of extensive goat livestock in central Spain. Biodiversity and Conservation, 16, 3361–2276.

AJF AMT FÜR JAGD UND FISCHEREI GRAUBÜNDEN, 2020. Steinbock-Zähldaten, Kolonie «Safien-Rheinwald», 1991–2020. Chur.

ALG AMT FÜR LANDWIRTSCHAFT UND GEOINFORMATION GRAUBÜNDEN, 2018. Vorgaben und Anforderungen an die Bewirtschaftungsplanungen im Kanton Graubünden. Chur.

Anderwald, P., Haller, R., Risch, A., Schütz, M., Schweiger, A., Filli, F., 2013. Resource competition between chamois, alpine ibex and red deer in the Swiss National Park? In 5th Symposium for Research in Protected Areas. Vol. 5, pp. 15–18. Mittersill.

BAFU BUNDESAMT FÜR UMWELT, 2018. Inventar der Steinbockkolonien, Stand 2015. Abteilung Arten, Ökosysteme, Landschaften. Bern.

BAGCHI, S., MISHRA, C., BHATNAGAR, Y. V., 2004. Conflicts between traditional pastoralism and conser-

- vation of Himalayan ibex (*Capra sibirica*) in the Trans-Himalayan mountains. Animal Conservation, 7, 121–128.
- Bakker, J. P., de Leeuw, J., van Wieren, S. E., 1983. Micro-patterns in grassland vegetation created and sustained by sheep-grazing. Vegetatio, 55, 153–161.
- BARDGETT, R. D., WARDLE, D. A., 2003. Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84, 2258–2268.
- BLW BUNDESAMT FÜR LANDWIRTSCHAFT, 2019. Agrarbericht 2019. Bern.
- Boggia, S., Schneider, M., 2012. Schafsömmerung und Biodiversität Bericht aus dem AlpFUTUR-Teilprojekt 24 «SchafAlp». Zürich.
- Bubenik, A. B., 1984. Ernährung, Verhalten und Umwelt des Schalenwildes. BLV Verlagsgesellschaft. München.
- Buholzer, S., Indermaur, A., Bühler, C., Frei, M., 2015. Bestimmungsschlüssel für Lebensräume der offenen Kulturlandschaft. Agroscope. Zürich.
- Delarze, R., Gonseth, Y., Galland, P., 2008. Lebensräume der Schweiz. Ott Verlag. Bern.
- ERLACHER, E., 2017. Verträglichkeit von Gams und Steinwild untereinander sowie mit Ziegen, Schafen und Weidetieren. Universität für Bodenkultur Wien.
- GROSS, J. E., DEMMENT, M. W., ALKON, P. U., KOTZMAN, M., 1995. Feeding and chewing behaviours of Nubian ibex: Compensation for sex-related differences in body size. British Ecological Society, 9(3), 385–393.
- Hofer, C., Boessinger, M., Buchmann, M., 2002. Graslandnutzung durch das Schaf. Arbeitsgemeinschaft zur Förderung des Futterbaus AGFF. Zürich-Reckenholz.
- HOFMANN, R. R., 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia, 78, 443–457.
- KAULFERS, C., 2009. Weide- und Bewegungsverhalten von Schaf und Ziege auf der Alp und dessen Einfluss auf den Knochen- und Energiestoffwechsel. Universität Zürich.
- Komac, B., Domènech, M., Fanlo, R., 2014. Effects of grazing on plant species diversity and pasture quality in subalpine grasslands in the eastern Pyrenees (Andorra): Implications for conservation. Journal for Nature Conservation, 22, 247–255.
- KOORDINATIONSSTELLE BIODIVERSITÄTS-MONITORING SCHWEIZ, 2006. Zustand der Biodiversität in der Schweiz. Umwelt-Zustand Nr. 0604. Bundesamt für Umwelt. Bern.

- La Morgia, V., Bassano, B., 2009. Feeding habits, forage selection, and diet overlap in Alpine chamois (*Rupicapra rupicapra* L.) and domestic sheep. *Ecological Research*, 24, 1043–1050.
- Lauber, S., Herzog, F., Seidl, I., Böni, R., Bürgi, M., Gmür, P., Wunderli, R., 2014. Zukunft der Schweizer Alpwirtschaft. Fakten, Analysen und Denkanstösse aus dem Forschungsprogramm AlpFUTUR. Eidg. Forschungsanstalt WSL und Forschungsanstalt Agroscope Reckenholz-Tänikon ART. Birmensdorf und Zürich-Reckenholz.
- LEONI, G., 1985. Nahrungswahl des Steinbockes auf alpinen Silikatrasen bei Davos im Vergleich zur Gemse. ETH Zürich.
- Lutz, J., 1990. Eignung verschiedener Nutztierrassen zur Landschaftspflege auf gefährdeten Grünlandstandorten. Gesamthochschule Kassel.
- MISHRA, C., VAN WIEREN, S., KETNER, P., HEITKÖNIG, I. M. A., PRINS, H. H. T., 2004. Competition between domestic livestock and wild bharal *Pseudois nayaur* in the Indian Trans-Himalaya. Journal of Applied Ecology, 41(2), 344–354.
- Pasari, J. R., Hernández, D. L., Zavaleta, E. S., 2014. Interactive effects of nitrogen deposition and grazing on plant species composition in a serpentine grassland. Rangeland Ecology & Management, 67(6), 693–700.
- REBOLLO, S., 1993. The influence of livestock management on land use competition between domestic and wild ungulates: sheep and chamois (*Rupicapra pyrenaica parva* Cabrera) in the Cantabrian Range. Pirineos, 47–62.
- RHODES, B. D., SHARROW, S. H., 1990. Effect of grazing by sheep on the quantity and quality of forage available to big game in Oregon's Coast Range. Journal of Range Management, 43(3), 235–237.
- Rüegg, D., 2009. Projekt Kärpf-Zentral Aufgabe der Schafalpung und Beobachtungen von Gämsen. Rüegg – Wald Wild Umwelt. Kaltbrunn.
- Shrestha, R., Wegge, P., 2008. Wild sheep and live-stock in Nepal Trans-Himalaya: coexistence or competition? Environmental Conservation, 35(2), 125–136.
- SR 910.13, 2013. Verordnung über die Direktzahlungen an die Landwirtschaft (Direktzahlungsverordnung, DZV). Bern.
- STEWART, K. E. J., BOURN, N. A. D., THOMAS, J. A., 2001. An evaluation of three quick methods commonly used to assess sward height in ecology. Journal of Applied Ecology, 38, 1148–1154.
- STRUCH, M., FANKHAUSER, R., BIERI, K., 2003. Schafe und Gemsen Die Auflösung der Schafnutzung am Amdener Schafberg. WildARK. Bern.

- Tataruch, F., Onderscheka, K., 1996. Chemische Analysen der Panseninhalte von Steinwild in Graubünden. Zeitschrift für Jagdwissenschaft, 42(1), 18–25.
- TRUTMANN, C., 2009. Diet composition of alpine chamois (*Rupicapra rupicapra* L.): Is there evidence for forage competition to the alpine ibex (*Capra ibex* L.)? University of Zurich.
- von Wyl, A., Mercier, A., Troxler, J., 1985. L'exploitation ovine en altitude. Schlussberichte zum Schweizerischen MAB-Programm. Bern.