Zeitschrift: Jahresbericht der Naturforschenden Gesellschaft Graubünden

Herausgeber: Naturforschende Gesellschaft Graubünden

Band: 111 (2002)

Artikel: Radon im Wasser: Überblick für den Kanton Graubünden

Autor: Böhm, Christian

DOI: https://doi.org/10.5169/seals-594820

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Radon im Wasser – Überblick für den Kanton Graubünden

von Christian Böhm

Adresse:

Christian Böhm Geologe/Hydrogeologe Obere Gasse 40 7000 Chur

Zusammenfassung

Für den Kanton Graubünden wird ein Überblick über die Radonwerte in Wasserproben – Quellen, Grundwasser und Trinkwasser – vermittelt. Die Radonwerte der Wasserproben sind vergleichsweise niedrig und sind als gesundheitlich unbedenklich anzusehen (z. B. nur wenige Werte über 150 Bq/L). Die schweizweit höchsten Radonwerte stammen aus Graubünden (Disentis bis 715 Bq/L; Valchava bis 741 Bq/L). In den Kristallingebieten Graubündens wurden 3-mal höhere Radonwerte in Wasser gemessen als in den Sedimentgebieten (im Mittel 35 Bq/L resp. 12 Bq/L).

Die Radonaktivität von Wasser korreliert nicht oder nur in räumlich begrenzten Gebieten mit dessen chemischer Zusammensetzung. Radonanalysen in Wasser können ergänzende, z. T. bisher nicht verfügbare Angaben liefern: Mischungsverhältnisse von chemisch ähnlichen Wässern, Qualität von Quellwasser (Schutzfunktion der Deckschicht), Infiltration und Exfiltration von Grundwasser, Alter von Grundwasser. Grundwasser weist bei mittleren Durch-

lässigkeiten (1*10⁻⁴ bis 1*10⁻³ m/s) die höchsten Radonwerte auf; bei höheren Durchlässigkeiten ist die Kontaktfläche Gestein/ Porenraum gering, so dass niedrige Radonwerte resultieren. Dass bei niedrigeren Durchlässigkeiten ebenfalls niedrige Radonwerte gemessen wurden, könnte auf Adsorption durch organische Substanz zurückzuführen sein (Hypothese). Die Radonwerte im Wasser geben im Überblick die Verhältnisse in Bodenluft und Wohnungsluft wieder. Bei Radonaktivitäten von >50 Bq/L in Wasser muss mit problematischen Radongehalten in Wohnungsluft gerechnet werden (so genannte Radongefährdungsgebiete).

Schlagworte: Radon, Hydrogeologie, Grundwasser, Quelle, Wasserversorgung, Graubünden.

Summary

Approximately 1300 water samples from all over the Grisons were analysed for their radon activity and were found to be mainly

low. No severe health risks from radon in water exist in the considered area either regarding ingestion or inhalation (few levels over 150 Bq/L). The highest radon activities for Switzerland were measured in the Grisons (Disentis: 715 Bq/L, Valchava: 741 Bq/ L). In territories with crystalline basement rocks the radon activities in water are three times higher (35 Bq/L on the average) than for regions in sedimentary basins (12 Bq/L). In general no correlation seems to exist between radon and the chemical composition of water. Radon analyses can supply useful information for hydrological and hydrogeological purposes e. g. mixing proportions between chemically undistinguishable waters groundwater quality (with or without a protectiv soil cover), infiltration and exfiltration of ground waters, and age determination of ground waters after seepage. Ground waters in medium permeable soils (1*10⁻⁴ to 1*10⁻³ m/s) show the highest radon activities, while an adsorption of radon to organic materials could take place at lower permeabilities. At higher permeabilities and convective flow conditions, the contact area between soil grains and water is to small to allow the buildup of high radon levels. Areas with radon activities of >50 Bq/L in water usually coincide with increased radon values in dwellings (radon-prone areas).

1. Einleitung: Radon

Radon ist ein Edelgas und ein radioaktives Element. Das Isotop Radon-222 (222Rn) ist mit seiner kurzen Halbwertszeit von 3.82 Tagen das langlebigste Radonnuklid - auf dieses beziehen sich die folgenden Ausführungen. Auf die kurzlebigen Isotope -Thoron (220Rn) und Actinon (219Rn) - wird hier nicht eingegangen.

Radon-222 entstammt der Uran-238-Zerfallsreihe. Das natürliche Uran-238 zerfällt über Uran-234 zu Radium-226, dessen radio-

Allgemeines zu Radon

Formelzeichen Radon Rn

häufigstes Radonnuklid Radon-222 (= 222Rn) 1 radioaktiver Zerfall/Sekunde = 1 Bq (Becquerel) Einheit für Radonaktivität $1 \text{ Bg/m}^3 = 1000 \text{ Bg/L}$ (Radium-)Emanation Freisetzung von Radon

Veraltete, Nicht-SI-Einheiten:

Eman 1 Eman = 3.7 Bg/LMache-Einheit ME 1 ME = 13.5 Bq/LPicocurie pCi 1 pCi/L = 0.037 Bq/L

aktive Tochter Radon-222 durch einen so genannten Alphazerfall gebildet wird. Aus Radon-222 entstehen nach einem weiteren Alphazerfall Polonium-218, dann weitere Blei-, Bismut- und Poloniumnuklide, bis die radioaktiven Zerfälle beim stabilen Blei-206 enden. Im Verlauf dieser Zerfallsreihe werden die Atome immer leichter, da z.B. bei jedem Alphazerfall ein Heliumatom, das Alphateilchen, abgespalten wird.

In der ganzen Uran-238-Zerfallsreihe stellt Radon das einzige gasförmige Isotop dar. Die festen Nuklide können praktisch nur durch chemische Lösung im Untergrund mobilisiert werden. Dagegen ist Radon ein Edelgas und damit chemisch praktisch inert; diese Eigenschaften bewirken, dass die Mobilität von Radon weitaus höher ist als diejenige der anderen Uran-238-Folgeprodukte. Beim radioaktiven Zerfall von Radium zu Radon können Radonatome ins Porenwasser und in die Porenluft abgegeben und freigesetzt werden (Abb. 2).

Radon entsteht natürlicherweise im Untergrund. In der Bodenluft werden bei uns Radonaktivitäten von 10 000 – 100 000 Bq/ m³ (Becquerel pro Kubikmeter Luft; 1 Becquerel = 1 radioaktiver Zerfall pro Sekunde) gemessen. Bodenluft, welche in Wohngebäude eindringt, kann zu problematischen Werten im Gebäudeinnern führen. Zu hohe Radonwerte in der Wohnungsluft erhöhen das Lungenkrebsrisiko (National Research COUNCIL / BEIR VI 1999; BAG 1999). Radonwerte in Wasser werden in Becquerel pro Liter (Bq/L) angegeben.

Radonkonzentrationen (Wertebereiche)

Rn in Bodenluft 10'000-100'000 Bq/m³

Rn in Wasser 1–100 Bq/L

(= 1000-100'000 Bq/m³)

Rn in

Wohnungsluft 50-5000 Bq/m³

(1000 Bq/m3: Grenzwert)

Im vorliegenden Artikel werden erstmals die Radonwerte für ganz Graubünden dargestellt. Ausserdem wird der Nutzen der Radonmessung in Wasser für hydrogeologische Untersuchungen sowie für Belange der Trinkwasserversorgung geprüft und an Beispielen erläutert.

Die Radonmessungen wurden zum grössten Teil mit eigenen Messgeräten ausgeführt. Die ersten Messungen wurden mittels Elektretionisationskammer über einer freien Wasseroberfläche ausgeführt (KOTRAPPA und Jester 1993). Die meisten Messdaten wurden nach Entgasung mit einem Messgerät vom Typ Niton Rad7 gewonnen, welches mittels eines Festkörper-Alpha-Detektors eine Alpha-Spektrometrie ausführt. Der statistische Messfehler beträgt 3-5 % bei Radonwerten von 100 Bq/L, um 15 % bei Werten von 10 Bq/L und nimmt für ganz niedere Radongehalte weiter zu (Fehlerwerte in Anhang 1 aufgeführt). Weitere mögliche Fehlerquellen bei der Radonmessung in Wasser sind: Entgasung bei der Probenahme und bei der Messung. Bei der Probenahme kommt es darauf an, wie nahe das Wasser an der Ouelle erhoben werden kann, da sofort eine Entgasung stattfindet. Wenn die Analyse nicht vor Ort durchgeführt wird, ist darauf zu achten, dass die Probe luftblasenfrei erhoben wird, damit auf dem Transport keine Entgasung stattfindet. Insgesamt ist für die häufigsten Radonwerte von einer Messungenauigkeit von 20 % und mehr (bei

niedrigen Radonwerten) auszugehen. Die Radondaten sind also nicht bis auf die letzte Stelle genau; wichtig ist, dass die Höhe der Radonwerte bekannt ist und dass die Verhältnisse zwischen den Messstellen richtig wiedergeben werden.

2. Historisches zu Radon

Ende des 19., anfangs des 20. Jahrhunderts wurden kurz nacheinander verschiedene die Radioaktivität betreffende Entdeckungen gemacht (1896: Radioaktivität des Urans durch H. Becquerel; 1898: Radium durch M. Curie). M. und P. Curie (1899) beobachteten im Umfeld ihrer Radiumpräparate eine unbekannte Verunreinigung («radioactivité induite»). Die Entdeckung, dass diese «Verunreinigung» durch ein radioaktives Gas damals Emanation, heute Radon genannt verursacht wird, ist für die Thoriumemanation (220Rn) E. RUTHERFORD (Januar 1900) und für die Radiumemanation (222Rn) E. DORN (Juni 1990) zu verdanken. RUTHER-FORD (1903) war auch der Erste, der die Natur des Radons erfasste (Halbwertszeit, Zerfall in radioaktives Gas = Radon und Heliumteilchen).

Möglicherweise der Erste, der Radon in Wasser nachwies - allerdings ohne dessen Natur zu erfassen, war Thomson (1902). Kurz darauf wurden in der Schweiz verschiedene Wässer, meist Mineralwässer auf Radon hin untersucht (GOCKEL 1904; VON Sury 1906/07; Schweitzer 1909). Schweitzer legte Wert darauf, dass die Analysen an der Quelle erfolgten, weshalb er nur während seiner Ferien Radonanalysen ausführen konnte. Seine Resultate stimmen, so weit Vergleichsmessungen vorliegen, recht genau mit den heutigen Daten überein. Die damaligen Messresultate wurden in Mache-Einheiten oder Eman angegeben (siehe Kästchen S. 50).

In Graubünden hatte Schweitzer (1909, 1910, 1916) bereits in den ersten Jahren des 20. Jahrhunderts das Wasser aller Mineralquellen auf ihren Radongehalt hin untersucht. Die Daten werden hier der Vollständigkeit halber in den Anhang integriert. Payot (1953) führte in der ganzen Schweiz Radioaktivitätsmessungen aus, darunter sind 40 Radonmessungen an Wasserproben aus Graubünden. Einige 100 Radonmessungen, viele davon aus Graubünden, wurden von Surbeck (1995) grafisch dargestellt.

Die höchste bisher für die Schweiz belegte Radonkonzentration in Wasser stammt von der Disentiser Sogn-Placi-Quelle (629-715 Bq/L; Högl 1980); bereits von Sury (1906/ 07), CATHOMAS (1908) und SCHWEITZER (1909) hatten ihre Eigenart bezüglich Radon festgestellt. Während der ersten Hälfte des 20. Jahrhunderts wurde das Wasser als radioaktives Heilwasser angepriesen. Ca-DISCH (1928) erwog die «Zufuhr magmatischer Dämpfe» als Grund für die hohen Radonaktivitäten, eine heute nicht mehr haltbare Interpretation. 1984 wurde die Quelle durch einen Lawinenniedergang teilweise verschüttet und im Jahr 2002 auf Anregung des Bündner Kantonschemikers O. Deflorin wieder zugänglich gemacht.

Die Radonwerte der hier erstmals beschriebenen Privatquelle Chaunt in Valchava schwanken zwischen 595 und 741 Bq/m³; Letzteres stellt den aktuellen Höchstwert für die Schweiz dar. Aus andern Ländern sind dagegen bedeutend höhere Werte bekannt – Norwegen bis 8500 Bq/L (Banks et al. 1995); USA bis 10 000 Bq/L (Paulsen 1991); Finnland bis 45 000 Bq/L (Castren in Lowry und Brandow 1985); Oberschlema/Sachsen/D 182 000 Bq/L (Hindenburgquelle 1930, heute versiegt; Ebert und Kessler 1991).

Eine erste statistische Auswertung von Radondaten aus der Schweiz – 60 Analysen von Schweitzer (1916), viele davon aus dem Kanton Graubünden – zeigte, dass die

Radonwerte der Kristallinquellen mit durchschnittlich 116 Bq/L deutlich über denjenigen der Triasquellen (34 Bq/L) und weiterer Quellen aus Sedimentgebieten liegen (10–20 Bq/L). Der Medianwert aller von Payot (1953) untersuchten Wasserproben ergab 7.4 Bq/L; Wässer aus den «herzynischen Massiven» (v.a. Aar- und Gotthardmassiv) enthielten 20 Bq/L Radon. Der Medianwert der von Surbeck (1995) dargestellten Bündner Wasserproben liegt unter 10 Bq/L. In der vorliegenden Publikation wurde ein Medianwert von 9.1 Bq/L für alle Wasserproben in Graubünden bestimmt (siehe Kap. 5).

3. Herkunft von Radon in Wasser

Hohe oder niedrige Radongehalte in Wasser sind – meist gleich wie für Bodenluft – abhängig vom Urangehalt des Wirtsgesteins, von der Durchlässigkeit des durchflossenen Fest- oder Lockergesteins, von Lösungsvorgängen der verschiedenen Uran-Thorium-Isotope (Abb. 1).

Beim Zerfall von Radium entsteht ein Radon- und ein so genanntes Alpha-Teilchen (Helium-Kern), welche sich durch einen Rückstosseffekt in entgegengesetzte Richtungen voneinander entfernen. Nur Zerfälle, die am Rand von Gesteinskörnern (oder in verbundenen Gesteinsporen) stattfinden, können zu einer Freisetzung (Emanation) von Radon führen (Abb. 2); die Radonatome können nur 0.02-0.07 µm in frischem Gesteinsmaterial zurücklegen (Na-ZAROFF et al. 1988b). Ein Teil des Radons wird in den umgebenden, wasser- oder luftgefüllten Porenraum abgegeben. Die Freisetzungsrate ist dann am grössten, wenn das Gestein/Gesteinskorn einen grossen Porenanteil aufweist, z.B. stark verwittert ist. In diesem Fall ist nicht nur die Kornoberfläche vergrössert, sondern auch die «innere Oberfläche» durch Zersetzung erhöht. In den Al-

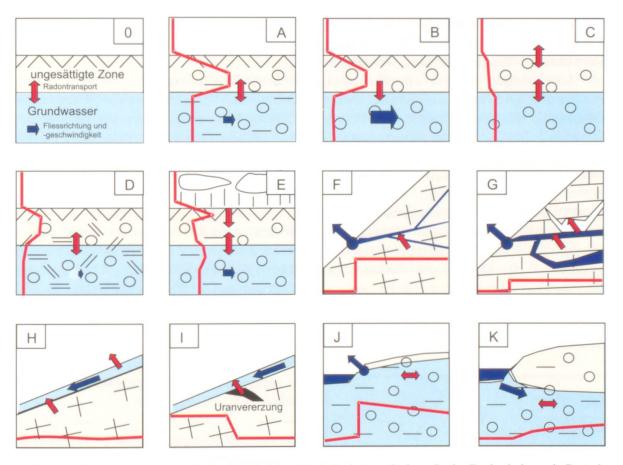


Abb. 1: Radon im Untergrund; Radonaktivitätsverhältnisse zwischen Luft, Bodenluft und Grundwasser.

0: Legende: rote Pfeile symbolisieren Radonaustauschprozesse, blaue Pfeile die Grundwasserfliessrichtung inkl. -geschwindigkeit. Die rote Linie gibt die vertikale Radonverteilung (A–E; zunehmende Konzentration nach rechts) respektive die horizontale Radonverteilung wieder (F–K: zunehmende Radonkonzentration nach oben).

A: Deckschicht vorhanden, Gleichgewicht zwischen ungesättigter Zone und Grundwasser; B: sehr gute Durchlässigkeit, kein Gleichgewicht; C: fehlende Deckschicht, Gleichgewicht; D: schlechte Durchlässigkeit, Radonadsorption an organischem Material; E: Niederschlag, ungesättigte Zone wird durchsickert; F: Kluftwasser in Kristallingestein; G: Karstwasser in Sedimentgestein; H: Hangwasser in Kristallingebiet; I: Uran-/Radiumvererzung; J: Exfiltration von Grundwasser in Fliessgewässer; K: Infiltration aus Fliessgewässer in Grundwasser.

pen, wo die Felsoberfläche «jung» ist, seit der letzten Eiszeit nur rund 10 000 Jahre der Verwitterung ausgesetzt war, weisen die ebenfalls jungen Böden einen grossen Porenanteil, aber keine sehr grosse innere Oberfläche auf. Der Radongehalt in Porenluft und -wasser ist niedriger als in alten Gebirgen, wo verwitterte Gesteinskörner eine hohe innere Oberfläche aufweisen.

Ausserdem ist die Freisetzungsrate des Radons vom Wassergehalt eines Bodens abhängig. In trockenem Boden wird ein grosser Teil der zerfallenden Radonatome die Porenluft queren und in ein benachbartes Gesteinskorn eindringen. In feuchtem Boden und im gesättigten Grundwasserbereich wird das aus dem Gesteinskorn her-

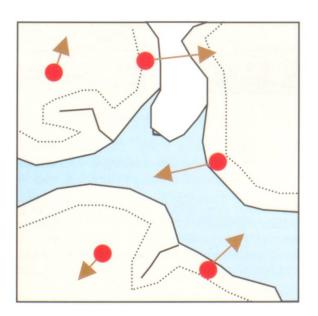


Abb. 2: Radonzerfall im Gesteinskorn (beige; mit Emanationssaum) und Freisetzung in den wasser(blau) oder luftgefüllten Porenraum (weiss).

ausgeschleuderte Radonatom gebremst und nur ausnahmsweise ins nächste Gesteinskorn eindringen. Ein durch radioaktiven Zerfall ins Wasser geschleudertes Radonatom kann sich nur 0.1 μm weit bewegen, in Luft sind es immerhin 63 μm (NAZAROFF et al. 1988b). Vorerst wird also vom produzierten Radon mehr im Porenwasser als in der

Porenluft vorhanden sein (nachher findet durch Entgasen ein Ausgleich statt).

In uranreichen Gesteinen (z.B. granitischen Gesteinen, Verrucano sowie deren Erosionsprodukten) werden mehr radioaktive Zerfälle stattfinden; in der Regel wird auch mehr Radon freigesetzt.

Die Löslichkeit von Radon in Wasser ist praktisch unbeschränkt hoch. Zwischen Bodenluft und Grundwasser bildet sich – wenn genügend Zeit vorhanden ist – ein Radongleichgewicht: bei 10 °C beträgt der Verteilungskoeffizient zwischen Wasser und Luft 30 %, d.h. Wasser weist etwa drei Mal weniger Radon auf als die in Kontakt stehende Luft. Wenn ein Ungleichgewicht besteht, wird Radon von der Luft ins Wasser abgegeben, andernfalls entgast das Grundwasser.

Da normale Umgebungsluft praktisch kein Radon enthält, entgast das Radon im Grundwasser, sobald es mit der Atmosphäre in Kontakt kommt (z.B. beim Quellaustritt).

Bei der Infiltration von Niederschlagswasser (Abb. 1E) findet in der ungesättigten Zone eine starke Anreicherung mit Radon statt. Ein massgebender Anteil des Radoneintrags ins Grundwasser kann durch Infiltration erfolgen (EISENLOHR und SURBECK 1995).

wenig Radon im Wasser	viel Radon im Wasser
Ton-, Mergelschiefer	granit. Gesteine, Verrucano
Lehm	Schotter
junges Grundwasser	altes Grundwasser
gute/schlechte Durchl.	mittlere Durchlässigkeit
Infiltration aus Fluss	Exfiltration von Grundwasser
fehlende Deckschicht	Deckschicht mächtig

4. Welche Bedeutung haben Radonmessungen in Wasser?

Anfangs des 20. Jahrhunderts wurden von verschiedenen Autoren Radonmessungen ausgeführt (siehe Kap. 2). Später wurden in der Schweiz eher selten Radonmessungen an Wasser ausgeführt und veröffentlicht (PAYOT 1953; SURBECK 1995; WALKER 1998). Dies vor allem weil eine Gesundheitsgefährdung durch Radon im Wasser als gering anzusehen ist. Richt- oder Grenzwerte für Radon in Wasser existieren bis heute nicht. In den USA steht seit 1999 die Einführung eines Richtwertes von 150 Bq/L zur Diskussion (www.epa.gov). In Tschechien besteht ab 50 Bq/L ein Untersuchungsbedarf; der Grenzwert für Radon in Wasser liegt bei 300 Bq/L. In der Schweiz liegt bisher kein Richtoder Grenzwert für Radon in Wasser vor. In der vorliegenden Arbeit werden die 150 Bq/ L als Vergleichswert beigezogen, obwohl dieser Wert von Schweizer Fachleuten als eher zu tief angesehen wird.

Radon in Wasser

- Gesundheitliche Aspekte (Lungen-, Magenkrebs)
- Entgasung in Wohnungsluft
- · Zusammenhang mit Radon in Gebäudeluft
- Wasserversorgung: Bestimmung von Mischungsverhältnissen verschiedener Wasserstränge
- Unterscheidung von Wässern, die sich chemisch nicht unterscheiden
- Beurteilung der Wasserqualität: wenig Radon im Wasser deutet auf schlechten Schutz, Abwesenheit einer Deckschicht hin
- Altersbestimmung bei Grundwasserinfiltration
- Kartierung von organischen Verunreinigungen

Radonmessungen in Wasser können, wie im Folgenden gezeigt wird, in verschiedenen Bereichen nützliche Informationen liefern:

 Bei hohen Radongehalten im Trinkwasser können gesundheitliche Auswirkungen nicht ausgeschlossen werden. Wenn die Daten aus den USA auf Schweizer Verhältnisse umgerechnet werden, so sind pro Jahr ca. 5 Lungen- und Magenkrebsfälle verursacht durch Radon in Wasser zu erwarten, wobei die meisten Erkrankungen Lungenkrebsfälle durch Radonentgasung darstellen und durchschnittlich alle 2 Jahre ein Magenkrebsfall auftreten würde [www.epa.gov]). Das Gefährdungspotenzial für Graubünden ist insgesamt als gering einzustufen; nur rund ein Dutzend Messstellen wiesen Radongehalte von >150 Bq/L auf (Abb. 3).

Häufigkeitsverteilung Radon in Wasser

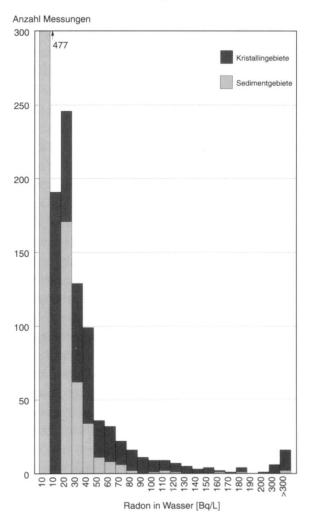


Abb. 3 Häufigkeitsverteilung von Radonwerten in Wasserproben (Daten aus Graubünden).

- Durch Entgasung von Trinkwasser im Wohnbereich (Kochen, Duschen) kann Radon freigesetzt werden. Die so genannte 1:10 000-Regel (NAZAROFF et al. 1988a) besagt, dass sich, für Trinkwasser mit z.B. 100 Bq/L Radon, die Radonaktivität der Wohnungsluft durch Entgasung um 10 Bq/m³ erhöht.
- Aussagen betreffend Radon in Wohnungsluft: die Radonmessung in Wasser kann indirekt über die regionale Verteilung von Radon in Wohnungsluft Auskunft geben (siehe unten).
- In Bauwerken der Wasserversorgung (Reservoir) können durch Entgasung hohe Radonkonzentrationen auftreten, was bei längerer Aufenthaltszeit einen massgebenden Beitrag an das Lungenkrebsrisiko darstellen kann (SURBECK 1997).
- Bei sehr hohem Grundwasserspiegel (stehendes Wasser im Keller eines Hauses) kann eine Entgasung direkt in den Wohnbereich stattfinden. In der Regel ist dann der Wasserdurchfluss eher gering, der Radontransport in Bodenluft unterbleibt, die Belastung in der Wohnungsluft ist eher gering.
 - Anders kann es für Gebäude aussehen, die über eine fliessende Quelle im Keller verfügen.
- In Fliessgewässern kann exfiltrierendes Grundwasser anhand von Radonmessungen erkannt werden. Erhöhte Radongehalte im Fluss, welcher normalerweise praktisch radonfrei ist, können auf den unsichtbaren Zustrom von radonhaltigem Grundwasser hinweisen (LEE und HOLLY-DAY 1987). Diese Tatsache ist insbesondere dann von Bedeutung, wenn die sich mischenden Oberflächen- und Grundwässer aufgrund des Chemismus kaum zu unterscheiden sind.
- Bei der Infiltration von radonarmem Flusswasser in den Untergrund findet eine Anreicherung mit Radon statt. Die zunehmende Radonaktivität im Grundwasser hängt mit der Fliessdauer des Was-

- sers zusammen und erlaubt unter bestimmten Bedingungen eine Altersbestimmung vorzunehmen (HOEHN und VON GUNTEN 1989; KAFRI 2001).
- In organikareichen Wässern im Bereich von Deponien, Altlasten, Unfallstandorten – kann es zu einer massiven Abreicherung von Radon kommen, da Radon von organischer Substanz adsorbiert wird. Die Abwesenheit von Radon kann also zum Nachweis organischer Verunreinigungen dienen (Wanty und Schoen 1991; Hoehn et al. 1994; Cantaloub et al. 1996).
- Radonadsorption an Aktivkohle wird als Mittel zur Radonsanierung von Trinkwasser angewandt (Lowry und Brandow 1985).
- Radon in Bodenluft und Wasser wird im Zusammenhang mit der Erdbebenvorhersage untersucht (NISHIZAWA et al. 1998).
 Für die Schweiz sind solche Messungen allerdings kaum von Bedeutung.

5. Überblick über Radonwerte in Wasser in Graubünden

In Anhang 1 werden mehr als 1300 Radonanalysen in Wasser aufgelistet. Daten, welche anfangs des 20. Jahrhunderts veröffentlicht worden sind (Schweitzer 1909 und 1916), wurden der Vollständigkeit halber ebenfalls integriert. Heute liegen für alle Bündner Gemeinden Daten vor, wobei der Erfassungsgrad sehr unterschiedlich ist. Zum Teil existieren nur Einzelmessungen, zum Teil vermitteln die Messresultate einen guten Überblick über das ganze Gemeindegebiet und über die verschiedenen Wassertypen. Wasserproben wurden bei gefassten und ungefassten Quellen, zum Teil aus Wasserversorgungen (Reservoir, Dorfbrunnen) sowie von gepumptem Grundwasser erhoben. Meist handelt es sich um Einzelmessungen, vereinzelt liegen Mehrfachbestimmungen vor. Die Beprobung wird fortgesetzt.

Von der Wasserversorgung her unbedeutende Quellen, welche in der Nähe von Siedlungen entspringen, sowie Grundwasserproben lassen es am ehesten zu, die Beziehung zwischen Radonkonzentrationen im Untergrund und in Gebäuden zu studieren. Für diesen Zweck sind sie Radonanalysen aus Wasserversorgungen vorzuziehen. Letztere liefern dafür Angaben darüber, welcher Belastung die Bevölkerung vom Trinkwasser her ausgesetzt ist.

Die mittlere Radonkonzentration aller Wasserproben liegt bei 20.7 Bq/L (27.4 Bq/L unter Berücksichtigung der Mehrfachbestimmungen). Zum Vergleich: im Kanton Freiburg wurden im Durchschnitt 11.0 Bq/L gemessen (Walker 1998). Es fällt auf, dass in Wässern aus Kristallingebieten rund 3-mal höhere Radonwerte resultieren als in Sedimentgebieten (Tab. 1), wobei die Einteilung Kristallin/Sediment aufgrund der im Gebiet hauptsächlich vorhandenen Festgesteine vorgenommen wurde (Dass die

Wasserproben Graubünden	Radon Mittelw. [Bq/L]	Radon Median [Bq/L]	Anzahl Proben
Quellen Sediment	11.2	6.5	(465)
Quellen Kristallin	36.2	18.0	(250)
alle Quellen	19.9	8.3	(715)
Grundwasser Sediment	20.3	17.1	(107)
Grundwasser Kristallin	57.8	40.5	(68)
alle Grundwasserproben	34.9	22.6	(175)
Fliessgewässer	2.2	0.5	(6)
Wasserversorgung Sediment	6.6	4.2	(104)
Wasserversorgung Kristallin	17.0	8.0	(95)
alle Proben Wasserversorgung	11.6	5.4	(199)
Sedimentgebiet ingesamt Kristallingebiet insgesamt alle Wasserproben	11.9 35.0 20.7	6.9 17.9 9.1	(677) (418) (1095)

Tab. 1: Durchschnittswerte von Radon in Wasser (arithmetisches Mittel und Medianwert). Mehrfachbestimmungen: Durchschnittswert pro Messstelle berücksichtigt!

Lockergesteine in Sedimentgebieten mehr oder weniger Kristallinschutt enthalten, wurde nicht berücksichtigt.)

Von den untersuchten Wassertypen her fällt auf, dass Fliessgewässer – wie erwartet – sehr niedrige Radonaktivitäten aufweisen. In aller Regel sind Radonwerte <1 Bq/L zu erwarten; der Durchschnittswert von 2.2 Bq/L ist durch die Untersuchung eines Quellbaches sowie an einer Exfiltrationsstelle höher als üblich.

Die Radonwerte von Proben aus der Trinkwasserversorgung sind mit wenigen Ausnahmen ebenfalls niedrig; von der Quelle zu den Konsument/innen findet in Druckbrecherschächten und Reservoirs eine Entgasung statt. Quellen weisen demgegenüber höhere Radonwerte auf, während die untersuchten Grundwasserproben durchschnittlich doppelt so viel Radon wie Quellwasserproben enthalten. Letzteres ist darauf zurückzuführen, dass die Grundwasserproben mit dem umgebenden Lockergestein und der Bodenluft teilweise im Gleichgewicht stehen, während etliche oberflächennahe Quellwässer mit der Atmosphäre in Verbindung stehen, was zu einer Entgasung von Radon führt. Das Wasser von Trinkwasserversorgungen weist durchschnittlich 11.6 Bq/L Radon auf. Dieser Wert ist niedriger als für die Quellen, weil zwischen Quelle und Verbraucher eine Entgasung stattfindet. Für die untersuchten Bündner Trinkwässer gilt, dass bis auf eine Ausnahme (Rueun) in keiner Wasserversorgung Werte über 150 Bq/L beobachtet wurden - 150 Bq/L entsprechen einem in den USA zur Debatte stehenden Richtwert (siehe Kap. 4). Die öffentlichen Wasserversorgungen liefern also ein vom Radon her einwandfreies Wasser; in Rueun lohnt es sich die Verhältnisse genauer zu untersuchen und unter Umständen radonsenkende

Massnahmen zu treffen. Doch auch für Rueun gilt, dass der Wasserbeitrag an die

Innenluftbelastung mit Radon – gemäss der

im Kapitel 4 beschriebenen 1:10 000-Regel -

unter 20 Bq/m3 bleibt. Bei durchschnittli-

chen Radonwerten von 119 Bq/m³ im Wohnbereich (über ganz Graubünden; BAG 2002) macht ein wasserbedingter Radonbeitrag von maximal 20 Bq/m³ einen wesentlichen Anteil aus, ist aber nicht für Richtoder Grenzwertüberschreitungen (400 resp. 1000 Bq/m³) entscheidend.

Einen Überblick über die regionale Verteilung der Messwerte vermittelt untenstehende Karte (Abb. 4). Zuerst fällt auf, dass in den einzelnen Gemeinden und Regionen keine einheitlich hohen oder niedrigen Radonwerte gemessen wurden. Das hat mit Inhomogenitäten des Untergrundes zu tun: Zusammensetzung, Durchlässigkeit, Bodenüberdeckung können lokal stark schwanken, so dass Messstellen mit hohen, neben Messstellen mit niedrigen Radonaktivitäten liegen.

Dennoch sind regionale Unterschiede erkennbar. Eine Häufung erhöhter Radonkonzentrationen ist in den Kristallingebieten Graubündens festzustellen, was sich im Vergleich der Radonkarte mit der tektonischen Kartenskizze (Abb. 5A) zeigt. Gebiete mit höheren Radonwerten im Wasser sind die Surselva (Aar- und Gotthardmassiv, Ilanzer Verrucano), Misox/Calanca (Kristallin der Simano-/Aduladecken), Rheinwald (Aduladecke), Avers (Surettadecke mit Rofnaporphyrgneis = «Andeerer Granit»), Davos (Kristallin der Silvrettadecke), Bergell (Bergeller Granit, u.a.), Oberengadin (Err-Bernina-Decke), Unterengadin (Silvrettakristallin).

Niedrige Radonwerte werden in der Regel in den Bündnerschiefergebieten Nord- und Mittelbündens und im Unterengadin sowie in Gebieten mit ophiolithischen Gesteinen (Platta-Decke in Mittelbünden, Aroser Schuppenzone) gemessen. Hier gehen niedrige Uran- und Radiumgehalte im Gestein mit

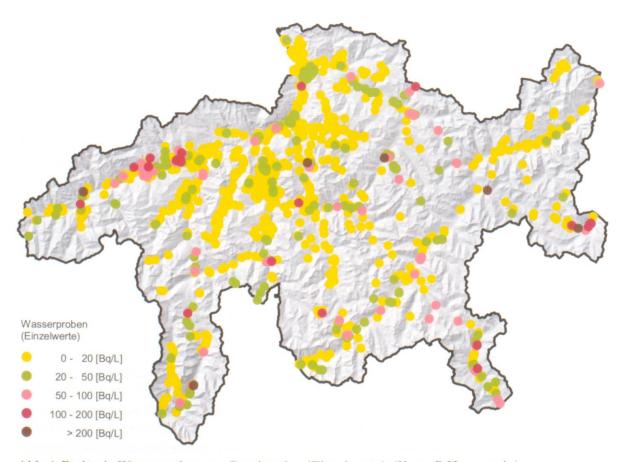


Abb. 4: Radon in Wasserproben aus Graubünden (Einzelwerte). (Karte P. Hauenstein)

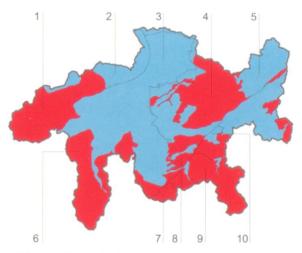


Abb. 5A: Tektonische Kartenskizze von Graubünden (stark vereinfacht; Kristallingebiete Rot; Sedimentgebiete Blau). 1 Aar-Gotthardmassiv; 2 Helvetikum; 3 Penninikum; 4 Silvrettä; 5 Engadiner Fenster; 6 Adula; 7 Bergell; 8 Enn; 9 Bernina; 10 Ostalpin

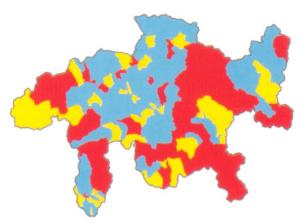


Abb. 5B: Radon in Wasser; Gemeindekarte von Graubünden: Rot: >50 Bq/L; Gelb: 30-50 Bq/L; Blau: <30 Bq/L (basierend auf Höchstwert pro Gemeinde). (Karten P. Hauenstein)

geringer Porosität des Gesteins und dessen Verwitterungsschutt einher, weshalb sowohl in der Bodenluft als auch im Grundwasser niedrige Radonaktivitäten resultieren.

In der Karte in Abb. 5B sind die Maximalwerte der Radonkonzentration in Wasser pro Gemeinde aufgetragen. Je ein Wert für Vaz/Obervaz (Solis) und Untervaz (Fehlbestimmung?) wurden nicht berücksichtigt. Die Gemeinden mit Radonaktivitäten >50 Bq/L befinden sich häufig in den Kristallingebieten (vgl. Abb. 5A). Sowohl in den Kristallin- als auch den Sedimentgebieten sind jedoch Ausnahmen anzutreffen.

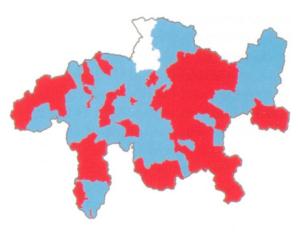
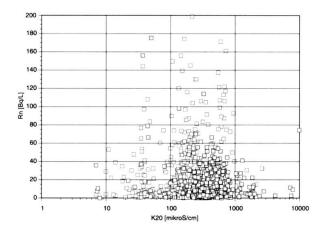
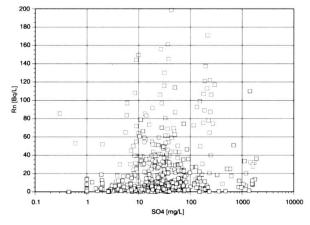


Abb. 5C: Radon in Wohnungsluft; Gemeindekarte von Graubünden: Rot: Radongebiet; Blau: kein Radongebiet; Weiss: noch nicht eingeteilt (nach BAG 2002).

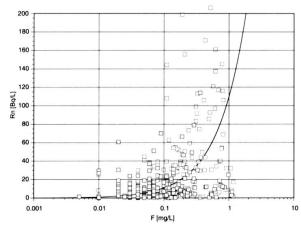
Die Gemeinden, in welchen gemäss Abb. 5B erhöhte Radonkonzentrationen in Wasser (>50 Bq/L) gemessen wurden, entsprechen recht genau jenen, welche als Radongefährdungsgebiet betreffend Wohnungsluft gelten (BAG 2002; Abb. 5C). Für Radonwerte zwischen 30 und 50 Bq/L sind die Verhältnisse noch unsicher. Für einzelne Gemeinden ist der Erfassungsgrad genügend (z.B. Cazis, Chur, Innerferrera, Luzein, Medel/Lucmagn, Scuol); es ist nicht anzunehmen, dass Werte über 50 Bq/L resultieren werden. Für andere Gemeinden ist aber anzunehmen, dass weitere Messungen zu Werten über 50 Bg/L führen könnten (z.B. Sarn, Sils i.D., San Vittore, Tujetsch). Gemeinden mit Radonwerten <30 Bq/L sind bei genügender Erfassung als radonsicher auch für Radon in der Wohnungsluft aufzufassen. Hiermit wird die Bemerkung von SURBECK (1995) gestützt, dass Radonwerte >50 Bq/L in Wasser als «Hinweis auf Radongebiete» zu werten sind.


6. Wasserchemismus und Radon

Aus der Literatur ist bekannt (z.B. Szabo und Zapecza 1987; Wanty et al. 1993), dass zwischen Radiumgehalten und verschiedenen chemischen Parametern im Wasser (u.a.


Eisen, Mangan) ein Zusammenhang besteht. Eisen und Mangan adsorbieren z.B. Radium, durch Redoxreaktionen und Desorption können die Stoffe in Lösung gehen. In diesen Fällen ist eine Korrelation mit den Radonwerten zu erwarten. Andererseits konnten verschiedene Autoren feststellen, dass zwischen Radon und Chemieparametern keine Korrelation existiert (z. B. Law-RENCE et al. 1993; Paulus et al. 1998 [höchstens ein geringer Zusammenhang mit der Wasserhärte]). Radon liegt meistens in höherer Konzentration im Wasser gelöst vor als Radium; in aller Regel besteht kein radioaktives Gleichgewicht zwischen Mutter- und Tochterisotop.

Für etliche Wasserproben wurden neben den Radonmessungen chemische Analysen im eigenen Labor ausgeführt. Die meisten der untersuchten Ionen und dissoziierten Stoffe (Na+, K+, Mg2+, Ca2+, F-, Cl-, SO₄2-, HCO3, SiO3, Bor) zeigen keinerlei Korrelation mit dem Radongehalt; als typisches Beispiel kann das Diagramm Sulfat/Radon in Abb. 6B angesehen werden. Für kleinere Untersuchungsgebiete kann mit den Parametern Radon und Calcium (GENEREUX et al. 1993) oder Sulfat (HOEHN et al. 2001) eine Unterscheidung verschiedener Gewässertypen vorgenommen werden. Für die Bündner Daten ist zwischen Radon und Fluorid (Abb. 6C) eine schwache Korrelation zu erkennen - eine Beobachtung, welche vor Jahren bereits von H. Surbeck (mündl. Mitt.) gemacht worden war.


Interessant ist es, einen Vergleich der Radonwerte mit der elektrischen Leitfähigkeit (K₂₀) vorzunehmen (Abb. 6A). Die elektrische Leitfähigkeit in Mikrosiemens pro Zentimeter (µS/cm) stellt ein Mass für den Ionengehalt eines Wassers dar und entspricht in der Grössenordnung der Gesamtmineralisation in Milligramm pro Liter (mg/L). Die folgenden Bemerkungen lassen sich grösstenteils auf die anderen Chemieparameter übertragen:

6A: spezifische elektrische Leitfähigkeit K₂₀

6B: Sulfat

6C: Fluorid

Abb. 6: Vergleiche von Chemie und Radon; Wasserproben aus Graubünden Rot: Proben aus Kristallingebieten Schwarz: Proben aus Sedimentgebieten

- Ganz schwach mineralisierte Wässer (um 10 μS/cm) weisen oft niedrige Radongehalte auf (<50 Bq/L). Die Wässer entstammen zum grossen Teil Kristallingebieten. Sie haben eine kurze Fliessstrecke zwischen Versickerungs- und Fassungsstelle hinter sich. Es handelt sich um «junge» Wässer. Die Sickerstrecke im Untergrund ist kurz, die Bodenbedeckung ist meistens geringmächtig und gut luftdurchlässig, so dass geringe Radonemanation mit Entgasung in die Atmosphäre einhergeht.</p>
- In Kristallingebieten konkurrenzieren sich zwei Effekte: die oben erwähnten schwach mineralisierten, jungen, radonarmen Wässer aus Gebieten mit geringer Bodenbedeckung stehen radonreichen Wässern gegenüber. Hohe Radonaktivitäten sind hier auf den erhöhten Radiumgehalt des durchflossenen Wirtsgesteins zurückzuführen. Die Bodenbedeckung muss eine gewisse Mächtigkeit aufweisen und den Luftaustausch mit der Atmosphäre behindern, oder das Wasser muss direkt aus einem wassergesättigten Kluftsystem austreten.
- Wasserproben aus Sedimentgebieten weisen bei unterschiedlich starker Mineralisation eher niedrige Radonaktivitäten auf.

Im Diagramm Sulfat/Radon (Abb. 6B) fällt auf, wie viele Kristallinwässer bei hohen Radongehalten auch erhöhte bis hohe Sulfatgehalte aufweisen. Diese Wässer sind als Mischwässer aufzufassen, welche Charakteristiken beider Gebiete aufweisen: es handelt sich um Sulfatwässer, die in mehrheitlich kristallinen Gebieten entspringen (z.B. San Bernardino/Mesocco, St. Moritz, Müstair). Diese Beobachtung erklärt auch die statistischen Daten von Cadisch (1927), welcher feststellte, dass neben den Kristallinquellen auch die Triasquellen (meist Sulfatquellen) erhöhte Radongehalte aufweisen.

Die Fluoridgehalte der untersuchten Wasserproben korrelieren beschränkt mit dem Radongehalt $(C_{Rn} [Bq/L] = 100 * C_{F^-} [mg/$ L]). Die Gründe hierfür sind noch nicht geklärt; eine Hypothese lautet, dass die Lösung von Fluorid weitgehend den gleichen Mechanismen folgt, wie die Radonemanation: 1) uranreichere Gesteine sind meist auch fluoridreicher; 2) für das Lösungsverhalten von Fluorid ist - wie für Radon eine grosse Kornoberfläche wichtig. Unterschiedlich ist dagegen das Verhalten in Bezug auf Ausfällung respektive Entgasung: während in Lösung befindliches Fluorid kaum mehr ausgeschieden wird, entgast Radon beim Wasseraustritt, was die Relation Fluorid/Radon unscharf werden lässt.

7. Radon und Wasserdurchlässigkeit

Gemäss Nazaroff et al. (1988b) herrscht in kiesig-sandigen Grundwasserleitern konvektiver Transport von gelösten Stoffen vor, d.h. die Stoffe werden durch eine Strömung, die durch Druck- eventuell Temperaturunterschiede verursacht wird, transportiert. Ein diffusiver Transport findet in tonigsiltigen, also feinkörnigen Ablagerungen statt: d.h. es erfolgt eine Durchmischung von Stoffen, welche durch Konzentrations-, Temperatur- oder Druckunterschiede verursacht wird.

Bisher wurden für 129 Grundwassermessstellen in Graubünden sowohl Radon gemessen als auch die Grundwasserdurchlässigkeit bestimmt (Abb. 7):

- Schlechte Wasserdurchlässigkeit geht mit niedrigen Radongehalten einher.
- Für mittlere Durchlässigkeiten (K=1*10⁻⁴ bis 1*10⁻³ m/s) sind hohe und niedrige Radongehalte möglich.
- Bei sehr guter Durchlässigkeit kommen wiederum nur niedrige Radonaktivitäten vor.

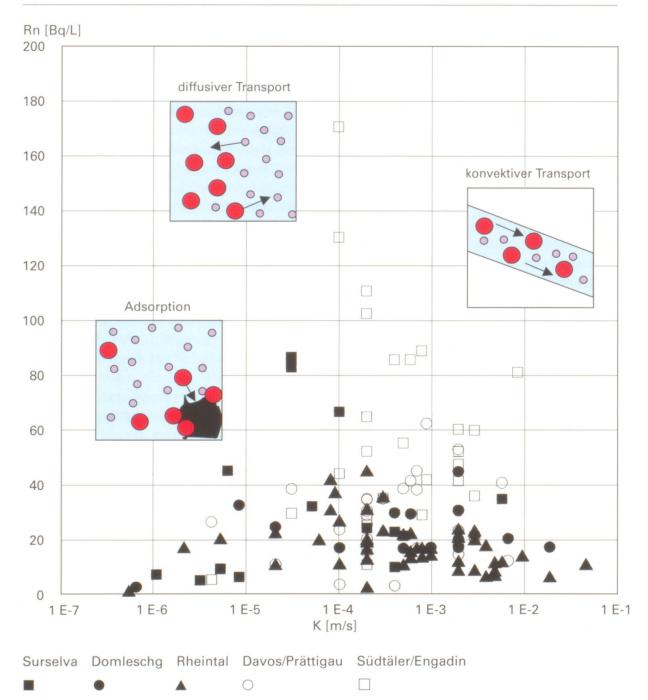


Abb. 7: Grundwasserdurchlässigkeit K / Radon im Grundwasser (mit Skizzen für Gastransport in Porenwasser; Radonatome: grosse, rote Kreise).

Niedrige Radonaktivitäten bei hoher Durchlässigkeit (K>1*10⁻³ m/s) lassen sich damit erklären, dass mit zunehmender Korngrösse die Kontaktfläche zwischen Lockergestein und Wasser kleiner wird. Die Emanationsrate ist dementsprechend niedriger (Davis et al. 1987; Semprini 1987; Lawrence et al. 1993). Vorherrschend ist der konvektive Transport von Radon.

Gemäss Nazaroff et al. (1988b) erfolgt bei Durchlässigkeitsbeiwerten von 1-5*10⁻⁴ m/s der Übergang von mehrheitlich konvektivem zu diffusivem Transport. Dies stimmt ungefähr mit den für Bündner Grundwässer gemachten Beobachtungen überein, wobei hier für K>1*10⁻³ m/s von konvektivem Transport ausgegangen wird. Im Bereich diffusiven Transportes (K<1*10⁻³ m/s) kommen die höheren Radonkonzentrationen zustande.

Jetzt würde man erwarten, dass bei ganz niedrigen Durchlässigkeiten die höchsten Radonaktivitäten in Wasser aufträten. Gemäss den bisherigen Beobachtungen ist dem nicht so - es liegen allerdings erst wenige Messungen bei niedrigen Permeabilitäten vor. Für K<1*10⁻⁴ und v.a. für K<1*10⁻⁵ m/s wurden niedrige Radonaktivitäten gemessen. Das könnte zum Teil mit dem Gehalt an organischem Material zusammenhängen: im schlecht durchlässigen Untergrund herrschen meistens reduzierende Verhältnisse. in den Tonen und Silten sind Holzreste und Torflagen vorhanden. Das organische Material adsorbiert Radon, weshalb in diesen Wässern niedrige Radongehalte gemessen werden. Hierbei handelt es sich vorerst um eine Hypothese, welche durch weitere Messungen überprüft werden muss.

Die Untersuchungen wurden in Porengrundwässern gemacht und sind nicht auf Bergwasservorkommen übertragbar. Die höchsten bekannten Radonwerte kommen in Kluftwässern geringer Ergiebigkeit vor.

8. Einige Beispiele

Im Folgenden werden exemplarisch einige Radonsituationen aus Graubünden betrachtet und interpretiert.

8.1. Exfiltrierendes Grundwasser

Am Hinterrhein unterhalb von Sufers tritt am Ufer Grundwasser aus. Vom Chemismus und der Wassertemperatur her unterscheidet sich das austretende Grundwasser kaum vom Flusswasser. Beim Grundwasser könnte es sich um wenige Meter weiter oben versickertes Flusswasser handeln. Die Radonmessung zeigte (16.7 Bq/L im austretenden Grundwasser, 1.5 Bq/L im Hinterrhein), dass das Grundwasser einen längeren Fliessweg hinter sich hat. Das Grundwasser dürfte – von der Höhe der Radonwerte her – vor Umwelteinflüssen geschützt sein und gute Wasserqualität aufweisen.

8.2. Infiltration

Von drei in einem Profil liegenden Grundwassermessstellen bei Fläsch zeigt eine niedrige (5.5 Bq/L), zwei höhere Radonaktivitäten (10.0 / 20.7 Bq/L; Tab. 2). Für den niedrigen Wert ist Infiltration aus dem 150 m entfernten Rhein respektive dem 100 m entfernten Bachlauf verantwortlich. Das versickernde Wasser speist eine gut durchlässige Rinne (wahrscheinlich einen alten Rheinlauf). Nach der Methode von Hoehn und von Gunten (1989) kann das Alter von infiltriertem Wasser aufgrund der Radonkonzentration berechnet werden:

t [d] = -1/
$$\lambda$$
 (= Lambola) * ln(1 - A_t/A_c)
mit A_t: Radonaktivität zur Zeit t
A_c: Radonaktivität im Gleichgewicht
 λ : Radonzerfallskonstante = 0.18/d

Für die Messstelle Nr. 35 (Tab. 2) wird angenommen, dass sie durch Flussinfiltration unbeeinflusst sei, das Wasser war mehrere Radonhalbwertszeiten lang mit dem Lockergestein in Kontakt. Für das Grundwasser aus der Messstelle 34 resultiert demnach ein Alter von 1.7 Tagen.

Messstelle	34	34A	35
Horizontaldistanz zu Bach	100 m	220 m	600 m
Radon-222 [Bq/L]	5.5	10.0	20.7
Wasseralter [Tage]	1.7	3.7	(>20)

Tab. 2: Grundwasseralter aufgrund von Radondaten; Beispiel Fläsch.

8.3. Wasserversorgung

Ein Beispiel, welchen Nutzen Radonmessungen in der Wasserversorgung haben können, liefern Messungen aus Andeer. Dort wurden an verschiedenen Stellen im Dorf 8 Trinkwasserproben erhoben. Es zeigten sich markante Unterschiede zwischen der einen Gruppe mit Werten von 2.6±0.5 Bq/L und der anderen mit 28.1±1.0 Bq/L. Dies kommt daher, dass eine Ringleitung das Dorf versorgt, wobei zwei Quellgebiete mit ganz unterschiedlichen Radonwerten die Versorgung übernehmen. Mit den Radonmessungen konnte gezeigt werden, dass die Durchmischung im Trinkwassernetz kaum stattfindet, und welche Ortsteile welches Wasser beziehen.

8.4. Vorhandensein einer Deckschicht

Bei ähnlicher Geologie - im Kontaktbereich zwischen Verrucano und Trias-Sedimenten wurden auf der Nord- und der Südflanke der Muchetta (Filisur, Wiesen, Bergün) unterschiedliche Radonkonzentrationen bestimmt (Tab. 3). Auf der Nordseite entspringen die Quellen aus Murgang- und Lawinenschutt. Der steile Schuttkegel weist praktisch keine Bodenbedeckung auf. Auf der Südseite ist der Hang mit verschiedenartigem Schutt sowie Moränenablagerungen bedeckt. Es handelt sich um bewaldetes Gebiet und Alpweiden. Im Wald ist die Deckschicht unvollständig, die Radonwerte sind niedrig; im Alpgebiet ist ein mehr oder weniger durchgehender Bodenhorizont vorhanden, die Radonwerte sind deutlich höher. Das Beispiel zeigt die Bedeutung des Vorhandenseins respektive der Abwesenheit ei-

Messstelle	Much Chüet	etta N obel	Muchetta S Falein				
Deckschicht	nicht	vorha	nden	vorhanden			
Radon-222 [Bq/L]	7.1	9.5	11.4	22.6	79.3		

Tab. 3: Radon und Deckschicht; Beispiel Muchetta (Filisur, Bergün).

nes Bodenhorizontes, welcher den Gasaustausch zwischen Atmosphäre und Bodenluft kontrolliert. Die Auswirkungen betreffend Schutz des Quellwassers werden im nächsten Beispiel erläutert.

8.5. Ophiolithe/Quellschutz

Ein ähnliches Beispiel wie oben stellen Gebiete mit ophiolithischen Gesteinen (Grüngesteine, welche aus einer ozeanischen Platte hervorgegangen sind) dar. Die Bodenbedeckung ist erfahrungsgemäss geringmächtig oder nicht vorhanden. Quellwasser aus solchen Gebieten weist in aller Regel sehr niedrige Radongehalte auf, wegen der fehlenden Deckschicht und der deshalb stattfindenden Entgasung von Radon in die Atmosphäre. Beispiele sind in Arosa/Hörnli, Scuol/Champatsch zu finden. Niedrige Radonwerte deuten auf einen ungenügenden Schutz des Ouellwassers hin, während höhere Radonkonzentrationen auf guten Schutz und bessere Wasserqualität hinweisen.

8.6. Schwankungen der Radonkonzentration

Die Radonkonzentration in Wasser ist nicht als konstant anzusehen, sie schwankt zum Beispiel mit hydrologischen Ereignissen (Surbeck 1993; Eisenlohr und Sur-BECK 1995). An verschiedenen Messstellen schwanken die Radonkonzentrationen um bis zu 100 %. Wir greifen ein Beispiel einer Grundwassermessstelle bei Reichenau heraus. Zwei Proben bei «normalem» Wasserstand ergaben Radonaktivitäten von 11.6 und 14.8 Bq/L. Das Grundwassergefälle ist im Normalfall gering; es erfolgt eine Speisung durch Wasser des Vorderrheins, das oberhalb Reichenau infiltriert, sowie von Hangwasser aus dem Bereich von Tamins. Während der dritten Probenahme war der Stausee der Kraftwerke Reichenau AG abgesenkt, es bestand ein starkes Grundwassergefälle gegen den Rhein hin, was sich auf den Radonwert (32.9 Bq/L) auswirkte. Unter diesen Umständen dürfte das beprobte Wasser ausschliesslich Hangwasser aus dem Gebiet von Tamins repräsentieren.

9. Schlussfolgerung

In Graubünden wurde Radon in unterschiedlichen Wässern analysiert. Von der Geologie her konnte eine erste grobe Trennung vorgenommen werden: in Kristallingebieten sind die Radonaktivitäten in Wasser durchschnittlich 3-mal höher als in Sedimentgebieten. Es zeigte sich, dass die Wasserversorgungen im Allgemeinen Trinkwasser niedriger Radonaktivität liefern. Wenn von einem Vergleichswert für Radon in Wasser von 150 Bq/L ausgegangen wird, so ist bisher nur einmal in Rueun ein höherer Wert in einer Trinkwasserversorgung beobachtet worden. Die Gefährdung der Bevölkerung ist dementsprechend als gering einzuschätzen. In Einzelfällen (Rueun, Wasserversorgungsgebäude) könnten Massnahmen zur Senkung der Radonkonzentration angezeigt und mit einfachen Mitteln zu verwirklichen sein. Radonuntersuchungen in Wasser werden in Graubünden nicht aus gesundheitsrelevanten Gründen ausgeführt.

Die Radonwerte in Wasser geben – dank der Berücksichtigung lokaler Quellen – recht genau die Verhältnisse für Radon in Wohnungsluft wieder (siehe Kap. 5, Abb. 5B, 5C):

- Niedrige Radonwerte im Wasser aus den Bündnerschiefergebieten Nord- und Mittelbündens sowie des Unterengadins. Die maximal in diesen Gemeinden festgestellten Radonwerte liegen unter 30 Bq/L.
- Höhere Radonwerte im Wasser (>50 Bq/L) deuten auf Radongefährdungsgebiete betreffend Wohnungsluft hin. Dies betrifft die Regionen Surselva, Hinterprättigau und Davos, Hinterrhein, Oberengadin und die Südtäler (v.a. Bergell, Puschlav, Münstertal).
- Lokale Inhomogenitäten führen dazu,

dass erhöhte direkt neben niedrigen Radonwerten vorkommen (gilt für Wasser wie für Wohnungsluft).

Insgesamt lässt sich mittels Radonmessungen in Wasser die Situation für Radon in Wohnungsluft wiedergeben. Insbesondere konnte eine Karte der Radongefährdungsgebiete erstellt werden, die sich weitgehend mit der auf Radonmessungen in Wohnungsluft basierenden Karte (BAG 2002) deckt.

Für Graubünden und allgemein die Schweiz gilt, dass niedrige Radongehalte in Quellwasser paradoxerweise als nachteilig aufzufassen sind. Denn es ist davon auszugehen, dass diese Quellwässer vor äusseren Einflüssen schlecht geschützt sind (fehlende Deckschicht, geringe Filterwirkung).

Wasserchemismus und Radon korrelieren in der Regel nicht miteinander. Dies birgt ein grosses Potenzial für Wasserversorgungen und hydrogeologische Untersuchungen: in Gebieten mit einheitlichem Wasserchemismus können unterschiedliche Wassertypen z.B. anhand von Radon unterschieden werden.

Betreffend die Durchlässigkeit von Grundwasserleitern und die Radonaktivität im Grundwasser lassen sich folgende Aussagen machen:

- Bei sehr guter Durchlässigkeit des Grundwasserleiters ist die Kontaktfläche zwischen Gesteinskörnern und Wasser klein; die Radonfreisetzung ist gering. Die Radonaktivität im Wasser bleibt niedrig.
- Bei mittleren Durchlässigkeiten um 1*10⁻⁴ bis 1*10⁻³ m/s können sowohl hohe wie niedrige Radonwerte vorkommen.
- Bei niedrigen Durchlässigkeiten ist oft organisches Material (Holz, Torf) im Lockergestein vorhanden, welches Radon adsorbiert und zu niedrigen Radongehalten in Wasser führt (Arbeitshypothese).

In der vorliegenden Arbeit wurden die gesundheitlichen Aspekte von Radon in Wasser diskutiert und es konnten verschiedene Anwendungsgebiete aufgezeigt werden, in welchen Radonmessungen in Wasser nützliche Zusatzinformationen für Wasserversorgungen und hydrogeologische Untersuchungen liefern.

10. Dank

Ich möchte mich ganz besonders bei Christine Bläuer-Böhm für die langjährige Unterstützung bei der Probenahme und für die kritische Durchsicht des Manuskripts bedanken. Heinz Surbeck verdanke ich den Einstieg in die Radonproblematik. Bei ihm und Hans-Ueli Johner bedanke ich mich herzlichst für die langjährige, erspriessliche Zusammenarbeit im Radonbereich sowie für die kritische Durchsicht dieses Manuskripts; die Verbesserungsvorschläge haben zur Verbesserung der Publikation beigetragen.

11. Literatur

BAG Bundesamt für Gesundheit (1999): Radon – Informationen zu einem strahlenden Thema. – BAG (Hrsg.), Art.-Nr. 311.341d.

BAG Bundesamt für Gesundheit (2002): Umweltradioaktivität und Strahlendosen in der Schweiz 2001. Hrsg. BAG/SUeR Fribourg.

Banks, D.; Røyset, O.; Strand, T.; Skarphagen, H. (1995): Radioelement (U, Th, Rn) concentrations in Norwegian bedrock groundwaters. Environ. Geol., 25, 165–180.

CADISCH, J. (1927): Über Geologie und Radioaktivität der schweizerischen Mineralquellen. Schweiz. Mineral. Petrogr. Mitt., 7/2, 417.

CADISCH, J. (1928): Zur Geologie alpiner Thermalund Sauerquellen. Jber. Natf. Ges. Graubünden, 66 (Jg. 1927/28), 1–46.

CANTALOUB, M.G.; GOTTIPATI, S.; HIGGINBOTHAM, J.F.; HOPKINS, O.; SEMPRINI, L. (1996): ²²²Rn as an indicator of nonaqueous phase liquid contamination in groundwater. Health Phys., 70/6 Suppl., S36.

CATHOMAS-STOFFEL, J.B. (1908): Über das Radium in den Mineralquellen und dessen Wirkungen. Der «Disentiser Eisensäuerling» die stärkste Radiumquelle der Schweiz. – Manatschal Ebner & Cie, Chur.

Curie, P.; Curie, M. (1899): Sur la radioactivité provoquée par les rayons de Becquerel. Compt. Rend., 129/19, 714–716.

Davis, N.M.; Hon, R.; Dillon, P. (1987): Determination of Bulk Radon Emanation Rates by High Resolution Gamma-Ray Spectroscopy. In: Graves, B. (ed.): Radon[, Radium, and Other Radioactivity] in Ground Water, 111–129. Lewis Publishers.

DORN, E. (1900): Versuche über Sekundärstrahlen und Radiumstrahlen. Abh. Natf. Ges. Halle, 22, 37–43.

EBERT, M.; KESSLER, W. (1991): Schlemas Wässer wirkten Wunder – Radiumbad Oberschlema. Hrsg. Gemeindeverwaltung Schlema. Auer Druck und Verlag P. Selbmann.

EISENLOHR, L.; SURBECK, H. (1995): Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura. C. R. Acad. Sci. Paris, 321, IIa, 761–767.

GENEREUX, D.P.; HEMOND, H.F.; MULHOLLAND, P.J. (1993): Use of radon-222 and calcium as tracers in a three-end-member mixing model for streamflow generation on the West Fork of Walker Branch Watershed. J. Hydrol., 142/1–4, 167–211.

GOCKEL, A. (1904): Über die in Thermalquellen enthaltene radioaktive Emanation. Phys. Ztschr., 4/19, 594.

HOEHN, E.; VON GUNTEN, H.R. (1989): Radon in Groundwater: A Tool to Assess Infiltration From Surface Waters to Aquifers. Water Resour. Res., 25/8, 1795–1803.

HOEHN, E.; HÖHENER, P.; HUNKELER, D.; ZEYER, J.; ZWEIFEL, H.-R. (1994): Eignet sich Radon als Tracer für organische Verunreinigungen im Untergrund. Jber. EAWAG, 1994, 35.

HOEHN, E.; GONSER, T.; HOHMANN, D.; STIERLI, R. (2001): Unterscheidung von Grundwasser-Lebensräumen mit Radon als Tracer. EAWAG news, 52d, 18–19.

Högl, O. (1980): Die Mineral- und Heilquellen der Schweiz. Haupt, Bern.

KAFRI, U. (2001): Radon in groundwater as a tracer to assess flow velocities: two test cases from Israel. Environ. Geol., 40/3, 392–398.

KOTRAPPA, P.; JESTER, W.A. (1993): Electret ion chamber radon monitors measure dissolved ²²²Rn in water. Health Phys., 64/4, 397–405.

Lawrence, E.P.; Poeter, E.; Wanty, R.B. (1991): Geohydrologic, geochemical, and geologic controls on the occurence of radon in ground water near Conifer, Colorado, USA. J. Hydrol., 127, 367–386.

LEE, R.W.; HOLLYDAY, E.F. (1987): Radon Measurement in Streams to Determine Location and Magnitude of Ground Water Seepage. In: Graves, B. (ed.): Radon[, Radium, and Other Radioactivity] in Ground Water, 241–249. Lewis Publishers.

Lowry, J.; Brandow, J.E. (1985): Removal of Radon from Water Supplies. J. Environmental Engineering, 111/4, 511–527.

NATIONAL RESEARCH COUNCIL (1999): Health Effects of Exposure to Radon. Committee on Health Risks of Exposure to Radon (BEIR VI); National Academy Press, Washington D.C.

NAZAROFF, W.W.; DOYLE, S.M.; NERO, A.V.; SEXTRO, R.G. (1988a): Radon Entry Via Potable Water. In: NAZAROFF, W.W. und NERO, A.V. (eds.): Radon and its Decay Products in Indoor Air. John Wiley & Sons, New York; 131–157.

NAZAROFF, W.W.; MOED, B.A.; SEXTRO, R.G. (1988b): Soil as a Source of Indoor Radon: Generation, Migration, and Entry. In: NAZAROFF, W.W. und NERO, A.V. (eds.): Radon and its Decay Products in Indoor Air. John Wiley & Sons, New York; 57–112.

NISHIZAWA, S.; IGARASHI, G.; SANO, Y.; SHOTO, E.; TASAKA, S.; SASAKI, Y. (1998): Radon, Cl⁻ and SO₄² anomalies in hot spring water associated with the 1995 earthquake swarm off the east coast of the Izu Peninsula, central Japan. Appl. Geochem., 13/1,89–94.

NUSSBERGER, G. (1926): Beitrag zur Kenntnis der Radioaktivität von Quellsedimenten. Jber. Natf. Ges. Graubünden, 64 (Jg. 1924–26), 27–49.

Paulsen, R.T. (1991): Radionuclides in Ground Water, Rock and Soil, and Indoor Air of the Northeastern United States and Southeastern Canada – A Literature Review and Summary of Data. In: Field Studies of Radon in Rocks, Soils, and Water. U.S. Geol. Surv. Bull., 1971, 195–225.

Paulus, L.R.; Gesell, T.F.; Brey, R.R. (1998): An evaluation of ²²²Rn concentrations in Idaho groundwaters. Health Phys., 74/2, 237–241. Payot, R. (1953): Distribution de la radioactivité en Suisse. Thèse Univ. Neuchâtel.

RUTHERFORD, E. (1900): A Radio-active Substance emitted from Thorium Compounds. Phil. Mag., 5/49/296, 1–14.

Rutherford, E.; Soddy, F. (1902/1903): The cause and nature of radioactivity. Phil. Mag., 6/4, 370–396, 569–585; 7, 457ff.

Schweitzer, A. (1909): Sur la radioactivité des sources minérales de la Suisse. Arch. Sci. phys. nat. Genève, 27, 256–274.

Schweitzer, A. (1910): Sur la radioactivité des sources minérales de la Suisse. Arch. Sci. phys. nat. Genève, 30, 46-67 (2ème communication).

Schweitzer, A. (1916): Radioaktivität der Heilquellen der Schweiz. Ann. schweiz. Ges. Balneol. u. Klimatol., 11/12, 1–28.

SEMPRINI, L. (1987): Radon-222 Concentration of Groundwater from a Test Zone of a Shallow Alluvial Aquifer in the Santa Clara Valley, California. In: Graves, B. (ed.): Radon[, Radium, and Other Radioactivity] in Ground Water, 111–129. Lewis Publishers.

SURBECK, H. (1993): Radon Monitoring in Soils and Water. Nucl. Tracks Radiat. Meas., 22/1–4, 463–468.

SURBECK, H. (1995): Natürliche Radionuklide im Wasser. In: Bundesamt für Gesundheitswesen (BAG; Hrsg.): Umweltradioaktivität und Strahlendosen in der Schweiz 1994, B. 3.8.1- B. 3.8.9. BAG/SUeR, Bern/Fribourg.

SURBECK, H. (1997): Natürliche Radionuklide im Wasser. In: Bundesamt für Gesundheit (BAG; Hrsg.): Umweltradioaktivität und Strahlendosen in der Schweiz 1996. B.4.3.1–B.4.3.6; BAG/SUeR, Bern/Fribourg.

von Sury, J. (1906/1907): Über die Radioactivität einiger schweizerischer Mineralquellen. Mém. Soc. Sci. Nat., Fribourg – Chemie, 2/4, 228–235.

SZABO, Z.; ZAPECZA, O.S. (1987): Relation Between Natural Radionuclide Activities and Chemical Constituents in Ground Water of the Newark Basin, New Jersey. In: GRAVES, B. (ed.): Radon, [Radium, and Other Radioactivity] in Ground Water, 283–308. Lewis Publishers.

THOMSON, J.J. (1902): Experiments on Induced-Radioactivity in Air, and on the Electrical Conductivity produced in Gases when they pass through Water. Phil. Mag., 6/4/21, 352–367.

Walker, H.-S. (1998): Radon-222 dans les eaux souterraines du canton de Fribourg. Mitt. Gebiete Lebensm. Hyg., 89/6, 700–704.

Wanty, R.B.; Briggs, P.H.; Gundersen, L.C.S. (1991): Geochemistry of Ground Water and Radionuclide Mobility in Two Areas of the Reading Prong, Eastern Pennsylvania. In: Field Studies of Radon in Rocks, Soils, and Water. U.S. Geol. Surv. Bull., 1971, 289–296.

Wanty, R.B.; Schoen, R. (1991): A Review of the Chemical Processes Affecting the Mobility of Radionuclides in Natural Waters, with Applications. In: Field Studies of Radon in Rocks, Soils, and Water. U.S. Geol. Surv. Bull., 1971, 183–194.

Anhang	1:					Gemeinde	Probe	Jahr	²²² Rn	
						Avers	Gandabüel	1995	3.4	Ε
						Avers	Gandabüel	1995	175.2	Ε
Radonda	aten aus Bündner	Que	llen,			Avers	Staller Berg	1995	4.1	Ε
Grund- 1	und Oberflächenw	ässe	rn sov	vie		Bergün/Bravuogn	Mineralquelle	1916	31.1	S
		asse	111 30 (VIC		Bergün/Bravuogn	Uglix	1994	8.1	
Irinkwas	sserversorgungen					Bergün/Bravuogn	Funtana Fregda	1994	11.0	Ε
						Bergün/Bravuogn	Naz	1994	0.0	Ε
Legende Mes	ssmethode/Quelle:					Bergün/Bravuogn	Punt Ota	1996	11.8 ±1.6	R
E: Elektretme						Bergün/Bravuogn	Dorfbrunnen	1996	4.7 ±0.8	R
R: Rad7-Meth	1000.000.000					Bergün/Bravuogn	Salect	1997	3.7	R
	FICTION NO. 18-02					Bergün/Bravuogn	God da Streda	1999	3.6 ± 0.6	R
B: Quelle BAC						Bergün/Bravuogn	Blockgletscher	2002	0.0	R
H: Högl 1980						Bergün/Bravuogn	Muchetta-			
N: Nussberge	er 1926						Im Berg ob.	2002	22.6 ±0.9	R
S: Schweitzer	r 1909/1910/1916					Bergün/Bravuogn	Muchetta-			
							Im Berg unt.	2002	79.3 ±3.4	R
						Bever	Grundwasser 4	1998	43.4 ±2.3	R
Gemeinde	Probe	Jahr	²²² Rn			Bever	Grundwasser 4	1999	38.0 ±1.9	R
Almens	Brunnen	2002		± 0.5	R	Bever	Grundwasser 4	2001	59.5 ±1.9	R
Almens	Brunnen	2002	10.1	± 2.3	R	Bever	Grundwasser 5	1998	36.6 ±3.0	R
Alvaneu	Mineralquelle					Bever	Grundwasser 5	1999	37.8 ±1.5	R
585.50	unten	1904	50.9		S	Bever	Grundwasser 5	2001	29.5 ±1.4	R
Alvaneu	Mineralquelle					Bever	Grundwasser 6	1999	54.8 ± 0.7	R
	oben	1904	25.0		S	Bever	Grundwasser 8A	2001	59.4 ±3.2	R
Alvaneu	Sandböden	1996	5.2		R	Bever	Grundwasser 15A	1999	41.3 ±1.5	R
Alvaneu	Tealf	1996	9.6		R	Bever	Grundwasser 17B	1999	40.8 ±1.5	R
Alvaschein	Mistail	2002		±2.3	R	Bever	Grundwasser 18A	1999	85.3 ±1.9	R
Alvaschein	Pargnung	2002	2.2	±0.6	R	Bever	Grundwasser 19A	1999	57.1 ±1.5	R
Andeer	GW-Austritt				_	Bever	Grundwasser 19B	1999	51.7 ±1.1	R
	Andeer	1992		±0.9	В	Bever	Grundwasser 19A	2001	71.8 ±2.4	R
Andeer	Trinkwasser (3x)	1992		±0.5	В	Bever	Grundwasser 24	2001	51.8 ±3.7	R
Andeer	Trinkwasser (5x)	1992		±1.0	В	Bever	Grundwasser 27	2001	80.5 ±2.2	R
Andeer	Dorfbrunnen	1992		±1.0	В	Bever	Grundwasser 28	1997	27.7 ±3.1	R
Andeer	Alp Nursera	1993	52.1	±2.0	R	Bivio	La Motta	1999	13.0 ±0.8	R
Andeer	Tranter	1004	0.0		-	Bivio	Alp da Sett	1999	5.0 ±0.5	R
Andoor	Tschainghels	1994	0.0		E E	Bivio	Steinbrücke	1999	39.3 ±1.8 60.7 ±3.6	R R
Andeer Andeer	Pro Larm Brunnen	1996 2002	11.5	±4.2	R	Bivio Bivio	Alp Tgavretga	2002 2002	29.4 ±3.8	R
Andiast	Plattadiras	1995	38.5	14. Z	Ë	Bonaduz	Alp da Sett Versamer Strasse	1997	1.9 ±0.8	R
Andiast	Brunnen	1333	30.3		_	Bonaduz	Grundwasser 1	1998	43.2 ±2.4	R
Allulast	S. Antoni	1997	76	±0.7	R	Bonaduz	Grundwasser 1	1999	51.2 ±1.1	R
Andiast	Vitg	1997		±1.2	R	Bonaduz	Grundwasser 1	2000	44.4 ±0.5	R
Andiast	Vitg	1997		±0.5	R	Bonaduz	Grundwasser 1	2002	32.3 ±3.7	R
Ardez	Pradasura	2000		±0.4	R	Bonaduz	Grundwasser 2	1998	6.8 ±1.6	R
Ardez	Murtera	2000		±0.5	R	Bonaduz	Grundwasser 2	1999	8.2 ±0.8	R
Ardez	Chamanna Cler	2000		±0.7	R	Bonaduz	Grundwasser 16	2002	21.1 ±1.6	R
Ardez	Brunnen	2002		±2.6	R	Bonaduz	Grundwasser 17	1998	29.9 ±1.5	R
Ardez	Brunnen Bos-cha	2002		±0.8	R	Bonaduz	Grundwasser 17	2002	30.1 ±3.2	R
Arosa	Ochsenalp	1994	8.5		E	Bondo	Motta	2002	29.9 ±3.7	R
Arosa	Älpli	1996	18.8		E	Bondo	Prä	2002	16.8 ±1.3	R
Arosa	Schmalz	1996	2.2		Ε	Bondo	Lera	2002	47.7 ±4.6	R
Arosa	Maran	1997		±0.5	R	Bondo	Padela	2002	2.4 ±0.2	R
Arosa	Gadenstatt	1997		±1.6	R	Bondo	Laret	2002	38.8 ±3.4	R
Arosa	Hörnli	1998		±0.6	R	Bondo	Padela	2002	2.4 ±0.3	R
Arosa	Arlenwald	2002	<1.0		R	Bondo	Brunnen			
Arvigo	Brunnen	1998	6.6	±1.1	R		Promontogno	1995	11.9	Ε
Ausserferrera	Trinkwasser (3x)	1992	103.0	±2.0	В	Bondo	Brunnen			
Ausserferrera	a Hangwasseraustritt	1992	22.7	±0.9	В		Promontogno	1999	6.4 ± 1.8	R
Ausserferrera	a Tgavgia	1993	3.8	±1.1	В	Bondo	Brunnen Bondo	1995	6.0	Ε
Ausserferrera		1993		±2.6	В	Bondo	Brunnen Bondo	1995	5.0	E
Ausserferrera	a Hangwasseraustritt	1998	89.8	±5.4	R	Braggio	Miaddi	2001	1.6 ±1.1	R
Ausserferrera	a Hangwasseraustritt			±3.5	R	Braggio	Mondent	2001	9.3 ±0.5	R
Ausserferrera	•	1998		±1.5	R	Braggio	Val Meira	2001	10.8 ±1.8	R
Avers	Kupferquelle	1994	5.1		E	Braggio	Alp di Fora	2001	2.5 ±2.5	R
Avers	Jufer Alp	1995	12.8		Ε	Breil/Brigels	Ignius da Capeder	1994	1.1	Ε

Gemeinde	Probe	Jahr	²²² Rn		Gemeinde	Probe	Jahr	222 R n		
Breil/Brigels	Tavanasa	1995	16.9	Ε	Cauco	Brunnen Bodio	1998	0.7 ±	0.3	R
Breil/Brigels	Danis	1995	6.0	E	Cazis	Realtawald	1995	0.7	0.0	E
Breil/Brigels	Brunnen Foppa	1995	37.6	Ē	Cazis	Tuf	1995	0.0		E
Breil/Brigels	Planezzas	1995	29.4	В	Cazis	Grundwasser 1	1999	30.1 ±	1.5	R
Breil/Brigels	Plaun las Steilas	1995	54.9	В	Cazis	Grundwasser 2	1995	22.5		Ε
Breil/Brigels	Patnasa	1995	9.5	В	Cazis	Grundwasser 2	2001	$35.8 \pm$	4.1	R
Breil/Brigels	Grundwasser Dorf	1995	5.0	В	Cazis	Grundwasser 4	1999	29.4 ±	1.0	R
Breil/Brigels	Mutteins	1995	70.5	В	Cazis	Grundwasser 4	2001	$35.2 \pm$		R
Breil/Brigels	Acla da Capaul	1995	104.8	В	Cazis	Grundwasser 3A	2001	$16.5 \pm$		R
Breil/Brigels	Valletta Schetga	1995	15.8	В	Cazis	Grundwasser 4A	2001	19.4 ±		R
Breil/Brigels	Sogn Martin	1995	26.4	В	Cazis	Grundwasser 5B	2001	16.4 ±		R
Breil/Brigels	Sontga Clau	1995	28.4	В	Cazis	Grundwasser 9A	2001	16.2 ±		R
Breil/Brigels	Sontga Clau	1995	27.4	В	Cazis Calarina/	Summaprada	2001	11.7 ±	0.3	R
Breil/Brigels	Fontaniala	1995	6.9	В	Celerina/ Schlarigna	Trinkwasser (4x)	1992	1.8 ±	0.5	В
Breil/Brigels Breil/Brigels	Fontana freida Pardiala	1995 1995	60.3 38.9	B B	Celerina/	IIIIKWassei (4x)	1332	1.0 ±	0.5	Ь
Breil/Brigels	Casu	1995	29.3	В	Schlarigna	Bach Crasta	1992	10.3 ±	0.7	В
Breil/Brigels	Dorfbrunnen Breil	1995	23.3	В	Celerina/	Dacii Grasta	1332	10.5	0.7	U
Breil/Brigels	Dorfbrunnen	1333	22.1	ь	Schlarigna	KW Islas	1995	8.7		Ε
Dreil/ Drigers	Tavanasa	1995	16.8	В	Celerina/	1.44 10100	1000	0.7		_
Breil/Brigels	Casut	1995	53.9	В	Schlarigna	Staz	1995	2.4		Ε
Breil/Brigels	D'Acla	1995	27.7	В	Celerina/					_
Breil/Brigels	D'Acla	1995	17.0	В	Schlarigna	Val Saluver	2000	7.6 ±	0.7	Ε
Breil/Brigels	Dorfbrunnen Capaul		7.1	В	Celerina/					
Breil/Brigels	Punteglias	1995	23.2	E	Schlarigna	Marguns	2000	2.1 ±	0.2	Ε
Breil/Brigels	Valtrengia	1995	67.3	Ε	Celerina/	2				
Breil/Brigels	Platta	1995	144.3	Ε	Schlarigna	Corviglia	2000	27.9 ±	0.7	Ε
Breil/Brigels	Run Carpet	1995	11.3	Ε	Chur	Mittenberg	1925	3.8		Ν
Breil/Brigels	Capaul	1995	24.2	Ε	Chur	Schönegg	1925	4.6		Ν
Breil/Brigels	Sorts	1995	83.3	Ε	Chur	Pizoggel	1925	5.7		Ν
Breil/Brigels	Plaun Salter	1995	35.6	Ε	Chur	Araschgen	1925	3.8		Ν
Breil/Brigels	Dorfbrunnen Danis	1998	8.5 ± 1.3	R	Chur	Gross Kehr	2000	5.1 ±		R
Breil/Brigels	Munsaus	2000	38.8 ±1.2	R	Chur	Trinkwasser	1996	3.2 ±		R
Breil/Brigels	Run Sura	2000	34.9 ±0.8	R	Chur	Trinkwasser	1997	5.1 ±		R
Brienz/Brinzauls	B2	1994	4.1	E	Chur	Trinkwasser	1997	5.9 ±		R
Brusio	Golbia	1995	4.4	E	Chur	Trinkwasser Trinkwasser (PW)	2000	7.2 ± 26.7 ±		R
Brusio	Stavel	1995	2.4	E	Chur Chur	Grundwasser (PVV)	2000 2002	20.7 ±		R R
Brusio Brusio	Brunnen San Romerio	1995 1995	11.1 30.1	E E	Chur	Grundwasser 8F	2002	9.5 ±		R
Brusio	Dorfbrunnen	1998	39.4 ±1.7	R	Chur	Grundwasser 11	2000	34.6 ±		R
Brusio	Brunnen Müreda	1998	17.6 ±1.2	R	Churwalden	Passugg-Ulricus	1909	11.3		S
Brusio	Brunnen Campascio		51.0 ±2.1	R	Churwalden	Passugg-Fortunatus		9.2		S
Brusio	Brunnen Li Geri	1999	73.7 ±2.1	R	Churwalden	Passugg-Helene	1909	7.4		S
Buseno	Rangivol	2002	1.6 ±0.2	R	Churwalden	Passugg-				
Buseno	Fontana	2002	4.2 ±1.7	R		Churwalden	1909	17.7		S
Buseno	Mazzucan	2002	7.5 ±1.3	R	Churwalden	Passugg-Helene	1925	6.1		N
Calfreisen	Castieler Tobel	2002	2.2 ± 0.7	R	Churwalden	Passugg-Ulricus	1925	6.6		Ν
Calfreisen	Dorfbrunnen	2002	0.0	R	Churwalden	Brunnen Foppa	1998	1.0 ±	0.6	R
Calfreisen	Brunnen	2002	1.2 ±0.8	R	Churwalden	Lax	1999	2.8 ±	0.3	R
Cama	Roalta	1995	43.5	Ε	Churwalden	Brunnen Egga	2002	4.5 ±	0.9	R
Cama	Roalta	1995	36.0	Ε	Churwalden	Zugbächli	2002	0.9 ±	0.2	R
Castaneda	Castaneda	1994	73.3	E	Churwalden	Brunnen Ober Grida		5.4 ± 2		R
Castasegna	Quelle	1999	42.6 ±1.8	R	Churwalden	Brunnen Unter Grida		6.3 ± 1	1.6	R
Castasegna	Dorfbrunnen	1999	6.5 ±1.2	R	Clugin	Dorfbrunnen	1996	3.3		E
Castiel	Stellitobel	1994	3.9	E	Clugin	Clugin	1996	15.1		E
Casti-Wergenstein	-	2001	8.3 ±1.1	R	Conters i.P.	Chessi	1993	12.1		E
Casti-Wergenstein		2001 2001	3.5 ±1.5	R R	Conters i.P.	Tug	1993	10.1		E
Casti-Wergenstein Castrisch	Grundwasser 9	1998	15.0 ±1.3 22.3 ±3.0	n R	Conters i.P.	Grosswiti Grosswiti	1993 1993	6.6 1.9		E
Castrisch	Grundwasser 10	1998	9.3 ±1.6	n R	Conters i.P.	Schindelboden	1993	4.0		E
Castrisch	Brunnen	1998	5.9 ±0.8	R	Conters i.P. Conters i.P.	Fuosstaus	1993	4.0 5.7		E
Castrisch	Brunnen	2000	3.5 ±0.3	R	Conters i.P.	Schattau	1993	2.6		E
Castrisch	Dorfbrunnen	1998	6.6 ±1.5	R	Cumbel	Quadras	1999	2.6 ±	0.8	R
Castrisch	Grava	1998	10.1 ±1.6	R	Cumbel	Brunnen Resgia	1999	3.5 ±		R
Cauco	Brunnen Cauco	1998	7.8 ±0.6	R	Cunter	Val Bunga	2001	3.4 ±		R
20000000000000000000000000000000000000		100 TO	Milliones (FTTT:00)						W0000	VEGTS.

Gemeinde	Probe	Jahr	²²² Rn			Gemeinde	Probe	Jahr	²²² Rn	
Cunter	Val Bunga	2001		±1.6	R	Disentis/Mustér	Val Sogn Placi	1993	149.5 ±3.0	В
Cunter	Val Bunga	2001		±1.1	R	Disentis/Mustér	Br. Mompé Medel	1996	136.0	E
Cunter	Promastgel	2001		±1.4	R	Disentis/Mustér	Lumpegna	1997	0.5 ±0.3	R
Cunter	Uigls	2001	19.6		R	Disentis/Mustér	Brunnen	1997	12.5 ±1.0	R
Davos	Spinabad I	1908	6.8		S	Domat/Ems	Plong dil Pre	1995	5.7	E
Davos	Spinabad II	1916	5.4		S	Domat/Ems	Grundwasser 1C	1999	0.9 ±0.6	R
Davos	Clavadel	1916	24.3		S	Domat/Ems	Grundwasser 1C	2000	1.7 ±0.2	R
Davos	Clavadel	1994	54.3		E	Domat/Ems	Grundwasser 1/la	1998	4.4 ±0.9	R
Davos	Spinnelen	1994	16.8		E	Domat/Ems	Grundwasser 1/la	1999	4.2 ±0.2	R
Davos	Spinnelenwald	1994	35.3		Ε	Domat/Ems	Grundwasser 1/la	2000	7.7 ±0.4	R
Davos	Sertigbach Eggeli	1995	0.0		Ε	Domat/Ems	Grundwasser 1/la	2002	3.3 ±0.5	R
Davos	Tristel	1995	96.8		Ε	Domat/Ems	Grundwasser 1/lb	2000	10.7 ±0.4	R
Davos	Witi	1995	31.9		Ε	Domat/Ems	Grundwasser 1/IC	1999	6.9 ±0.2	R
Davos	Stadel 20	1995	32.7		Ε	Domat/Ems	Grundwasser 1/IC	2000	8.4 ±0.5	R
Davos	Witi/Waldrand	1995	35.4		Ε	Domat/Ems	Grundwasser 1/ID	1994	8.5	Ε
Davos	Witi/Blockschutt	1995	25.4		Ε	Domat/Ems	Grundwasser 1/ID	1999	13.5 ±0.3	R
Davos	Drussetscha	1996	13.4		Ε	Domat/Ems	Grundwasser 1/ID	2000	13.5 ±0.7	R
Davos	Tschuggen	2002	1.4	±1.0	R	Domat/Ems	Grundwasser 1/IIC	1998	6.1 ±1.2	R
Davos	Waldjiwald	2002	8.0	±1.6	R	Domat/Ems	Grundwasser 1/IIC	2002	3.6 ±1.1	R
Davos	Grundwasser 1	1994	19.9		Ε	Domat/Ems	Grundwasser 4E	2002	0.3 ±0.25	R
Davos	Grundwasser 1	1997	5.6	±0.3	R	Domat/Ems	Dorfbrunnen	2000	3.6 ±0.5	R
Davos	Grundwasser 1	1997	5.2	±0.4	R	Donat	Plans	1996	3.0	Ε
Davos	Grundwasser 1	2000	11.2	±0.7	R	Donat	Dorfbrunnen Donat	1996	5.4	Ε
Davos	Grundwasser 2	1997	36.2	±2.1	R	Donat	Brunnen Patzen	1996	8.6	Ε
Davos	Grundwasser 2	1997	31.9	± 2.5	R	Donat	Strassenkurve	2002	2.7 ±1.7	R
Davos	Grundwasser 3	2000	3.0	±0.5	R	Donat	Ual da Mulin	2002	3.3 ± 0.8	R
Davos	Grundwasser 4	2000	2.4	±0.3	R	Duvin	Dorfbrunnen	1999	1.4 ±0.4	R
Davos	Grundwasser 8	1997	37.6	±2.2	R	Falera	Dorfbrunnen	1999	2.2 ±0.4	R
Davos	Grundwasser 8	1997	31.2	±1.9	R	Falera	Erbrun	1999	10.6 ±0.7	R
Davos	Grundwasser 8	2000	33.5	±1.1	R	Fanas	Augstenberg	1993	2.2 ± 0.6	В
Davos	Grundwasser 10	1997	26.7	±1.0	R	Fanas	Augstenberg	1993	8.5 ±0.7	В
Davos	Grundwasser 10	1997	26.2	±1.6	R	Fanas	Augstenberg	1993	1.0 ± 0.5	В
Davos	Grundwasser 10	1997	27.5	±1.7	R	Fanas	Planstorna	1993	0.5 ± 0.6	В
Davos	Grundwasser 10	2000	19.6	± 0.5	R	Fanas	Plandadain	1993	5.3 ±0.7	В
Davos	Grundwasser 11	1994	21.0		Ε	Fanas	Janeidas	1993	5.6 ±0.7	В
Davos	Grundwasser 11	1997	29.9	± 2.8	R	Fanas	Carjau	1993	6.9 ± 0.7	В
Davos	Grundwasser 11	1997	25.6	± 2.0	R	Fanas	Gaua	1993	3.0 ± 0.6	В
Davos	Grundwasser 11	1997	24.9		R	Fanas	Gaua	1995	3.6	Ε
Davos	Grundwasser 11	1997		±1.7	R	Fanas	Pardiel	1997	6.4 ± 1.2	R
Davos	Grundwasser 11	2000		± 0.8	R	Fanas	Ruofa	2001	5.0 ±0.8	R
Davos	Grundwasser 11	2001		± 2.6	R	Feldis/Veulden	Dorfbrunnen	1995	13.9	E
Davos	Grundwasser 13	1997	0.000	± 3.5	R	Felsberg	Dorfbrunnen	1996	9.4	E
Davos	Grundwasser 13	1997	36.5		R	Felsberg	Dorfbrunnen	2000	0.3 ±0.2	R
Davos	Grundwasser 13	2001		± 2.9	R	Felsberg	Grundwasser 3A	1999	33.7 ±0.3	R
Davos	Grundwasser 13A	2001		±3.4	R	Felsberg	Grundwasser 3A	2000	54.3 ±1.0	R
Davos	Grundwasser PW	1994	18.5	10000000	Ε	Felsberg	Grundwasser 3/IA	2000	25.8 ±0.9	R
Davos	Grundwasser PW	1997		±1.3	R	Felsberg	Grundwasser 4A	2000	36.2 ±0.8	R
Davos	Grundwasser TBA1		206.0		R	Fideris	Fideris	1909	(2.3)	S
Davos	Grundwasser TBA2		395.0		R	Fideris	Fideris Trinkquelle	1916	8.1	S
Davos	Grundwasser TBA2		354.0		R	Fideris	Fideris Badequelle	1916	9.5 1.4	S E
Davos	Grundwasser TBA2		270.0		R	Fideris	Fideris	1994 1999	23.5 ±0.4	R
Degen	Rampa/Rumein	1999		±0.3	R	Fideris	Grundwasser 40		23.5 ±0.4 22.6 ±1.3	R
Degen	Dorfbrunnen	1999		±0.3	R	Fideris	Grundwasser 40	2000 1993	0.4 ±0.4	R
Disentis/Mustér	S. Placi unten	1909	630.0		S	Filisur	Dorfbrunnen Dorfbrunnen	1997	0.4 ±0.4 0.6 ±0.3	R
Disentis/Mustér	S. Placi oben	1909	644.0		S	Filisur		1997	0.8 ±0.2	R
Disentis/Mustér	S. Placi	1913	676.0		Н	Filisur	Jenisberg	1998	23.1 ±1.9	R
Disentis/Mustér	S. Placi	1913	645.0		Н	Filisur	La sorts Elahütte	2001	17.3 ±1.4	R
Disentis/Mustér	S. Placi	1938	641.0		Н	Filisur	Selabrücke	2001	4.7 ±0.9	R
Disentis/Mustér	S. Placi	1945	707.0		Н	Filisur	Plaun Grond	2001	29.9 ±1.8	R
Disentis/Mustér	S. Placi	1973	715.0	±21	H	Filisur Filisur	Cruschetta	2001	2.4 ±1.9	R
Disentis/Mustér	S. Placi	2002	486.0	121	R S	Filisur	Kalberhütte unten	2002	11.4 ±0.5	R
Disentis/Mustér	Lumgegna	1916	124.0 21.6	+1 2	В	Filisur	Chüetobel oben	2002	7.1 ±1.2	R
Disentis/Mustér	Dorfbrunnen	1993 1993		±0.5	В	Filisur	Chüetobel unten	2002	9.5 ±1.4	R
Disentis/Mustér	Bach Sogn Placi	1993	155.8		В	Filisur	Frevgias links	2002	21.4 ±1.1	R
Disentis/Mustér	Val Sogn Placi	1333	133.0	±0.0	J	i ilioui	o v grao mino			• • •

Gemeinde	Probe	Jahr	²²² Rn		Gemeinde	Probe	Jahr	²²² Rn	
Filisur	Frevgias rechts	2002	22.9 ±3.1	R	lgis	Grundwasser 22J	1999	10.3 ±1.5	R
Fläsch	Fluss	2002	2.3 ± 0.7	R	lgis	Grundwasser 22J	2001	18.5 ±1.3	R
Fläsch	Grundwasser 34	2002	5.5 ± 1.3	R	lgis	Grundwasser 22K	1999	15.5 ±1.0	R
Fläsch	Grundwasser 34A	2002	10.0 ±0.6	R	lgis	Grundwasser 22K	2001	22.4 ±1.5	R
Fläsch	Grundwasser 35	2002	20.7 ±3.6	R	lgis	Grundwasser 23D	2001	41.0 ±1.6	R
Fläsch	Grundwasser 36	2002	5.1 ±1.6	R	lgis	Grundwasser 23F	1999	22.1 ±2.4	R
Flerden	Dorfbrunnen	2001	5.6 ±0.4	R	lgis	Grundwasser 23/Ia	1998	24.5 ±1.7	R
Flerden	Planezias	2001	7.4 ±0.9	R	lgis	Grundwasser 23/la	2001	19.2 ±0.8	R
Flims	Grundwasser 23	1997	2.2 ± 0.3	R	lgis	Grundwasser 23/IC	1999	9.4 ± 0.7	R
Flims	Grundwasser 23	1998	2.8 ± 0.3	R	lgis	Grundwasser 23/IC	2001	10.2 ± 0.7	R
Flims	Grundwasser 23	2001	2.2 ± 0.6	R	lgis	Grundwasser 23/ID	1999	19.4 ±1.9	R
Flims	Grundwasser 24	1997	5.0 ± 1.0	R	llanz	Grundwasser B	1994	0.0	Ε
Flims	Grundwasser 24	1997	5.4 ± 0.4	R	llanz	Grundwasser B	1995	4.8	Ε
Flims	Grundwasser 24	1998	8.8 ± 0.6	R	llanz	Grundwasser C	1995	31.1	Ε
Flims	Grundwasser 24	1999	4.4 ±1.2	R	llanz	Grundwasser C	2000	37.2 ± 2.7	R
Flims	Grundwasser 25	1997	6.3 ± 0.4	R	llanz	Grundwasser H	1994	41.3	Ε
Flims	Grundwasser 25	1998	3.7 ± 0.5	R	llanz	Grundwasser H	2000	91.5 ± 2.3	R
Flims	Vallorca 1	1998	6.6 ± 0.8	R	llanz	Grundwasser K	1994	61.4	Ε
Flims	Vallorca 1	2001	8.7 ±1.1	R	llanz	Grundwasser K	1996	37.0 ± 0.9	R
Flims	Vallorca 2	1998	3.9 ± 1.0	R	llanz	Grundwasser K	2000	161.0 ±4	R
Flims	Vallorca 2	2001	27.9 ±1.3	R	llanz	Grundwasser 8	1998	8.9 ±1.2	R
Flims	Vallorca 3	1998	3.6 ±0.8	R	llanz	Strada	1998	0.6 ± 0.4	R
Flims	Gurk	1999	14.5 ±0.8	R	llanz	Ogna	1998	15.1 ±2.1	R
Flims	II Bord	2001	2.1 ±0.7	R	llanz	St. Martin	1998	14.9 ±1.5	R
Flond	Palius Sut Spescha		18.6	E	llanz	Dorfbrunnen Strada		1.9 ±0.6	R
Ftan	Baraigla	1916	1.4	S	Innerferrera	Hangwasseraustritt		2.3 ±0.5	R
Ftan	Fless	2002	7.9 ±1.7	R	Innerferrera	Trinkwasser (4x)	1992	5.8 ±0.6	В
Ftan	Dorfbrunnen	2002	4.0 ±1.7	R	Innerferrera	Dorfbrunnen	1992	6.9 ±0.7	R
Ftan	Stavel da la Bescha		13.6 ±2.6	R	Innerferrera	Niemet	2000	24.7 ±0.6	R
Fuldera	Grundwasser 3	1995	12.5	E	Innerferrera	Cuort Viglia	2000	32.5 ±0.7	R
Fuldera	Grundwasser 3	2001	18.4 ±1.7	R	Innerferrera	Alp Niemet	2000	32.3 ±1.5	R
Fuldera	Grundwasser 4	1995	5.0	E	Jenaz	Bad Jenaz	1994	3.6	Ε
Furna	Hinterberg	2002	6.7 ±2.8	R R	lanas	Dad James	1004	F 0	_
Furna	Schärmen	2002 2002	7.2 ±1.4 0.9 ±0.6	n R	Jenaz	Bad Jenaz Im Bad	1994 1994	5.8 7.4	E
Furna Fürstenau	Schlüechtjitöbeli Cresta	2002	23.6 ±2.5	R	Jenaz	Grundwasser 43	1999	7.4 24.3 ±2.1	R
Fürstenau	Padreins	2002	8.3 ±2.7	R	Jenaz Jenaz	Grundwasser 43	2000	29.2 ±0.7	R
Grono	Reservoir	1994	39.2	E	Jenaz	Grundwasser 46	1999	18.9 ±0.9	R
Grüsch	Grundwasser 58	1999	17.1 ±0.7	R	Jenaz	Grundwasser 46	2000	20.7 ±0.7	R
Grüsch	Grundwasser 59	1999	19.7 ±1.9	R	Jenaz	Grundwasser 48	1999	32.6 ±0.5	R
Grüsch	Grundwasser 60	1999	11.6 ±1.3	R	Jenaz	Grundwasser 48	2000	27.2 ±1.1	R
Grüsch	Grundwasser 60	2000	11.4 ±0.2	R	Jenaz	Grundwasser 49	1999	37.8 ±2.2	R
Grüsch	Grundwasser 61	1999	15.1 ±0.9	R	Jenaz	Grundwasser 49	2000	51.2 ±1.2	R
Grüsch	Grundwasser 61	2000	12.7 ±0.3	R	Jenins	Dorfbrunnen	2002	1.6 ±0.5	R
Grüsch	Halde	2001	1.0 ±0.3	R	Klosters-Serneus	Mineralquelle			
Guarda	Trinkwasser (5x)	1992	12.2 ±0.8	R		Serneus	1916	14.9	S
Haldenstein	Dorfbrunnen	1996	1.1	Ε	Klosters-Serneus	Dorfbrunnen	1993	3.7 ±0.4	В
Haldenstein	Langboden	1996	0.0	Ε	Klosters-Serneus	Süser Tal	1996	31.2	Ε
Haldenstein	Grundwasser 10/IA	2002	4.5 ±0.9	R	Klosters-Serneus	Stutzalp	1996	53.0	Ε
Haldenstein	Grundwasser 11a	2002	21.0 ±1.9	R	Klosters-Serneus	Trinkwasser	1996	10.5	Ε
Haldenstein	Grundwasser 14A	2002	13.9 ±0.8	R	Klosters-Serneus	Ried	1996	3.7	Ε
Haldenstein	Grundwasser 14B	1998	8.1 ±1.2	R	Klosters-Serneus	Parzelvabach	1998	10.0 ± 1.7	R
Haldenstein	Grundwasser 14B	2002	8.1 ±1.3	R	Klosters-Serneus	Brunnen Parzelva	1998	3.6 ± 0.9	R
Hinterrhein	Zapport	1998	4.0 ±0.4	R	Klosters-Serneus	Dorfbrunnen			
Hinterrhein	Höll 1	1998	3.7 ± 0.5	R		Serneus	1998	13.3 ±2.0	R
Hinterrhein	Höll 2	1998	3.5 ± 0.9	R	Klosters-Serneus	Cavadürli	2000	3.3 ± 0.5	R
Hinterrhein	Piänetsch	2000	22.5 ±0.4	R	Klosters-Serneus	Grundwasser 12	1999	42.6 ±3.7	R
lgis	Brunnen	1996	12.0	Ε	Klosters-Serneus	Grundwasser 12	2000	37.7 ± 0.6	R
lgis		2001	21.5 ±1.1	R	Klosters-Serneus	Grundwasser 12A	1998	49.2 ±4.1	R
lgis	Grundwasser 21/IE	2001	16.2 ±1.2	R	Klosters-Serneus	Grundwasser 12A	1999	55.5 ±5.5	R
lgis	Grundwasser 21/IG		18.0 ±1.4	R	Klosters-Serneus	Grundwasser 13	1999	29.0 ±1.1	R
lgis	Grundwasser 21/IG		21.2 ±1.4	R	Klosters-Serneus	Grundwasser 13	2000	47.2 ±1.7	R
lgis	Grundwasser 22H	1999	21.7 ±0.8	R	Klosters-Serneus	Grundwasser 17	1999	32.4 ±4.8	R
lgis	Grundwasser 22H	2001	37.8 ±1.5	R	Klosters-Serneus	Grundwasser 17	2000	47.6 ±0.8	R
Igis	Grundwasser 22J	1998	20.6 ±2.0	R	Klosters-Serneus	Grundwasser 20	1999	61.9 ±2.4	R

Gemeinde	Probe	Jahr	²²² Rn		Gemeinde	Probe	Jahr	²²² Rn		
Klosters-Serneus	Grundwasser 23	1999	28.7 ±3.8	R	Lostallo	Grundwasser 51	1999	28.6 ±	-n 6	R
Klosters-Serneus	Grundwasser 23	2000	28.1 ±0.9	R	Lostallo	Grundwasser 51	2001	31.6 ±		R
Klosters-Serneus	Grundwasser 25	1998	46.4 ±5.5	R	Lostallo	Grundwasser 52	1996	50.4		E
Klosters-Serneus	Grundwasser 25	1999	28.4 ±2.8	R	Lostallo	Grundwasser 52	1998	69.7 ±	5.0	R
Klosters-Serneus	Grundwasser 25	2000	28.5 ±1.1	R	Lostallo	Grundwasser 52	1999	59.0 ±	1.3	R
Klosters-Serneus	Grundwasser 28	1999	16.3 ±1.1	R	Lostallo	Grundwasser 53	1998	65.1		Ε
Klosters-Serneus	Grundwasser 28	2000	29.0 ±1.7	R	Lostallo	Grundwasser 53	1999	97.0 ±	. 5	R
Küblis	Dorfbrunnen	1996	1.9	Ε	Lostallo	Grundwasser 53	2000	83.7 ±	1.0	R
Küblis	Grundwasser 31	1999	39.6 ± 1.5	R	Lostallo	Grundwasser 53	2001	$108.0 \pm$		R
Küblis	Grundwasser 31	2000	42.2 ±2.4	R	Lostallo	Grundwasser 54	1998	257.0 ±		R
Laax	Dorfbrunnen	1999	8.6 ± 1.6	R	Lostallo	Grundwasser 54	1999	249.0 ±		R
Laax	Salums	1999	12.3 ±0.4	R	Lostallo	Grundwasser 54	2000	247.0 ±		R
Laax	Uaul Grond	1999	1.7 ±0.3	R	Lostallo	Grundw. Rosera SE		31.0 ±		R
Ladir	Con da Cauras	1994	19.0	E	Lostallo	Grundw. Rosera SW	/ 199/	22.5 ±	1.4	R
Ladir	Resgia Veglia	1999	2.8 ± 0.4	R	Lü	Trinkwasser Lüsai (2x)	1002	42.2 +	1 2	В
Langwies	Langwiesner Viadukt	2000	4.1 ±0.5	R	Lü	Trinkwasser Lüsai	1992 1992	42.2 ± 62.0 ±		В
Langwies	Rongg	2000 2000	4.1 ±0.5 6.7 ±0.3	n R	Lü	Lüsai	1992	112.1 ±		В
Langwies	Grüstiwald	2002	0.7 ±0.3 0.9 ±0.3	R	Lü	Trinkwasser Lü (2x)		6.5 ±		В
Langwies	Eggen	2002	2.5 ±1.1	R	Lü	Dorfbrunnen Lü	1992	6.9 ±		В
Langwies	Ober Wies	2002	2.7 ±0.7	R	Lü	Schulhaus	1992	19.8 ±		В
Langwies	Tritttole	2002	3.0 ±0.9	R	Lüen	Galgenwald	1997	8.5 ±		R
Langwies	Würza	2002	0.8 ±0.6	R	Lüen	Zamal	2000	9.5 ±		R
Lantsch/Lenz	Quelle 1	1994	13.9	E	Lüen	Tschartschällis	2000	3.1 ±		R
					Lüen	Ob Nos	2000	4.6 ±	±0.7	R
Lantsch/Lenz	Quelle 4	1994	8.5	Ε	Lüen	Under				
Lantsch/Lenz	Quelle 5	1994	24.1	Ε		Tschartschällis	2000	3.6 ±	±0.7	R
Lantsch/Lenz	Pro Setg	1997	4.0 ± 1.5	R	Lüen	Räckholderen	2000	13.5 ±	1.0	R
Lantsch/Lenz	Ava Fraida	1997	6.2 ± 1.5	R	Lumbrein	Br. Pruastg Dadens		0.4 ±		R
Lantsch/Lenz	Plang las				Lumbrein	Br. Pruastg Dado	2000	1.9 ±		R
	Funtangas 1	1997	7.5 ± 0.7	R	Lumbrein	Brunnen Silgin	2000	1.4 ±		R
Lantsch/Lenz	Plang las		0.20 000 20	_	Lumbrein	Brunnen Lumbrein	2000	0.8 ±		R
	Funtangas 2	1997	4.7 ±1.0	R	Lumbrein	Brunnen Nussaus	2002	9.0 ±		R
Lantsch/Lenz	Plang las	4007		_	Luven	Dorfbrunnen	1998	3.6 ±	8.0	R
1 4 1 //	Funtangas 4	1997	6.9 ±1.0	R	Luzein	Gadenstätt	1916	13.5	1.1	S R
Lantsch/Lenz	Cresta Stgoira	1997	5.9 ±0.8	R R	Luzein Luzein	Brunnen Buchen Wätterlöcher	1997 1998	4.8 ± 6.5 ±		n R
Lantsch/Lenz Lantsch/Lenz	Cresta Stgoira 1 Cresta Stgoira 2	1997 1997	4.3 ±1.2 11.7 ±1.8	n R	Luzein	Boden	1998	2.4 ±		R
Lantsch/Lenz	Zarnos	1997	14.8 ±2.2	R	Luzein	Alpanova	2000	4.9 ±		R
Lantsch/Lenz	Ava Fraida	1997	6.7 ±1.2	R	Luzein	Bova	2000	5.6 ±		R
Lantsch/Lenz	Sozas	1997	13.9 ±1.5	R	Luzein	Gadenstätt	2002	1.6 ±		R
Lantsch/Lenz	Dorfbrunnen	1997	1.4 ±0.5	R	Luzein	Grundwasser 34	1999	31.9 ±		R
Lantsch/Lenz	Golfplatz	1997	4.9 ±0.6	R	Luzein	Grundwasser 34	2000	28.0 ±	0.8	R
Lantsch/Lenz	Vasternos	1997	2.9 ±0.3	R	Madulain	Via Segantini	1999	28.2 ±	0.3	R
Lantsch/Lenz	Ava Fraida	1997	3.7 ± 0.2	R	Madulain	Urtatsch	1999	5.0 ±	0.4	R
La Punt-					Maienfeld	Wissmürli	1998	$2.0 \pm$		R
Chamues-ch	Funtauna Merla	1993	14.4 ±0.8	R	Maienfeld	Hof	1998	1.7 ±		R
La Punt-					Maienfeld	Hof	2002	2.4 ±		R
Chamues-ch	La Punt	1994	17.4	Ε	Maienfeld	Magutters	1998	6.5 ±		R
La Punt-					Maienfeld	Magutters 4+5	2000	2.6 ±		R
Chamues-ch	Albulastrasse	1994	4.8	Ε	Maienfeld	Magutters 1D	2000	2.6 ±		R
La Punt-	- "			_	Maienfeld	Magutters Ochsenberg/Kurve	2002 2000	2.6 ± 2.3 ±		R R
Chamues-ch	Dorfbrunnen	1998	5.3 ± 0.3	R	Maienfeld	Hölzli	2000	3.5 ±		R
La Punt-	Ala Alasah	2002	10 107	В	Maienfeld Maienfeld	Poi	2002	0.5 ±		R
Chamues-ch	Alp Alesch	2002	1.3 ±0.7	R E	Maienfeld	Grundwasser 24a	2002	10.7 ±		R
Laggia	Macun	1995	12.1	E	Maienfeld	Grundwasser 25B	2002	12.1 ±		R
Leggia Lohn	Monda Waldweg	1995 2002	25.4 2.3 ±0.9	R	Maienfeld	Grundwasser 26B	2002	12.3 ±		R
Lohn	Dorfbrunnen	2002	2.3 ±0.9 2.4 ±1.0	R	Maienfeld	Grundwasser 29A	2002	7.4 ±		R
Lostallo	Grundwasser 4	1996	66.2	Ë	Maienfeld	Grundwasser 29/IA		10.9 ±		R
Lostallo	Grundwasser 4	1999	87.0 ±3	R	Maienfeld	Grundwasser 30A	2002	10.5 ±		R
Lostallo	Grundwasser 4	2001	62.6 ±4.7	R	Maienfeld	Grundwasser 30C/2	2002	9.4 ±	0.6	R
Lostallo	Grundwasser 19	1996	18.8	E	Maienfeld	Grundwasser 31A	2002	7.4 ±		R
Lostallo	Grundwasser 19	1999	25.3 ±1.1	R	Maienfeld	Grundwasser 31B	2002	15.5 ±		R
Lostallo	Grundwasser 51	1996	24.9	E	Maladers	Bir Müli	2002	1.7 ±	1.3	R

Gemeinde	Probe	Jahr	²²² Rn			Gemeinde	Probe	Jahr	²²² Rn		
Maladers	Arwinis	2002		±1.7	R	Mesocco	Corina	2000	17.6	±1.6	R
Maladers	Cholplatz	2002		±0.4	R	Mesocco	Cebbia	2001	2.2	±0.6	R
Malans	Grundwasser 24B	1999	13.5	±1.9	R	Mesocco	Darba	2001	2.8	±0.7	R
Malans	Grundwasser 24B	2002	9.8	±1.4	R	Molinis	Ochsenalp	1997	23.1	±1.2	R
Malans	Grundwasser 24D	2002	18.1	±3.0	R	Molinis	Ochsenalp unten	1997	8.7		Ε
Malans	Grundwasser 24E	2002	15.4	±4.0	R	Molinis	Ochsenalp unten	1997		± 1.4	R
Malans	Grundwasser 24/IA	1998	20.9	±1.5	R	Molinis	Stockläger	2000		± 0.7	R
Malans	Grundwasser 24/IA	2002	16.8	±1.5	R	Molinis	Rüfinal	1997	2.1		Ε
Malix	Belvedra alte Quelle	1909	8.9		S	Molinis	Rüfinal	1997		±0.4	R
Malix	Belvedra neue					Molinis	Quadra	2002		±1.5	R
	Quelle	1909	10.8		S	Molinis	Bim Gatter	2002	(50.0)	± 0.3	R
Malix	Passugg-Theophil	1909	9.9		S	Mon	Sanagn	2000		±0.2	R
Malix	Passugg					Morissen	Dorfbrunnen	1999		±0.5	R
	Mittelbelvedra	1925	6.3		Ν	Mulegns	Dorfbrunnen	1999		±0.4	R
Malix	Laschier	1995	24.1		Ε	Müstair	Dorfbrunnen	1997	11.6	±1.5	R
Malix	Glatten Böden	2001		± 0.5	R	Müstair	Grundwasser 1	1995	121.9		E
Malix	Rabiosabrücke	2002		±0.3	R	Müstair	Grundwasser 1	1998	121.0		R
Marmorera	Pra Miez 1	1999		±0.1	R	Müstair	Grundwasser 1	1999	89.0		R
Marmorera	Pra Miez 2	1999	10000	±0.2	R	Müstair	Grundwasser 1	2000	99.0		R
Marmorera	Pro Sot	1999		±0.1	R	Müstair	Grundwasser 2	2001	171.0	±16	R
Marmorera	Staudamm	1999		±0.4	R	Müstair Müstair	Grundwasser 3	1995	137.2 77.9		E
Masein	Dorfbrunnen	2001	3.4		R		Grundwasser 5	1995			E
Masein	Mülibach rechts	2001		±0.2	R	Müstair Müstair	Grundwasser 5 Grundwasser 6	2002 1995	117.0 75.4	T 3	R E
Masein	Mülibach links	2001		±0.1	R	Müstair	Grundwasser 6 Grundwasser 7	1995	64.6		E
Mastrils	Wisstannenwald	1993	0.4		E	Müstair	Grundwasser 7	2001	106.0	+2	R
Mastrils	Präschenal	1993	1.7		E	Müstair	Grundwasser 7	2002	74.6		R
Mastrils	Spiger Weg	1993	0.4	10.4	E	Müstair	Grundwasser 8	1995	87.3	±4.5	E
Mastrils Mastrils	Spiger Weg Valsrank	1998		±0.4	R E	Müstair	Grundwasser 8	1999	107.0	+3	R
Mastrils	Spritzbuche	1993 1993	4.2 0.4		E	Müstair	Grundwasser 8	2000	113.0		R
Mastrils	Allmend	1993	0.4		E	Mutten	Brunnen	2000	110.0	Δ.	
Mastrils	Valzauda	1998	11.2	±1.0	R	Widten	Obermutten	1998	74	±1.9	R
Mastrils	Grundwasser 3	2002		±1.1	R	Mutten	Muttner Alp	1998		±2.3	R
Mathon	Daluz 1	1996	12.3	±1.1	E	Mutten	Brunnen		7.0		
Mathon	Daluz 2	1996	8.2		E		Untermutten	2001	3.1	±0.4	R
Mathon	Palis	1996	7.0		Ē	Mutten	Untermutten	2001		±0.3	R
Medel (Lucmagn)	Dorfbrunnen	1000	7.0		-	Nufenen	Dorfbrunnen	2002		±0.7	R
Wood (Eddinagil)	Curaglia	1996	9.3		Ε	Nufenen	Boden	2002		±1.5	R
Medel (Lucmagn)	Dorfbrunnen		0.0		-	Obersaxen	Meierhof	1997	28.5		R
,	Curaglia	1997	2.1	±0.3	R	Obersaxen	Brunnen St. Joseph		18.3		R
Medel (Lucmagn)	Vergera	1996	34.7		Ε	Obersaxen	Brunnen St. Martin	1997	10.8		R
Medel (Lucmagn)	Mutschnengia	1996	3.0		Ε	Obersaxen	Bellaua 2	1997	21.3	±3.7	R
Medel (Lucmagn)	Mutschnengia	1997	3.3	± 0.3	R	Obersaxen	Bellaua 1	1997	61.7	±2.0	R
Medel (Lucmagn)	Soliva	1997		±0.7	R	Obersaxen	Brunnen Markal	1997	10.2		R
Medel (Lucmagn)	Brunnen Drual	1997	5.2	±0.4	R	Obersaxen	Brunnen Chriegli	1998	55.9	±2.8	R
Medel (Lucmagn)	Brunnen Fuorns	1997	2.5	±0.4	R	Obersaxen	Brunnen Axastai	1998	37.2	±1.5	R
Medel (Lucmagn)	Brunnen Baselgia	1998	3.3	± 0.6	R	Pagig	Bleis	1994	5.0		Ε
Medels	Dorfbrunnen	1998	2.7	± 0.1	R	Pagig	Avaditsch	1994	10.5		Ε
Medels	Luzis Höckli	2002	4.6	± 0.7	R	Pagig	Goldgruoben	1994	2.9		Ε
Mesocco	San Bernardino	1916	78.3		S	Pagig	Lages	1994	13.5		Ε
Mesocco	San Bernardino	2001	32.1		R	Pagig	Tiejiser Waldji	1994	7.7		Ε
Mesocco	San Bernardino	2002	32.3	±2.6	R	Pagig	Matroz	1994	3.1		Ε
Mesocco	Br. San Bernardino	1996	2.2		E	Parpan	Parpaner Leitung	1925	4.9		N
Mesocco	Brunnen Cebbia	2001	7.2	±1.3	R	Parpan	Parpaner Leitung	1925	5.2		N
Mesocco	Dorfbrunnen				_	Parpan	Parpaner Leitung	1925	5.3		N
**	Mesocco	1996	8.2		E	Parpan	Parpaner Leitung	1925	4.6		N
Mesocco	Ri de Confin	1994	144.2		E	Parpan	Heimberg Älpliweg	1994	6.1		E
Mesocco	Fopela	1994	25.1		E	Parpan	Heimberg P2	1994	5.7		Ε
Mesocco	Vignun	1995	8.2		E	Parpan	Grundwasser	1004	20.5		г
Mesocco	Motela	1996	5.5		E	Parpar	Gruoben	1994	29.5		E E
Mesocco	Foss N Foss S	1996 1999	3.3 5.8		E E	Parpan Parpan	Hinterer Winkel Müli-Winkel	1995 1995	70.0 25.7		E
Mesocco Mesocco	Alp d'Arbeola	2000	22.8	+1 5	R	Parpan Parpan	Kutleta	1995	8.2		E
Mesocco	Val d'Anzon	2000	18.4		n R	Parpan Parpan	Geissboden	1995	366.5		E
Mesocco	Trescolmen	2000	28.9		R	Parpan	Geissboden	1995	51.1		E
111030000	ii 6300iiii6ii	2000	20.3	-4.2	.,	i di pali	Geraanonen	1000	31.1		_

Gemeinde	Probe	Jahr	²²² Rn		Gemeinde	Probe	Jahr	222Rn		
Parpan	Geissboden	1995	35.7	Ε	Poschiavo	Grundwasser P1	1999	30.4 ±	ο 4	R
Parpan	Geissboden 2	1995	37.9	E	Poschiavo	Grundwasser P1	2000	39.4 ±		R
Parpan	Plantahof	1995	25.7	E	Poschiavo	Grundwasser P1	2001	36.0 ±		R
Parpan	Brunnen Plantahof		9.4 ±1.0	R	Poschiavo	Grundwasser P2	1999	46.0 ±		R
Parpan	Brunnen Innerberg	2001	1.1 ±0.3	R	Poschiavo	Grundwasser P2	2000	68.9 ±		R
Parpan	Stettli	1995	8.5	E	Poschiavo	Grundwasser P2	2001	39.6 ±		R
Paspels	Almenser Tobel	1994	11.0	Ē	Poschiavo	Grundwasser P3	1999	130.0 ±		R
Paspels	Grundwasser 9C	2001	21.0 ±1.1	R	Poschiavo	Grundwasser P3	2000	145.1 ±		R
Paspels	Grundwasser 10C	2001	28.8 ±1.0	R	Poschiavo	Grundwasser P3	2001	116.0 ±		R
Peist	Schützenhaus	1998	5.7 ±0.7	R	Praden	Joch	1998	19.2 ±	2.2	R
Peist	Alpweg	1998	18.4 ±1.4	R	Praden	Sagentobel	2001	1.3 ±	0.4	R
Peist	Uf Prätsch	2000	6.5 ± 0.5	R	Praden	Surwasser	2001	1.0 ±	0.6	R
Peist	Ruebegg	2002	3.8 ± 0.8	R	Pratval	Grundwasser 5C	2001	$16.4 \pm$	1.0	R
Peist	Geisseggen	2002	2.6 ± 0.7	R	Pratval	Ried	2002	$7.3 \pm$	1.9	R
Pignia	Andeer/Pignia	1909	(6.9)	S	Präz	Barias	1995	3.5		Ε
Pignia	Andeer/Pignia	1916	44.6	S	Präz	Baria dil Pusch	1995	8.5		Ε
Pignia	Andeer/Pignia	1992	5.4 ± 0.6	В	Präz	Santagnöns	1997	$15.6 \pm$	1.5	R
Pignia	Brunnen Kirche	2002	1.1 ±0.4	R	Präz	Baria Sura	1997	$9.7 \pm$	1.8	R
Pignia	Dorfbrunnen	2002	1.5 ± 0.4	R	Präz	Brunnen Dalin	2001	5.9 ±		R
Pigniu	Dorfbrunnen	1998	1.8 ± 0.4	R	Präz	Raschlinas	2001	8.9 ±	0.5	R
Pitasch	Dorfbrunnen	1999	0.8 ± 0.1	R	Ramosch	Lias-ch	1996	12.5		Ε
Pitasch	Uaul da Cavalera	1999	0.7 ± 0.2	R	Ramosch	Grundwasser 17	1999	29.8 ±		R
Pitasch	Mulin da Pitasch	1999	5.4 ± 0.5	R	Ramosch	God Chavradura	2000	$2.3 \pm$	0.2	R
Pontresina	Sur ils Lejs	1999	53.6 ± 1.4	R	Rhäzüns	Rhäzüns	1916	12.2		S
Pontresina	God Chapütschöl	2002	50.9 ±5.8	R	Rhäzüns	Dorfbrunnen	1995	2.6		E
Pontresina	Sur Semda	2002	76.6 ±4.0	R	Rhäzüns	Obermühle	2001	2.5 ±		R
Pontresina	Choma	2002	17.0 ±1.5	R	Riein	Dorfbrunnen	1999	66.3 ±		R
Pontresina	Röntgen-Denkmal	2002	8.1 ±1.2	R	Riein	Crap Pign	1999	39.4 ±		R R
Portein	Porteiner Alp 4	1997	11.6 ±1.3	R	Riein	Bual Weidetränke	2000 2000	52.2 ± 55.7 ±		R
Portein Portein	Porteiner Alp 4 Zarnos	1997 1998	8.5 15.1 ±2.0	E R	Riein Riein	Bual Spalte Fitganellas	2000	10.9 ±		R
Portein	Portein 2	1998	7.6 ±0.9	n R	Riom-Parsonz	Radons	2000	11.2 ±		R
Portein	Portein 5	1998	12.7 ±2.0	R	Riom-Parsonz	Berghaus Radons	2000	9.6 ±		R
Portein	Salignas	1998	16.4 ±2.0	R	Riom-Parsonz	Pro Barlegn	2001	14.4 ±		R
Poschiavo	Trinkw. S.Carlo (5x)	1992	8.5 ±0.7	В	Riom-Parsonz	Plangs E	2002	7.7 ±		R
Poschiavo	Trinkw. S.Carlo (2x)	1992	12.8 ±0.8	В	Rodels	Grundwasser 8C	2001	18.0 ±		R
Poschiavo	Trinkw. Li Curt (2x)	1992	0.8 ±0.6	В	Rodels	Grundwasser 9B	2001	16.5 ±		R
Poschiavo	Trinkw. Borgo (2x)	1992	0.9 ±0.6	В	Rodels	Nueins	2002	6.5 ±	0.2	R
Poschiavo	Pozzolascio	1999	21.6 ±1.5	R	Rodels	Brunnen Unterdorf	2002	$6.8 \pm$	1.2	R
Poschiavo	Brunnen Privilasco	1998	19.8 ±2.0	R	Rongellen	Unterrongellen-				
Poschiavo	Brunnen Borgo	1998	3.9 ± 0.5	R		Trögli	2001	1.6 ±	1.6	R
Poschiavo	Brunnen Li Curt	1998	3.7 ± 0.7	R	Rongellen	Aclatobel 1	2001	1.0 ±	0.8	R
Poschiavo	Prada	1998	73.1 ±2.8	R	Rongellen	Aclatobel 2	2001	2.1 ±	0.4	R
Poschiavo	Prada	1999	3.8 ± 0.4	R	Rossa	Santa Domenica	2002	3.1 ±		R
Poschiavo	Prada	1999	7.0	Ε	Rossa	Ronch	2002	28.2 ±		R
Poschiavo	Prada Alto	1999	130.0 ±2	R	Rossa	Augio Waschhaus	2002	5.9 ±		R
Poschiavo	Brunnen Cantone	1995	3.3	Ε	Rossa	Rossa 1	2002	3.1 ±		R
Poschiavo	Brunnen Miralago	1995	39.5	Ε	Rossa	Rossa 2	2002	3.4 ±		R
Poschiavo	Brunnen Le Prese	1995	7.8	E	Rossa	La Fontana	2002	11.0 ± 10.9	2.5	R S
Poschiavo	Pedemonte 1	2000	40.2 ±1.5	R	Rothenbrunnen	Fontana Rossa	1909 2001	7.8 ±	nα	R
Poschiavo	Pedemonte 2	1999	61.3 ±1.3	R	Rothenbrunnen	Fontana Rossa Dorfbrunnen	2001	2.9 ±		R
Poschiavo	Pedemonte 2	2000	54.3 ±2.3	R	Rothenbrunnen	Bot Alv	2001	8.0 ±		R
Poschiavo	Pedemonte 2	2001	53.5 ±2.8	R R	Rothenbrunnen Rothenbrunnen	Grundwasser 13	2001	24.3 ±		R
Poschiavo	Sfazù Permunt	1999 1999	5.5 ±0.5 120.0 ±1	n R	Roveredo	Giardinetto	1995	2.9		E
Poschiavo		1999	26.2 ±1.2	R	Rueun	Plaun Grond	1994	24.7		E
Poschiavo Poschiavo	L'Abrüsù Alt-Prada	2000	104.0 ±3	R	Rueun	Sareins	1995	106.0		E
Poschiavo	La Motta	2000	14.8 ±1.0	R	Rueun	Sareins Sut	1997	3.7 ±	1.1	R
Poschiavo	Grundwasser 2	1995	43.7	Ë	Rueun	Chiglina	1997	174 ±		R
Poschiavo	Grundwasser 7	1999	21.6 ±1.0	R	Rueun	Brunnen S. Clau	1995	59.9		Ε
Poschiavo	Grundwasser 8	1995	29.2	E	Rueun	Dorfbrunnen	1997	70.0 ±	3.9	R
Poschiavo	Grundwasser 9	1992	50.4 ±1.3	В	Rueun	Dorfbrunnen	1998	179 ±		R
Poschiavo	Grundwasser 12	1992	35.5 ±1.2	В	Rueun	Dorfbrunnen	1998	139 ±		R
Poschiavo	Grundwasser 12	1995	39.5	E	Rueun	Dorfbrunnen	2000	35.9 ±		R
Poschiavo	Grundwasser 13	1995	47.1	Ε	Rueun	Brunnen Dacla	1998	1.0 ±	0.4	R

Gemeinde	Probe	Jahr	²²² Rn			Gemeinde	Probe	Jahr	²²² Rn		
Rueun	Grundwasser M	1996	72.7	±3.2	R	Safien	Halta	2001	9.2	±0.8	R
Rueun	Grundwasser M	2000	92.7	±2.7	R	Safien	Treuschböden	2001	8.3	±0.4	R
Rueun	Grundwasser N	1996	40.0	±2.2	R	Safien	Rüegschboden	2001	8.3	±0.4	R
Rueun	Grundwasser N	2000		±2.1	R	Safien	Bärenboden	2001		± 0.6	R
Rueun	Grundwasser Q	2000		± 0.6	R	Safien	Bleikta/Neukirch	1994	1.2		Ε
Ruschein	Ruschein	1994	14.5		Ε	Safien	Rüti	1995	11.0		Ε
Ruschein	Grotta	1994	21.8		Ε	Sagogn	Pastiras	1999		±0.5	R
Ruschein	Uaul da Schnaus	1994	1.8		E	Sagogn	Pigniel	1999		±1.2	R
Ruschein	Uaul da Schnaus	1996	5.4		E	Sagogn	Dorfbrunnen	1999		±0.8	R
Ruschein	Dorfbrunnen	1996	4.7		E	Sagogn	Dorfbrunnen	1999		±0.3	R
Ruschein	Dorfbrunnen	1998		±0.8	R	Salouf	Pitgogna	2002	30.5		R
St. Antönien	Soppen	1997		±0.6	R	Salouf	Furcla	2002		±1.7	R
St. Ant. Ascharina		2002		±0.7	R	Salouf	Munter	2002		±1.9	R
St. Ant. Ascharina	Alphach	2002		±0.3	R	Samedan	Roseg	1994	8.9		E
Sta. Maria i.C.	Nadi	2001 1993		±0.9	R R	Samedan	Plaun God	1995 1995	78.8 4.6		E
Sta. Maria V.M. Sta. Maria V.M.	Grundwasser 11 Dorfbrunnen	1993	109.0	±0.7	n R	Samedan Samedan	Dorfbrunnen Sur Plaun God	2002		120	
Sta. Maria V.M.	Dorfbrunnen	2001		±5.5	n R	Samedan	God da Bever	2002	18.1	±2.6 ±2.7	R R
St. Martin	Gadenstatt	1999		±0.1	R	Samedan	lls Sagls	2002		±0.6	R
St. Martin	Mariaga 1	1999		±0.1	R	Samedan	Val Muragl	2002		±1.5	R
St. Martin	Mariaga 2	1999		±0.2	R	Samnaun	Grundw. Ravaisch	1995	2.9	⊥1.5	E
St. Moritz	Surpunt	1887	20.5	±0.0	S	Samnaun	Schergenbach	2002		±0.18	R
St. Moritz	St. Moritz-Bad	1912	15.3		S	Samnaun	Cundeas 1	2002		±1.4	R
St. Moritz	Paracelsus	1912	19.0		S	Samnaun	Cundeas 2	2001	12.0		R
St. Moritz	St. Moritz-Bad	1972	30.5		Н	Samnaun	Cundeas 2	2002	10.1		R
St. Moritz	St. Moritz-Bad	1992		±0.9	В	Samnaun	Foppazin 13	2001		±1.2	R
St. Moritz	Ova da Suvretta	2002		±2.8	R	Samnaun	Tschischanader 1	2002		±0.5	R
St. Peter	Brunnen Bahnhof	1997		±0.5	R	Samnaun	Tschischanader 2	2002		±0.7	R
St. Peter	Gontiaur	2002	2.6	±0.7	R	Samnaun	Surplatta	2002	4.3	±0.7	R
St. Peter	Herti	2002	12.2	±1.6	R	Samnaun	Planer Pflanzgarten	1995	3.6		Ε
San Vittore	Grundwasser 1	1996	48.8		Ε	Samnaun	Jazun 0	1995	0.0		Ε
San Vittore	Grundwasser 2	1996	32.8		Ε	Samnaun	Jazun 0	1995	1.3		Ε
San Vittore	Grundwasser 3	1996	40.1		Ε	Samnaun	Jazun 1	1996	10.1		Ε
San Vittore	Guald	2002	12.0	±2.1	R	Samnaun	Jazun 1	1996	3.8	±1.5	R
San Vittore	Prepiantò alt	2002	6.9	±1.4	R	Samnaun	Jazun 1	1996	6.5		R
Saas	Albeina	1999		±2.9	R	Samnaun	Jazun 2	1996	8.3		Ε
Saas	Älpli	1999	98.0		R	Samnaun	Jazun 2	1996		±1.8	R
Saas	Schlappiner Joch	1999	156.0		R	Samnaun	Jazun 4	1997		± 0.3	R
Safien	Pürahütte	2000		±0.3	R	Samnaun	Jazun 5	1997	1-0.00	±0.4	R
Safien	Alpli Tomül	2000		±0.8	R	Samnaun	Jazun 5	1997		±0.9	R
Safien	Laubliger	2001		±0.7	R	Samnaun	Jazun 5	1997		±0.7	R
Safien	Im Gufer	2001	100	±0.5	R	Samnaun	Jazun 5	1997		±0.4	R
Safien	Turrahus	2001		±0.7	R	Samnaun	Jazun 6	1997		±1.1 ±0.5	R
Safien	Egga	2001		±0.6	R R	Samnaun	Jazun 6	1997			R
Safien Safien	Tristel 2 Tristel 3	2001 2001		±0.2 ±0.2	R	Samnaun Samnaun	Jazun 7 Jazun 7	1997 1997		±1.0 ±0.3	R R
Safien	Bäch	2000		±0.2	R	Sarn	Parkplatz	1997	18.6		R
Safien	Bächer Tobel	2001		±0.4	R	Sarn	Parkplatz	1997	18.6	11.2	R
Safien	Bodagada	2001		±1.0	R	Sarn	Sarner Alp 1	1997	23.1	+2 5	R
Safien	Am Wald,	2001	0.0	_1.0		Sarn	Sarner Alp 2	1997	33.7		R
Janon	Inn. Camana	2000	3.9	±0.5	R	Sarn	Porteiner Alp 3	1997	13.3		R
Safien	Püscha	2001		±0.3	R	Sarn	Parsiras 5a	1997	11.1		R
Safien	Ausser Camana	2001		±0.5	R	Sarn	Parsiras 6	1997	11.1		R
Safien	Am Wald	2001		±0.5	R	Sarn	Combras 7	1997	13.7		R
Safien	Mura 1	2001	7.7	±0.4	R	Savognin	Plang Begls	1994	0.0		Ε
Safien	Mura 2	2001		±0.2	R	Savognin	Gliung	2001	9.1	±0.3	R
Safien	Halde	2001	16.5	±1.1	R	Says	Grosstobel	1993	3.0	±0.4	R
Safien	Brunna	2001	7.5	± 0.3	R	Says	Zanutsch 1.1	1993	1.3	± 0.4	R
Safien	Bruschgalätsch	2000	1.9	±0.4	R	Says	Zanutsch 5+8.1	1993	0.8	± 0.4	R
Safien	Brüch 0	2001	6.2	±0.7	R	Says	Chremeri	1993	1.6	± 0.4	R
Safien	Brüch 2	2001	4.3	±0.2	R	Says	Chremeriböden 2	1993		±0.5	R
Safien	Brüch 6	2001	11.8	±0.7	R	Says	Chremeriböden 5+7			±0.5	R
Safien	Dorfbrunnen Platz	1995	4.8		Ε	Says	Leggplatten	1993		± 0.4	R
Safien	Inner Zalön	1997		±0.8	R	S-chanf	Dorfbrunnnen	1995	11.8		E
Safien	Neuställi	2001	12.3	±0.5	R	S-chanf	Murtel Tagliöl	1997	37.0	±1.6	R

Gemeinde	Probe	Jahr	²²² Rn			Gemeinde	Probe	Jahr	²²² Rn		
Scharans	Fontaniblas	2002	3.1	±0.7	R	Sevgein	Curschetta	1999	19.6	±1.3	R
Scharans	Cadafet	2002	5.4	±1.9	R	Sevgein	Dorfbrunnen	1999		±0.4	R
Scharans	Halda	2002	10.0	±1.2	R	Siat	Uaul Cavriu	1996	85.5		Ε
Scheid	Plazza	2001	6.9	±0.2	R	Siat	lls Fopps 1	1996	198.5		Ε
Scheid	Alte Post	2001	6.7	± 0.4	R	Siat	lls Fopps 2	1996	7.2		Ε
Scheid	Brunnen					Siat	Uaul Cavriu 2	1996	30.0		Ε
	Oberscheid	2001	12.2	± 0.6	R	Siat	Uaul Cavriu 3	1996	16.8		Ε
Scheid	Brunnen			. 2 2		Siat	Termun	1999	61.7		R
0.1.	Unterscheid	2001		±0.3	R	Siat	Uaul Cavriu 4	1999		±0.9	R
Schiers	Stels	1998	1,000,000	±0.6	R	Siat	Dorfbrunnnen	1999	25.0		R
Schiers Schiers	Grundwasser 52	1999	16.2		R	Sils i.D.	Carschenna unten	1998	10.2		R
Schlans	Grundwasser 55 Uaul sur Seivs	1999 1994	27.6 101.4	±0.1	R E	Sils i.D. Sils i.D.	Carschenna oben Grundwasser 1B	1998 2001	13.2		R
Schlans	Muglin	1997		±0.8	R	Sils i.D.	Grundwasser 1B Grundwasser 2B	1998	44.2 22.4		R R
Schlans	Cavilan	1997		±1.2	R	Sils i.D.	Grundwasser 2B	2001	16.7		R
Schluein	Grundwasser 11	1998	23.7		R	Sils i.D.	Brunnen Campi	2002		±0.4	R
Schluein	Valwedra	1998		±0.3	R	Sils i.D.	Quelle Dorf	2002		±0.5	R
Schluein	Buortga 1	1998	15.6		R	Sils i.E./Segl	Dorfbrunnen	1998	14.0		R
Schluein	Buortga 2	1998		±0.2	R	Sils i.E./Segl	Fiuors	1999	60.8		R
Schluein	Brunnen Plaz	1998		±0.6	R	Sils i.E./Segl	Plaun da Lej	1999	38.5		R
Schluein	Brunnen Quadras	1999	0.6	±0.1	R	Silvaplana	Surlej	1873	20.1		S
Schmitten	Dorfbrunnen	2002	6.0	±1.1	R	Silvaplana	Crap Alv	1994	6.3		Ε
Schnaus	Brunnen Kirche	1998	4.2	±0.8	R	Silvaplana	Grundwasser Surlej	1997	30.4	±1.6	R
Schnaus	Br. Gemeindehaus	1998	8.0	±0.8	R	Silvaplana	Wegerhaus	2002	22.5	±0.8	R
Schnaus	Brunnen Mühle	1999	12.5	±0.8	R	Silvaplana	Dschember	2002	20.0	±1.7	R
Scuol	Vih	1970	10.8		R	Soazza	Dorfbrunnen	1996	73.9		Ε
Scuol	Sotsass	1970	13.5		S	Soazza	Portueira	1996	12.7		Ε
Scuol	Sotsass	2002		±1.3	R	Soglio	Brunnen Sottoponte			±0.7	R
Scuol	Chialzina	1993	10.6		В	Soglio	Dorfbrunnen	2002	11.1		R
Scuol	Lischana	1993		±0.3	В	Soglio	Soglio 1	2002		±0.7	R
Scuol	Lischana	1998		±0.2	R	Soglio	Soglio 2	2002		±0.4	R
Scuol	Era Champatsch	2000	3.3	±0.3	R	Splügen	Grossboden	1994	40.8		E
Carral	Cuarala Champatach	2002	0.7	10 E	В	Splügen	Splügenberg Scabürwald	1994 1995	34.3 2.4		E
Scuol Scuol	Fuorcla Champatsch Rablönch	2002	11.8	±0.5	R R	Splügen Splügen	Dorfbrunnen	1995	9.0		Ē
Scuol	Funtana da S-charl		12.6		R	Splügen Stampa	Bosch da Cavril	1996	21.0		Ē
Scuol	God Tamangur	2002	34.7		R	Stampa	Kulm	1998	30.5	+2.7	R
Scuol	Tamangur Dadora	2002		±1.4	R	Stampa	Cranch da Sett	1999		±0.5	R
Scuol	Grundwasser 12/3	1998	26.8		R	Stampa	Pass Lunghin	2002		±1.3	R
Scuol	Grundwasser 12/3	2000	27.1		R	Stampa	Lägh dal Lunghin	2002	0.9	±0.4	R
Seewis i.P.	Zur Mur	1999		±0.4	R	Stampa	Bosch da Durbegia	2002	1.3	±0.3	R
Seewis i.P.	Fadära	1999	1.0	±0.2	R	Stampa	Caccior	2002	13.9	±1.0	R
Seewis i.P.	Grundwasser 67	1995	8.8		Ε	Stampa	Brunnen Borgonovo	2002	7.6	±0.8	R
Selma	Dorfbrunnen	1998	5.8	±0.6	R	Stampa	Plan Canin	2002		± 0.7	R
Sent	Val Sinestra					Stampa	Bosch da la Furcella		13.0		R
	Thomas	1916	8.1		S	Stierva	Curegnas	2000		±0.4	R
Sent	Val Sinestra					Sufers	Dorfbrunnen	1995	4.1		E
-	Conradin	1916	8.1		S	Sufers	Usser Schmelzi	2002	11.7		R
Sent	Val Sinestra	101010101	1212		_	Sufers	Usser Schmelzi	2002	16.7	±1.6 ±0.9	R
•	Johannes	1916	6.8		S	Sufers	Traversa	2002 2002		±0.9 ±0.7	R R
Sent	Val Sinestra Ulrich	1916	12.2		S	Sufers	Hinterrhein Clavadi	1916	13.5	±0.7	S
Sent	Val Sinestra Ulrica	1916	13.5		S S	Sumvitg	Tödiquelle	1916	85.1		S
Sent	Val Sinestra alte Q. Val Sinestra: Ulrich		8.1 8.0		N	Sumvitg Sumvitg	Tenigerbad	1907	30.0		S
Sent Sent	Val Sinestra: Eduard		8.3		N	Sumvitg	Tenigerb.		00.0		
Sent	Val Sinestra: Badw.		7.9		N	Julivity	Waldhäuser	1907	27.7		S
Sent	Val Sinestra	2002	2.2	+0.5	R	Sumvitg	Tenigerbad	1993	9.2	±1.1	В
Sent	Stron	1925	3.5		N	Sumvitg	Palius/Laus	1993	19.4		E
Sent	Trinkwasser	1925	4.9		N	Sumvitg	Brunnen Rabius	1997	58.0	±1.8	R
Sent	Brunnen Crusch	1996	1.3	±0.3	R	Sumvitg	Brunnen				
Sent	Brunnen Sent	1996	14.4		R	- Marie	S. Benedetg	1997	12.4		R
Sent	Las Ischlas	1998	17.0	±0.8	R	Sumvitg	Canariel	1997		±1.0	R
Sent	Las Ischlas	1999	23.7		R	Sur	Dorfbrunnen	1996	6.2		R
Sent	Tiral	2000	1.6		R	Sur	Paleis	1996	8.4		R
Sent	Tiral	2002	6.9	±0.6	R	Sur	Spliatsch	2002	2.0	±0.1	R

Gemeinde	Probe	Jahr	²²² Rn		Gemeinde	Probe	Jahr	²²² Rn	
Suraua	Peiden-Luzius	1894	33.5	S	Tinizong-Rona	Ava Salva Nord	1995	0.6	Ε
Suraua	Peiden-Badequelle	1906	8.0	S	Tinizong-Rona	Palecs	1995	18.7	Ε
Suraua	Peiden-				Tinizong-Rona	Tinizong	2001	14.0 ±1.7	R
	Frauenquelle	1906	8.5	S	Tinizong-Rona	Sot Sarons	2001	2.6 ± 0.6	R
Suraua	Surcasti S	1999	45.4 ±3.1	R	Trans	Caltgera	1994	0.0	Ε
Suraua	Dorfbrunnen				Trans	Pala Beala	1994	7.3	Ε
	Surcasti	1999	0.7 ± 0.2	R	Trans	Summa Plazza	1994	9.2	Ε
Suraua	Dorfbrunnen				Trans	Plattas	1994	0.9	Ε
	Surcasti	2000	2.0 ±0.3	R	Trans	Nurseala	1994	1.0	Ε
Suraua	Sogn Luregn	1999	28.3 ±1.1	R	Trans	Bles Aulta	1994	0.0	Ε
Suraua	Camuns	1999	3.4 ±0.5	R	Trans	Pro dil Begl	1994	17.3	Ε
Suraua	Brunnen Runs	1999	1.3 ±0.3	R	Trans	Brunnen Acla	2001	26.9 ±0.6	R
Suraua	Brunnen Uors	2000	4.2 ±0.3	R	Trans	Meunt	2001	12.5 ±0.5	R
Suraua	Sum Fistatg	2000	5.9 ±1.3	R	Trimmis	Grundwasser 15A	2002	10.8 ±1.0	R
Suraua	Arliun	2000	1.8 ±0.7	R	Trimmis	Grundwasser 15C	2002	8.5 ±0.9	R
Suraua	Brunnen Tersnaus	2001	1.9 ±0.3	R	Trimmis	Grundwasser 16B	2002	10.2 ±1.2	R
Suraua	Cugns	2001	0.8 ±0.3	R	Trimmis	Grundwasser 16C	2002	11.6 ±1.5	R
Suraua	Trestel	2001	4.1 ±0.4	R	Trimmis	Grundwasser 17B	1995	12.7	E
Surava	Surava	1994	18.3	Ε	Trimmis	Grundwasser 17B	2002	9.1 ±0.6	R
Surava	Ava Forta	1994	25.0	Ē	Trin	Felsbach	1997	0.7 ±0.4	R
Surcuolm	Brunnen Cavegn 1	1998	4.6 ±0.7	R	Trin	Dorfbrunnen	2000	10.1 ±0.4	R
Surcuolm	Brunnen Cavegn 2	1998	1.4 ±0.3	R	Trin	Brunnen Mulin	2000	1.1 ±0.3	R
Surcuolm	Sansandrisch	2002	0.8 ±0.2	R	Trun	Brunnen Cartatscha		18.0 ±1.2	R
Surcuolm	Dorfbrunnen	2002	5.1 ±0.5	R	Trun	Runget	1997	2.6 ±0.7	R
Susch	Röven 1	1996	66.3	E	Trun	Crusch	1997	56.9 ±5.3	R
Susch	Röven 2	1996	60.1	Ē	Trun	Nossad. dalla glisch		1.2 ±0.3	R
Susch	Dorfbrunnen	1996	4.9 ±0.9	R	Trun	Brunnen Campliun	1997	23.3 ±2.1	R
Susch	Radönt	1999	34.7 ±1.0	R	Trun	Brunnen Vricla	1997	5.3 ±1.2	R
Susch	Sagliains	2000	3.7 ±0.3	R	Trun	Brunnen Trun	1997	5.0 ±0.9	R
Susch	Trinkwasser (5x)	1992	6.2 ±0.6	В	Tschappina	Glaspass	2001	5.9 ±0.3	R
Tamins	Dorfbrunnen	1998	7.3 ±0.9	R	Tschappina	Inner Glas	2001	0.7 ±0.1	R
Tamins	Ried 1	2000	5.6 ±0.3	R	Tschiertschen	Urdensee	1999	10.6 ±0.6	R
Tamins	Ried 2	2000	3.5 ±0.1	R	Tschiertschen	Oberdorf	2001	6.2 ±0.8	R
Tamins	Grundwasser 0A	1999	14.8 ±0.9	R	Tschiertschen	Brunnen Runcs	2001	17.0 ±3.2	R
Tamins	Grundwasser 0A	2000	11.6 ±0.4	R	Tschierv	Rombachquelle	1993	8.7 ±0.5	R
Tamins	Grundwasser 0A	2002	32.9 ±1.8	R	Tschierv	Muglin 1	1997	11.7 ±1.2	R
Tarasp	Luzius	1970	13.5	S	Tschiery	Muglin 2	1997	7.4 ±1.1	R
Tarasp	Emerita	1970	12.2	S	Tschiery	Buffalora	2002	15.7 ±3.1	R
Tarasp	Bonifazius	1970	2.7	S	Tschierv	Alp Buffalora	2002	9.8 ±1.5	R
Tarasp	Carola	1973	14.9	S	Tschlin	Val Funtana Dadora		0.5	E
Tarasp	Alp Plavna	2001	1.2 ±0.3	R	Tschlin	Brunnen Strada	1996	2.5 ±0.6	R
Tarasp	Aua da Plavna	2001	10.9 ±1.3	R	Tschlin	Brunnen San Niclà		2.3 ±0.6	R
Tartar	Montanus	1997	16.5 ±1.7	R	Tschlin	Grundwasser 1	1996	4.9	E
Tartar	Dorfbrunnen	1997	5.5 ±1.5	R	Tschlin	Grundwasser 2	1995	74.3	E
Tartar	Brunnen Kirche	2001	12.9 ±0.6	R	Tschlin	Grundwasser 2	1996	4.2	E
Tartar	Quelle Tartar	2001	12.0 ±0.4	R	Tschlin	Grundwasser 2	1999	4.4 ±0.7	R
Tenna	Höhturra	1994	5.8	E	Tschlin	Grundwasser 2	2000	4.5 ±0.3	R
Tenna	Trinkwasser	2000	2.6 ±0.2	R	Tschlin	Grundwasser 4	1995	36.9	E
Tenna	Tenna 1	2000	1.4 ±0.2	R	Tschlin	Grundwasser 4	1996	13.9	Ē
	Usserbärg	2000	6.6 ±0.6	R	Tschlin	Grundwasser 4	1999	6.5 ±0.4	R
Tenna	Mitti	2000	3.0 ±0.1	R	Tschlin	Grundwasser 4	2000	10.1 ±0.6	R
Tenna	Brennli	2000	5.0 ±0.1	R	Tujetsch	Bach Bugnei	1993	0.5 ±0.5	R
Tenna	Gadastatt	2001	14.3 ±1.7	R	Tujetsch	Brunnen Dieni	1996	1.6 ±0.4	R
Tenna Thusis	Dorfbrunnnen	2001	4.2 ±0.4	R	Tujetsch	Brunnen Foppas	1998	9.5 ±0.8	R
	Tiefencastel	1878	36.2	S	•	Brunnen Cavorgia	1998	3.3 ±0.4	R
Tiefencastel				R	Tujetsch	Brunnen	1330	3.3 ±0.4	n
Tiefencastel	Trinkwasser	1998	1.9 ±0.6	n R	Tujetsch	Camischolas	1998	7.8 ±1.7	R
Tiefencastel	Tgavrouls	1999	4.0 ±0.2		Tuistash				
Tiefencastel	Crap Ses	2001	2.4	R	Tujetsch	Brunnen Rueras	1998	9.4 ±1.2	R
Tinizong-Rona	Balzer links	1995	2.1	E	Tujetsch	Brunnen Sedrun	1993	33.9 ±1.6	R
Tinizong-Rona	Balzer links	1995	4.2	E	Tujetsch	Bohrung NEAT	1994	17.2	E
Tinizong-Rona	Balzer rechts	1995	3.4	E	Tujetsch	Alp Tiarms	1994	14.7	E
Tinizong-Rona	Balzer rechts	1995	5.6	E	Tujetsch	Lais da Maighels	1996	21.9	E
Tinizong-Rona	Plaz	1995	3.1	E	Tujetsch	Tschamut 1	1996	32.3 ±1.5	R
Tinizong-Rona	Plaz	1995	6.7	E	Tujetsch	Tschamut 2	1996	1.0 ±0.3	R
Tinizong-Rona	Ava Salva Süd	1995	1.5	Ε	Tujetsch	NEAT Schachtkopf	2000	34.8 ± 0.9	R

Gemeinde	Probe	Jahr	²²² Rn			Gemeinde	Probe	Jahr	222Rn	
Tujetsch	NEAT Stollen	2000	8.3	±0.6	R	Vicosoprano	Ca d' Faret	1996	10.3	Ε
Tumegl/Tomils	Tomilser Tobel	1906	4.7		S	Vicosoprano	Dorfbrunnen			
Tumegl/Tomils	Sur Mos	1994	6.5		E	•	Casaccia	1996	21.9	Ε
Tumegl/Tomils	Rofna 1	2001	8.6	±0.4	R	Vicosoprano	Lavignetta	1996	81.3	Ε
Tumegl/Tomils	Rofna 2	2001	1.9	± 0.2	R	Vicosoprano	Lavignetta	1999	71.7 ±5.2	R
Untervaz	Grundwasser 20?	1994	114.0		E	Vicosoprano	Lavignetta	1999	63.9 ±1.3	R
Untervaz	Grundwasser 20B	1999	12.6	±1.0	R	Vicosoprano	Lavignetta	1999	50.0 ±1.2	R
Untervaz	Grundwasser 205	1999	18.7	± 2.3	R	Vicosoprano	Sponda	1999	39.5 ±2.3	R
Untervaz	Grundwasser 20/IA	2002		± 0.7	R	Vicosoprano	Sponda	1999	44.4 ±0.6	R
Untervaz	Grundwasser 20/IB	2002		± 0.9	R	Vicosoprano	Fopet	1999	49.8 ±3.6	R
Urmein	Dorfbrunnen	2000		± 0.7	R	Vicosoprano	Fopet	1999	30.0 ± 1.7	R
Urmein	Urmein	2000		±0.4	R	Vicosoprano	Löbbia	1996	8.8	Ε
Valchava	Chaunt	1997	(543)		R	Vicosoprano	Ravia	2002	0.3 ± 0.3	R
Valchava	Chaunt	1997		±13	R	Vignogn	Dorfbrunnen	2000	2.4 ± 0.3	R
Valchava	Chaunt	1997		±19	R	Vrin	Brunnen Sogn			_
Valchava	Chaunt	1997		±16	R		Giusep	1999	30.4 ±0.7	R
Valchava	Chaunt	1997		±16	R	Vrin	Brunnen Cons	1999	8.1 ±0.5	R
Valchava	Chaunt	1997		±22	R	Vrin	Brunnen Vrin	1999	0.7 ±0.2	R
Valchava	Chaunt	1997		±16	R	Vrin	Weidebr. Puzzatsch		15,5 ±1.1	R
Valchava	Chaunt 2	2000	652		R	Waltensburg/Vuorz		1997	26.3 ±1.1	R
Valchava	Chaunt 2 Dorfbrunnen	2000		±0.7	R	Waltensburg/Vuorz		2002	20.7 ±1.6	R
Valendas		1998 1998		±0.7 ±0.8	R	Waltensburg/Vuorz		1998	31.8 ±2.1	R
Valendas Valendas	Dutjer Strasse Ober Dutjen: Trinkw.			±1.0	R R	Wiesen	Wiesner Alp	1998 1998	17.7 ±1.1 9.2 ±0.7	R R
Valendas	Ober Dutjen: Irlinkw.	1990	3.0	±1.0	n	Wiesen Wiesen	Chalten Brunnen 1 Chalten Brunnen 2	1998	9.2 ±0.7 29.5 ±1.7	R
valelluas	Brunnen	1998	31.2	⊥1 0	R	Zernez	Dorfbrunnen	1997	12.7 ±1.5	R
Vals	Mineralquelle	1899	8.1	±1.0	S	Zernez	Brail Brunnen	1999	5.4 ±0.4	R
Vals	St. Petersquelle	1973	12.0		Н	Zernez	Val da Barcli	2001	206.0 ±11	R
Vals	Treua	1999		±0.3	R	Zernez	Bügliets	2001	19.0 ±1.9	R
Vals	Dorfbrunnen	1999	23.4		R	Zernez	Laviner Lad	2002	10.6 ±1.9	R
Vals	Tomül 1	2000		±0.3	R	Zernez	Alp la Schera	2002	27.9 ±4.9	R
Vals	Teuftobel	2000	31.1		R	Zillis-Reischen	Ava Forta	2002	4.8 ±0.8	R
Vals	Walletsch-		• • • • • • • • • • • • • • • • • • • •	_0.0		Zillis-Reischen	Brunnen Hasenstein		2.9 ±0.5	R
	Stockberge	2000	55.4	±1.3	R	Zizers	Grundwasser 21D	1995	14.5	E
Vals	Zervreilasee	2002	10.5		R	Zizers	Grundwasser 21D	1998	16.7 ±2.1	R
Vals	Lampertsch Alp	2002	18.8		R	Zizers	Grundwasser 21D	2001	16.0 ±0.4	R
Vals	Zervreila	2002	1.0	±0.7	R	Zizers	Grundwasser 21/IC	1998	12.7 ±0.9	R
Valzeina	Eggen	2002	5.4	±0.7	R	Zizers	Grundwasser 21/IC	1998	17.5 ±0.9	R
Vaz/Obervaz	Solis	1878	110.0		S	Zizers	Grundwasser 21/IC	1998	14.7 ±1.6	R
Vaz/Obervaz	Heimberg 1	1994	7.4		E	Zizers	Grundwasser 21/IC	2001	17.3 ±0.8	R
Vaz/Obervaz	Heimberg 4	1994	6.3		E	Zizers	Grundwasser 22B	1999	31.1 ±1.5	R
Vaz/Obervaz	Valbella	1995	26.9		E	Zizers	Grundwasser 22B	2000	14.1 ±0.6	R
Vaz/Obervaz	EWS Lenzerheide	1995	1.0		E	Zizers	Grundwasser 22F	1999	20.0 ± 2.5	R
Vaz/Obervaz	Val Schameala	2001	12.7	± 2.3	R	Zizers	Grundwasser 22F	2000	12.9 ±0.4	R
Vaz/Obervaz	Nivagl rechts	2002	14.4		R	Zizers	Grundwasser 23A	1995	8.8	Ε
Vella		2000		± 0.4	R	Zizers		2001	11.5 ±0.4	R
Vella	Dorfbrunnen	2000		±0.1	R	Zizers	Grundwasser 23B	1998	16.7 ±3.3	R
Verdabbio	Valletta	1994	2.9		E	Zizers	Grundwasser 23B	2001	12.1 ±0.6	R
Versam	Reservoir Arezen	1998	1.9	±0.4	R	Zizers		2001	13.0 ±1.2	R
Versam	Alt. Schulhaus					Zuoz	Val d'Urezza	1909 1999	12.6 3.7 ±0.3	S R
	Arezen	1998	16.1	±2.0	R		Bos-chetta God Averts	2000	9.4 ±0.9	R
Versam	Dorfbrunnen	1000	2.2	.00	В	Zuoz	Nüd N	2000	35.5 ±1.0	R
V	Versam	1998		±0.8	R	Zuoz	Nüd S	2000	23.1 ±0.7	R
Versam	Arezen-Foppa	1998	15.2	±2.2	R		Val Arpiglia	2000	24.4 ±1.3	R
Versam	Dorfbrunnen	1998	0.4	±1.1	R			2000	25.8 ±0.9	R
Versam	Versam Br. Sculms-	1330	5.4	±1.1		Luoz	p			6.5
Versam	Vorderhof	1999	12	±0.5	R					
Versam	Br. Sculms-	1333	1.2	_0.5						
vorsani	Schulhaus	1999	5.2	±0.5	R					
Versam	Br. Sculms-	.000	J.2	_0.0						
. 5. 64111	Mittelhof	1999	5.7	±1.2	R					
Vicosoprano		1996	34.3		E					
Vicosoprano		1996	23.7		E					
Vicosoprano		1996	39.3		Ε					