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Symmetrien, Teilchen und Felder

Andreas Aste

Zusammenfassung: Symmetrien spielen in den Naturwissenschaften eine äusserst prominente Rolle.

In der Mathematik als Sprache der Physik werden Symmetrien im Rahmen der Gruppentheorie
behandelt, welche zugleich das nötige Rüstzeug zur Klassifikation von Naturgesetzen wie auch von

physikalischen Objekten wie beispielsweise den Elementarteilchen liefert. In der vorliegenden Arbeit
werden die in der relativistischen Quantenfeldtheorie als mathematische Theorie der Teilchenphysik
verwendeten Begriffe thematisiert, die im Zusammenhang mit der modernen Beschreibung der bisher

als fundamental erachteten Elementarteilchen und der mit ihnen assoziierten Felder Verwendung
finden. Es liegt in der abstrakten Natur der Quantenfeldtheorie, dass diese Begriffe im engen Rahmen

einer Übersichtsarbeit nur durch Veranschaulichung berührt werden können.

Abstract: Symmetries are playing a very prominent role in natural sciences. In mathematics as the

language of physics, symmetries are treated within the framework of group theory, which provides
the tools to classify natural laws and physical objects like elementary particles. The present work
discusses aspects of relativistic quantum field theory as the mathematical theory of particle physics
which are relevant for the modern description of elementary particles and their associated fields
hitherto considered as fundamental building blocks of the theory. Due to the abstract nature of quantum
field theory, these aspects can only be touched by their exemplification within a review.

Key words: Symmetrien, Elementarteilchenphysik, Quantenfeldtheorie.
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Einführung

Symmetrien (nach den altgriechischen Worten

syn, <jvv zusammen und metron, fiexpcov
Mass) sind uns aus dem gemeinen Alltag durchaus

vertraut. In der entsprechenden Begriffsweit
ist die Symmetrie verknüpft mit ebenso intuitiv
erfassten Ausdrücken wie Regelmässigkeit,
Proportion und Harmonie. Man trifft Symmetrien
beim Betrachten von Pflanzen, Kristallen,
Kirchenfenstern und Schneeblumen am kalten Fenster

an.

In der Physik kommt dem Symmetriebegriff
eine fundamentale, mathematisch klar definierbare

Bedeutung zu. Von der Regelmässigkeit als

Qualität eines Subjekts wissenschaftlicher
Untersuchungen ist es zur Regel, also dem

Naturgesetz, nicht weit. Entsprechend werden Theorien

im Umfeld der Elementarteilchenphysik häufig

durch die ihnen innewohnenden Symmetrien
bezeichnet. So gilt beispielsweise die
Quantenelektrodynamik, welche die durch elektrische
Ladungen erzeugten Phänomene zum Thema hat,
als eine sogenannte abelsche U(l)-Eichtheorie,
die Quantenchromodynamik, welche die starken

Kräfte in Teilchen wie dem Proton oder
dem Neutron beschreibt, ist eine nicht-abelsche
SU (3)-Eichtheorie. Dabei sind die Terme L7 (1)
und SU(3) Bezeichnungen für sogenannte Lie-
Gruppen (Lie und Engel 1888), welche in der
Mathematik bereits im vorletzten Jahrhundert

eingeführt wurden und heute zur Klassifikation
der Symmetrien von Naturgesetzen und der ihnen

unterworfenen Systeme herangezogen werden.

Es ist ein Ziel dieser Arbeit, Einblicke in

die grundlegenden Symmetriekonzepte zu

gewähren, die der Klassifikation der fundamentalen

Bausteine der Natur dienen. Da sich die

Elementarteilchenphysik und die ihr zugrunde
liegende Theorie, die Quantenfeldtheorie, zwangsläufig

abstrakter mathematischer Konzepte
bedienen muss, soll dies mit Hilfe von Veranschaulichungen

und Analogiebetrachtungen gesche¬

hen. Dem Begriff "Feld" kommt in der
Quantenfeldtheorie eine recht abstrakte mathematische

Bedeutung zu, deren Klärung hier zu weit führen

würde. Quantenfelder als Grundbausteine der

Quantenfeldtheorie sind aber eng mit den mit
ihnen assoziierten physikalischen Phänomenen

verknüpft, welche in vielen Fällen einen
korpuskularen, also teilchenartigen Charakter aufweisen.

Symmetrien und Gruppen

Natürlich ist im Rahmen der präzisen mathematischen

Formulierung physikalischer Fragestellungen

eindeutig zu klären, was unter einer
Symmetrie überhaupt zu verstehen ist. In der Physik

ist es die Eigenschaft eines näher zu
definierenden Systems, unter einer bestimmten Menge

von Änderungen oder Transformationen
invariant zu sein. Wenn eine Transformation den

Zustand oder eine Eigenschaft des Zustandes

eines physikalischen oder gedachten Systems nicht
ändert, werden diese Transformationen
Symmetrieoperationen oder eben Symmetrietransformationen

genannt. Unterschieden werden diskrete

Symmetrien und kontinuierliche Symmetrien.

Diskrete Symmetrien

Ein Beispiel für eine diskrete Symmetrie ist die
Spiegelungsinvarianz des in Abb. 1 dargestellten

Schmetterlings, einem Tagpfauenauge. Jeder
Farbfleck auf dem linken Flügel findet eine
gespiegelte Entsprechung auf dem rechten Flügel
und umgekehrt. Man wird natürlich bei genauer
Betrachtung einwenden müssen, dass die unterstellte

Symmetrie nicht exakt ist. Diese Situation

einer leicht gebrochenen oder approximativen
Symmetrie wird auch in der Teilchenphysik oft
in physikalischen Systemen beobachtet und ist
nicht unbedingt störend, sondern ein möglicher
Hinweis darauf, dass ein offensichtlicher symmetrischer

Mechanismus durch einen weiteren Me-
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chanismus beeinflusst wird, der selbst wiederum
gewissen Symmetrieprinzipien gehorchen mag.
Die präzise Messung solcher kleinen Störungen
ebnet dann den Weg zum Verständnis neuer
physikalischer Phänomene und beschäftigt gegenwärtig

tausende von Physikern auf der Welt, so
zum Beispiel auf dem sehr aktuellen Gebiet der
Neutrinophysik.

V /

Abb. 1: Tagpfauenauge (Zeichnung: Jacob Hübner,

um 1800).

Nach diesem kurzen Exkurs ruhe aber der

Brennpunkt unserer Betrachtungen tatsächlich
auf einem idealen, also perfekt spiegelsymmetrischen

Tagpfauenauge, wie es schliesslich durch
Abb. 2 dargestellt ist. Das blaue Auge unten links
findet eine genaue Entsprechung im unteren Teil
des rechten Flügels. Zusammen mit der trivialen

Eigenschaft eines Objekts, sich nicht zu
verändern, wenn es nicht verändert wird, existieren
also folgende Transformationen, unter welchen
das ideale Tagpfauenauge invariant ist: Die
sogenannte Identität /, welche nichts bewirkt, und

eine Spiegelung S an einer Symmetrieebene. Es

steht uns frei, die Spiegelung zweimal auf das

Tagpfauenauge anzuwenden. Durch diese

Verknüpfung zweier Symmetrietransformationen
erhalten wir offensichtlich die identische Transformation,

gar unabhängig davon, ob wir ein reales

Tagpfauenauge mit approximativer Spiegelsymmetrie

oder ein perfektes Tagpfauenauge zweimal

spiegeln; das Resultat wird dem Urzustand

entsprechen. Formal können wir die Hintereinan-
derausführung mehrerer Symmetrietransformationen

als Produkt schreiben, sodass also gilt

SS S2 I. (1)

Natürlich gilt weiter

IS SI S, 11 1. (2)

V /

Abb. 2: Exakt spiegelsymmetrisches Tagpfauenauge.

Damit sind wir beim mathematischen Begriff
der Gruppe angelangt. In der Mathematik
versteht man unter einer Gruppe eine Menge von
Elementen, die paarweise in geordneter Reihenfolge

miteinander verknüpft werden können und
welche mittels dieser Verknüpfung wiederum ein
Element der Gruppenmenge erzeugen. Der
vollständige Satz an Forderungen, die an eine Gruppe

gestellt werden, stellt sicher, dass man mit den
Gruppenelementen in gewissem Sinne vernünftig

rechnen kann. Man definiert also abstrakt:

Eine Gruppe ist ein Paar (G, bestehend aus
einer Menge G und einer Verknüpfung " "je zweier

Elemente aus G, also eine Abbildung

GxG-yG, (a,b) a-b.

Die Verknüpfung muss folgende Axiome erfüllen:

• Assoziativität: Für alle Gruppenelemente
a,b und c gilt: (a b) c a (b c).
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• Es gibt ein neutrales Element e E G, mit
dem für alle Gruppenelemente aSG gilt:
a - e e a a.

• Zu jedem Gruppenelement a G G existiert
ein inverses Element a~x e G mit
a a~l a~' a e.

Aus den Gruppenaxiomen folgt von selbst, dass

das neutrale Element eindeutig festgelegt ist,
denn gäbe es nebst einem neutralen Element n
noch ein anderes n' /- n, so gälte im Widerspruch

dazu n-n' n n'. In der oben eingeführten,

lediglich zweielementigen Symmetriegruppe
des exakt spiegelsymmetrischen Tagpfauenauges
übernimmt I die Rolle des neutralen Elements.

Die Verknüpfung zweier Gruppenelemente
wird oft als Multiplikation durch einen Punkt
dargestellt; eine solche Notation ist praktisch, aber
selbstverständlich nicht zwingend.

Es bleibt zu bemerken, dass man im Falle des

exakt spiegelsymmetrischen Tagpfauenauges eine

viel grössere Symmetriegruppe als die Menge

{I,S}, die in der Mathematik auch als Die-
dergruppe Di bezeichnet wird, zur Betrachtung
heranziehen könnte. Schliesslich würde auch die
Vertauschung der beiden Fühler den Schmetterling

nicht ändern, ebenso der Austausch weiterer

beliebiger Teile des Schmetterlings, welche
durch Spiegelung zur Deckung gebracht werden
können. Es ist also in vielen Fällen so, dass nicht
die allgemeinsten denkbaren Symmetrietransformationen

für theoretische Untersuchungen

herangezogen werden müssen, sondern lediglich eine

Auswahl derselben, welche die Essenz der

Symmetrieeigenschaften eines Objekts beschreiben.

Es muss für den Mathematiker zudem ganz
klar erklärt sein, wie das Forschungsobjekt
definiert ist. Für die bisherige Diskussion war es

unwichtig, ob das Tagpfauenauge tatsächlich ein

räumliches Wesen, eingebettet im dreidimensionalen

Raum darstellt oder ob sich die Betrachtungen

lediglich auf das zweidimensionale Bild
des Tagpfauenauges bezogen, dieses eingebettet

in einer zweidimensionalen Ebene oder wiederum

in einem dreidimensionalen Raum. Solche

Spitzfindigkeiten sollen uns aber in der Folge um
der Kürze willen nicht weiter aufhalten.

Weiter soll nicht unerwähnt bleiben, dass

die Spiegelung eines physikalischen Objekts als

unphysikalische Operation bezeichnet werden

muss. Die Spiegelung eines Standard-Menschen
hätte zur Folge, dass dessen Herz durch massive

chirurgische Massnahmen von der linken
auf die eher unübliche rechte Seite gerückt werden

müsste, und nicht nur dies. Sogar jedes
einzelne Atom müsste gespiegelt werden. Dennoch

spielen in der theoretischen Physik
Symmetrietransformationen, die sich lediglich als

Gedankenexperimente durchführen lassen, eine wichtige

Rolle. Eine Spiegelungstransformation wird in
der Physik häufig als Paritätstransformation
bezeichnet und durch den Buchstaben P bezeichnet.
Weitere diskrete Transformationen von grosser
theoretischer Relevanz sind die Zeitumkehrtransformation

T und die Umkehrung gewisser
Teilcheneigenschaften wie der elektrischen Ladung
durch die sogenannte Ladungskonjugation C.

Tatsächlich sind die uns bekannten
Naturgesetze unter keiner der eben erwähnten drei
Transformationen exakt symmetrisch (Wu et al.
1957). Betrachtet man ein gespiegeltes Bild
unserer Welt, so laufen die entsprechenden Vorgänge

nicht nach exakt denselben Gesetzen ab wie
in unserer Welt. Man nahm auch lange an, dass
ein rückwärts abgespielter Film eines physikalischen

Vorgangs wiederum einen realen physikalischen

Vorgang zeigt. Dem ist aber nicht wirklich

so. Die heute bekannte Verletzung der
Zeitumkehrsymmetrie der Naturgesetzte hat übrigens
nichts damit zu tun, dass uns die Vorgänge in
einem rückwärts laufenden Film widernatürlich
erscheinen. Es wäre zwar befremdend, wenn sich
eine zerbrochene Tasse aus ihren Einzelteilen
wieder zu einem Ganzen zusammensetzen würde.

Dennoch ist ein solcher Vorgang nicht
prinzipiell verboten, aber wegen der vorauszusetzen-
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den Anfangsbedingungen sehr unwahrscheinlich.

In der Tat erhält man aus einem räumlich

gespiegelt dargestellten realen physikalischen

Vorgang (—> P-Transformation, Paritätstransformation),

bei dem zusätzlich alle Teilchen durch

umgekehrt geladene ladungskonjugierte Varianten

ersetzt wurden (-> C-Transformation,
Ladungskonjugation) und welchen man zeitumgekehrt
ablaufen lässt (—/ T-Transformation,
Zeitumkehrtransformation), wieder einen real existierenden

physikalischen Prozess. Diese sogenannte

CPT-Invarianz der Naturgesetze gilt als

fundamentale Symmetrie der relativistischen
Quantenfeldtheorie (Lüders 1957). Eine Verletzung der

CPT-Invarianz wäre ein wichtiger Hinweis auf

neue Physik, konnte aber bis anhin nicht

nachgewiesen werden (Dütsch und Gracia-Bondia

2012).

Kontinuierliche Symmetrien

Um das Wesen der kontinuierlichen

Symmetriegruppen zu veranschaulichen, betrachten wir
als Nächstes die Symmetriegruppe einer Kugel

im dreidimensionalen euklidischen Raum.

Offensichtlich ist die Kugel invariant unter beliebigen

Drehungen (Rotationen) um ihren Mittelpunkt.

Entsprechend ist die Gruppe aller möglichen

Rotationen im dreidimensionalen Raum um

den Mittelpunkt der Kugel eine Symmetriegruppe

der Kugel. Diese Gruppe wird in der Mathematik

als spezielle orthogonale Gruppe in drei

Dimensionen bezeichnet, kurz SO(3).

Es existieren verschiedene Möglichkeiten, eine

Rotation R SO (3) zu charakterisieren.

Naheliegend wäre beispielsweise die Angabe einer

Drehachse und eines Drehwinkels. Diese beiden

Grössen können kompakt durch einen einzelnen

Vektor a (at, a2, a3) ausgedrückt werden; der

Betrag des Vektors

a |a| yaf + af + a^ (3)

entspricht dann dem Drehwinkel der Rotation,

der auf die Länge Eins normierte Einheitsvektor

charakterisiert die Richtung der Rotationsachse.

Es muss dabei aber berücksichtigt werden,
dass zwei solche Vektoren ß (ßi,/L.ßu und

7 (Li, fi-, 73) dieselbe Rotation beschreiben, also

äquivalent sind, wenn sie in dieselbe Richtung
weisen und sich vom Betrag her um ein ganzzahliges

Vielfaches einer vollen Drehung um 360"
unterscheiden: Gilt

ß r y mit r 6 R und (5)

ß -y=n- 360" mit n E Z, (6)

so sind die durch ß und f erklärten Rotationen
gleich:

(5,6) => Ry. (7)

Die SO(3) ist ein Beispiel für eine kontinuierliche

Gruppe oder eine Lie-Gruppe. Es ist nämlich
möglich, innerhalb der Gruppe selbst von einem
Element zu einem anderen Element über einen

zusammenhängenden, in gewissem Sinne
kontinuierlichen Weg zu gelangen. Zwischen zwei
verschiedenen Rotationen R„ und Rß liegen alle

denkbaren "Zwischenstufen", und man gelangt
von der Drehung Pg kontinuierlich innerhalb der
Gruppe selbst zur Drehung Rß, beispielsweise
über folgenden Weg im Raum SO(3) der Drehungen

«mM'56!0'1!' (8)

wobei der Parameter ,v kontinuierlich von 0 bis 1

variiert wird.
Im Falle der Diedergruppe D\, der

Symmetriegruppe des perfekten Tagpfauenauges, ist eine
solche kontinuierliche Variation nicht möglich.
Es gibt keine "halbe Spiegelung", aber sehr wohl
eine Rotation um einen halben Winkel im Falle
der 50(3) bei vorgegebenem Drehwinkel um eine

vorgegebene Drehachse.

Die allgemeingültige Definition kontinuierlicher

Gruppen beruht auf Begriffen, welche im
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mathematischen Teilgebiet der Topologie
definiert sind. Die obige Diskussion enthält aber die

wesentlichen intuitiven Aspekte.
Man könnte nun meinen, dass die Drehgruppe

SO(3) tatsächlich eine volle Symmetriegruppe

unserer Naturgesetze sein sollte, da zumindest
lokal erfahrungsgemäss jedes physikalische System

bei Vernachlässigung äusserer, nicht
notwendigerweise rotationssymmetrischer Einflüsse wie
dem Schwerefeld der Erde im Labor nach genau
denselben Regeln funktioniert wie ein analoges,
aber gedrehtes System. Dem ist aber nicht so, und
diese im folgenden Abschnitt diskutierte tiefgreifende

Eigenschaft der Natur erlaubt eine
Klassifikation der uns bekannten Elementarteilchen in
zwei Klassen.

Symmetrien in der Teilchenphysik

Bosonen und Fermionen

In der Physik erfordert die Durchführung eines

Experiments die Trennung der Welt in einen

Beobachter (oder Experimentator) und eine

Versuchsanordnung (oder ein zu untersuchendes

physikalisches System). Es soll hier nicht auf
die philosophischen Aspekte eingegangen werden,

die durch einen solchen gedanklichen Vor¬

gang aufgeworfen werden. Die Frage aber, um
welchen Winkel ein physikalisches System um
eine beliebige feste Achse gedreht werden muss,
bis es wieder in derselben Beziehung zu seiner

Umwelt steht und somit der ursprüngliche
Zustand des Gesamtsystems erreicht ist, hat sich als

sehr fruchtbar erwiesen.

Stellen wir uns also vor, dass ein einfaches

physikalisches Objekt, beispielsweise ein Proton,
aktiv gedreht wird, wobei das Proton ansonsten

im Wesentlichen unbeeinflusst bleiben soll. Die

naheliegende Annahme, dass nach einer vollen

Umdrehung um 360" der Urzustand des Gesamtsystems

Kosmos - Proton wieder hergestellt sei,

ist falsch! Ein einfaches Alltags-Experiment,
dargestellt in den Abbildungen 3 und 4, veranschaulicht

diese Tatsache. Dreht man seine Hand um
360" um eine feste senkrechte Achse wie in den

Bildern dargestellt, so wird dadurch der
ungedrehte Urzustand offensichtlich nicht wieder
erreicht; die resultierende Gesamtsituation des

Systems Mensch - Hand ist zwar frei von physischen
Verletzungen, aber gespannt. Erstaunlicherweise

kann der Urzustand wieder hergestellt werden,

wenn die Hand um weitere 360" in derselben

Drehrichtung rotiert wird, insgesamt also um
720"!

Abb. 3: Ein um einen Winkel von 360" gedrehtes Objekt als Teil des Ganzen steht nicht notwendigerweise
in derselben Beziehung zum Kosmos wie vor der Drehung, wie der oben in Viertelsdrehungen dargestellte
Selbstversuch zeigt. Die Rotation einer Hand um eine senkrechte Drehachse resultiert nach Abschluss der vollen

Umdrehung in einer für den Experimentator eher ungemütlichen Endsituation, die sich von der entspannten
Ausgangslage offensichtlich unterscheidet (Fotos: Irene Aste).



Symmetrien, Teilchen und Felder Andreas Aste 41

Abb. 4: Eine verblüffende Situation entsteht, wenn die Hand aus Abb. 3 im ursprünglichen Drehsinn weiter

gedreht wird, bis ein Drehwinkel von 720" erreicht ist. Tatsächlich stellt sich erst nach zwei vollen Umdrehungen

wieder der Urzustand des Mensch-Hand-Systems ein (Fotos: Irene Aste).

Es hat sich herausgestellt, dass die in der

Natur vorkommenden Elementarteilchen strikt in

zwei Klassen einteilbar sind: Die eine Klasse sind

die Bosonen, so benannt zu Ehren des indischen

Physikers Satyendranath Bose. In Falle der Bosonen

ist bereits nach einer vollen Umdrehung wieder

der relative Urzustand zum Kosmos hergestellt.

Die zu Ehren des Physik-Nobelpreisträgers

Enrico Fermi als Fermionen bezeichneten

Mitglieder der anderen Klasse hingegen bedürfen zur

Wiederherstellung des Urzustands tatsächlich

einer Drehung um 720°. Jeder Teil unserer Welt ist

mit dieser in unauflöslicher Weise verwoben, im

Falle der Fermionen in einer für die alltägliche

Erfahrung verwirrenden Weise.

Ein Teilsystem kann somit niemals in Isolation

vom Rest der Welt betrachtet werden. Die

Erkenntnis, dass Elektronen tatsächlich Fermionen

sind, hat die Erklärung der Atomstruktur erst

möglich gemacht (Pauli 1925). Bosonen und

Fermionen zeigen bei kollektivem Auftreten sehr

unterschiedliche Verhaltensweisen. In etwas

oberflächlicher und qualitativer Manier kann behauptet

werden, dass Fermionen als Materiebausteine

aufgefasst werden dürfen, während Bosonen für

den Aufbau von Kraftfeldern zwischen der fer-

mionischen Materie verantwortlich sind. Zu den

Fermionen gehören im aktuell gültigen Standard-

Modell (SM) der Elementarteilchenphysik die

Quarks und die Leptonen, zu welchen das Elektron,

das Myon und das Tauon gehören, wie auch

die Neutrinos. Zu den Bosonen zählen das Higgs-
Teilchen sowie das Photon, welches die
elektromagnetischen Kräfte vermittelt, die elektrisch
geladenen W+- und W~-Bosonen und das neutrale
Z-Boson als Vermittler der schwachen Kernkraft
und schliesslich die Gluonen, welche für die starken

Kernkräfte zwischen den Quarks verantwortlich

gemacht werden. Vernachlässigt man gravi-
tative Effekte, so ist diese Liste der fundamentalen

Teilchen im SM vollständig. Die Gravitation
lässt sich durch die naive Einführung eines bo-
sonischen Teilchens, dem Graviton, beschreiben.

Allerdings sind die damit verbundenen mathematischen

Komplikationen schwerwiegend und bis
dato eigentlich unverstanden (Aste et al. 2009).

Die Unterteilung der Elementarteilchen in
Bosonen und Fermionen ist universell und spielt
dieselbe Rolle in hypothetischen Theorien wie
dem minimalen supersymmetrischen Standard-
inodell (MSSM), einer populären Erweiterung des

SM. Sie spiegelt die Tatsache wieder, dass die
"naive" Rotationsgruppe 50(3) nicht die eigentliche

Symmetriegruppe der Natur darstellt,
zumindest in einer 3 + 1-dimensionalen Raum-Zeit.
Die 50(3) wird daher im mathematischen
Formalismus der Quantenmechanik ersetzt durch
ihre sogennante doppelte Überlagerungsgruppe
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SU (2), welche die in den Abbildungen 3 und
4 dargestellte doppelschichtige Natur der
Drehungen zu beschreiben vermag. Diese wichtige
Gruppe der speziellen unitären Transformationen
in zwei komplexen Dimensionen 51/(2), auf die

wir an dieser Stelle nicht weiter eingehen wollen,

beschreibt in den modernen Theorien der

Elementarteilchenphysik auch so genannte innere

Symmetrien, also Symmetrien, die nicht
"äusserer" räumlicher Natur sind wie die
Rotationssymmetrie, sondern welche mit inneren Qualitäten

der Teilchen wie beispielsweise Ladungszu-
ständen verknüpft sind.

Der obigen Diskussion muss die Bemerkung
angefügt werden, dass die rein räumlich
motivierte und doch im Wesentlichen korrekt begründete

Unterscheidung von Fermionen und Boso-

nen durch die Gruppentheorie der 50(3) und
SU (2) eigentlich in einem erweiterten, die spezielle

Relativitätstheorie berücksichtigenden Rahmen

untersucht werden muss.

Materie und Antimaterie

Eine weitere, bereits angetönte Symmetrie ist
die sogenannte CPT-Symmetrie, welche besagt,
dass ein ladungskonjugierter, räumlich und zeitlich

gespiegelter physikalischer Prozess wiederum

einem möglichen physikalischen Prozess

entspricht. Die sogenannte C-Konjugation oder

Ladungskonjugation ist dabei eine Transformation,
die angewendet auf einen Teilchenzustand gewisse

Eigenschaften wie die Masse des Teilchens exakt

gleich lässt, andere Eigenschaften aber

ändert. So ändert die Ladungskonjugation das

Vorzeichen der elektrischen Ladung eines Teilchens.

Es ist aber streng genommen nicht so, dass ein C-

konjugierter physikalischer Zustand tatsächlich

wieder einem physikalischen Zustand entspricht.
Erst wenn der C-konjugierte Zustand zusätzlich
einer räumlichen Spiegelung P und der Zeitspiegelung

T unterworfen wird, liegt wieder ein
physikalischer Zustand mit gegebenenfalls neuen Ei¬

genschaften vor. Die Naturgesetze besitzen keine
exakte Symmetrie unter den Transformationen C,

P und T.

Streng genommen existiert daher zu jedem
Teilchentyp ein Antiteilchentyp, der durch die
drei Operationen CPT aus der ursprünglichen
Teilchensorte hervorgeht. Immer gilt, dass

sowohl Teilchen wie auch Antiteilchen dieselbe

Masse und die umgekehrte elektrische Ladung
besitzen. Zugleich ist es bei elektrisch neutralen

Teilchen möglich, dass Teilchen ihren
Antiteilchen entsprechen. So repräsentieren zwar die

elektrisch ungeladenen Neutronen eine andere

Sorte von Teilchen als die Antineutronen,
Photonen sind aber in gewissem Sinne ihre eigenen

Antiteilchen. Im Falle der elektrisch neutralen

Neutrinos ist es tatsächlich noch nicht restlos

geklärt, wie sie sich unter den C- P- und T-
Transformationen verhalten.

Astronomische Beobachtungen legen nahe,

dass in unserem Universum ein Uberschuss an

gewöhnlicher Materie gegenüber der Antimaterie

herrscht. Langjährige astronomische
Beobachtungen lassen es sehr unwahrscheinlich
erscheinen, dass es in unserem Universum grössere

Ansammlungen von Antimaterie gibt (Ca-
netti et al. 2012). Offensichtlich wurde beim
Urknall eine grössere Menge Materie als Antimaterie

erzeugt, sodass nach der gegenseitigen
Auslöschung der beiden Materiesorten ein Überschuss

an Materie übrig blieb. Theoretische Untersuchung

suchen nach möglichen Gründen für diese
nicht ganz gelungene Auslöschung in einer
Verletzung der CP-Symmetrie, der wir unsere Existenz

verdanken. Die vorläufigen Resultate sind
aber noch nicht schlüssig.

Nebst der Teilchenklassifikation in Bosonen
und Fermionen vermittels des Transformationsverhaltens

derselben unter der speziellen unitären
Gruppe in zwei komplexen Dimensionen SU (2)
erlaubt also die diskrete CPP-Symmetrie eine
weitere Unterscheidung von Teilchen und ihren
CPP-konjugierten Zuständen, den Antiteilchen.
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Spontane Symmetriebrechung

Eine ganz alltgliche, aber vielen Leuten gänzlich

unbewusste Tatsache beruht auf der

Beobachtung, dass die Symmetrie eines Naturgesetzes

im Allgemeinen nicht der Symmetrie der

Objekte gleich ist, welche dem Gesetz unterworfen
sind. Dies lässt sich durch eine einfache Aufgabe

leicht veranschaulichen. Man stelle sich vor,
dass vier Städte aus Spargründen durch ein
möglichst kurzes Bahnnetz miteinander verbunden

werden sollen. Zufälligerweise sollen die Standorte

der Bahnhöfe dieser Städte alle präzise auf
den Eckpunkten eines Quadrates hegen.
Vereinfachend nehmen wir an, dass die Kantenlänge
dieses Quadrats gerade eine Masseinheit beträgt,
welche wir nicht weiter notieren wollen. Jede

Stadt besitzt also zwei Nachbarstädte im Abstand

1, und eine weitere Nachbarstadt im Abstand

v/2 ~ 1.4142...
Naiverweise würde man erwarten, dass die

Lösung des Problems dieselbe Symmetrie
aufweisen sollte wie das Quadrat. Auf diese Lösung

wollen wir nun kurz eingehen. Ein Quadrat ist
sicher invariant unter folgenden Transformationen:

der Identität I — Ro, welche als Rotation um einen

Winkel von 0° aufgefasst werden kann, sowie unter

Drehungen R\/4, R\/2, Riß um 90°, 180° und

270° im mathematisch positiven Sinne, dem

Gegenuhrzeigersinn. Hinzu kommen Spiegelungen

an Achsen, wie sie in Abb. 5 eingezeichnet sind.

Diese wollen wir mit S0 (horizontale Achse), .S)

(im Gegenuhrzeigersinn gegenüber der horizontalen

Achse um 45° gedrehte Achse), S2 (vertikale

Achse) sowie mit S3 für die verbleibende Achse

bezeichnen. Natürlich Hessen sich die Spiegelungen

auch als räumliche dreidimensionale

Drehungen von 180° um die Spiegelachsen auffassen.

Die Symmetriegruppe unseres Problems

besteht also aus den Elementen

{Ro, Riß, R\ß, Rißi So, Si,S2, S3} • (9)

Die Gruppenelemente lassen sich verknüpfen
oder "multiplizieren", es gilt beispielsweise

R\/2~Riß Riß-Ri/2 Riß, (10)

denn eine Drehung um 270° gefolgt von einer

Drehung um 180° oder umgekehrt resultiert letztlich

in einer Drehung um 90°, oder

S1-S3=Ri/2. (11)

Erstaunlicherweise gilt aber (die rechte Transformation

in einem Produkt wird per Abmachung
zuerst ausgeführt)

SrRl/4 S0, Ri/4-SI=S2, (12)

es ist also S\ R\j4 S\. Probieren Sie es

selbst mit einem beschrifteten Papierquadrat aus!

Anders als bei der von den Verknüpfungen
Addition und Multiplikation reeller Zahlen her
bekannten Situation gilt bei Drehungen und
Spiegelungen also, dass die Reihenfolge ihrer
Verknüpfung eine Rolle spielt, es ist zwar 3 + 4
4 + 3 und 3-4 4-3, doch Drehungen reagieren
empfindlich auf Vertauschung.

Gruppen, bei denen die Verknüpfungsreihenfolge
ihrer Elemente keine Rolle spielt, heis-

sen zu Ehren des norwegischen Mathematikers
Nils Henrik Abel abelsch, andernfalls entsprechend

nicht-abelsch. Die nicht-abelsche
Symmetriegruppe unseres Vier-Städte-Problems wird in
der Mathematik als Diedergruppe D4 bezeichnet.

I /
1 S

Abb. 5: Achsen der Spiegelungen, welche das dargestellte

Quadrat wieder zur Deckung bringen.
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Abb. 6: Verbindungsnetz (gestrichelte Strecken) der

Gesamtlänge y/& ~ 2.8284... zwischen den

Eckpunkten eines Einheitsquadrates der Kantenlänge 1.

Das Verbindungsnetz besitzt zum Quadrat analoge

Symmetrieeigenschaften, ist aber nicht optimal.

Wie aber sieht nun das kürzeste Verbindungsnetz

zwischen den Eckpunkten eines Quadrates
aus? Natürlich bilden die Kanten des Quadrats
ein Verbindungsnetz der Länge 4 zwischen
allen vier Städten. Nützt man aber die Diagonalen

im Quadrat wie in Abb. 6 dargestellt aus,

so ist jede Stadt von einer anderen Stadt aus
über ein kürzeres Verbindungsnetz der Gesamtlänge

y/S 2\fl ~ 2.8284.. zu erreichen. Beide

bisher präsentierten Verbindungsnetzvorschläge
besitzen dieselbe Symmetriegruppe wie das

Quadrat, sind invariant unter den Drehungen und

Spiegelungen der Diedergruppe Da,. Es geht aber

noch besser.

Abb. 7 zeigt zwei Verbindungsnetze der

Gesamtlänge ^ + \ ~ 2.8094..., welche tatsächlich

0.67% kürzer sind als der in Abb. 6 dargestellte

Vorschlag der Länge \/8 — 2.8284.... Beide

im Wesentlichen gleichwertigen und tatsächlich

optimalen Lösungen besitzen eine kleinere

Symmetriegruppe als das gestellte Problem! Im

Gegensatz zum Quadrat kommen sie bei einer

Drehung um 90° nicht mit sich selbst zur
Deckung. Die Symmetriegruppe der Lösungen ist

eine Untergruppe der D4 und besteht aus den vier
Transformationen

D2 {RO,RU2,SQ,S2}. (13)

Abb. 7: Kürzeste Verbindungsnetze (gestrichelte

Strecken) der Gesamtlänge + j ~ 2.8094...
zwischen den Eckpunkten eines Einheitsquadrates der

Kantenlänge 1. Die beiden kleinen Winkel in den

Dreiecken betragen 30°.

Scherzhafterweise könnte man hier anbringen,

dass die spontane Symmetriebrechung eine

Erklärung für den Sündenfall liefert: Die göttlichen

Gesetzte waren zwar wohlgeordnet und von
höchster Perfektion, doch bei der Ausführung der
Gesetzte haperte es dann schliesslich doch.

Die spontane Symmetriebrechung ist es letztlich,

welche die Existenz einer nicht trivialen

Welt ermöglicht. Die Naturgesetze selbst
weisen in zumindest sehr guter Näherung eine
Translations- und eine Rotationssymmetrie auf.
So sind die Naturgesetze in Basel dieselben wie
hinter dem Mond. Ebenso funktioniert ein
Taschenrechner genau gleich, wenn er um einen
beliebigen Winkel gedreht wird, um es erneut
plakativ auszudrücken. Dennoch besteht die Welt
nicht aus einem homogenen Medium, sondern
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aus nicht rotationssymmetrischen Entitäten wie
Stühlen, Weinflaschen und Singvögeln, die durch

Drehung und Verschiebung in einen veränderten

Zustand versetzt werden, doch nicht die Naturgesetze,

denen die Dinge unterliegen.
Theoretische Modelle mit spontaner

Symmetriebrechung spielen in der Elementarteilchenphysik

und vielen anderen Disziplinen der Physik

eine wichtige Rolle im Zusammenhang mit
dem sogenannten Higgs-Mechanismus, wo eine

spontane Symmetriebrechung für die Massen

der W- und Z-Bosonen verantwortlich
gemacht wird. Zudem kann ein solcher Mechanismus

auch zur Erklärung des Unterschiedes

zwischen Raum und Zeit herangezogen werden.

Offensichtlich können unsere Naturgesetze auf

einer vierdimensionalen Bühne mit drei räumlichen

und einer zeitlichen Dimension formuliert

werden, wenn man von der möglichen Existenz

weiterer Dimensionen absieht. Dass die Zeit sich

aber von den drei räumlichen Dimensionen

unterscheidet, könnte die Konsequenz eines spontanen

Symmetriebrechungsmechanismus auf

einer übergeordneten physikalischen Ebene sein,

die sich unserer wissenschaftlichen Sicht noch

entzieht. Wenn Wasser gefriert, müssen sich

die im flüssigen Wasser vorwiegend ungeordnet

bewegenden Wassermoleküle spontan in räumlich

willkürlich ausgerichteten Kristallisationsebenen

anordnen. In ähnlicher Weise könnte die

Raumzeit-Struktur von einer höheren

Symmetrieebene ausgehend spontan zur beobachteten

Raum- und Zeit-Struktur heruntergebrochen sein

(siehe Dvali et al. 2000 und Referenzen darin).

Man mag sich mit Fug und Recht die Frage

stellen, weshalb wir drei Raumdimensionen,

doch nur eine Zeitdimension wahrnehmen können.

In der Tat wäre der "Alltag" in einer Welt

mit zwei Zeitdimensionen recht verwirrend, vor

allem was die Terminplanung betrifft. Die aus

der Existenz nur einer Zeitdimension folgende

kausale Struktur unserer Welt ist eine wichtige

theoretische Stütze, der in der Elementarteilchen¬

physik eine oft nicht manifest wahrgenommene,

aber doch fundamentale Bedeutung zukommt

(Epstein und Glaser 1973).

(Eich-)Formalismen

Es ist eine empirische Erfahrung, dass unsere

Welt einem kontinuierlichen Wandel unterworfen

zu sein scheint. Gehen wir für den Moment von
der Arbeitshypothese aus, dass das Universum
ein zwar komplizierter, aber in gewissem Sinne

doch beschreibbarer Mechanismus ist, so stellt
sich die Frage, wie sich die zeitliche Entwicklung
der Welt in formaler Weise beschreiben lässt.

Die Physiker bedienen sich dazu abstrakter

Zustandräume, deren Punkte oder Elemente
jeweils dem Zustand eines physikalischen
Systems entsprechen. In der klassischen, also nicht
quantisierten Physik arbeitet man mit
Phasenräumen. Der Phasenraum eines idealisiert
gedachten Massepunktes beispielsweise, welcher
sich in nur einer Dimension bewegen darf, ist
ein zweidimensionaler Raum. Die zwei Koordinaten

eines Punktes in diesem Phasenraum

repräsentieren dann die Position und den Impuls
(entsprechend der Geschwindigkeit) des

Massepunktes und legen so den Zustand des physikalischen

Systems "Massepunkt" zu einem gegebenen

Zeitpunkt eindeutig fest. Die dynamischen
Naturgesetze, oft ausgedrückt durch Differenzi-
algleichungen, legen schliesslich fest, wie sich
der Systemzustand im Phasenraum zeitlich
entwickelt.

In der Quantenmechanik arbeitet man mit
Hilberträumen, einer speziellen Klasse von oft
unendlichdimensional gewählten Vektorräumen.
Damit ist der Zustand jedes physikalischen
Systems als Element eines solchen Vektorraumes zu
verstehen. Unglücklicherweise ist die mathematische

Situation in unendlichdimensionalen Räumen

alles andere als trivial. Dies hat zur Folge,
dass es bis dato unmöglich war, eine nachweislich

wohldefinierte konsistente Theorie der Ele-
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mentarteilchen und ihrer Wechselwirkungen zu
formulieren. Dennoch existieren Rechenverfahren,

die eine Beschreibung submikroskopischer
Prozesse mit teils erstaunlicher Präzision erlauben.

Ein bei den eben dargestellten Betrachtungen
unterschlagenes Problem liegt wiederum im
Begriff der Zeit begründet. Basierend auf Erkenntnissen

der allgemeinen Relativitätstheorie ist

heutzutage sehr wohl bekannt, dass es eine
universelle Zeit, die überall im Universum "gleich-
massig tickt", nicht gibt. Dies bedeutet nicht
zwangsläufig, dass ein Zeitbegriff nicht fassbar

gemacht werden könnte, aber doch eine wesentliche

Komplikation bei der konsistenten Formulierung

einer Theorie, die die Quanten-Dynamik
von Raum und Zeit berücksichtigen soll. Die
mit dem Zeitbegriff und der Quantentheorie
verbundenen theoretischen Fragen werden im Rahmen

verschiedenster Zugänge zur Quantengravitationstheorie

untersucht, haben aber keine
abschliessende Behandlung erfahren. Wahrscheinlich

kommt der Zeitentwicklung des Universums

gar keine fundamentale Bedeutung zu. Die
Vergangenheit bestimmt die Zukunft und umgekehrt.

Es ist das menschliche Bewusstsein,
welches jeweils nur kleine Ausschnitte aus dem

gesamten raum-zeitlich vier- oder noch höher-

dimensionalen Leben eines Menschen fassen

kann.

Die Beobachtung, dass der Zustand einer

Systems im Rahmen einer formalen Beschreibung

als Element eines Raumes von alternativen

Zuständen aufgefasst werden kann, wirft
unweigerlich die Frage auf, ob nicht alle möglichen
Zustände in diesem Raum in gewissem Sinne als real

aufgefasst werden müssen. Wenn die Welt eine

Welt von vielen denkbaren Welten ist, inwiefern

sind nicht alle denkbaren Welten real? Aus
der Sicht moderner Theorien stellt sich weniger
die Frage, weshalb etwas ist, sondern vielmehr,
weshalb etwas nicht ist. Wir wollen aber den
Faden dieser Gedankengänge hier nicht weiterspin¬

nen. Man bedenke aber, dass die von uns gerade

jetzt wahrgenommene Welt nicht dieselbe Welt
ist wie jene vor einer Sekunde oder in einer
Sekunde. Für den unvoreingenommenen Betrachter
hat keine dieser drei Welten einen höheren

Realitätsanspruch.

Von einer eher technischen Seite her ist zu

sagen, dass es sich bei der mathematischen

Beschreibung der im SM auftretenden Wechselwirkungen

(oder "Kräfte") als vorteilhaft erwiesen

hat, sogenannte Eichfelder einzuführen, in
welchen Teilchenzustände eine Rolle spielen, die in
der Natur gar nicht beobachtbar sind. In Rahmen

dieser Eichtheorien spielen auch sogenannte
Geistteilchen eine Rolle, deren Aufgabe es ist,

die durch die spezielle Relativitätstheorie
Einsteins implizierten Raumzeitsymmetrien in den

quantenphysikalischen Formalismus zu integrieren

(Faddeev und Popov 1967). Die Geistteilchen
sind unphysikalisch und daher nicht nachweisbar,
doch hat es sich rechnerisch als ein beinahe

hoffnungsloses Unterfangen erwiesen, ohne sie

vernünftig zu arbeiten.

Somit werden die die Wechselwirkungen in
der Teilchenphysik beschreibenden Theorien als
Eichtheorien formuliert. Der Bezug zum Wort
Eichung liegt darin begründet, dass es in einer
Theorie letztlich keine Rolle spielt, wie sie
genau formuliert wird, sondern dass die aus ihr
errechneten Konsequenzen stimmig sein müssen.
Es ist unwichtig, ob eine Strecke in Metern oder
Ellen abgemessen wird, solange die Einheiten
korrekt ineinander umgerechnet werden können;
ein Kreis kann als eine Menge von Punkten mit
konstantem Abstand von einem Mittelpunkt oder
als eine in sich geschlossene Kurve konstanter
Krümmung in der euklidischen Ebene aufgefasst
werden. Erstaunlicherweise ermöglicht es das

Studium der Eich-Freiheiten bei der Beschreibung

einer Elementarteilchentheorie viel über die
Theorien selbst zu lernen, da die Freiheiten, die
ein System dem Betrachter bei seiner Beschreibung

lässt, wiederum Rückschlüsse auf das Sys-
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tem zulassen. Dabei ist es sogar erlaubt, Objekte

in die Theorie einzuführen, die in keiner
unmittelbaren Beziehung zum beschriebenen System

stehen. Eichtheorien sind ein sehr fruchtbares,

aber abstraktes Kapitel der modernen Physik,
auf das hier aus Platzgründen nicht weiter

eingegangen werden kann (Aste und Scharf 1999).

Das Vakuum

Tatsächlich spielt in der mathematischen

Elementarteilchenphysik ein physikalischer Zustand

eine besondere Rolle, der eine ausserordentlich

hohe Symmetrie aufweist. Man stellt sich vor,
dass es einen Zustand der Welt gibt, welcher

immer die gleichen Eigenschaften zeigt, egal ob er

verschoben, gedreht oder auf eine gewisse

Geschwindigkeit beschleunigt wird. Dieser Zustand

tiefster Energie ist das Vakuum. Dank seinen

interessanten Eigenschaften und trotz seines

theoretischen Charakters ist es sehr oft in den Gehirnen

theoretischer Physiker zu Gast.

Der leere Raum ist also nicht nichts,

sondern die Bühne, die durch komplexere Strukturen

bevölkert werden kann. Dies impliziert, dass

alle Struktur und die Gesetzmässigkeiten, denen

diese Strukturen unterliegen, aus diesem Vakuum

heraus erzeugt werden können. In der Physik

wird, wie in der Einführung erwähnt, zu diesem

Zwecke ein mathematisches Konzept verwendet,

welches mit sogenannten Quantenfeldern
operiert.

Auf einer noch fundamentaleren

Betrachtungsebene versucht man in modernen Theorien

der Quantengravitation sogar den Aufbau

des Raumes selbst zu erklären. Auch in

solchen Theorien existiert das Konzept des Vakuums,

welches dann aber nicht den leeren Raum,

sondern gar die Abwesenheit oder eine minimale

Quantität von Raum beschreibt (Ashtekar et al.

2003).
In gewissen Quantenfeldtheorien existieren

viele zulässige Vakua, von denen eines durch

spontane Symmetriebrechung von der Natur als

Lösung ausgewählt werden muss. Dieser
Symmetriebruch ist verknüpft mit der Existenz der

Masse der Elementarteilchen und wird gemeinhin

mit dem bereits erwähnten Ausdruck Higgs —

Mechanismus Überschrieben. Kraft eines oder

mehrerer "Higgs-Felder" wird versucht, eine

konsistente Theorie zu formulieren, in welcher

ursprünglich masselose und durch diesen

Eigenschaftsmangel symmetrischere Objekte durch

Wechselwirkung in massive Objekte transformieren,

die man sozusagen auf die Waage legen kann

- bei den Lichtteilchen, den Photonen, welche in
solchen Theorien trotz allem masselos bleiben,
wäre dies ein sinnloses Unterfangen.

In populärwissenschaftlichen Darstellungen
hat es sich durchgesetzt, das oft unsinnigerweise
als "Gottesteilchen" bezeichnete Higgs-Teilchen
als Urheber der Masse diverser Teilchen
darzustellen. Es existieren aber weitere Mechanismen
und theoretische Modelle, die für die Massenerzeugung

herangezogen werden können (Aste et
al. 1998). Zudem kann der Higgs-Formalismus
auch so interpretiert werden, dass die Existenz
massiver Teilchen die Einführung von Higgs-
Teilchen erfordert, um die Konsistenz der
zugrundeliegenden Quantenfeldtheorien sicherzustellen

(Aste et al. 1999). Schliesslich ist zu
bemerken, dass ein Elektron als genauso göttlich
oder teuflisch wie ein Higgs-Teilchen bezeichnet
werden kann.

Lokalisierbarkeit

Es ist eines des Resultate der Quantenphysik,
dass die Frage nach dem präzisen Aufenthaltsort
eines Teilchens im Allgemeinen nicht scharf
definiert ist. Diese Unbestimmtheit, welche durch
die berühmte Heisenbergsche Unschärferelati-
on quantitativ erfasst werden kann, hat mit der

eigentlichen geometrischen Ausdehnung eines

Teilchens nicht unmittelbar zu tun. Vielmehr
unterscheiden sich die sinnvollen Messgrössen, die
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mit einem physikalischen System verknüpft sind,
in der klassischen Physik und der Quantenmechanik.

Die Frage nach einer exakten aktuellen
Position eines Teilchens ist zu vergleichen mit
der Frage, welches Gewicht die Kreiszahl n
besitzt. Die Lokalisierungseigenschaften eines
Teilchens können innerhalb gewisser Grenzen durch

Wellenfunktionen beschrieben werden, aus
welchen sich Wahrscheinlichkeiten berechnen

lassen, ein Teilchen in einem gewissen Raumzeitbereich

anzutreffen.
Tatsächlich ist die Frage nach der Definition

des Teilchenbegriffs heute noch mit mathematischen

Spitzfindigkeiten und Fragen behaftet. Ein

geladenes Teilchen wie das Elektron besitzt
bekanntlicherweise ein es umgebendes elektrisches
Feld. Wird das Elektron beschleunigt, so reagiert
auf diese Änderung auch das Feld, allerdings mit
zeitlicher Verzögerung. Die Frage, inwiefern das

Elektron von seinem elektrischen Feld zu
unterscheiden ist, führt zu erheblichen theoretischen

Komplikationen, die zwar für praktische
Rechnungen umgangen werden können, aber letztlich
nicht gelöst sind (Schroer 2008).

Der Gesamtzustand eines physikalischen
Systems wird, wie bereits erwähnt, durch einen

Vektor in einem passend gewählten Hilbertraum
dargestellt. Dieser Vektor ist zugleich synonym
zur oben erwähnten Wellenfunktion. Die
Eigenschaften des physikalischen Systems, welche

sich aus dem Zustand ableiten lassen,

folgen aus einem mathematischen Apparat, in
welchem wiederum sogenannte Quantenfelder eine

Rolle spielen. Diese Quantenfelder, in welchen

die physikalischen Naturgesetze in gewisser Weise

kodiert sind, gingen historisch durch einen Ab-

straktionsprozess aus den Wellenfunktionen hervor.

Während in der Phänomenologie als Sparte

der theoretischen Teilchenphysik eher pragmatisch

und unter Vernachlässigung ganz rigoroser

Begründungen versucht wird, durch teils grossen

Rechenaufwand Voraussagen und Interpre¬

tationen für Experimente zu ermöglichen, wird
im Rahmen der axiomatischen Quantenfeldtheorie

versucht, die Theorie auf eine echte mathematisch

konsistente Basis zu stellen (Haag 1992).

Bei diesem Unterfangen treten praktische
Anwendungen eher in den Hintergrund.

Supersymmetrie

Nach der sehr wahrscheinlichen Entdeckung des

im SM postulierten Higgs-Teilchens im Jahre

2012 am CERN (CERN 2012) in Genf hoffen
viele Physiker auf die Entdeckung weiterer
Teilchen, welche im Rahmen des SM noch nicht
beschrieben werden. Das entdeckte Teilchen ist
etwa so schwer wie ein Bariumatom, welches in
seinem Kern 56 Protonen und noch mehr
Neutronen enthält, und gilt doch in gewissem Sinne

als elementar.

Es gibt gute Gründe anzunehmen, dass das

SM in einigen Teilen nicht konsistent ist und
daher erweitert werden muss. Viele bisher rein

hypothetische Erweiterungen des SM beinhalten eine

neuartige Symmetrie, welche als Supersymmetrie

(SUSY) bezeichnet wird. Diese Symmetrie

stellt eine Beziehung zwischen Fermionen
und Bosonen her, ähnlich der CPT-Symmetrie,
welche eine Beziehung zwischen Teilchen und
ihren Antiteilchen vermittelt. Aufgrund einer

spontanen Symmetriebrechung ist die SUSY in
unserer Welt aber nicht exakt realisiert. Auf
jedes bisher bekannte Boson kommt rechnerisch
ein Fermion als supersymmetrisches Partnerteilchen,

ein so genanntes Bosino. Die "Superpart-
ner" der Bosonen werden durch die Endung -ino
im Namen gekennzeichnet, so heisst beispielsweise

das dem (hypothetischen) Gluon entsprechende

Fermion Gluino. Entsprechende hypothetische

Superpartner existieren auch zu den
bereits bekannten Fermionen. Den Quarks werden
dadurch Squarks zugeordnet, Leptonen erhalten
Sleptonen als Partner. Die tatsächliche Zuordnung

ist aber kompliziert, da Quantenfelder mit-
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einander "vermischt" werden können. Zudem

sagen die Modelle mehrere Teilchen voraus, die als

Higgs-Teilchen aufgefasst werden können. Keines

der schon bekannten Bosonen ist ein SUSY-

Partner eines bereits bekannten Fermions.

Bisher wurde aber keines der postulierten
supersymmetrischen Partnerteilchen experimentell
nachgewiesen. Diese müssen Eigenschaften wie

beispielsweise eine so hohe Masse haben, dass

sie unter normalen Bedingungen nicht entstehen.

Man hofft noch, dass Teilchenbeschleuniger wie
der Large Hadron Collider am CERN zumindest

einige dieser Teilchen direkt oder indirekt
nachweisen können. Mit dem leichtesten dieser

supersymmetrischen Teilchen hofft man zudem, einen

Kandidaten für die vermutete dunkle Materie des

Universums zu finden, welche noch unbekannter

Natur ist und doch einen grösseren Anteil als die

uns bekannten Formen der Materie im Universum

beiträgt.
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