Zeitschrift: Mitteilungen der Naturforschenden Gesellschaften beider Basel

Herausgeber: Naturforschende Gesellschaft Basel; Naturforschende Gesellschaft

Baselland

Band: 19 (2019)

Artikel: Moose und Moosvergesellschaftungen der Nordschweizer Flühe

Autor: Lenzin, Heiner

DOI: https://doi.org/10.5169/seals-846874

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Moose und Moosvergesellschaftungen der Nordwestschweizer Flühe

HEINER LENZIN

Universität Basel, Departement Umweltwissenschaften, Abteilung Naturschutz, St. Johanns-Vorstadt 10, CH-4056 Basel, Schweiz, heiner.lenzin@unibas.ch

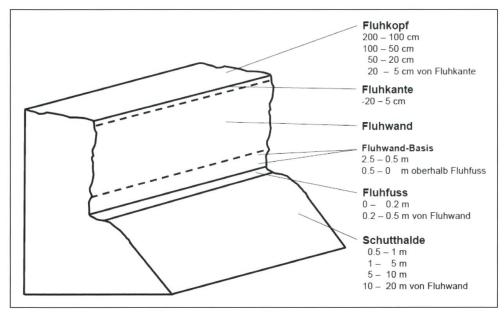
Zusammenfassung: In den Jahren 2009 und 2011 wurden im nordwestschweizerischen Jura auf insgesamt 34 Flühen Moosproben verschiedenster Standorte untersucht. Von Fluhköpfen, von den unteren Abschnitten der Fluhwände, von den Fluhfüssen und von den darunter liegenden Schutthalden wurden insgesamt 3'744 Proben gesammelt. Total wurden darin 126 epigäische und epilithische Arten gefunden. Acht dieser Arten traten in über 15 % der Aufsammlungen auf, nur eine Art davon, Ctenidium molluscum, in mehr als einem Drittel. Untersucht wurden die Auswirkungen der Exposition und der Höhenlage der Flühe sowie der Exposition, der Neigung, der Beschattung und des Substrates der abgeernteten Standorte auf die Moosflora und deren Zusammensetzung. In den untersuchten Flühen wurden fünf Artengemeinschaften gefunden und beschrieben: Die Ctenidium molluscum-Tortella tortuosa-, die Anomodon viticulosus-, die Homalothecium lutescens-, die Schistidium apocarpum aggr.-Gemeinschaft und nur auf Fluhköpfen die Hypnum cupressiforme var. lacunosum-Gemeinschaft. Diese durch eine für die Pflanzensoziologie nicht übliche Vorgehensweise erhaltenen Vergesellschaftungen lassen sich gut mit den pflanzensoziologisch nach Braun-Blanquet (1964) definierten Verbänden Ctenidion mollusci, Neckerion complanatae, Abietinellion abietinae und Grimmion tergestinae und zum kleinen Teil vielleicht mit der Ordnung Hylocomietalia splendentis vergleichen. Zum Schluss werden noch die soziologischen und ökologischen Verhalten von Ctenidium molluscum und Tortella tortuosa verglichen sowie die Soziologie und Ökologie von Plasteurhynchium striatulum beschrieben.

Schlüsselwörter: Schweizer Jura, Felsflühe, Moosökologie, Vergesellschaftungen, Biodiversität

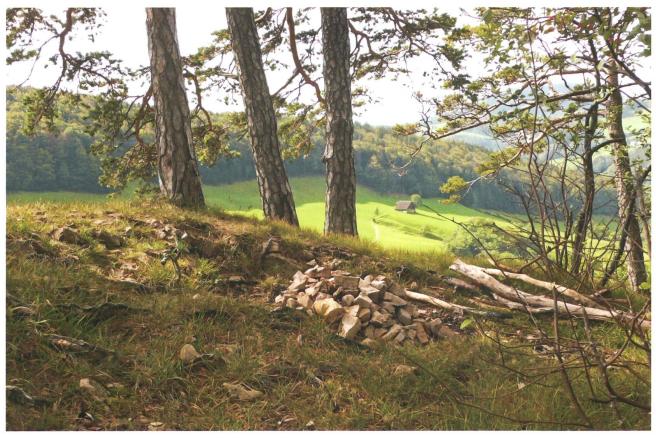
Abstract: Bryophytes and bryophyte associations of cliff ecosystems in the Swiss Jura Mountains. In 2009 and 2011 the species flora and associations of 32 cliff ecosystems in the Jura Mountains of northwestern Switzerland were investigated. From plateaus, cliff face bottoms and taluses 3'744 samples with 126 epigeic and epilithic bryophytes were taken. Eight of these 126 species were found in more than 15% of the samples, one of them, Ctenidium molluscum, in more than 1/3. The influence of the altitude and the exposition of the cliff ecosystem, as well as of the exposition, the gradient, the shading and the substrate on the bryophyte species is described and discussed. Five species associations could be found, described and discussed: The Ctenidium molluscum-Tortella tortuosa, the Anomodon viticulosus, the Homalothecium lutescens and the Schistidium apocarpum aggr. association and only on plateaus the Hypnum cupressiforme var. lacunosum association. Although the sampling method differed from the normally used method of Braun-Blanquet (1964) these computed associations correlate quite well with the known and already described bryophyte alliances Ctenidion mollusci, Neckerion complanatae, Abietinellion abietinae and Grimmion tergestinae and perhaps the order Hylocomietalia splendentis. Finally the sociological and the ecological behaviours of Ctenidium molluscum and Tortella tortuosa are compared and the sociological and ecological behaviour of Plasteurhynchium striatulum is described and discussed.

Key Words: Swiss Jura Mountains, cliff ecosystem, bryophyte ecology, co-occurence, biodiversity

Einleitung


Ohne Zweifel gehören Felsflühe auf der ganzen Welt zu den landschaftsbestimmenden Elementen. Ein Fluh-Ökosystem besteht aus dem Fluhkopf, der Fluhkante, der Fluhwand, dem Fluhfuss und der darunter liegenden Schutthalde (Larson et al. 2000, Abb. 1). In der ersten Hälfte des 20. Jahrhunderts dominierten, neben den Wäldern, zwei Vegetationseinheiten die Landschaft des nordwestschweizerischen Juras. Die erste, eine halb-natürliche, war die Vegetation der Kalk-Magerrasen (Zoller 1954). Die zweite Einheit waren die mehr oder weniger ungestörten bis schwach beeinflussten Flühe (Zoller 1989a, 1989b, Burnand und Hasspacher 1999 unter den Waldeinheiten behandelt) mit ihren typischen Mischungen reliktischer alpiner Flora (z.B. Saxifraga paniculata, Dryas octopetala, Androsace lactea, Coronilla vaginata, Polygala chamaebuxus und Athamanta cretensis) und submediterraner Flora (z.B. Amelanchier ovalis, Coronilla coronata, Cotoneaster integerrimus und Tanacetum corymbosum).

Die Fläche der ersten Landschaftseinheit, die Magerrasen, wurde seit 1950 auf höchstens 20–25% reduziert (Zoller und Wagner 1986, Zoller et al. 1986) trotz der grossen Anstrengungen zu ihrem Schutz. Für Flühe hatte schon Zoller (1989c) höchste Schutzpriorität verlangt, wobei er empfahl, den aufkommenden Klettersport und das


Einrichten von Feuerstellen einzuschränken. Die Idee war, die letzten wirklich naturnahen Lebensräume des Juras zu schützen, bevor diese ihre typischen und speziellen Organismen verlieren.

Das erste Buch, in dem versucht wurde, das gesamte Wissen über Flühe als Lebensräume zusammenzutragen, war Larson et al. (2000). Neuere Arbeiten über die Gefässpflanzen-Flora der Felsen und Flühe des nordwestschweizerischen Juras wurden von Wassmer durchgeführt (Wassmer 1996), der die aufgefunden Arten in obligate und fakultative Felspflanzen eingeteilt hat. Baur et al. (2007) untersuchten die Flechtenflora und Bertram (2003, 2011) untersuchte die Moosflora und -vegetation verschiedener Flühe im Untersuchungsgebiet.

Neben der schon von Zoller (1989c) genannten Bedrohungen des Ökosystems «Fluh», wie Klettern (siehe dazu auch Nuzzo 1996, Camp und Knight 1998, Farris 1998, Kreh et al. 1999, McMillan et al. 2002, Müller et al. 2004, Rusterholz et al. 2004, Baur et al. 2007, Lang 2014, Tessler und Clark 2016) und das Anlegen von Feuerstellen (siehe dazu auch Hegetschweiler et al. 2007 und Abb. 2), konnte zudem festgestellt werden, dass die typischen Fluhhabitate auch durch das Aufkommen von Wald bedroht sind (Müller et al. 2006), ein Prozess der allerdings, wie Luftbildvergleiche zeigen, schon in den 50er-Jahren des letzten Jahrhunderts eingesetzt hat (Müller et al. 2008).

Abb. 1: Die 5 Habitatbereiche von Flühen (verändert nach Larson et al. 2000) und für die Untersuchung verwendete Zonierung.

Abb. 2: Offene Fluhköpfe sind beliebte Picknick- und Feuerstellenplätze (Feuerstelle auf der Ankenballenfluh (BL), September 2009).

Die Geschichte der bryologischen Untersuchungen der Flühe ist, abgesehen von wenigen Ausnahmen wie Oettli (1905) oder Schade (1923), noch nicht sehr alt. Wichtige ältere Arbeiten über Moose im Grossraum des Untersuchungsgebiets, die wenigstens zum Teil die Flühe mitberücksichtigten, stammen von Philippi (1965, 1971, 1979) oder in geringem Masse auch von Richard (1972). Aktuellere Untersuchungen sind selten und nur Bertram (2003, 2011) hat detaillierte Forschungen über die Verbreitung, Vergesellschaftung und Ökologie von (Fluh-)Moosen im Untersuchungsgebiet durchgeführt.

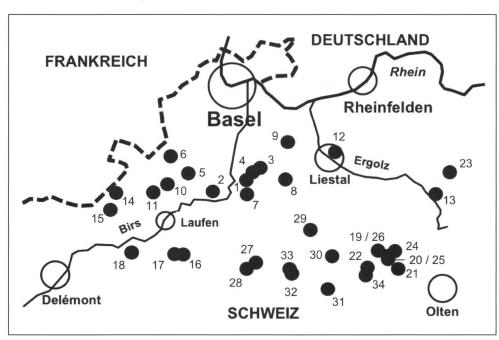
Selbstverständlich gibt es bryo-soziologische Überblicksarbeiten, die die Felsfluhflora mitberücksichtigen (von Brackel 1993, Marstaller 2006), aber es gibt nur relativ wenige Wissenschaftler, welche sich mit Moosen, und noch viel weniger, die sich mit den Vergesellschaftungen von Moosen beschäftigen. Deshalb erscheinen auch Publikationen über die Soziologie von

Moosen generell selten oder zumindest unregelmässig (Philippi 1965, 1971, 1979; Hertel 1974; Kürschner 1986; Lüth 1990; Ahrens 1992, Bertram 2000, 2009). Eine Ausnahme bildet hier einzig Marstaller (z.B. 1979, 1983, 1987, 1992, 1997, 2000, 2006, 2012).

Die vorliegende Arbeit will somit einen Beitrag zur Kenntnis der bryologischen Diversität und zur Verbreitung, Vergesellschaftung und Ökologie der Moosflora der Flühe des nordwestschweizerischen Juras leisten.

Material und Methoden

Im Jahr 2009 wurden im nordwestschweizerischen Jura (Kantone Basel-Landschaft und Solothurn) 972 Moosproben von 34 Fluhköpfen und Fluhkanten entnommen. Im Jahr 2011 wurden dann noch 2'773 Proben von 12 Basen von Fluhwänden, Fluhfüssen und Schutthalden gesammelt (Abb. 3, Tab. 1). Dazu wurde ein 20 m breiter Bereich vom Fluhkopf über die Fluh-


kante bis 20 m unterhalb des Fluhfusses definiert. Alles in allem wurden damit 1496 m² Fluhkopf und Fluhkante, 600 m² Fluhwand-Basen und 4'800 m² Fluhfuss und Schutthalde beprobt. Die weitere Aufteilung der drei Habitatbereiche führte zu insgesamt 14 Zonen verschiedener Dimensionen (Tab. 2).

Vor den Probeentnahmen wurden jeweils die Höhe und die Exposition der Flühe notiert. Nach der einzelnen Probeentnahme wurden die Informationen über die Zone (Tab. 2), die Exposition, die Beschattung, die Neigung (Tab. 4) und das Substrat (Tab. 3) der beprobten Fläche notiert.

Die Probeentnahme entsprach nicht der nach Braun-Blanquet (1964) üblichen Methode, bei der für die soziologische Beschreibung homogen aussehende und meist von einer Art (oder höchstens wenigen Arten) dominierten Flächen abgeerntet werden. Um auch Ökoton-Vergesellschaftungen zu erfassen, wurden in Bezug auf Substrat, Neigung, Exposition und Beschattung Proben aus möglichst allen resp. vielen angetroffenen Situationen entnommen. Die abgeernteten Flächen wiesen, je nach Wuchsform der Moose, 5 (kleine Einzelpolster) –100 cm² (Teppiche) auf. Nach der Arbeit im Feld wurden die Moose mit Hilfe eines Binokulars (6–45 x) und einem Mikroskop (40-400(-1000) x) bestimmt. Zur Bestimmung der Sippen wurde folgende Literatur verwendet: Limpricht (1890, 1895, 1904), Burck (1947), Müller (1951–1956), Landwehr (1966), Nyholm (1980), Frahm und Frey (2004), Smith (2004), Paton (1999) und Nebel und Philippi (2000, 2001, 2005). Schwierige und sehr kleine Belege wurden durch den Moos-Spezialisten Josef Bertram (Allschwil, BL) nachkontrolliert. Die verwendete syntaxonomische Nomenklatur stützt sich auf Marstaller (2006) und von Brackel (1993).

Die Datensortierung, zum Beispiel Abfragen nach Vorkommen einer Art auf einem bestimmten Substrat, wurde mit Hilfe des Computerprogramms R (R Development Core Team 2016) durchgeführt. Für das Herausarbeiten der Vergesellschaftungen wurden mit Hilfe des Programms die gemeinsamen Vorkommen jeder Art mit allen häufigeren anderen Arten gezählt. Eine Bindung resp. eine starke Bindung einer Art A zu einer häufiger aufgefunden Art B wurde vom Autor definiert, wenn die Art A mindestens 50 % resp. mindestens 75 % der Vorkommen zusammen mit der häufigeren Art B aufwies.

Die ökologischen Zeigerwerte Temperaturzahl (T), Lichtzahl (L), Feuchtezahl (F) und Reaktionszahl (R) der Arten wurden Urmi (2010) entnommen. Wenn dort für eine Art kein Zeigerwert aufgeführt wird, wurden die Werte von Düll und Düll-Wunder (2008) umgerechnet und verwendet.

Abb. 3: Lage und Nummern der 34 untersuchten Fluh-Ökosysteme im basellandschaftlichen und solothurnischen Jura.

Tab. 1: Untersuchte Flühe im nordwestschweizerischen Jura (Kantone BL und SO).

Fluh	Flurname	nördl. Breite	östl. Länge	m ü.M. (Fluhkopf)	Exposition	Gemeinde
1	Lenzberg-Oberäsch	47°27'48.97"	7°36'47.90"	485	S	Aesch (BL)
2*	Eggfluh	47°27'02.21"	7°34'40.43"	685	NE	Grellingen (BL)
3*	Ingelsteiner Fluh	47°28'20.90"	7°38'13.78"	550	SSW	Dornach (SO)
4	Hilzenstein	47°28'18.28"	7°37'49.59"	526	N	Hochwald (SO)
5*	Fürstenstein	47°28'03.98"	7°31'59.30"	613	N	Ettingen (BL
6	Hofstetter Chöpfli	47°29'04.60"	7°30'15.46"	540	S	Hofstetten (SO)
7*	Falkenfluh	47°26'43.62"	7°36'58.30"	623	E-ENE	Duggingen (BL)
3	Spitzenflüeli	47°27'43.57"	7°40'20.63"	702	E	Hochwald (SO)
*	Schauenburgerfluh	47°29'58.23"	7°40'35.47"	655	SE	Pratteln (BL)
0*	Hanslifelsen	47°27'23.32"	7°30'09.07"	775	N	Blauen (BL
1	Burgchopf	47°26'55.56"	7°28'52.34"	696	NW	Dittingen (BL)
2	Roti Flue	47°29'18.06"	7°44'52.59"	537	S	Liestal (BL)
3	Schiltfluh	47°26'59.63"	7°53'25.30"	608	W	Tecknau (BL)
4*	Galgenfels	47°25'55.78"	7°25'29.75"	768	E-SW	Burg (BL)
5	Schlossfelsen	47°25'54.19"	7°24'58.63"	602	S	Kleinlützel (SO)
6	Chienberg	47°23'04.16"	7°31'24.74"	760	W	Wahlen (BL)
7	Balflue	47°23'19.74"	7°30'57.49"	639	S	Grindel (SO)
8*	Roti Flue	47°23'21.02"	7°27'01.28"	750	S	Bärschwil (SO)
9	Dangeren Ost	47°23.11.79"	7°48'58.92"	687	NE	Eptingen (BL)
0	Eichelbergfluh	47°23'17.41"	7°49°13.39"	667	SW	Eptingen (BL)
1*	Challflue	47°22'21.68"	7°50'12.90"	986	W-WNW	Eptingen (BL)
2	Geissfluh N	47°22'30.28"	7°47'34.89"	1041	ENE	Eptingen (BL)
3*	Roti Flue	47°28'05.31"	7°54'41.85"	663	SSW	Rothenfluh (BL)
4	Walten W	47°23'25.10"	7°49'49.31"	870	NW	Eptingen (BL)
5	Schanz, Refugium	47°23'25.68"	7°49'20.55"	790	WNW	Eptingen (BL)
6*	Dangeren NNW	47°23'13.46"	7°48'42.37"	707	NNW	Eptingen (BL)
7	Feldmenegg	47°22'44.08"	7°37'45.65"	815	SSW	Nunningen (SO)
8	Roti Flue	47°22'20.90"	7°36'55.32"	985	E-ESE	Beinwil (SO)
9	Chastelenfluh	47°24'43.00"	7°42'37.58"	735	W	Arboldswil (BL)
0	Richtiflue	47°23'03.80"	7°44'27.50"	780	S	Liedertswil (BL)
1	Helfenberg Fluh	47°21'11.72"	7°44'01.62"	922	SSW	Mümliswil (SO)
2	Passwang	47°22'08.13"	7°41'02.01"	1198	S	Mümliswil (SO)
3	Vogelberg	47°22'23.90"	7°40'46.53"	1130	SSE	Lauwil (BL)
4*	Ankenballenfluh	47°22'00.30"	7°47'21.65"	996	ENE-ESE	Langenbruck (BL

*Flühe, in denen Moosproben vom Fluhkopf und von der Fluhkante, von der Fluhwand-Basis (untere 2,5 m), sowie vom Fluhfuss und von der Schutthalde entnommen wurden. An den anderen Flühen wurden Moose nur auf dem Fluhkopf und an der Fluhkante gesammelt.

Resultate Die gesamten Fluh-Ökosysteme

Artenzahlen und Häufigkeiten

Alles in allem wurden in 3'744 Moosproben 15'022 epigäische und epilithische Moose bestimmt, im Durchschnitt 4,012 Arten pro Probe. Die Proben enthielten 1–15 Moosarten. Die Bestimmungsarbeit führte zu insgesamt 126 epigäischen und epilithischen Arten (Tab. 5). Eine Art, *Ctenidium molluscum* (Abb. 4), wurde in 34.1% der Proben gefunden, weitere zwei Ar-

ten, *Homalothecium lutescens* und *Tortella tortuosa*, wurden in mehr als ¼ der Proben gefunden. 20 Arten waren in mehr als 5% der Aufsammlungen enthalten (Tab. 6).

Für die Datenanalyse wurden 615 Moosproben von lebendem oder totem Holz ignoriert (31 von Flühköpfen und Fluhkanten, eine einer Fluhwand-Basis und 583 von den Fluhfüssen und Schutthalden). Folgende Arten wurden nur auf Holz gefunden (in Klammern die Anzahl Funde): Campylopus introflexus (Hedw.) Brid. (1), Cephalozia curvifolia (Dicks.) Dumort. (4), Homalia trichomanoides (Hedw.) Brid. (1),

Abb. 4: Ctenidium molluscum (Foto: M. Lüth).

Hypnum cupressiforme Hedw. var. filiforme (5), Lophocolea bidentata (L.) Dumort. (1), L. heterophylla aggr. (1), (4), Odontoschisma denudatum (Mart.) Dumort. (1), Orthotrichum obtusifolium Brid. (2), O. pallens Brid. (8), O. speciosum Nees (1), O. stramineum Brid. (13), O. striatum Hedw. (18), Syntrichia papillosa (Wilson) Jur. (5), Tetraphis pellucida Hedw. (1), Trichodon cylindricus (Hedw.) Schimp. (1), Ulota crispa (Hedw.) Brid. (8), U. bruchii Brid. (2), U. spec. (14), Zygodon rupestris Lorentz (12).

Exposition der Flühe

Nur drei sehr selten und nur auf einer Fluh resp. auf zwei Flühen angetroffene Arten wurden nur auf nach Norden orientierten Flühen gefunden. Vier weitere Arten, *Plagiomnium undulatum* (157 Funde), *Rhytidiadelphus triquetrus* (55), *Thamnobryum alopecurum* (76) und *Trichostomum brachydontium* (53) zeigen eine deutliche Präferenz für nach Norden exponierte Flühe. Eine einzige selten aufgefundene Art, *Plagiom-*

Habitat- bereich	Zone	untersuchte Fläche in m²	Lage der Zone
Fluhkopf	1	170	-0,20*-0,05 m von Fluhkante
und Fluhkante	2	102	0,05–0,2 m von Fluhkante
Turikante	3	204	0,2-0,5 m von Fluhkante
	4	340	0,5-1 m von Fluhkante
	5	680	1-2 m von Fluhkante
Fluhwand-	13	120	0-0,5 m oberhalb Fluhfuss
basis	14	480	0,5–2,5 m oberhalb Fluhfuss
Fluhfuss	6	48	0-0,2 m unterhalb Fluhfuss
und Schutthalde	7	72	0,2-0,5 m unterhalb Fluhfuss
Conditinate	8	120	0,5–1 m unterhalb Fluhfuss
	9	240	1–2 m unterhalb Fluhfuss
	10	720	2-5 m unterhalb Fluhfuss
	11	1200	5–10 m unterhalb Fluhfuss
	12	2400	10-20 m unterhalb Fluhfuss

Tab. 2: Kategorien und Codes für Habitate und Zonen von Fluhökosystemen des nordwestschweizerischen Juras.

*bis 20 cm unterhalb der Fluhkante. Von der Fluhwand wurden die Moose somit nur von den untersten 2,5 m und den obersten 20 cm gesammelt.

Tab. 3: Substrat-Kategorien und darin eingeschlossene Substrate der Wuchsorte von Fluhökosystemen des nordwestschweizerischen Juras.

Substrat- Kategorien	Beinhaltete Substrate			
Nackter	Nackter Boden			
Boden	Nackter Boden, wenig Vegetation			
	Nackter Boden / Fels			
	Nackter Boden, wenig Vegetation / nackter Fels			
	Nackter Boden / Graminoiden-Horst / nackter Fels			
Vegetation	Graminoiden-Horst			
	Gemischte Vegetation			
	Graminoiden-Horst / nackter Fels			
	Gemischte Vegetation / nackter Fels			
	Graminoiden-Horst / Gemischte Vegetation / nackter Fels			
Stein	Stein < 20 cm			
	Stein 20-50 cm			
Block	Block 50-100 cm			
	Block 100-200 cm			
	Block > 200 cm			
	Block > 200 cm, 0 − 50 cm über Boden			
	Block > 200 cm, ≥ 50 cm über Boden			
Nackter Fels	Nackter Fels			

nium cuspidatum (40), wurde nur in nach Süden orientierten Fluh-Ökosystemen gefunden. Andere Arten sind nicht auf nach bestimmten Himmelsrichtungen orientierte Flühe beschränkt, zeigen aber eine klare Bevorzugung für nach Norden bis Westen resp. nach Süden bis Osten orientierte Flühe (Tab. 7).

Höhe der Flühe über Meer

13 Arten, mit insgesamt mindestens 20 Funden, kamen nur in Flühen tiefer als 800 m ü. M. vor: Barbula convoluta, Campyliadelphus chrysophyllus, Frullania tamarisci, Gymnostomum aeruginosum, Loeskeobryum brevirostre, Mnium thomsonii, Plagiomnium undulatum, Porella platyphylla, Rhynchostegiella tenella, Thamnobryum alopecurum, Thuidium assimile, Thuidium tamariscinum.

Insgesamt wurden in Flühen auch über 1000 m ü. M. 25 Arten mit mindestens 20 Funden gefunden. Geordnet nach ihrer Häufigkeit sind dies Ctenidium molluscum, Homalothecium lutescens, Tortella tortuosa, Schistidium apocarpum aggr., Hypnum cupressiforme var. cupressiforme, Anomodon viticulosus, Fissidens dubius, Neckera complanata, Ditrichum gracile, Hyp-

num cupressiforme var. lacunosum, Bryum capillare, Scapania aspera, Rhytidium rugosum, Syntrichia ruralis, Pseudoleskeella catenulata, Bryum argenteum, Grimmia tergestina, Amblystegium serpens, Metzgeria furcata, Orthotrichum anomalum, Bryum caespiticium, Plagiomnium cuspidatum, Campylophyllum calcareum, Bryoerythrophyllum recurvirostrum und Grimmia pulvinata.

Nur zwei dieser oben genannten Arten, *Pseudoleskeella catenulata* (101) und *Syntrichia ruralis* (139), konnten nur in Flühen gesammelt werden, die höher als 600 m ü. M. liegen. Nur *Pseudoleskeella catenulata* zeigt dabei eine Präferenz für Flühe mit einer Fluhkopfhöhe von mehr als 900 m ü. M.

Exposition des Wuchsortes

Nur sehr seltene und somit nur in einer bis wenigen Flühen vorkommende Arten zeigen eine klare Präferenz für nach Norden orientierte Standorte: Tritomaria quinquedentata (15 Funde; 100%), Jungermannia atrovirens (12; 91.7%), Bryum elegans (9), Orthothecium intricatum (8), Seligeria pusilla (8) und Kindbergia praelonga (5). Fünf Arten mit ≥ 20 Funden bevorzugen deutlich nach Norden bis Westen orientierte Standorte: Thamnobryum alopecurum (76; 81.6%), Hylocomium splendens (52; 80.8%), Trichostomum brachydontium (49; 87.8%), Rhytidiadelphus triquetrus (45; 75.6%) und Mnium thomsonii (22; 90.1%). Andere Arten mit ähnlicher Tendenz sind Plagiomnium undulatum (134; 73.9%), Scapania aspera (177; 71.2%), Plagiomnium rostratum (352; 67.6%),

Neigungs- Kategorien	Werte	Beschattungs- Kategorien
eben	0 – 5°	offen
geneigt	5 – 30°	leicht beschattet
geneigt	30 - 50°	beschattet
steil	50 - 70°	stark beschattet
steil	70 – 90°	
überhängend	90 – 110°	
überhängend	110 – 130°	
überhängend	130 – 150°	

Tab. 4: Neigungskategorien und darin eingeschlossene Neigungen sowie Beschattungskategorien der Wuchsorte von Fluhökosystemen des nordwestschweizerischen Juras.

Tab. 5: Namen und verwendete Abkürzungen (Abb. 4–7) der 126 aufgefundenen epigäischen und epilithischen Moose in den Fluhökosystemem des nordwestschweizerischen Juras und deren Auftreten in den 3'744 entnommenen Moosproben.

LENZIN

Artname	verwendete Abkürzung	Anzahl Vorkommen in Proben
Abietinella abietina (Hedw.) M. Fleisch.	Abiet abiet	7
Amblystegium confervoides (Brid.) Schimp.	Ambly confe	61
Amblystegium serpens (Hedw.) Schimp.	Ambly serpe	85
Amblystegium subtile (Hedw.) Schimp.	Ambly subti	1
Anomodon attenuatus (Hedw.) Huebener	Anomo atten	173
Anomodon longifolius (Brid.) Hartm.	Anomo longi	30
Anomodon viticulosus (Hedw.) Hook. & Taylor	Anomo vitic	673
Apometzgeria pubescens (Schrank) Kuwah.	Apome_pubes	5
Atrichium undulatum (Hedw.) P. Beauv.	Atrich undul	2
Barbilophozia barbata (Schreb.) Loesk.	Barbil barba	9
Barbula convoluta Hedw.	Barbu_convo	21
Brachytheciastrum velutinum (Hedw.) Ingnatov & Huttunen	Brach velut	15
Brachythecium glareosum (Spruce) Schimp.	Brachy glareo	2
Brachythecium rivulare Schimp.	Brachy rivul	6
Brachythecium rutabulum (Hedw.) Schimp.	Brachy rutab	154
Brachythecium salebrosum (F.Weber & D.Mohr) Schimp., nom. cons.	Brachy_saleb	6
Brachythecium tommasinii (Boulay) Ignatov & Huttunen	Brachy_tomma	377
Bryoerythrophyllum recurvirostrum (Hedw.) P.C.Chen	Bryoe recurv	27
Bryum argenteum Hedw.	Bryum argen	93
Bryum caespiticium Hedw.	Bryum caesp	52
Bryum capillare Hedw.	Bryum capil	249
Bryum elegans Nees	Bryum elega	9
Bryum moravicum Podp.	Bryum_morav	46
Bryum radiculosus Brid.	Bryum_radicu	1
Bryum rubens Mitt.	Bryum rubens	3
Campyliadelphus chrysophyllus (Brid.) R.S.Chopra	Campy chryso	29
Campylophyllum calcareum (Crundw. & Nyholm) Hedenäs	1,3= 3	35
	Campy_calca	
Cephalozia bicuspidata (L.) Dumort.	Cephal_bicus	2
Cephaloziella divaricata (Sm.) Schiffn.	Cepha_divar	2 9
Ceratodon purpureus (Hedw.) Brid.	Cerat_purpu	
Cirriphyllum crassinervium (Taylor) Loeske & M.Fleisch	Cirri_crass	484
Cololejeunea calcarea (Lib.) Schiffn.	Colol_calca	26
Ctenidium molluscum (Hedw.) Mitt.	Cteni_mollu	1276
Dicranella schreberiana (Hedw.) Dixon	Dicran_schreb	1
Dicranum scoparium Hedw.	Dicra_scopa	148
Didymodon cordatus Jur.	Didym_corda	1
Didymodon fallax (Hedw.) R.H.Zander	Didym_fallax	23
Didymodon ferrugineus (Besch.) M.O.Hill	Didym_ferru	13
Didymodon luridus Spreng.	Didym_lurid	22
Didymodon rigidulus Hedw.	Didym_rigid	74
Ditrichum gracile (Mitt.) Kuntze	Ditri_graci	389
Encalypta streptocarpa Hedw.	Encal_strep	282
Entodon concinnus (De Not.) Paris	Entod_conci	139
Entodon schleicheri (Schimp.) Demet.	Entod_schlei	7
Eucladium verticillatum (With.) Bruch & Schimp.	Eucla_verti	18
Eurhynchium angustirete (Broth.) T.J.Kop.	Eurhy_angus	2
Eurhynchium striatum (Hedw.) Schimp.	Eurhy_stria	6
Fissidens dubius P.Beauv.	Fissi_dubiu	606
Fissidens gracilifolius BruggNann. & Nyholm	Fissi_gracil	4
Fissidens taxifolius Hedw.	Fissi_taxif	7
Fissidens viridulus subsp. incurvus (Röhl.) Waldh.	Fissi_viri_incu	2
Frullania dilatata (L.) Dumort.	Frull_dilat	13
Frullania tamarisci (L.) Dumort.	Frull_tamar	24
Grimmia pulvinata (Hedw.) Sm.	Grimm_pulvi	22
Grimmia tergestina Bruch & Schimp.	Grimm_terge	86
Gymnostomum aeruginosum Sm.	Gymno_aerug	52
Gymnostomum calcareum Nees & Hornsch.	Gymno_calca	5
Homalothecium lutescens (Hedw.) H.Rob.	Homal_lutes	1181
Homalothecium sericeum (Hedw.) Schimp.	Homal_seric	219
Homomallium incurvatum (Brid.) Loeske	Homom_incur	60
Hygrohypnum luridum (Hedw.) Jenn.	Hygro_lurid	2
Hylocomium splendens (Hedw.) Schimp.	Hyloc_splen	62
Hypnum cupressiforme Hedw. var. cupressiforme	Hyp cup cup	682

(Tab. 5 fortgesetzt)

Artname	verwendete Abkürzung	Anzahl Vorkommen in Proben
Hypnum cupressiforme Hedw. var. lacunosum	Hyp cup lac	286
Isothecium alopecuroides (Dubois) Isov.	Isoth alope	67
Jungermannia atrovirens Dumort.	Junger_atrov	12
Kindbergia praelonga (Hedw.) Ochyra	Kindb_prael	5
Leucodon sciuroides (Hedw.) Schwägr.	Leuco sciur	30
Loeskeobryum brevirostre (Brid.) M.Fleisch.	Loesk brevi	21
Mesoptychia collaris (Nees) L.Södersr & Vána	Mesopt colla	12
Metzgeria conjugata Lindb. subsp. conjugata	Metzg con con	2
Metzgeria furcata (L.) Dumort	Metzg_furca	83
Mnium marginatum (Dicks.) P.Beauv.	Mnium margi	4
Mnium stellare Hedw.	Mnium stell	1
Mnium thomsonii Schimp.	Mnium thoms	24
Neckera complanata (Hedw.) Huebener	Necke compl	549
Neckera crispa Hedw.	Necke crisp	410
Orthothecium intricatum (Hartm.) Schimp.	Ortho_intri	8
Orthotrichum affine Brid.	Orthot affin	2
Orthotrichum anomalum Hedw.	Orthot anomal	63
Orthotrichum cupulatum Brid.	Orthot cupul	6
Orthotrichum diaphanum Brid.	Orthot diaph	1
Orthotrichum lyellii Hook. & Taylor	Orthot lyelii	3
Oxyrrhynchium hians (Hedw.) Loeske	Oxyrr hians	146
Pedinophyllum interruptum (Nees.) Kaal.	Pedin inter	88
Pellia endiviifolia (Dicks.) Dumort.	Pellia endiv	3
Plagiochila porelloides (Nees.) Lindenb.	Plagioc porell	139
Plagiopus oederianus (Sw.) H.A.Crum & L.E.Anderson	Plagio_oeder	19
Plagiomnium cuspidatum (Hedw.) T.J.Kop.	Plagiom cuspi	40
Plagiomnium rostratum (Schrad.) T.J.Kop.	Plagiom_rostr	402
Plagiomnium undulatum (Hedw.) T.J.Kop.	Plagiom undul	157
Plagiothecium laetum Schimp.	Plagiot_laetu	6
Plasteurhynchium striatulum (Spruce) M.Fleisch.	Plast stria	580
Pleurozium schreberi (Brid.) Mitt.	Pleuro schreb	7
Polytrichum formosum Hedw.	Polyt formo	27
Porella platyphylla (L.) Pfeiff.	Porell_platy	506
Pseudoleskeella catenulata (Schrad.) Kindb.	Pseudol catenu	101
Pseudoleskeella nervosa (Brid.) Nyholm	Pseudol_eatend	11
Pseudoscleropodium purum (Hedw.) M.Fleisch.	Pseud_purum	57
Racomitrium canescens (Hedw.) Brid	Racom canes	3
Radula complanata (L.) Dumort	Radul compl	13
Rhodobryum ontariense (Kindb.) Kindb.	Rhodo ontar	10
Rhynchostegiella tenella (Dicks.) Limpr.	Rhynch_tenel	25
Rhynchostegium murale (Hedw.) Schimp.	Rhynch mural	128
Rhytidiadelphus loreus (Hedw.) Warnst.	Rhyti loreu	1
Rhytidiadelphus triquetrus (Hedw.) Warnst.	Rhyti trique	55
Rhytidium rugosum (Hedw.) Kindb.	Rhyti rugos	170
Scapania aspera Bernet & M.Bernet	Scapa_asper	197
Schistidium apocarpum aggr.	Scapa_asper Schist apo aggr.	832
Sciuro-hypnum populeum (Hedw.) Ignatov & Huttunen	Sciur popul	7
		8
Seligeria pusilla (Hedw.) Bruch & Schimp. Syntrichia montana Nees	Selig_pusil Syntr_monta	o 118
	Syntr rural	139
Syntrichia ruralis (Hedw.) F.Weber & D.Mohr Thamnobryum alopecurum (Hedw.) Gangulee	Thamno_alope	76
	Thuid assim	23
Thuidium assimile (Mitt.) A.Jaeger Thuidium delicatulum (Hedw.) Schimp.	Thuid_assim Thuid delic	8
"huidium tamariscinum (Hedw.) Schimp.	Thuid_tamar	20
Fortella bambergeri (Schimp.) Broth.	Torte_bambe	1
Fortella inclinata (R.Hedw.) Limpr.	Torte_incli	16
Tortella tortuosa (Hedw.) Limpr.	Torte_tortu	1025
Fortula muralis Hedw.	Tortu_mural	21
Tortula subulata Hedw.	Tortu_subul	5
Frichostomum brachydontium Bruch	Tricho_brachy	53
Frichostomum crispulum Bruch	Tricho_crisp	50
Tritomaria quinquedentata (Huds.) H.Buch	Trito_quinque	17
Veissia brachycarpa (Nees & Hornsch.) Jur.	Weissia brachy	1

die seltenere *Trichostomum crispulum* (45; 74.3%) und die sehr selten gefundenen *Plagiopus oederianus* (19; 89.5%), *Didymodon fallax* (16; 81.3%), *Loeskeobryum brevirostre* (16; 100%), *Thuidium tamariscinum* (16; 81.3%), *Brachytheciastrum velutinum* (14; 85.7%), *Jungermannia atrovirens* (12; 100%) und *Mesoptychia collaris* (11; 100%). Unter Berücksichtigung aller Arten, deren Wuchsorte wenigstens zu ²/₃ gegen Norden gerichtet sind, kommt eine mittlere Feuchtezahl von 3.1 und eine mittlere Temperaturzahl von 3 zustande.

Eine einzige seltene Art, Anomodon longifolius (26; 88.4%), zeigt eine klare Tendenz für nach Süden orientierte Standorte. Zwei andere, Anomodon viticulosus (625; 75%) und Leucodon sciuroides (24; 83.3%), präferieren deutlich nach Süden bis Osten gerichtete Standorte. Eine ähnliche Tendenz weisen auch Porella platyphylla (475; 72.8%), Anomodon attenuatus (162; 70.3%), Cirriphyllum crassinervium (441; 68.7%) und die selteneren Gymnostomum aeruginosum (52; 66.7%), Plagiomnium cuspidatum (30; 66.7%) und Eucladium verticillatum (18; 64.7%) auf. Unter Berücksichtigung aller Arten,

deren Wuchsorte wenigstens zu ²/₃ gegen Süden bis Osten gerichtet sind, kommen eine mittlere Temperaturzahl von 3.36 und eine Feuchtezahl von 2.45 zustande.

Neigung des Wuchsortes

Einzig *Bryum argenteum* kommt mit 51.1 % knapp öfter auf ebenen als auf geneigten Flächen vor.

Nur zwei selten aufgefundene Arten, *Polytrichum formosum* (26) und *Didymodon luridus* (21), wurden zu mehr als 75% auf ebenen oder schwach geneigten (−30°) Wuchsorten (Tab. 4) gesammelt. Drei weitere Arten zeigen eine klare Präferenz (≤ 66.6–74.9% aller Funde) dafür: *Rhytidium rugosum* (164 Funde), *Syntrichia montana* (116) und *Bryum caespiticium* (48). Eine schwache Tendenz (≥ 50–66.6%) dazu, ebene bis schwach geneigte Flächen zu besiedeln, war bei den Arten *Hypnum cupressiforme* var. *cupressiforme* (57), *Dicranum scoparium* (143), *Syntrichia ruralis* (138) und *Didymodon luridus* (21) zu beobachten.

Steile bis überhängende Wuchsorte (Tab. 4) werden von 20 Arten bevorzugt, deutlich (≥ 75 %

Art	Anzahl Vorkommen in Moosproben	Anteil Vorkommen am Total der Moosproben in %
Ctenidium molluscum	1'276	34,1
Homalotecium lutescens	1'181	31,5
Tortella tortuosa	1'025	27,4
Schistidium apocarpum aggr.	832	22,2
Hypnum cupressiforme var. cupressiforme*	682	18,2
Anomodon viticulosus	673	18,0
Fissidens dubius	606	16,2
Plasteurhynchium striatulum	580	15,5
Neckera complanata	549	14,7
Porella platyphylla	506	13,5
Cirriphyllum crassinervium	484	12,9
Neckera crispa	410	11,0
Plagiomnium rostratum	402	10,7
Ditrichum gracile	389	10,4
Brachythecium tommasinii	377	10,1
Hypnum cupressiforme var. lacunosum*	286	07,6
Encalypta streptocarpa	282	07,5
Bryum capillare	249	06,7
Homalothecium sericeum	219	05,8
Scapania aspera	197	05,3
Anomodon attenuatus	173	04,6
Rhytidium rugosum	170	04,5

Tab. 6: Am häufigsten aufgefundene epigäische und epilithische Moose in den Fluhökosystemen des nordwestschweizerischen Juras. N_{Moosproben} = 3'744, N_{Arten} = 126, N_{Flühe} = 34

^{*}Hypnum cupressiforme aggr. wurde in 968, also 25,9 % aller Moosproben festgestellt.

Tab. 7: Moosarten der Fluhökosysteme des nordwestschweizerischen Juras mit einer Präferenz für Flühe mit einer bestimmten Exposition. Prozentzahlen zeigen den Anteil der Funde der einzelnen Arten. $N_{\text{Moosproben}} = 3'744, N_{\text{Arten}} = 126, N_{\text{Flühe}} = 34.$

•	Anzahl	Anteil Vorkommen in %				
Art	Vorkommen in — Moosproben	N	W-NNE	S	SSW-	
Präferenz Nordexposition						
Mnium thomsonii	24	100,0				
Loeskeobryum brevirostre	21	100,0				
Thuidium tamarscinum	20	100,0				
Thamnobryum alopecurum	76	98,7				
Trichostomum brachydontium	53	92,5				
Rhytidiadelphus triquetrus	55	85,5				
Plagiomnium undulatum	157	85,4				
Präferenz West- bis nördliche Expositi	on					
Isothecium alopecurum	67		74,6			
Hylocomium splendens	62		74,2			
Ctenidium molluscum	1276		73,4			
Brachythecium rutabulum	154		73,4			
Scapania aspera	197		71,6			
Dicranum scoparium	148		71,6			
Encalypta streptocarpa	282		71,3			
Polytrichum formosum	27		70,4			
Präferenz Südexposition						
Plagiomnium cuspidatum	40			100,0		
Campyliadelphus chrysophyllus	29			72,4		
Präferenz Ost- bis südliche Exposition	ì					
Pseudoleskeella catenulata	101				88,2	
Bryoerythrophyllum recurvirostrum	27				85,2	
Porella platyphylla	506				78,1	
Bryum caespiticium	52				76,9	
Anomodon attenuatus	173				73,4	
Grimmia tergestina	86				70,9	
Syntrichia ruralis	139				70,5	
Orthotrichum anomalum	53				69,8	

Anteile ≥ 75 % sind **fett** gehalten und werden als deutliche Präferenz angesehen

aller Funde) von Neckera complanata (547), N. crispa (398), Oxyrrhynchium hians (140), Pedinophyllum interruptum (86), Metzgeria furcata (81), Thamnobryum alopecurum (76), Gymnostomum aeruginosum (52), Trichostomum crispulum (50) und Mnium thomsonii (24) und mit klarer Tendenz (66.6-74.9% aller Funde) von Anomodon viticulosus (666), Plasteurhynchium striatulum (573), Porella platyphylla (503), Anomodon attenuatus (173), Plagiochila porelloides (130), Amblystegium confervoides (601), Trichostomum brachydontium (51), Anomodon longifolium (30), Rhynchostegiella tenella (25) und Thuidium assimile (22). Cololejeunea calcarea (26) ist die einzige Art, die tendenziell überhängende Wuchsorte bevorzugt (61.5%).

Beschattung des Wuchsortes

Elf Arten zeigen eine deutliche Präferenz (≥ 75% aller Funde) für offene unbeschattete Wuchsorte. Keine Art wurde nur in starkem Schatten gefunden, aber *Cololejeunea calcarea* (26) wurde immerhin zu 61.5% in stark beschatteten Situationen gefunden. 22 andere Arten bevorzugen deutlich beschattete und bis stark beschattete Wuchsorte (Tab. 8).

Substrat des Wuchsortes

Nur wenige, zum Teil seltene Arten zeigen eine ≥ 75 %ige und somit deutliche Bindung an bestimmte Substrat-Kategorien (Tab. 3): an offene Böden *Polytrichum formosum* (27 Funde; 77.8 %),

Tab. 8: Moosarten der nordwestschweizerischen Fluhökosysteme, die deutlich ($\geq 75\,\%$) Wuchsorte einer bestimmten Beschattungs-Kategorie bevorzugen. Prozentzahlen zeigen den Anteil der Funde der einzelnen Arten an Standorten mit einer bestimmten Beschattung. $N_{\text{Moosproben}} = 3'319, N_{\text{Arten}} = 126, N_{\text{Flühe}} = 34.$

	Annahi		Anteil Vorke	ommen in %		
Art	Anzahl – Vorkommen in Moosproben	offen	offen bis leicht beschattet	beschattet	beschatte bis stark beschatte	
Präferenz offene Standorte						
Didymodon luridus	20	100,0	100,0			
Bryum argenteum	93	97,8	100,0			
Hypnum cupressiforme var. lacunosum	284	89,1	93,3	6,3	6,7	
Orthotrichum anomalum	63	85,7	85,7	14,3	14,3	
Syntrichia ruralis	137	82,5	86,1	13,9	13,9	
Polytrichum formosum	26	80,8	100,0			
Bryum caespiticium	51	80,4	100,0			
Grimmia tergestina	86	77,9	86,0	14,0	14,0	
Ditrichum gracile	385	77,4	87,3	10,6	12,7	
Grimmia pulvinata	22	77,3	100,0			
Präferenz offene bis leicht beschattete Standorte						
Frullania tamarisci	24	70,8	83,3	12,5	16,7	
Syntrichia montana	115	74,8	81,7	17,4	18,3	
Rhytidium rugosum	168	72,6	80,4	15,5	19,6	
Didymodon fallax	23	78,3	78,3	13,0	21,7	
Präferenz beschattete Standorte						
Brachythecium rutabulum	143	7,7	10,5	75,5	89,5	
Präferenz beschattete und stark beschattete Standorte						
Plagiochila porelloides	135	17,8	24,4	59,3	75,6	
Rhynchostegium murale	128	9,4	22,2	65,0	77,8	
Neckera crispa	392	5,6	21,4	61,5	78,6	
Neckera complanata	484	5,8	21,1	62,0	78,9	
Anomodon attenuatus	113	8,0	20,4	63,7	79,6	
Anomodon longifolius	30	20,0	20,0	43,3	80,0	
Brachythecium tommasinii	338	5,9	19,5	60,9	80,5	
Rhynchostegiella tenella	23		17,4	73,9	82,6	
Plasteurhynchium striatulum	507	4,7	16,7	64,7	83,2	
Trichostomum crispulum	48		16,7	66,7	83,3	
Porella platyphylla	350	7,7	15,7	65,1	84,3	
Metzgeria furcata	65	9,2	15,4	55,4	84,6	
Bryum moravicum	42	2,4	14,3	57,1	85,7	
Pedinophyllum interruptum	86	2,3	14,0	69,8	86,0	
Homomallium incurvatum	44	4,5	13,6	63,6	86,4	
Mnium thomsonii	24		12,5	62,5	87,5	
Cirriphyllum crassinervium	264	1,5	11,0	74,2	89,0	
Anomodon viticulosus	448	2,9	10,9	73,9	89,1	
Oxyrrynchium hians	141	1,4	7,8	59,6	92,2	
Amblystegium confervoides	61		3,3	72,1	96,7	
Cololejeunea calcarea	26		±00 * 000	38,5	100,0	

Anteile ≥ 75 % sind **fett** gehalten und werden als deutliche Präferenz angesehen

an Blöcke *Thuidium assimile* (23; 91.3%), an nackten Fels *Cololejeunea calcarea* (26; 88.5%), *Grimmia tergestina* (87; 87.2%), *Gymnostomum aeruginosum* (52; 84.6%), *Orthotrichum anomalum* (63; 82.5%) und *Trichostomum brachydontium* (53; 75.5%).

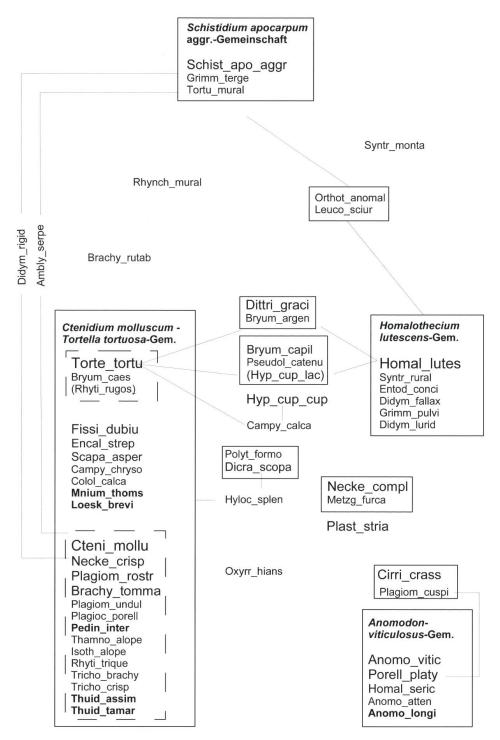
Zwei Arten bevorzugen zudem moderat oder klarer (≥ 50–74.9%) offene Böden (Rhytidium rugosum, Rhytidiadelphus triquetrus), drei Arten Steine (Rhynchostegium murale, Amblystegium serpens, Brachythecium rutabulum), neun Arten Blöcke (Anomodon attenuatus, Brachythecium tommasinii, Loeskeobryum brevirostre, Metzgeria furcata, Neckera complanata, N. crispa, Plagiochila porelloides, Plagiomnium cuspidatum, P. undulatum und Porella platyphylla) sowie zehn Arten nackten Fels (Bryoerythrophyllum recurvirostrum, Cololejeunea calcarea, Grimmia pulvinata, G. tergestina, Gymnostomum aeruginosum, Orthotrichum anomalum, Rhynchostegiella tenella, Syntrichia montana, Trichostomum brachydontium und T. crispulum).

Moos-Vergesellschaftungen der Kalk-Flühe

Abb. 5 zeigt die errechneten Bindungen von Moosarten an die einerseits mit Abstand häufigsten Arten der Fluh-Ökosysteme und der einzelnen Habitatbereiche sowie an alle anderen häufigeren Arten. So wurden vier Hauptgemeinschaften ermittelt, eine um Anomodon viticulosus, eine um Schistidium apocarpum aggr., eine um Homalothecium lutescens und eine um die beiden Arten Ctenidium molluscum und Tortella tortuosa. Auf Fluhköpfen wurde zudem noch eine weitere, fünfte Gemeinschaft, die Hypnum cupressiforme var. lacunosum-Gemeinschaft, gefunden. Die Gemeinschaft um Ctenidium molluscum und Tortella tortuosa ist klar die grösste. Eine andere klar davon abgesetzte Gemeinschaft ohne starke Bindungen zu anderen Gemeinschaften oder Arten anderer Artengemeinschaften ist die Anomodon viticulosus-Gemeinschaft. Die Gemeinschaft um Homalothecium lutescens oder zumindest H. lutescens selbst zeigt diverse Bindungen einerseits zur Schistidium apocarpum aggr.-Gemeinschaft und andererseits zu Tortella tortuosa und zu einem kleineren Teil zur ganzen Ctenidium molluscum-Tortella tortuosa-Gemeinschaft.

Die einzelnen Habitatbereiche

13 Arten zeigen eine klare Präferenz für den Habitatbereich Fluhkopf und Fluhkante. Eine dieser Arten, *Bryum argenteum* (93 Funde), wurde nur in diesem Habitatbereich gefunden. Die selten aufgefunde Art *Didymodon ferrugineus* (13 Funde) wurde ebenfalls nur in diesem Bereich gefunden.


Die Basis der Fluhwände wird von drei Arten deutlich bevorzugt. Zudem wurden auch die nur selten aufgesammelten *Eucladium verticillatum* (18) und *Jungermannia atrovirens* (12) nur in diesem Habitatbereich gefunden.

Nur in den Fluhfüssen und den Schutthalden mit ihren vielen Teil-Habitaten wurden *Loeske-obryum brevirostre* (21) und *Thuidium tamariscinum* (20) gefunden. Total zeigen 17 Arten eine deutliche Präferenz (≥ 75% aller Funde) für diesen letzgenannten Habitatbereich (Tab. 9).

Habitatbereich Fluhkopf und Fluhkante

In den 972 Moosproben von Fluhköpfen und Fluhkanten wurden 81 Moosarten (73 Laubmoos- und 8 Lebermoos-Arten) festgestellt. Drei Arten wurden in mehr als ¹/₃, insgesamt sechs in mehr als ¹/₄ der Proben in diesem Habitatbereich gefunden. Neben dem oben schon erwähnten Bryum argenteum wurden folgende sehr selten aufgefundene Arten ebenfalls nur auf Fluhköpfen gefunden: Didymodon ferrugineus (13), Barbilophozia barbata (9), Ceratodon purpureus (9), Pleurozium schreberi (7), Tortula subulata (5), Bryum rubens (3), Racomitrium canescens (3), Atrichum undulatum (2), Brachythecium glareosum (2), Cephaloziella divaricata (2), Dicranella schreberiana (1), Didymodon cordatus (1), Rhytidiadelphus loreus (1) und Weissia brachycarpa (1).

Die fünf relativ schmalen Fluhkopf-Zonen (Tab. 2) zeigen eine ähnliche Artenzusammensetzung. Die fünf Arten *Ditrichum gracile*, *Homalothecium lutescens*, *Hypnum cupressiforme* var. *lacunosum* (Abb. 6), *Schistidium apocar*

Abb. 5: Anhand von gemeinsamen Vorkommen ermittelte Moos-Artengemeinschaften der in den Fluhökosystemen des nordwestschweizerischen Juras um die häufigsten auftretenden Arten *Ctenidium molluscum* (1276 Funde), *Homalothecium lutescens* (1181), *Tortella tortuosa* (1025), *Schistidium apocarpum* aggr. (832), *Anomodon viticulosus* (673) und, in Einzelfällen, andere häufigere Arten. N_{Arten} = 77 von 126; $N_{Moosproben}$ = 3'744, $N_{Flühe}$ = 34 (Fluhkopf und Fluhkante) resp. 12 (Fluhwand-Basis, Fluhfuss und Schutthalde). Die Zuordnung von Arten zu einer häufigeren Art erfolgte, wenn eine Art A≥50% ihres Vorkommens mit einer häufigeren Art B zeigte (Ausnahme: Namen in Klammern; **fett:** ≥ 75%). Berücksichtigt wurden Arten mit mindestens 20 Funden. Namen in der grössten Schrift kennzeichnen Arten, die in ≥25% der Moosproben gefunden wurden. Namen in der kleinsten Schriftgrösse kennzeichnen Arten, die in < 5% der Moosproben gefunden wurden (andere Kategorien: ≥10−25%, ≥5−10%).

Tab. 9: Anzahl Funde von Moosarten der nordwestschweizerischen Fluhökosysteme, die einen bestimmten Habitatbereich des Fluhökosystems deutlich bevorzugen oder meiden. Prozentzahlen zeigen den Anteil der Funde der einzelnen Arten in einem bestimmten Habitatbereich. $N_{\text{Moosproben}} = 3'744$, $N_{\text{Arten}} = 126$, $N_{\text{Flühe}} = 34$.

	Anzahl	An	teil Vorkommen in % au	f / in
Art	Vorkommen in Moosproben	Fluhkopf	Fluhwand-Basis	Fluhfuss und Schutthalde
Präferenz Fluhkopf und Fluhkante				
Bryum argenteum	93	100,0%		
Hypnum cupressiforme var. lacunosum	286	98,6%		1,4%
Didymodon luridus	22	90,9%		9,1%
Grimmia tergestina	86	90,7%	9,3%	
Frullania tamarisci	24	87,5%		12,5%
Orthotrichum anomalum	63	87,3%	4,8%	7,9%
Ditrichum gracile	389	86,4%	5,7%	7,9%
Polytrichum formosum	27	85,2%		14,8%
Syntrichia ruralis	139	83,5%		16,5%
Didymodon fallax	22	87,9%	8,7%	4,3%
Rhytidium rugosum	170	81,2%		18,8%
Bryum caespiticium	52	80,8%	17,3%	1,9%
Grimmia pulvinata	22	77,3%		22,7%
Syntrichia montana	118	74,6%	3,4%	22,0%
Präferenz Fluhwand-Basis				
Cololejeunea calcarea	26		88,5%	11,5%
Gymnostomum aeruginosum	52		84,6%	15,4%
Trichostomum brachydontium	53		79,2%	20,8%
Trichostomum crispulum	50		72,0%	28,0%
Rhynchostegiella tenella	25		68,0%	32,0%
Mnium thomsonii	24		58,3%	41,7%
Pedinophyllum interruptum	88		48,9%	51,1%
Thamnobryum alopecurum	76		43,4%	56,6%
Präferenz Fluhfuss und Schutthalde				
Loeskeobryum brevirostre	21			100,0%
Thuidium tamariscinum	20			100,0%
Rhynchostegium murale	128	1,6%	1,6%	96,9%
Thuidium assimile	23	4,3%		95,7%
Brachytheciastrum velutinum	15	6,7%		93,3%
Isothecium alopecuroides	67	3,0%	4,5%	92,5%
Anomodon attenuatus	173	1,2%	7,5%	91,3%
Bryum moravicum	46		8,7%	91,3%
Cirriphyllum crassinervium	484	1,0%	8,3%	91,1%
Plagiomnium undulatum	157	1,9%	7,0%	91,1%
Brachythecium rutabulum	154	8,4%	1,0%	90,9%
Brachythecium tommasinii	377	1,0%	8,8%	90,7%
Porella platyphylla	506	3,6%	6,1%	90,3%
Metzgeria furcata	83	8,4%	3,6%	88,0%
Amblystegium confervoides	61		16,4%	83,6%
Amblystegium serpens	85	14,1%	2,4%	83,5%
Plagiomnium cuspidatum	40	17,5%	•	82,5%
Homomallium incurvatum	60	1000 * 120525	30,0%	70,0%

Anteile ≥ 75 % sind **fett** gehalten und werden als deutliche Präferenz angesehen

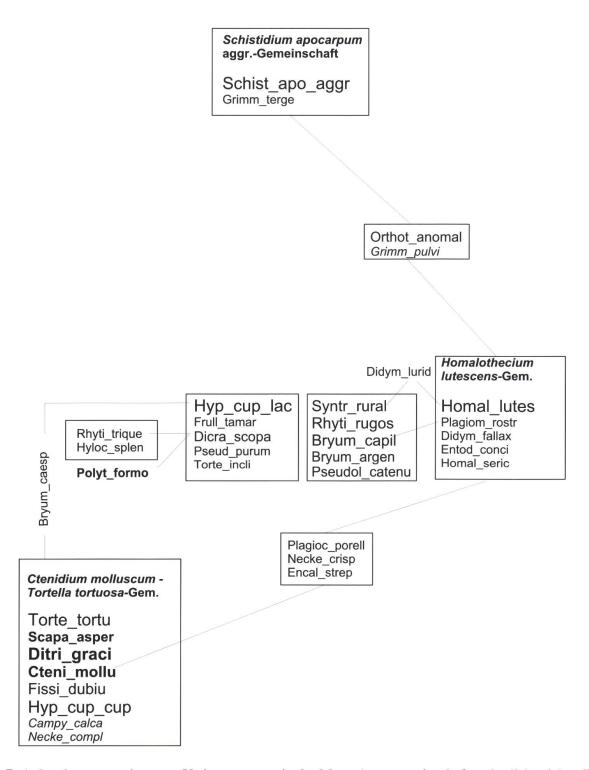


Abb. 6: *Hypnum cupressiforme* var. *lacunosum* (Foto: M. Lüth).

pum aggr. und Tortella tortuosa figurieren in allen fünf Zonen innerhalb der sieben am häufigsten aufgesammelten Arten. Noch deutlicher wird diese Aussage, wenn man weiss, dass sich unter den jeweils 22 häufigsten Arten 18 gemeinsame befinden (Bryum argenteum, B. capillare, Ctenidium molluscum, Dicranum scoparium, Ditrichum gracile, Fissidens dubius, Frullania tamarisci, Grimmia tergestina, Homalothecium lutescens, H. sericeum, Hypnum cupressiforme var. cupressiforme, H. c. var. lacunosum, Orthotrichum anomalum, Rhytidium rugosum, Schistidium apocarpum aggr., Syntrichia montana, S. ruralis, Tortella tortuosa). In den Zonen 3-5 erlangt Hypnum cupressiforme var. cupressiforme eine wichtige Rolle und nur in der Zone 5 wurde Ctenidium molluscum häufiger aufgesammelt als Schistidium apocarpum aggr. Nur zwei Arten dieser 22 wichtigsten Arten konnten nur in zwei Zonen (Pseudoleskeella catenulata (Zonen 3 und 5) und Entodon concinnus (Zonen 4 und 5) und nur eine Art konnte nur in einer dieser Zonen aufgesammelt werden (Scapania aspera (Zone 5)).

So differieren auch die mittleren Zeigerwerte der typischen Arten der fünf Zonen nicht gross. Nur die Temperaturwerte zeigen eine mehr oder weniger deutliche Abnahme von der Fluhkante weg Richtung dahinter liegenden Wald von 3.38 via 3.35 weiter zu 3.14 und 2.88 resp. 2.89.

Abb. 7 zeigt die Verbindungen der Moose innerhalb der untersuchten Fluhköpfe. Auf den Fluhköpfen wurden keine Arten gefunden, die eine Bindung an die häufigen Homalothecium lutescens, Hypnum cupressiforme var. lacunosum und Tortella tortuosa zeigen. Zudem zeigt keine Art eine enge Bindung nur zu Tortella tortuosa oder zu Ditrichum gracile. Nur wenige Arten zeigen gar keine Bindung an andere Arten. So wurde Bryum argenteum (93 Funde), Syntrichia montana (88), Grimmia tergestina (78) und Orthotrichum anomalum (55) nie mit Ctenidium molluscum (165) gefunden, Syntrichia montana (88) und Orthotrichum anomalum (55) wurden nie mit Rhytidium rugosum (138) gefunden und Grimmia tergestina (78), Plagiomnium rostratum (42) und Bryum caespiticium (42) wurden nie zusammen mit Fissidens dubius (124) aufgesammelt. Zuletzt wurden Syntrichia montana (88) und Plagiomnium rostratum (42) nie mit Syntrichia ruralis (116) gefunden. Dazu muss allerdings bemerkt werden, dass Syntrichia montana 21 Mal in Einart-Beständen gefunden wurde.

Abb. 7: Anhand von gemeinsamen Vorkommen ermittelte Moos-Artengemeinschaften der lichtreichen Fluhköpfe und Fluhkanten des nordwestschweizerischen Juras um die häufigsten auftretenden Arten *Tortella tortuosa* (443 Funde), *Homalothecium lutescens* (421), *Hypnum cupressiforme* var. *lacunosum* (371), *Schistidium apocarpum* aggr. (251) und, in Einzelfällen, andere häufigere Arten. N_{Arten} = 36 von 81; $N_{Moosproben}$ = 972, $N_{Flühe}$ = 34. Die Zuordnung von Arten zu einer häufigeren Art erfolgte, wenn eine Art A ≥ 50 % ihres Vorkommens mit einer häufigeren Art B zeigte (fett: ≥ 75 %). Berücksichtigt wurden Arten mit mindestens 20 Funden (Ausnahme: Arten in kursiver Schrift). Namen in der grössten Schrift kennzeichnen Arten die in ≥25 % der Moosproben gefunden wurden, Namen in der kleinsten Schriftgrössse kennzeichnen Arten, die in < 5 % der Moosproben gefunden wurden (andere Kategorien: ≥10−25 %, ≥5−10 %).

Tab. 10: Moosarten, die in mehr als 5 % der Moosproben der Fluhköpfe und Fluhkanten des nordwestschweizerischen Juras gefunden wurden und ihre ökologischen Zeigerwerte* Temperatur- (T), Licht- (L), Feuchte- (F) und Reaktionszahl (R). N_{Moosproben} = 972, N_{Arten} = 81, N_{Flühe} = 34.

Art	Anzahl Vorkommen in Moosproben	Anteil Vorkommen in %	Т	L	F	R
Tortella tortuosa	437	45,0		3	3	4,5
Homalothecium lutescens	418	43,0	3	3	2	5
Ditrichum gracile	336	34,9	3	3	2	5
Hypnum cupressiforme var. lacunosum**	282	29,0	2,5	4,5	1,5	4
Hypnum cupressiforme var. cupressiforme**	262	27,0		3	2,5	2,5
Schistidium apocarpum aggr.	251	25,8		4	2	4
Ctenidium molluscum	165	17,0	3	2	3	4
Rhytidium rugosum	138	14,2	3	4	2	
Fissidens dubius	124	12,8	2,5		2,5	4,5
Bryum capillare	122	12,6		3	3	3,5
Syntrichia ruralis	116	11,9		5	1,5	3,5
Bryum argenteum	93	9,6	4	4	3	
Dicranum scoparium	93	9,6		3	3	2,5
Syntrichia montana	88	9,1	4	5	2	5
Entodon concinnus	87	9,0	3	4	2	5
Grimmia tergestina	78	8,0	4,5		1	5
Pseudoleskeella catenulata	65	6,7	3	2	2	5
Scapania aspera	61	6,3	2	3	3	5
Orthotrichum anomalum	55	5,7	4	4	2	
Mittelwert			3,19	3,50	2,26	4,25

^{*} aus Urmi (2010)

Habitatbereich Fluhwand-Basis

In den unteren 2.5 m der Fluhwände wurden in 538 Moosproben 68 Arten aufgefunden. Drei Arten wurden in mehr als 25%, sechs Arten in mehr als 20% aller Proben dieses Habitatbereichs festgestellt (Tab. 11).

Keine Moosart wurde nur in diesem Habitatbereich gefunden. Allerdings gibt es eine paar seltenere Arten, die diesen Habitatbereich bevorzugt besiedeln: *Cololejeunea calcarea* (26 Funde), *Gymnostomum aeruginosum* (52), *Mnium thomsonii* (24), *Rhynchostegiella tenella* (25), *Trichostomum brachydontium* (53) und *T. crispulum* (50) (Tab. 10). Aus ökologischer Sicht ist dieser Habitatsausschnitt als dunkler Lebensraum zu bewerten (Tab. 11).

In den untersten 50 cm der Fluhwände konnten auf insgesamt 120 m² 59 Arten festgestellt werden, in den darüber liegenden 2 m (480 m²) waren es 53. 14 der in diesem Habitatbereich gefundenen Arten wurden nur in der unteren, neun nur in der oberen Zone gefunden. Die meisten

dieser Arten wurden aber nur ein bis maximal vier Mal gefunden. Es gibt aber häufiger aufgefundene Arten, die den unteren resp. oberen Teil der Fluhwand bevorzugt besiedeln. Zumindest zu 70% in den unteren 50 cm gefunden wurden Cirriphyllum crassinervium (40; 87.5%), Gymnostomum aeruginosum (44; 77.3%), Neckera complanata (76; 71.1%) und Oxyrrhynchium hians (40; 70%) und zumindest zu ²/₃ in der oberen Zone wurden Cololejeunea calcarea (23; 91.3%), Brachythecium tommasinii (32; 78.8%), Trichostomum brachydontium (42; 69%), Homalothecium sericeum (60; 66.7%) und T. crispulum (36; 66.7%) gefunden.

Berücksichtigt man die 18 resp. 14 jeweils typischen Arten der beiden Zonen, sind keine grossen Unterschiede zwischen den mittleren Temperatur-, Licht-, Feuchte- und Reaktionszahlen festzustellen (T: 3.16/3.00; L: 2.69/2.69; F: 2.76/2.93, R: 3.97/4.13). Auch wenn stattdessen die jeweils am häufigsten aufgefundenen Arten dieses Habitatbereichs mit mindestens 10% Vorkommen in einer der zwei Zonen ver-

^{**} Anteil Hypnum cupressiforme aggr. = 56%

Tab. 11: Moosarten, die in mehr als 5% der Moosproben der Fluhwand-Basen des nordwestschweizerischen Juras gefunden wurden und ihre ökologischen Zeigerwerte* Temperatur- (T), Licht- (L), Feuchte- (F) und Reaktionszahl (R). N_{Moosproben} = 538, N_{Arten} = 68, N_{Flühe} = 12.

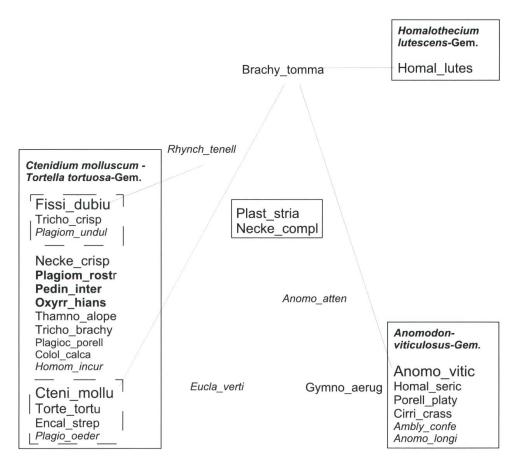
Art	Anzahl Vorkommen in Moosproben	Anteil an Moosproben in %	Т	L	F	R
Anomodon viticulosus	160	29,7	4	2	3	4
Fissidens dubius	152	28,3	2,5		2,5	4,5
Ctenidium molluscum	149	27,7	3	2	3	4
Plasteurhynchium striatulum	129	24,0	3	2	3	4
Tortella tortuosa	129	24,0		3	3	4,5
Homalothecium lutescens	122	22,7	3	3	2	5
Neckera complanata	76	14,1	4	2	3	
Schistidium apocarpum aggr.	72	13,4		4	2	4
Neckera crispa	63	11,7	3	2	3	4
Homalothecium sericeum	60	11,2	4	3	2	4
Encalypta streptocarpa	50	9,3	3	2	3	4
Plagiomnium rostratum	48	8,9	3	1	3	4
Gymnostomum aeruginosum	44	8,2	3	2	3	5
Pedinophyllum interruptum	43	8,0	3	1	3	5
Trichostomum brachydontium	42	7,8	3	2	2	5
Cirriphyllum crassinervium	40	7,4	4	2	3	4
Oxyrrhynchium hians	40	7,4	4		3	
Trichostomum brachydontium	36	6,7	3	2	2	5
Brachythecium tommasinii	33	6,1	3	2	3	5
Thamnobryum alopecurum	33	6,1	4	2	4	
Porella platyphylla	31	5,8	3	3	3	3
Mittelwerte			3,29	2,21	2,79	4,33

^{*} aus Urmi (2010)

wendet werden, sind beim Vergleich der Zeigerwerte keine deutlichen ökologischen Unterschiede zwischen den beiden Zonen zu erkennen (T = 3.25/3.18; L 2.36/2.56; F: 2.79/2.55, R: 4.27/4.40).

Aus der Abb. 8 ist zu ersehen, dass die Basis der Fluhwände einerseits von Arten der *Ctenidium molluscum-Tortella tortuosa*-Gemeinschaft und andererseits der *Anomodon viticulosus*-Gemeinschaft dominiert werden. Die beiden Gemeinschaften sind nur sehr lose miteinander verbunden.

Habitatbereich Fluhfuss und Schutthalde


Die 2'234 Moosproben in den zwölf Fluhfüssen und Schutthalden enthielten 101 Moosarten. Eine Art, *Ctenidium molluscum*, wurde in mehr als einem Drittel der Proben gefunden, weitere sechs in mehr als 20% (Tab. 12). 17 nur selten bis sehr selten aufgefundene Arten wurden nur in diesem Habitatbereich gefunden: *Loeske-*

obryum brevirostre (21 Funde) und Thuidium tamariscinum (20), Orthothecium intricatum (8), Entodon schleicheri (7), Sciuro-hypnum populeum (7), Brachythecium rivulare (6), Brachythecium salebrosum (6), Eurhynchium striatum (6), Orthotrichum cupulatum (6), Plagiothecium laetum (6), Kindbergia praelonga (5), Fissidens gracilifolius (4), Orthotrichum lyellii (33), Eurhynchium angustirete (2), Fissidens viridulus subsp. incurvus (2), Orthotrichum affine (2), Amblystegium subtile (1) und Orthotrichum diaphanum (1).

19 Arten traten in allen sieben Zonen auf (Tab. 2). Ausser den sieben oben angesprochenen häufigsten Arten (Tab. 12) handelt sich dabei zusätzlich noch um Cirriphyllum crassinervium (441 Funde), Plasteurhynchium striatulum (440), Hypnum cupressiforme var. cupressiforme (410), Fissidens dubius (330), Neckera crispa (323), Plagiomnium rostratum (312), Encalypta streptocarpa (207), Homalothecium sericeum (142), Brachythecium rutabulum (140), Oxyrrhynchium

Schistidium apocarpum aggr.-Gemeinschaft

Schist_apo_aggr Tortu_mural

Abb. 8: Anhand von gemeinsamen Vorkommen ermittelte Moos-Artengemeinschaften der dunklen und öfter auch feuchteren Fluhwand-Basen des nordwestschweizerischen Juras um die häufigsten auftretenden Moose *Anomodon viticulosus* (160 Funde), *Fissidens dubius* (152), *Ctenidium molluscum* (149), *Homalothecium lutescens* (122), *Schistidium apocarpum* aggr. (72) und, in Einzelfällen, andere häufigere Arten. N_{Arten} = 37 von 68; $N_{Moosproben}$ = 538, $N_{Flühe}$ = 12. Die Zuordnung von Arten zu einer häufigeren Art erfolgte, wenn eine Art A ≥ 50 % ihres Vorkommens mit einer häufigeren Art B zeigte (fett: ≥ 75 %). Berücksichtigt wurden Arten mit mindestens 20 Funden (Ausnahme: Arten in kursiver Schrift). Namen in der grössten Schrift kennzeichnen Arten die in ≥25 % der Moosproben gefunden wurden, Namen in der kleinsten Schriftgrössse kennzeichnen Arten, die in < 5 % der Moosproben gefunden wurden (andere Kategorien: ≥10−25 %, ≥5−10 %).

Tab. 12: Moosarten, die in mehr als 5 % der Moosproben auf Fluhfüssen und Schutthalden des nordwestschweizerischen Juras gefunden wurden und ihre ökologischen Zeigerwerte* Temperatur- (T), Licht- (L), Feuchte- (F) und Reaktionszahl (R). $N_{\text{Moosproben}} = 2'234$, $N_{\text{Arten}} = 101$, $N_{\text{Flühe}} = 12$.

Art	Anzahl Vorkommen in Moosproben	Anteil an Moosproben in %	т	L	F	R
Ctenidium molluscum	962	43,1	3	2	3	4
Homalothecium lutescens	641	28,7	3	3	2	5
Schistidium apocarpum aggr.	509	22,8		4	2	4
Anomodon viticulosus	506	22,6	4	2	3	4
Neckera complanata	462	20,7	4	2	3	
Tortella tortuosa	459	20,5		3	3	4,5
Porella platyphylla	457	20,5	3	4	3	3
Cirriphyllum crassinervium	441	19,7	4	2	3	4
Plasteurhynchium striatulum	440	19,6	3	2	3	4
Hypnum cupressiforme var. cupressiforme	410	18,3		3	2,5	2,5
Brachythecium tommasinii	342	15,3	3	2	3	5
Fissidens dubius	330	14,7	2,5		2,5	4,5
Neckera crispa	323	14,4	3	2	3	4
Plagiomnium rostratum	312	13,9	3	1	3	4
Encalypta streptocarpa	207	9,2	3	2	3	4
Anomodon attenuatus	158	7,0	4	2	2	4
Plagiomnium undulatum	143	6,4	3	2	3	
Homalothecium sericeum	142	6,4	4	3	2	4
Brachythecium rutabulum	140	6,3		3	2,5	
Rhynchostegium murale	124	5,6	3	3	3	4
Scapania aspera	120	5,4	2	3	3	5
Mittelwert			3,21	2,5	2,74	4,08

^{*} aus Urmi (2010)

hians (105), Metzgeria furcata (73), Didymodon rigidulus (66), Entodon concinnus (52) und Pedinophyllum interruptum (45).

Nur in sechs Zonen wurden Brachythecium tommasinii (342 Funde), Anomodon attenuatus (158), Plagiomnium undulatum (143), Rhynchostegium murale (124), Scapania aspera (120), Bryum capillare (109), Plagiochila porelloides (98), Thamnobryum alopecurum (43), Rhytidiadelphus triquetrus (29), Syntrichia montana (26), Campyliadelphus chrysophyllus (21) und Leucodon sciuroides (18) gefunden, wobei alle diese Arten in der Zone 12, aber nur Bryum capillare, Leucodon sciuroides, Rhytidiadelphus triquetrus, Syntrichia montana und Thamnobryum alopecurum in der Zone 6 gefunden wurden. Arten, die nur in einzelnen Zonen gefunden wurden, traten zu selten auf, um sie für die Charakterisierung der einzelnen Zonen nutzen zu können, vor allem auch in Anbetracht der starken Grössenunterschiede der untersuchten Zonenflächen.

Von den grossen Blöcken mit einem Durchmesser ≥ 2 m in Schutthalden wurden 198 Moosproben entnommen, 72 davon von den unteren 50 cm, 126 davon von Bereichen höher als 50 cm über Boden. In den unteren Bereichen konnten 59, in den oberen Bereichen 52 Arten festgestellt werden. Davon wurden jeweils 39 Arten in beiden Bereichen gefunden: Anomodon viticulosus, Cirriphyllum crassinervium, Ctenidium molluscum, Encalypta streptocarpa, Fissidens dubius, Homalothecium lutescens, Hypnum cupressiforme var. cupressiforme, Neckera complanata, N. crispa, Oxyrrhynchium hians, Plagiomnium rostratum, Plasteurhynchium striatulum, Porella platyphylla, Scapania aspera und Tortella tortuosa figurieren in beiden Teilbereichen unter den häufigsten. Als einigermassen typisch für den unteren Teilbereich bezeichnen kann man Oxyrrhynchium hians (17 Funde), Plagiomnium undulatum (9) und Thamnobryum alopecurum (9), für den oberen Teilbereich Brachythecium tommasinii (23).

Abb. 9: *Schistidium apo-carpum* (Foto: M. Lüth).

Die mittleren ökologischen Zeigerwerte der auf die jeweils beiden Blockbereiche beschränkten Arten zeigen nur schwache Unterschiede (T: 3.00/3.31; L: 2.60/3.00; F: 2.79/2.59), auch wenn die mittlere Temperaturzahl und Lichtzahl der Arten des unteren Blockbereichs tendenziell tiefer und die Feuchtezahl tendenziell höher sind. Die mittleren Zeigerwerte der jeweils häufigsten Arten der beiden Teilbereiche der grossen Blöcke zeigen keine Unterschiede.

Diskussion

Die gesamten Fluh-Ökosysteme

Die an Arten mächtigste Artengemeinschaft der Fluhökosysteme ist die *Ctenidium molluscum-Tortella tortuosa*-Gemeinschaft. Schaut man sich deren Arten an, so kann man sagen, dass sie in etwa dem Ctenidietum mollusci (Marstaller 2006) entspricht (Abb. 5), einer Gesellschaft offener bis beschatteter luftfeuchter Standorte mit nur wenigen konstanten Repräsentanten (Marstaller 2002).

Die Gemeinschaft um *Anomodon viticulosus* (Abb. 5) repräsentiert den schattenertragenden und austrockungsresistenten Verband Necke-

rion complanatae (Hertel 1974, Marstaller 1992, Marstaller 2006) und ist gut von den anderen Gemeinschaften isoliert. Keine Art dieser Gemeinschaft zeigt eine enge Bindung zu einer anderen Art einer anderen Gemeinschaft. Die gemäss soziologischer Literatur zur Klasse Neckeretalia complanatae (Marstaller 1992, 2006) gehörenden *Plasteurhynchium striatulum* und *Neckera complanata* haben Bindungen zu *Ctenidium molluscum* (31.9% und 24.4%), zu Anomodon viticulosus (36.6% und 31.3%) und zu *Homalothecium lutescens* (32.9% und 35.6%) und zeigen somit recht weite ökologische Amplituden.

Eine dritte gut abzugrenzende Gemeinschaft ist die um das Licht und Wärme liebende Moos Schistidium apocarpum aggr. (Abb. 9). Soziologisch repräsentiert diese den Verband Grimmion tergestinae (Marstaller 1983, 2006, 2011). Der Abb. 5 ist zu entnehmen, dass diese Gemeinschaft durch die Arten Grimmia tergestina, Tortula muralis, Orthotrichum anomalum, Grimmia pulvinata und eventuell die selten angetroffene Didymodon rigidulus charakterisiert ist. Dazu ist aber zu sagen, dass die letztgenannte Art auch eine ähnlich starke Bindung zu Schistidium apocarpum aggr. und zu Ctenidium

molluscum zeigt. Die Tatsache, dass Schistidium apocarpum aggr. zu 25.5 % zusammen mit Ctenidium molluscum und oft mit Homomallium incurvatum und Rhynchostegium murale aufgesammelt wurde, bestätigt die Angaben von Marstaller (1992), dass Arten des Schistidium apocarpum-Aggregats konstante Begleiter in Ctenidion mollusci und Neckerion complanatae-Assoziationen sein können, vor allem im Homomallietum incurvatae (Marstaller 1992, 2012, 2016).

Zwischen den zwei letztgenannten Gemeinschaften liegt die *Homalothecium lutescens*-Gemeinschaft, deren namensgebende Art als Charakterart des Abietinelletum abietinae gilt, einer Gesellschaft offener Stellen in Mesobromion-Gesellschaften und von Kalkschutt (Müller und Otte 2007).

Allgemein aufallend ist, dass Neckera crispa (410 Funde) in der vorliegenden Arbeit zu 68.5% zusammen mit Ctenidium molluscum (1276) aufgesammelt wurde und mit 26.1% nur eine schwache Bindung an Anomodon viticulosus (673) zeigt. Sogar die Bindung an Homalothecium lutescens (1181) ist mit 27.4% ein wenig stärker. Die recht selten aufgefundene Amblystegium confervoides (61 Funde) wurde zu 36.1% mit Anomodon viticulosus und zu 32.8% mit Cirriphyllum crassinervium, beides Arten der Ordnung Neckeretalia complanatae, gefunden (Abb. 5). Zu 13.1% wurde die Art mit Ctenidium molluscum und zu 8.2% mit Tortella tortuosa gefunden.

Exposition der Flühe

Die 15 Arten, die nach Norden oder nach Nordwesten orientierte Wuchsorte bevorzugen, zeigen fast alle starke Bindungen zu Ctenidium molluscum (Ausnahmen: Brachythecium rutabulum, Oxyrrhynchium hians). Im Gegensatz dazu haben die Arten, die bevorzugt nach Süden oder Südosten orientierte Wuchsorte besiedeln, engere Bindungen zu Homalothecium lutescens oder zu Schistidium apocarpum aggr. Ausnahmen davon sind Bryoerythrophyllum recurvirostrum und Plagiomnium cuspidatum, die tendenziell der Anomodon viticulosus-Gemeinschaft zuzurechnen sind (Tab. 7, Abb. 5).

Höhe der Flühe über Meer

Vergleicht man die Resultate der Artvorkommen im Zusammenhang mit der Höhe der Fluhköpfe in m ü. M. mit den Höhenangaben der gemeldeten Funde auf SWISSBRYOPHYTES (2011-2018), so ist keine Übereinstimmung festzustellen, auch wenn Porella platyphylla zu 59.7 % und Thamnobryum alopecurum 57.4% von Standorten bis maximal 600 m ü. M. gemeldet wurden. Die in dieser Untersuchung vor allem Flühe von über 900 m ü. M. bevorzugende Art Pseudoleskeella catenulata hingegen zeigt generell eine Präferenz für Wuchsorte über 1000 m ü. M. (SWISSBRYOPHYTES 2011-2018). Es muss an dieser Stelle aber auch klar festgehalten werden, dass für die vorliegende Arbeit mehr Moosproben von tieferen als von höheren Lagen entnommen wurden (Tab. 1).

Exposition des Wuchsortes

Die fünf Arten mit mindestens 20 Funden, die eine deutliche Bindung an nach Norden bis Westen gerichtete Standorte aufweisen, gehören, mit Ausnahme von *Hylocomium splendens*, der *Ctenidium molluscum-Tortella tortuosa*-Gemeinschaft an und sind als Arten der Ctenidietalia bekannt. Auch die anderen vier nach Norden und Westen exponierte Standorte bevorzugenden (66.6–74.9%) Arten werden dieser Ordnung zugerechnet. Die berechnete mittlere Feuchtezahl beträgt 3.1. Die Hauptursache dafür, dass in der vorliegenden Untersuchung gewisse Arten nach Süden bis Osten gerichtete Wuchsorte bevorzugen, ist am deutlichsten mit der tieferen Feuchtezahl F von 2.45 zu begründen.

Neigung des Wuchsortes

Nur Bryum argenteum kommt öfter auf ebenen als auf geneigten Flächen vor. Die Arten, die ebene bis 50° geneigte Wuchsorte bevorzugen, gehören im grossen Ganzen der Homalothecium lutescens- und dem trockeneren Flügel der Ctenidium molluscum-Tortella tortuosa-Gemeinschaft an (Fig. 4). Die Arten der ebenen und (schwach) geneigten Standorte (Tab. 4) repräsentieren Vergesellschaftungen, die sonnige (L: 3.8)

und recht warme (T: 2.2) Wuchsorte besiedeln. Dabei handelt es sich um Polster oder kleine Teppiche an offenem oder schwach mit anderer Vegetation überwachsenem Fels (Abietinellion abietinae; Marstaller 2006). Die Arten der steilen, senkrechten oder sogar überhängenden Standorte sind, mit Ausnahme von Porella platyphylla und Trichostomum crispulum, Arten, die feuchte Standorte bevorzugen und entweder der Ctenidium molluscum-Tortella tortuosa- oder der Anomodon viticulosus-Gemeinschaft angehören.

Beschattung des Wuchsortes

Die meisten Arten, die offene oder leicht beschattete Wuchsorte bevorzugen, sind den Verbänden Grimmion tergestinae oder Abietinellion abietinae zuzurechnen und wurden zumeist auf Fluhköpfen gesammelt: Bryum argenteum, B. caespiticium, Didymodon fallax, D. luridus, Ditrichium gracile, Frullania tamarisci, Grimmia pulvinata, G. tergestina, Hypnum cupressiforme var. lacunosum, Orthothrichum anomalum, Polytrichum formosum, Rhytidium rugosum, Syntrichia montana und S. ruralis (Abb. 5, Tab. 8).

Nur eine Art, Cololejeunea calcarea, bevorzugt deutlich stark beschattete Standorte (Tab. 8). Aber es gibt 22 Arten, die deutlich beschattete bis stark beschattete Standorte bevorzugen (Tab. 8). In der vorliegenden Arbeit gehören die meisten dieser Arten zur Ctenidium molluscum-Tortella tortuosa- oder zur Anomodon viticulosus-Gemeinschaft. Aus soziologischer Sicht gehören sechs dieser Arten zur Klasse Neckeretalia complanata und zehn sind Bestandteil der Klasse Ctenidietalia mollusci (Ahrens 1992, Marstaller 2006, Müller und Otte 2007).

Substrat des Wuchsortes

Die drei für die Substrat-Kategorie (Tab. 3) «offener Boden» mehr oder weniger typischen Arten gehören einerseits zum Abietinellion abietinae (*Rhytidium rugosum*) oder zur Klasse Hylocomietea splendentis (*Polytrichum formosum*, *Rhytidiadelphus triquetrus*), Vergesellschaftungen kalkhaltiger oder oberflächlich entkalkter offener Böden resp. Lücken in Grasland. Eine

Art, *Rhynchostegium murale*, mit einer schwachen Bindung an *Schistidium apocarpum* aggr. (Abb. 5.), bevorzugt Steine als Wuchsorte.

Die zehn Arten, die bevorzugt Blöcke besiedeln, sind einerseits an die Anomodon viticulosus- oder an die Ctenidium molluscum-Tortella tortuosa-Gemeinschaft gebunden, was auch einer Zugehörigkeit zur Klasse Neckeretea complanatae einerseits und zur Klasse Ctenidietea mollusci andererseits bedeutet (Ahrens 1992, Marstaller 2006, Müller und Otte 2007).

Kahle Felsflächen mit und ohne Ritzen werden von 15 Arten bevorzugt bewachsen. Acht davon sind deutlich an Fels als Substrat gebunden, sieben andere zu über 50 bis 74.9 %. Die Arten der Felssubstrate können in zwei Gruppen aufgeteilt werden: eher Licht liebende oder eher Schatten liebende. Zur ersten Gruppe sind folgende Arten zu zählen: Didymodon fallax, Grimmia pulvinata, G. tergestina, Orthotrichum anomalum, Pseudoleskeella catenulata und Syntrichia montana. Diese Arten zeigen entweder Bindungen an Schistidium apocarpum aggr., oder an Homalothecium lutescens (Abb. 5), was soziologisch Zugehörigkeit zum Grimmion tergestinae oder zum Abietinellion abietinae bedeutet. Schatten liebende Arten der nackten Felsoberflächen sind Bryoerythrophyllum recurvirostrum, Cololejeunea calcarea, Mnium thomsonii, Trichostomum brachydontium und T. crispulum. Diese Arten zeigen Bindungen zur Anomodon viticulosus- oder zur Ctenidium molluscum-Tortella tortuosa-Gemeinschaft, was soziologisch Zugehörigkeiten zum Verband Neckeretalia complanatae resp. zum Verband Ctenidietalia mollusci bedeutet

Die einzelnen Habitatbereiche

Habitatbereich Fluhkopf und Fluhkante

Betrachtet man die Artengarnitur und die mittlere Lichtzahl (L: 3.5) der im Habitatbereich Fluhkopf und Fluhkante aufgefundenen Arten (Tab. 10 und Abb. 7), wird klar, dass es sich bei diesem Bereich insofern um einen speziellen Habitatbereich der Fluhökosysteme handelt, als keine Arten der *Anomodon viticulosus*-Gemeinschaft vorkommen und die *Ctenidium mol*-

luscum-Tortella tortuosa-Gemeinschaft nur sehr reduziert vertreten ist (Abb. 7). Ctenidium molluscum selbst ist ebenfalls nur sehr schwach vertreten (Abb. 10). Der Vergleich mit der soziologischen Literatur (Marstaller 2006) zeigt, dass die für diesen Bereich typische Schistidium apocarpum aggr.-Gemeinschaft in etwa dem Verband Grimmion tergestinae mit dem Grimmietum tergestinae und dem Orthotricho anomali-Grimmietum pulvinatae sowie in höheren Lagen dem Pseudoleskeetum catenulatae gleichzusetzen ist.

Eine weitere Besonderheit der Fluhköpfe ist die Präsenz der trockenes Grasland repräsentierenden Gemeinschaften um Hypnum cupressiforme var. lacunosum und um Homalothecium lutescens (Abb. 11). Hypnum cupressiforme var. lacunosum (282 Funde auf Fluhköpfen) kommt in den von ihr besetzten Standorten zu 48.2 % mit Homalothecium lutescens (418) vor. Das bedeutet, dass beide Arten auch viele Vorkommen mit Vertretern anderer Artengemeinschaften haben. Die Homalothecium lutescens-Gemeinschaft hat Verbindung zur Schistidium apocarpum aggr.-Gemeinschaft und die Hypnum cupressiforme var. lacunosum-Gemeinschaft hat Bindungen zum trockeneren Flügel der Ctenimolluscum-Tortella tortuosa-Gemeindium schaft (Abb. 7). Im Gegensatz zu H. lutescens, das sehr basische Substrate bevorzugt, besiedelt H. c. var. lacunosum auch etwas oberflächlich entkalkte und somit mehr oder weniger neutrale Substrate (Tab. 10). Trotz dieser Unterschiede

sind gemäss Marstaller (2006, 2011) aber beide Arten soziologisch dem Abietinelletum abietinae und der Homalothecium lutescens-Assoziation (Marstaller 2011) zugehörig.

Habitatbereich Basis der Fluhwände

Vielleicht wegen der relativ kleinen untersuchten Fläche von 600 m² wurden in den unteren 2.5 m der Fluhwände nur 68 Arten gefunden. Zehn der 21 häufigsten Arten (Abundanz ≥ 5%) sind der Ctenidium molluscum-Tortella tortuosa-Gemeinschaft zuzurechnen (Tab. 12, Abb. 8). Fünf Arten, Anomodon attenuatus, A. viticulosus, Cirriphyllum crassinervium, Homalothecium sericeum und Porella platyphylla, gehören zur Anomodon viticulosus-Gemeinschaft und Neckera complanata und Plasteurhynchium striatulum zeigen Bindungen an diese (Abb. 8).

Aus soziologischer Sicht dominieren Vertreter der Klassen Ctenidietalia mollusci und Neckeretalia complanatae (Ahrens 1992, Marstaller 2006, Müller und Otte 2007) diesen Habitatbereich. Mit 2.21 ist die mit den 17 häufigsten Arten (Abundanz ≥ 5%) berechnete Lichtzahl dieses Habitatbereichs relativ tief (Tab. 11). Hierin wird der Grund dafür liegen, dass Vertreter der Schistidium apocarpum aggr.- und der Homalothecium lutescens-Gemeinschaft (Abb. 8) nur sehr schwach vertreten sind. Von Vertretern des Schistidium apocarpum-Aggregats, z.B. von Schistidium crassipilum, ist bekannt, dass sie ziemlich oft in Neckeretalia complanatae-As-

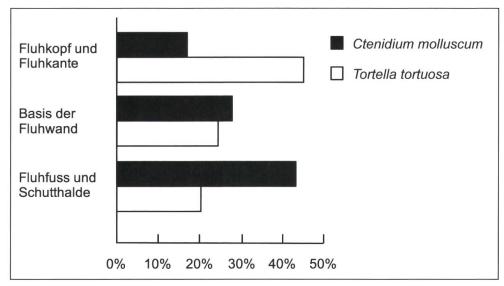


Abb. 10: Prozentuale Verteilung der Funde von *Ctenidium molluscum* und *Tortella tortuosa* auf die drei Fluh-Habitatbereiche.

Abb. 11: *Homalothe-cium lutescens* (Foto: M. Lüth).

soziationen, vor allem im Homomallietum incurvatae auftreten können (Marstaller 2011, 2012). So kann also sicher festgestellt werden, dass der Verband Grimmion tergestina höchstens rudimentär an der Basis der Fluhwände vorzufinden ist.

Die Moosvegetation der beiden unterschiedenen Zonen ist vergleichbar. Trotzdem sind fünf Arten, Cirriphyllum crassinervium, Gymnostomum aeruginosum, Encalypta streptocarpa, Oxyrrhynchium hians und Porella platyphylla mit Zugehörigkeit oder Bindung zur Anomodon viticulosus- oder zur Ctenidium molluscum-Tortella tortuosa-Gemeinschaft nur in der unteren Zone (Zone 13) zu finden. Vier Arten, Brachythecium tommasinii, Cololejeunea calcarea, Trichostomum brachydontium und T. crispulum mit Bindung oder Zugehörigkeit zur Ctenidium molluscum-Tortella tortuosa-Gemeinschaft wurden nur in der oberen Zone (Zone 14) gefunden.

Habitatbereich Fluhfuss und Schutthalden

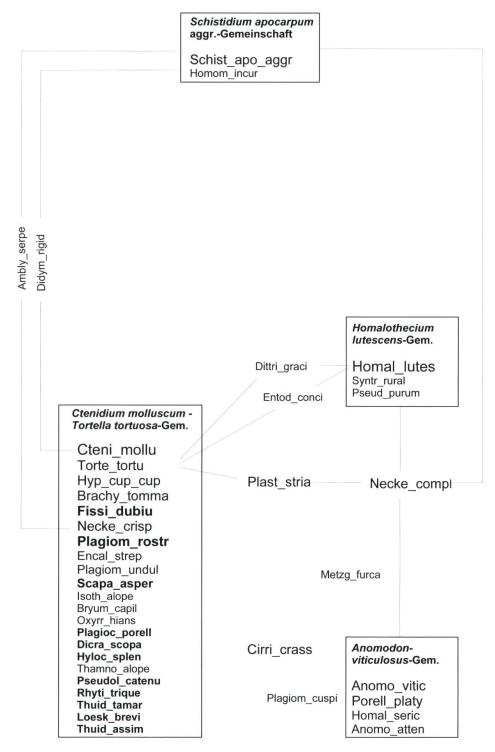
Schutthalden unterhalb von Fluhwänden sind sehr diverse Lebensraummosaike mit offenen Böden, Vegetationsflecken, Steinen und Blöcken. Dies macht es schwierig, Schutthalden als eine Einheit zu betrachten. Der hohe Grad an floristischer Ähnlichkeit der Zonen 6 bis 12 ist erstaunlich. Fünf der 21 häufigsten Arten (Abundanz ≥ 5%) kommen in allen Zonen dieses Habitatbereichs vor: Anomodon viticulosus (Abb. 13), Cirriphyllum crassinervium, Ctenidium molluscum, Homalothecium lutescens und Porella platyphylla. Weitere fünf dieser Arten wurden zumindest in der Zone 6 und in der Zone 12 gefunden: Encalypta streptocarpa (Zonen 6, 7, 8, 12), Fissidens dubius (6, 7, 8, 9, 10, 12), Neckera complanata (6, 8, 9, 10, 11, 12), Plasteurhynchium striatulum (6, 7, 8, 9, 10, 11, 12) und Tortella tortuosa (6, 7, 9, 10,11 12). Mit Ausnahme von Homalothecium lutescens und Plasteurhynchium striatulum gehören alle diese Arten zur Anomodon viticulosus- oder zur Ctenidium molluscum-Tortella tortuosa-Gemeinschaft, wobei Plasteurhynchium striatulum eine eher stärkere Bindung zur erstgenannten Gemeinschaft zeigt, was die Aussagen von Marstaller (1992, 2006), der die Art in die Klasse Neckeretalia complanatae stellt, bestätigt. Eine separate Bemerkung wert ist das Vorkommen (26 Funde) der sonst nur auf den Fluhköpfen (92) gefundenen Licht liebenden Syntrichia montana.

Die ermittelten Artengemeinschaften in Abb. 12 zeigen, dass die Schutthalden einen sehr diversen Lebensraum darstellen mit hellen und dunklen, resp. feuchten und trockenen Standorten. Im Habitatbereich Fluhfuss und Schutthalde dominieren die Arten der Ctenidium molluscum-Tortella tortuosa-Gemeinschaft, die offenbar verschiedene ökologische Nischen abdeckt. Aus soziologischer Sicht heisst dies auch, dass die Arten der Verbände Ctenidion mollusci und Neckeron complanatae dominieren. Mit zunehmender Distanz zum Fluhfuss ändert sich das Verhältnis der beiden Artengemeinschaften von 1:1 zu 1:23 zugunsten der Anomodon-viticulosus-Gemeinschaft. sind die lichtliebenden Grasland-Arten des Abietinellion abietinae (Marstaller 2006) wie auch die mit Schistidium apocarpum aggr. vorkommenden Arten in diesem Habitatbereich nur sehr schwach vertreten. Das Grimmion tergestinae konnte in den Schutthalden nicht entdeckt werden. Gemäss den ökologischen Zeigerwerten der auf die unteren oder die obere Zone der untersuchten Blöcke in diesem Habitatbereich beschränkten Arten scheint die untere Zone erwartungsgemäss ein wenig kühleres, dunkleres und feuchteres Habitat darzustellen.

Kommentare zu ausgewählten Arten

Ctenidium molluscum

Die häufigste Art, Ctenidium molluscum, wurde 1'276 Mal aufgesammelt und kam somit in 34.1 % aller Proben vor. Die Art kam in 17 % der Aufsammlungen auf den Fluhköpfen, in 27.7 % der Aufsammlungen an der Basis der Felswände und in 43.1 % der Aufsammlungen in den Schutthalden vor (Abb. 10). Am häufigsten wurde die Art mit Tortella tortuosa gefunden (37 %), dann mit Fissidens dubius (412 Funde, 32.3%), Homalothecium lutescens (28.4%), Neckera crispa (281, 22%) und Hypnum cupressiforme var. cupressiforme (20.5%). Das bedeutet auch, dass Neckera crispa zu 68.5% und Fissidens dubius zu 68% zusammen mit Ctenidium molluscum aufgesammelt wurden. Zu beachten ist, dass C. molluscum nie mit Syntrichia montana (118) und Bryum argenteum (93) gefunden wurde. Zudem wurde die Art auf Fluhköpfen nie mit *Grimmia* tergestina (86) und nur einmal mit *Orthotrichum* anomalum (63), typischen Arten des Grimmion tergestinae mit den Assoziationen Grimmietum tergestinae und Orthotrichetum anomali-Grimmietum pulvinatae (Müller und Otte 2008), aufgesammelt.


Die bevorzugten Wuchsorte von *C. molluscum* sind meist 50–90° (45%), aber auch 30–50° in alle Himmelsrichtungen geneigte (31.0%) und beschattete (55.4%) Flächen von Steinen (36.1%) oder Blöcken (31.8%) (Abb. 10). Gemäss SWISSBRYOPHYTES (2011–2018) gedeiht die Art auf neutralem oder basischem Substrat in beschatteten Situationen (T: 3 (1.5–4.5), L: 2 (1–3.5), F: 3 (1.5–4.5), R: 4 (2.5–5)).

Tortella tortuosa

Mit 1025 Aufsammlungen ist *Tortella tortuosa* (Abb. 14) die am dritthäufigsten aufgefundene Art. Die Art wurde in 27.4% aller Aufsammlungen und in allen drei Habitatbereichen festgestellt. Auf Fluhköpfen wurde die Art 437 Mal und somit in 45% der Aufsammlungen gefunden. An der Basis der Fluhwände wurde die Art in 24.3% und an Fluhfüssen und in Schutthalden in 20.5% aller Aufsammlungen gefunden (Abb. 10).

T. tortuosa tritt am meisten zusammen mit Ctenidium molluscum (46%), Homalothecium lutescens (34%), Fissidens dubius (31.4%), Schistidium apocarpum aggr. (29%), Ditrichum gracile (269 Funde; 26.2%) und Hypnum cupressiforme var. cupressiforme (26%) auf. Dies bedeutet auch, dass Ditrichum gracile zu 69.2% zusammen mit Tortella tortuosa aufgesammelt wurde. Die Art wurde nie zusammen mit 22 seltenen Arten, wie z. B. Anomodon longifolius (30) oder Rhynchostegiella tenella (25) gefunden.

Die bevorzugten Standorte sind meist steile (42.5%) oder zumindest geneigte (30.9%) Flächen auf nacktem Fels (35.8%) oder auf Blöcken (22.7%). Die Exposition und die Beschattung scheinen keine Rolle zu spielen. Gemäss SWISSBRYOPHYTES (2011–2018) wächst die Art auf neutralem oder basischem Substrat in beschatteten Situationen (T: 3 (1.5–4.5), L: 3 (1.5–4.5), F: 2 (1–3.5), R: 4 (3–5)).

Abb. 12: Anhand von gemeinsamen Vorkommen ermittelte Moos-Artengemeinschaften der meist bewaldeten und somit dunkleren Fluhfüsse und Schutthalden des nordwestschweizerischen Juras um die häufigsten auftretenden Arten *Ctenidium molluscum* (962 Funde), *Homalothecium lutescens* (641), *Tortella tortuosa* (459), *Schistidium apocarpum* aggr. (509), *Anomodon viticulosus* (506) und, in Einzelfällen, andere häufigere Arten. $N_{Arten} = 47$ von 101; $N_{Moosproben} = 2'234$, $N_{Flühe} = 12$. Die Zuordnung von Arten zu einer häufigeren Art erfolgte, wenn eine Art A ≥ 50 % ihres Vorkommens mit einer häufigeren Art B zeigte (fett: ≥ 75 %). Berücksichtigt wurden Arten mit mindestens 20 Funden (Ausnahme: Arten in kursiver Schrift). Namen in der grössten Schrift kennzeichnen Arten die in ≥ 25 % der Moosproben gefunden wurden, Namen in der kleinsten Schriftgrössse kennzeichnen Arten, die in < 5 % der Moosproben gefunden wurden (andere Kategorien: $\geq 10-25$ %, $\geq 5-10$ %).

Abb. 14: *Tortella tortu-osa* (Foto: M. Lüth).

Ctenidium molluscum und Tortella tortuosa im Vergleich

Beide Arten, *Ctenidium molluscum* und *Tortella tortuosa* sind Charakterarten der Ordnung Ctenidietalia mollusci (Marstaller 2006) und beide Arten gehören zu den 15 häufigsten Moosarten der Schweiz (SWISSBRYOPHYTES 2006).

Die geringe Häufigkeit von Ctenidium molluscum auf Fluhköpfen und die Tatsache, dass die Art nie mit Syntrichia montana und Bryum argenteum aufgetreten ist, zeigt dass C. molluscum, im Gegensatz zu Tortella tortuosa, den trockeneren und / oder helleren ökologischen Flügel des Ctenidion mollusci eher meidet resp. typischer für den feuchten Flügel der Klasse Ctenidietalia mollusci (Müller und Ott 2018) ist als Tortella tortuosa. Diese Aussage lässt sich auch damit verstärken, dass C. molluscum oft mit Neckera crispa und auf Fluhköpfen nie mit den Wärme und mehr oder weniger Licht liebenden Arten Grimmia tergestina und Orthotrichum anomalum vorkommt. Im Gegensatz dazu tritt Tortella tortuosa öfter mit Schistidium apocarpum aggr. auf als C. molluscum und zeigt somit eine grössere Amplitude in Bezug auf Feuchtigkeit- und Lichtregime am Standort.

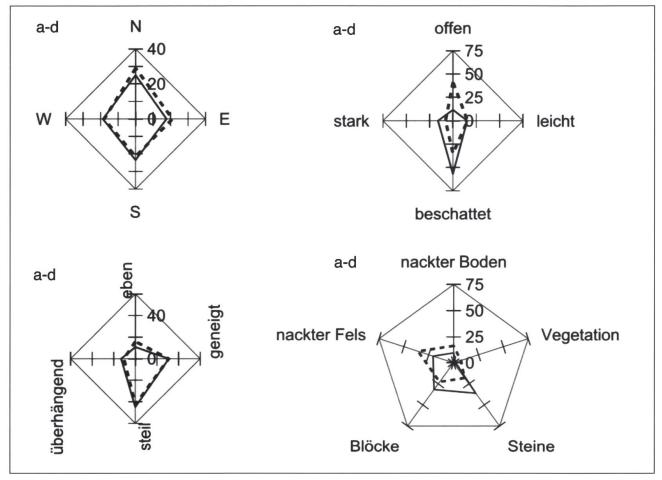
Die mittleren Zeigerwerte (Urmi 2010, Düll und Düll-Wunder 2008) der elf seltenen Arten, die nur mit C. molluscum, aber nicht mit T. tortuosa zusammen gefunden wurden (Anomodon longifolium, Brachytheciastrum velutinum, Brachythecium rivulare, B. salebrosum, Cephalozia bicuspidata, Eurhynchium striatum, Gymnostomum calcareum, Kindbergia praelonga, Mnium stellare, Rhodobryum ontariense, Rhynchostegiella tenella) sind: T: 2.61, L: 2.35, F: 2.68. Im Vergleich dazu sehen die mittleren Zeigerwerte der ebenfalls seltenen Arten, die nur mit T. tortuosa, aber nicht mit C. molluscum aufgesammelt wurden (Abietinella abietina, Bryum argenteum, Cephaloziella divaricata, Ceratodon purpureus, Dicranella schreberiana, Fissidens viridulus subsp. incurvus, Grimmia pulvinata, Leucodon sciuroides, Racomitrium canescens, Rhytidiadelphus loreus, Syntrichia montana, Tortula subulata und Weissia brachycarpa folgendermassen aus: T: 2.38, L: 3.81, F: 2.23. Auch der Vergleich dieser Zahlen zeigt, dass Ctenidium molluscum dunklere und feuchtere Standorte besiedelt als Tortella tortuosa und dieses Resultat stimmt mit denjenigen von SWISSBRYOPHYTES (2011–2018) für die beiden Arten überein. Die unten stehenden und auf den Resultaten dieser Arbeit basierenden Ökogramme (Abb. 15) verdeutlichen diese Aussagen.

Plasteurhynchium striatulum

Plasteurhynchium striatulum kam in 518 Aufsammlungen (15.5%) vor. 75.9% der Aufsammlungen wurden in den Schutthalden, 22.2% an der Basis der Fluhwände und 1.9% auf Fluhköpfen gemacht.

Am meisten wurde die Art zusammen mit Neckera complanata (35.5%), Homalothecium lutescens (32.8%), Ctenidium molluscum (32.2%), Cirriphyllum crassinervium (25.5%), Porella platyphylla (25.5%) und Schistidium apocarpum aggr. (22.9%) gefunden. Keine Art zeigt eine starke Bindung an Plasteurhynchium striatulum. Die Art wurde mit 67 anderen Arten zusammen gefunden. Die häufigsten darunter sind Rhytidium rugosum (170 Funde), Dicranum scoparium (148), Entodon concinnus (139), Syntrichia montana (118), Bryum argenteum (93) und Grimmia tergestina (86).

Die Art wächst unabhängig von der Exposition des Standortes vor allem an steilen (51.3%) oder überhängenden (21.1%), meist beschatte-


ten (64.4%) oder stark beschatteten (18.7%) Flächen auf Steinen, Blöcken oder nacktem Fels. Diese erklärt auch die Bindung an die Arten der *Anomodon viticolosus*-Gemeinschaft und bestätigt die Aussagen von Ahrens (1992) und Marstaller (2006), die die Art in die Nähe der Ordnung Neckeretalia complanatae stellen.

Fluh-Ökosysteme aus bryologischer und naturschützerischer Sicht

Neben der detaillierten Beschreibung der Moosflora der nordwestschweizerischen Fluh-Ökosysteme geht es in dieser Arbeit auch darum, das Wissen über das Vorkommen von Arten im Untersuchungsgebiet zu vergrössern. Mit der vorliegenden Arbeit kann dazu vor allem zu folgenden Arten beigetragen werden: Anomodon longifolius, Barbilophozia barbata, Brachythecium glareosum, Bryum radiculosum, Cephaloziella divaricata, Dicranella schreberiana, Didymodon cordatus, Didymodon luridus, Entodon schleicheri, Fissidens gracilifolius, Fissidens viridulus subsp. incurvus, Grimmia tergestina, Gymnostomum aeruginosum, Gymnostomum calcareum, Kindbergia praelonga, Mesoptychia collaris, Orthotrichum cupulatum, Plagiom-

Abb. 13: Anomodon viticulosus (Foto: M. Lüth).

Abb. 15: Vergleich des ökologischen Verhaltens von *Ctenidium molluscum* (durchgezogene Linie) und *Tortella tortuosa* (gestrichelte Linie) in den Fluh-Ökosystemen des nordwestschweizerischen Juras: a) Expositions-Kategorien, b) Beschattungs-Kategorien, c) Neigungs-Kategorien (Vorkommen auf ebenen Flächen sind nicht dargestellt: *Ctenidium molluscum*: 10.3%, *Tortella tortuosa*: 15.1%), d) Substrat-Kategorien (Tab. 2).

nium cuspidatum, Pleurozium schreberi, Polytrichum formosum, Racomitrium canescens, Rhodobryum ontariense, Rhynchostegiella tenella, Seligeria pusilla, Thuidium delicatulum, Tortella bambergeri, Trichostomum brachydontium, T. crispulum, Tritomaria quinquedentata und Weissia brachycarpa.

Als wichtigste Beiträge zu selten gemeldeten Arten, zumindest im Untersuchungsgebiet, sind folgende Funde anzusehen: Bryum radiculosum, Cephaloziella divaricata, Didymodon cordatus, Fissidens gracilifolius, Fissidens viridulus subsp. incurvus, Grimmia tergestina, Orthotrichum cupulatum, Plagiomnium cuspidatum, Pseudoleskeella nervosa, Rhynchostegiella tenella, Thuidium delicatulum und Tritomaria quinquedentata. Entodon schleicheri, die in sieben Proben aus dem Gebiet der Schauenburger-

fluh gefunden wurde, wurde von dort schon 1991 von Josef Bertram gemeldet (SWISS-BRYOPHYTES 2011–2018).

Die in der vorliegenden Arbeit gefundenen 126 epigäischen und epilithischen Moosarten machen knapp 12% der schweizerischen Moosflora aus (SWISSBRYOPHYTES 2011–2018). Die meisten dieser Arten sind in der Schweiz und im Jura als verbreitet und häufig anzusehen. Gemäss SWISSBRYOPHYTES (2011–2018) sind lediglich vier Arten, Bryum radiculosum, Didymodon cordatus, Fissidens gracilifolius und Rhodobryum ontariense, in der Schweiz selten und 19 andere zerstreut (Amblystegium confervoides, Anomodon longifolius, Campylophyllum calcareum, Cephaloziella divarivcata, Cololejeunia calcarea, Dicranella schreberiana, Didymodon luridus, Entodon schleicheri, Fissidens

viridulus subsp. incurvus, Grimmia tergestina, Gymnostomum calcareum, Loeskeobryum brevirostre, Orthotrichum cupulatum, Rhynchostegiella tenella, Seligeria pusilla, Tortula subulata, Trichostomum brachydontium, T. crispulum und Weissia brachycarpa). Ob es sich dabei wirklich immer um seltenere Arten handelt, ist bei Moosen nie ganz klar, weil die Dichte der Bryologen regional sehr schwankt und nicht alle Gebiete gleich gut bearbeitet sind. So sind von 19 Funden von Grimmia tergestina im Untersuchungsgebiet (SWISSBRYOPHYTES 2011-2018) 16 im Laufe der vorliegenden Untersuchung gemacht worden und die Art kann nun im Gebiet nicht mehr als sehr selten gelten. Die in der vorliegenden Arbeit angewandte Methode, mehr oder weniger systematisch Proben jedes Standorttypus zu sammeln und danach in aller Ruhe zuhause zu untersuchen, hat den Vorteil. dass es immer wieder zu kleinen Überraschungen kommen kann, wenn zum Beispiel in einer Probe von 50 cm² mit ein bis drei dominierenden Arten insgesamt bis 15 Arten gefunden werden.

Was das Untersuchungsgebiet betrifft, entsprechen die 126 epigäischen und epilithischen Moose aus der knapp 7'000 m² grossen untersuchten Fluhfläche rund 39% aller Moose des Kantons Basel-Landschaft und des jurassischen Teils des Kantons Solothurn. Das zeigt deutlich, dass Flühe mit ihrer kleinräumigen Standortvielfalt eine grosse Moosartenvielfalt aufweisen, vor allem wenn man noch bedenkt, dass ja der grösste der Teil der Felswände nicht untersucht werden konnte und dass der Kanton Basel-Landschaft mit der Birsebene, der Hochrheinebene sowie dem Sundgauer Hügelland noch andere Teillandschaften beinhaltet.

Ganz sicher tragen also die Kantone Basel-Landschaft und / oder Solothurn gemäss aktuellem Wissen eine Verantwortung für die 23 oben genannten selteneren Arten und damit haben sie auch den Auftrag, bei den Flühen, insbesondere bei denen, die eine oder gar mehrere dieser Arten beherbergen, den Naturschutz gegenüber der Erholung zu priorisieren. Auch

wenn es nicht populär ist, so ist bei diesen Flühen das Klettern zu untersagen oder der Kletterbetrieb zu kanalisieren, denn Schäden an der Vegetation gibt es beim Herangehen zum Fluhfuss durch das artenreiche Standortmosaik der Schutthalde (Kubešová und Chytrý 2005), dem Gehen auf dem Fluhfuss entlang der Fluhwand (Rusterholz et al. 2011), beim Präparieren und beim Beklettern der Wände und trotz Vorrichtungen auch im Bereich der Fluhkante und des Fluhkopfs. Für die Gefässplanzen ist die negative Auswirkung des Kletterns auf die Deckung von Gefässpflanzen an Fluhwänden nachgewiesen (Rusterholz et al. 2004, Müller et al. 2004). Genau so wichtig ist es, auf den verständlicherweise beliebten Fluhköpfen und an den Fluhkanten das Lagern und das Feuern zu verbieten oder räumlich einzuschränken.

Dank

Mein erster Dank geht an meinen Freund und bryologischen Lehrer Josef Bertram (Allschwil BL) für die Nachkontrolle einiger von mir unsicher bestimmten Moose. Mein zweiter Dank geht an Herrn PD Dr. Peter Stoll (Universität Basel) für seine wichtige, wenn auch wegen meiner mathematischen Unbedarftheit nicht immer erfolgreiche Beratung in statistischen Fragen. In diesem Zusammenhang verdanke ich auch den finanziellen Beitrag an die statistische Beratung von der Stiftung zur Förderung der Pflanzenkenntnis. Für wichtige Hinweise danke ich Prof. Dr. Bruno Baur und Dr. Hans-Peter Rusterholz (beide Universität Basel). Ein ganz herzlicher Dank geht auch an Michael Lüth (Freiburg im Br.) für die kostenlos zur Verfügung gestellten Bilder der Moosarten. Danken möchte ich auch dem Redaktor und drei Reviewern. Zuletzt möchte ich auch meiner Frau Regula dafür danken, dass sie es hingenommen hat, dass ich mich über eine längere Zeit tagelang vor das Binokular und das Mikroskop gesetzt und mich damit sozusagen ausgeklinkt habe.

Literatur

- Ahrens M (1992): Die Moosvegetation des nördlichen Bodenseegebietes. Dissertationes Botanicae 190: 1–681.
- Baur B, Fröberg L, Müller SW (2007): Effect of rock climbing on the calcicolous lichen community of limestone cliffs in the northern Swiss Jura Mountains. Nova Hedwigia 85: 429–444.
- Bertram J (2000): Moosvegetation und Moosflora des Reservats Aletschwald. Les cahiers des sciences naturelles 4.
- Bertram J (2003): Moosvegetation und Moosflora des Naturschutzgebietes Wildenstein. Mitteilungen der Naturforschenden Gesellschaften beider Basel 7: 103–156.
- Bertram J (2009): Moosvegetation und Moosflora im Gebiet der Jöriseen (Graubünden, Schweiz). Jahresberichte der Naturforschenden Gesellschaft Graubünden 115.
- Bertram J (2011): Moosvegetation und -flora des Felsund Bergsturzgebietes im Waldreservat Fulnauweid (Seewen, NW-Schweiz). Mitteilungen der Naturforschenden Gesellschaften beider Basel 13: 89–128.
- Braun-Blanquet J (1964): Pflanzensoziologie 3. Auflage. Springer, Wien.
- Burck O (1947): Die Laubmoose Mitteleuropas. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 477: 1–210.
- Burnand J, Hasspacher B (1999): Waldstandorte beider Basel. Verlag Kanton Basel-Landschaft, Liestal.
- Camp RJ, Knight RL (1998): Effects of rock climbing on cliff plant communities at Joshua Tree National Park, California. Conservation Biology 12: 1302–1306.
- Düll R, Düll-Wunder B (2008): Moose einfach und sicher bestimmen. Quelle & Meyer, Wiebelsheim.
- Farris MA (1998): The effects of rock climbing on the vegetation of three Minnesota cliff systems. Canadian Journal of Botany 76: 1981–1990.
- Frahm J-P, Frey W (2004): Moosflora, 4. Auflage. Ulmer, Stuttgart.
- Hegetschweiler KT, Rusterholz H-P, Baur B (2007): Fire place preferences of forest visitors in northwestern Switzerland: Implications for the management of picnic sites. Urban Forestry & Urban Greening 6: 73–81.
- Hertel E (1974): Epilithische Moose und Moosgesellschaften im nordöstlichen Bayern. Berichte der naturwissenschaftlichen Gesellschaft Bayreuth, Beiheft 1.
- Kreh, U, Mauthe G, Riedinger R, Schloz W, Wiening H (1999): Felsen und Klettern in Baden-Württemberg. Entwicklung und Umsetzung einer naturverträglichen Kletterkonzeption. Naturschutz und Landschaftspflege in Baden-Württemberg 73: 135-1744.

- Kubešová S, Chytrý M, (2005): Diversity of bryophytes on treeless cliffs and talus slopes in a forested central European landscape. Journal of Bryology 27: 35–46.
- Kürschner H (1986); Raumverteilungsmuster basiphiler Felsmoosgesellschaften am Beispiel der Graburg (Nord-Hessen). Berliner Geographische Abhandlungen 41: 125–263.
- Landwehr J (1966): Atlas van de Nederlandse bladmossen. Koninklijke Nederlandse Natuurhistorische Vereniging. ERLA, Amsterdam-Zuid.
- Lang B (2014): Klettern und Kletterkonzepte in der Fränkischen Schweiz und im nördlichen Frankenjura aus der Sicht des Artenschutzes kritisch betrachtet. RegnitzFlora Mitteilungen des Vereins zur Erforschung der Flora des Regnitzgebietes 6: 3–28
- Larson DW, Matthes U, Kelly PE (2000): Cliff ecology. Cambridge University Press, Cambridge.
- Limpricht KG (1890): Die Laubmoose Deutschlands, Oesterreichs und der Schweiz: I. Abtheilung: Sphagnaceae, Andreaeaceae, Archidiaceae, Bryineae (Cleistocarpae, Stegocarpae [Acrocarpae]). Verlag von Eduard Kummer, Leipzig.
- Limpricht KG (1895): Die Laubmoose Deutschlands, Oesterreichs und der Schweiz: II. Abtheilung: Bryineae (Stegocarpae [Acrocarpae, Pleurocarpae excl. Hypnaceae]). Verlag von Eduard Kummer, Leipzig.
- Limpricht KG (1904): Die Laubmoose Deutschlands, Oesterreichs und der Schweiz: III. Abtheilung: Hypnaceae und Nachträge, Synonymen-Register und Litteraturverzeichniss. Verlag von Eduard Kummer, Leipzig.
- Lüth M (1990): Moosgesellschaften auf Blockhalden im Südschwarzwald. Beihefte Veröffentlichungen für Naturschutz und Landschaftspflege von Baden-Württemberg 58: 1–88.
- Marstaller R (1979): Die Moosgesellschaften der Ordnung Ctenidietalia mollusci Hadač und Šmarda 1944. 1. Beitrag zur Moosvegetation Thüringens. Feddes Repertorium 89: 629–661.
- Marstaller R (1983): Zur Kenntnis des Grimmietum tergestinae Šmarda 1947. 9. Beitrag zur Moosvegetation Thüringens. Feddes Repertorium 94: 125–135.
- Marstaller R (1987): Bemerkenswerte Moosgesellschaften im Kalkgebiet bei Rübeland, Harz, Bez. Magdeburg. Wissenschaftliche Zeitschrift der Universität Jena, Mathematische-naturwissenschaftliche Regenz 36: 469–499.
- Marstaller R (1992): Die Moosgesellschaften des Verbandes Neckerion complanatae Šm. et Had. in Kl. et Had. 1944. Herzogia 9: 257–318.
- Marstaller R (1997): Bryosoziologische Studien im Naturschutzgebiet Schönberg bei Reinstädt (Saale-Holz-Landkreis). Gleditschia 25: 93–115.
- Marstaller R (2000): Zur Kenntnis des Encalypto-Fissidentetum cristati. Herzogia 14: 195–208.

- Marstaller R (2002): Zur Kenntnis des Ctenidietum mollusci Stod. 1937. Herzogia 15: 247–275.
- Marstaller R (2006): Syntaxonomischer Konspekt der Moosgesellschaften Europas und angrenzender Gebiete. Haussknechtia, Beiheft 13.
- Marstaller R (2011): Die Moosgesellschaften des geplanten Naturschutzgebietes «Kielforst» bei Hörschel (Wartburgkreis, Eisenach). 137. Beitrag zur Moosvegetation Thüringens. Hercynia NF 44: 93–126.
- Marstaller R (2012): Die Moosgesellschaften der Fahner Höhe mit besonderer Berücksichtigung der Naturschutzgebiete «Hirschgrund» bei Gierstädt und «Im Haken» bei Witterda (Landkreise Erfurt und Gotha). 154. Beitrag zur Moosvegetation Thüringens. Hercynia NF 45: 51–80.
- Marstaller R (2016): Moosgesellschaften im Muschelkalkgebiet zwischen der Rhön und den Hassbergen (Unterfranken, Landkreise Rhön-Grabfeld und Bad Kissingen). Haussknechtia Beiheft 19: 1–190.
- McMillan MA, Larson DW (2002): Effects of rock climbing on the vegetation of the Niagara escarpment in southern Ontario, Canada. Conservation Biology 16: 389–398.
- Müller K (1951–1956): Die Lebermoose Europas (Musci hepatici), 3. Aufl. Dr. L. Rabenhorsts Kryptogamenflora, VI. Bd. Akademische Verlagsgesellschaft Geest & Portig, Leipzig.
- Müller SW, Rusterholz H-P, Baur B (2004): Rock climbing alters the vegetation of limestone cliffs in the northern Swiss Jura Mountains. Canadian Journal of Botany 82: 862–870.
- Müller SW, Rusterholz H-P, Baur B (2006): Effects of forestry practices on relict plant species on limestone cliffs in the northern Swiss Jura mountains. Forest Ecology and Management 237: 227–236.
- Müller SW, Rusterholz H-P, Zieschang O, Ginzler C, Baur B (2008): Quantitative Analyse der Verwaldung von Felsflühen im Nordwestschweizer Jura. Schweizerische Zeitschrift für das Forstwesen 159: 389–395.
- Müller F, Otte V (2007): Moos- & Flechtengesellschaften – Verzeichnis und Rote Liste der Moosund Flechtengesellschaften Sachsens. LfUG, Dresden
- Nebel M, Philippi G (ed) (2000, 2001, 2005): Die Moose Baden-Württembergs, Bd 1–3. Ulmer, Stuttgart.
- Nuzzo VA (1996): Structure of cliff vegetation on exposed cliffs and the effect of rock climbing. Canadian Journal of Botany 74: 607–617.
- Nyholm E (1980): Illustrated Moss Flora of Fennoscandia, II. Musci, 2nd edition. Swedish nat sciences research council.
- Oettli M (1905): Beiträge zur Ökologie der Felsflora. Jahrbuch der St.Gallischen Naturwissenschaftlichen Gesellschaft.
- Paton AJ (1999): The liverwort flora of the British Isles. Harley Books, Essex.

- Philippi G (1965): Die Moosgesellschaften der Wutachschlucht. Mitteilungen des Badischen Landesverbandes für Naturkunde und Naturschutz NF 8: 625–668.
- Philippi G (1971): Die Moosvegetation der Wutachschlucht. In: Landesanstalt für Umweltschutz Baden-Württemberg: Die Wutach. Natur- und Landschaftsschutzgebiete Baden-Württembergs 6: 249–260
- Philippi G (1979): Moosflora und Moosvegetation des Buchswaldes bei Grenzach-Wyhlen. In: Landesanstalt für Umweltschutz Baden-Württemberg: Der Buchswald bei Grenzach (Grenzacherhorn). Natur- und Landschaftsschutzgebiete Baden-Württembergs 9: 113–146.
- R DEVELOPMENT CORE TEAM (2016): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org.
- Richard J-L (1972): La végétation des crêtes rocheuses du Jura. Berichte der Schweizerischen Botanischen Gesellschaft 82: 86–112.
- Rusterholz H-P, Müller SW, Baur B (2004): Effects of rock climbing on plant communities on exposed limestone cliffs in the Swiss Jura Mountains. Applied Vegetation Sciences 7: 35–40.
- Rusterholz H-P, Baur B, Verhoustraeten C (2011): Effects of long-term trampling on the above-ground forest vegetation and soil seed bank at the base of limestone cliffs. Environmental Management 48: 1024–1032.
- Schade A (1923): Die kryptogamischen Pflanzengesellschaften an den Felswänden der Sächsischen Schweiz. Berichte der Deutschen Botanischen Gesellschaft 41 (Gen-Vers-Heft): 49–59.
- Smith AJE (2004): The Moss Flora of Britain and Ireland, Second Edition. Cambridge University Press, Cambridge.
- SWISSBRYOPHYTES (2006): Die 15 häufigsten Moose der Schweiz. http://www.swissbryophytes.ch/documents/naturschutz/poster_15_dt_print.pdf. Eingesehen am 14. Januar 2018.
- SWISSBRYOPHYTES (2011–2018): Nationales Daten- und Informationszentrum der Schweizer Moose und Projekt Moosflora der Schweiz. http://www.swissbryophytes.ch/index.php/de/. Eingesehen am 3. Januar 2018.
- Tessler M, Clark TA (2016): The impact of bouldering on rock associated vegetation. Biological Conservation 204: 426–433.
- Urmi E (2010): Teil II Bryophyta (Moose) In: Landolt E., Bäumler B, Erhardt A, Hegg O, Klötzli F, Lümmler W, Nobis M, Rudmann-Maurer K, Schweingruber FH, Theurillat J-P, Urmi E, Vust M & Wohlgemuth T Flora indicativa Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Haupt Verlag, Bern.
- von Brackel W (1993): Die Flechten- und Moos-Ge-

- sellschaften Süddeutschlands. Veröffentlichungen des Bundes der Ökologen Bayerns 6.
- Wassmer A (1996): Zur Gebirgsffora in den Felsgebieten des östlichen Kettenjuras. Bauhinia 11/4: 247–267.
- Zoller H (1954): Die Typen der Bromus erectus-Wiesen des Schweizer Juras, ihre Abhängigkeit von den Standortbedingungen und wirtschaftlichen Einflüssen und ihre Beziehungen zur ursprünglichen Vegetation. Beiträge zur Geobotanischen Landesaufnahme der Schweiz 33: 1–309.
- Zoller H (1989a): Vegetationskomplex des Eichenmischwaldes. In: Imbeck-Löffler P (Leitung): Natur aktuell Lagebericht zur Situation der Natur im Kanton Basel-Landschaft im Jahr 1988. Verlag des Kantons Basel-Landschaft, Liestal: 74–75.
- Zoller H (1989b): Vegetation des Seidelbast-Föhrenwaldes. In: Imbeck-Löffler P (Leitung): Natur ak-

- tuell Lagebericht zur Situation der Natur im Kanton Basel-Landschaft im Jahr 1988. Verlag des Kantons Basel-Landschaft, Liestal: 76–77.
- Zoller H (1989c): Eichen- und Föhrenwälder, Hungerblumen-Trockenrasen, Fels- und Schuttfluren. In: Imbeck-Löffler P (Leitung): Natur aktuell Lagebericht zur Situation der Natur im Kanton Basel-Landschaft im Jahr 1988. Verlag des Kantons Basel-Landschaft, Liestal: 146–152.
- Zoller H, Wagner C (1986): Rückgang und Gefährdung von Mesobromion-Arten im Schweizer Jura. Veröffentlichungen des Geobotanischen Instituts der ETH, Stiftung Rübel, Zürich 87: 239–259.
- Zoller H, Wagner C, Frey V (1986): Nutzungsbedingte Veränderungen in Mesobromion-Halbtrockenrasen in der Region Basel Vergleich 1950–1980. Abhandlungen des Westfälischen Museums für Naturkunde 48: 93–107.