Zeitschrift: Mitteilungen der Naturforschenden Gesellschaften beider Basel

Herausgeber: Naturforschende Gesellschaft Basel; Naturforschende Gesellschaft

Baselland

Band: 14 (2013)

Artikel: Käfer des Naturschutzgebiets "Petite Camarque Alsacienne", Saint-

Louis, Haut-Rhin, Frankreich (Carabidae, Staphylinidae,

Curculionoidea)

Autor: Luka, Henryk / Germann, Christoph / Marggi, Werner

DOI: https://doi.org/10.5169/seals-676724

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Käfer des Naturschutzgebiets «Petite Camargue Alsacienne», Saint-Louis, Haut-Rhin, Frankreich (Carabidae, Staphylinidae, Curculionoidea) Kommentierte Artenlisten, Stand 2012

Henryk Luka, Christoph Germann, Werner Marggi, Peter Nagel, Agata Luka, Heiner Lenzin, Andreas Ochsenbein und Heinz Durrer

Zusammenfassung: Die Resultate mehrerer ökologischer Untersuchungen wurden analysiert, und eine aktualisierte Artenliste von Laufkäfern sowie neue Artenlisten von Kurzflügel- und Rüsselkäfern der Petite Camargue Alsacienne (PCA, Saint-Louis, Haut-Rhin, Frankreich) wurden erstellt. Die Listen wurden in Hinsicht auf Artenvielfalt und Vorkommen von häufigen, seltenen und/oder gefährdeten Arten analysiert und diskutiert.

Die Artenliste der Laufkäfer basiert auf Daten aus acht Untersuchungsjahren (zwischen 1991 und 2008), die Artenliste der Kurzflügelkäfer auf solchen aus drei Jahren (1999, 2003 und 2008) und die Artenliste der Rüsselkäfer auf Daten von 2008. Insgesamt wurden 18 unterschiedliche Flächen aus neun Lebensraumtypen mit Hilfe von Bodenfallen je nach Fläche während 1 bis 5 Jahren beprobt.

Bei den Laufkäfern resultierten daraus insgesamt 3323 Fallentage, bei den Kurzflügelkäfern 1050 Fallentage und bei den Rüsselkäfern 98 Fallentage. Seit Luka et al. (1998) konnten für die PCA elf zusätzliche Laufkäferarten nachgewiesen werden. Dies ergibt bis 2011 für die PCA insgesamt 160 Laufkäferarten. Alle 176 Kurzflügelkäfer-Arten und die 50 Rüsselkäfer-Arten im weiteren Sinn (Curculionoidea) sind Erstnachweise für die PCA.

Drei Laufkäferarten, Agonum piceum (Linné, 1758), Amara littorea C. G. Thomson, 1857 und Harpalus subcylindricus Dejean, 1829 wurden neu für das Elsass nachgewiesen. Sieben Kurzflügelkäfer-Arten, Alevonota rufotestacea (Kraatz, 1856), Atheta pervagata G. Benick, 1975, Bledius crassicollis Lacordaire, 1835, Callicerus obscurus Gravenhorst, 1802, Oxypoda brachyptera (Stephens, 1832), Oxypoda lurida Wollaston, 1857 sowie Quedius semiobscurus (Marsham, 1802) sind ebenfalls Neunachweise für das Elsass; dazu konnten 50 Kurzflügelkäfer-Arten neu für das Oberelsass nachgewiesen werden. Alle 50 gesammelten Rüsselkäfer-Arten wurden bereits aus dem Elsass gemeldet, zu einigen Arten lagen bisher jedoch nur wenige Fundmeldungen vor. Acht der gefundenen Arten können als bemerkenswert bezeichnet werden, wobei die folgenden sechs Arten aus Bodenfallenfängen stammen: Bagous lutulentus (Gyllenhal, 1813), Ceutorhynchus resedae (Marsham, 1802), Hylobius transversovittatus (Goeze, 1777), Mogulones abbreviatulus (Fabricius, 1792), Neophytobius quadrinodosus (Gyllenhal, 1813) und Pelenomus commari (Panzer, 1794). Die Arten Sitona waterhousei (Walton, 1846) und Hypera striata (Boheman, 1834) wurden durch Handfänge erfasst.

Das naturnah gehaltene, revitalisierte und renaturierte Naturschutzgebiet PCA bietet Lebensraum für viele gefährdete Arten. 35 % aller hier nachgewiesenen Laufkäfer-Arten sind in der Schweiz (30 Arten) oder Baden-Württemberg (51 Arten) auf den Roten Listen aufgeführt. Bei den Rüsselkäfern werden 10 Arten (25 %) in Roten Listen Deutschlands aufgeführt (Deutschland, Bayern und Baden-Württemberg). Es zeigt sich, dass durch den Schutz von Resträumen der ehemaligen Auenlandschaft auch innerhalb einer stark besiedelten und landwirtschaftlich genutzten Region eine ausserordentliche Fülle der hier heimischen Fauna erhalten werden kann.

Abstract: Beetles of the «Petite Camargue Alsacienne» nature reserve, Saint-Louis, Alsace, France (Carabidae, Staphylinidae, Curculionoidea). Results of a number of ecological studies were analysed and used to compile an up-to-date species list of ground beetles as well as new species lists of rove beetle and weevil species for the Petite Camargue Alsacienne (PCA) nature reserve (Saint-Louis, Alsace, France). The lists were discussed and analysed with a view to species diversity and occurrences of the most common species as well as rare and/or endangered species.

The lists of ground beetles, rove beetles, and weevils are based on eight (1991 to 2008), three (1999, 2003 and 2008), and one (2008) survey years respectively. A total of 18 different sites representing nine habitat types were surveyed using pitfall traps in periods of between one and five years, depending on the sites. The total survey effort was 3323 trap-days for ground beetles, 1050 trap-days for rove beetles, and 98 trap-days for weevils.

Since Luka et al. (1998) eleven new species of ground beetle have been confirmed at PCA, resulting in a total of 160 ground beetle species known to occur at PCA by 2011. All 176 rove beetle species as well as 50 weevil species (Curculionidae sensu lato) represent new records for PCA. Three ground beetle species, *Agonum piceum* (Linné, 1758), *Amara littorea* C. G. Thomson, 1857 and *Harpalus subcylindricus* Dejean, 1829 are new records for Alsace. Seven rove beetle species, *Alevonota rufotestacea* (Kraatz, 1856), *Atheta pervagata* G. Benick, 1975, *Bledius crassicollis* Lacordaire, 1835, *Callicerus obscurus* Gravenhorst, 1802, *Oxypoda brachyntera* (Stephens, 1832)

Alevonota rufotestacea (Kraatz, 1856), Atheta pervagata G. Benick, 1975, Bledius crassicollis Lacordaire, 1835, Callicerus obscurus Gravenhorst, 1802, Oxypoda brachyptera (Stephens, 1832), Oxypoda lurida Wollaston, 1857 and Quedius semiobscurus (Marsham, 1802) are also new records for Alsace; additionally, 50 weevil species are new records for Upper Alsace. All of the 50 weevil species collected had already been recorded in Alsace, however for some of the species few records had been available to date. Eight of the species recorded can be considered remarkable and add to the weevil fauna of Alsace. Of these, the following six species were caught in pitfall traps: Bagous lutulentus (Gyllenhal, 1813), Ceutorhynchus resedae (Marsham, 1802), Hylobius transversovittatus (Goeze, 1777), Mogulones abbreviatulus (Fabricius, 1792), Neophytobius quadrinodosus (Gyllenhal, 1813) and Pelenomus commari (Panzer, 1794). Manual catches resulted in the capture of the two species Sitona waterhousei (Walton, 1846) and Hypera striata (Boheman, 1834).

Following revitalisation and restoration activities, the PCA nature reserve, which is now under a semi-natural management regime, provides habitat for numerous endangered species. 35 % of all recorded carabid species are red-listed in Switzerland (30 species) or in the German state of Baden-Württemberg (51 species). Among the weevils, 10 species (25 %) are red-listed in Germany (nation-wide, Bavarian and Baden-Württemberg lists). The reserve demonstrates that, even within a densely populated and agriculturally utilised region, conserving the remnants of the former floodplain land-scapes can indeed serve to maintain an extraordinary wealth of native fauna.

Résumé: Coléoptères de la Réserve Naturelle «Petite Camargue Alsacienne», Saint-Louis, Alsace, France (Carabidae, Staphylinidae, Curculionoidea). Les résultats de plusieurs études écologiques ont fait l'objet d'une analyse qui a permis d'établir un inventaire révisé des Carabidés et aussi plusieurs listes de Staphilinidés et de Curculionidés en Petite Camargue Alsacienne (PCA, F-Saint-Louis Alsace). Ces inventaires ont été analysés et discutés en fonction de la diversité des espèces, de leur abondance ou de leur rareté et de leur degré de protection.

L'inventaire des Carabidés est basé sur 18 années de piégeage (de 1991 à 2008), pour les Staphilinidés de 3 années (1999, 2003 et 2008) et pour les Curculionidés par extension (Curculionoidea) d'une année (2008). Au total, 18 surfaces de terrain de 9 genres de biotopes différents ont été examinées avec des pièges terrestres posés pendant 1 à 5 années suivant la dimension du terrain. Les Carabidés totalisent 3323 journées de piégeage, les Staphilinidés 1050 journées et les Cucurlionidés de 98 journées.

Depuis Luka et al. (1998) 11 espèces supplémentaires de Carabidés sont identifiées, soit un total de 160 Carabidés en PCA. 176 Staphilidinés ainsi que 50 Curculionidés sont des premières identifica-

tions en PCA. Les 3 Carabidés, *Agonum piceum* Linné, 1758, *Amara littorea* C.G Thomson, 1857 et *Harpalus subcylindricus* Dejean, 1829 sont enrégistrés la première fois en Alsace. Les 7 Staphilinidés suivants *Alevonota rufotestacea* Kraatz, 1856, *Atheta pervagata* G.Benick, 1975, *Bledius crassicollis* Lacordaire, 1836, *Callicerus obscurus* Gravenhorst, 1802, *Oxypoda brachyptera* Stephens, 1832, Oxypoda luridus Wollaston, 1857 et *Quedius semiobscurus* Marsham, 1802 sont également des premières en Alsace auxquels s'ajoutent pour le Haut-Rhin 50 nouvelles espèces de Staphilinidés. Par contre, les 50 espèces de Curculionidés capturés figurent déjà à l'inventaire du Haut-Rhin, souvent avec de rares captures pour certaines espèces. Précisons que 8 de ces captures sont à qualifier de remarquables et que leur découverte enrichit le catalogue des Curculionoidea en Alsace. Les six espèces suivantes proviennent de pièges terrestres à entonnoir: *Bagous lutulentus* Gyllenhal, 1813, *Ceutorhynchus resedae* Marsham, 1802, *Hylobius transversovittatus* Goeze, 1777, *Mogulones abbreviatulus* Fabricius, 1792, *Neophytobius quadrinodosus* Gyllenhal, 1813 et *Pelenomus commari* Panzer, 1794. Deux espèces furent capturées à la main: *Sitona waterhousei* Walton, 1846 ainsi que *Hypera striata* Boheman, 1834.

Revitalisée, renaturalisée, et maintenue dans un état proche du naturel, la réserve naturelle PCA offre un habitat à de nombreuses espèces en danger. 35 % des espèces de carabes recensées sont inscrites sur les listes rouges de Suisse (30 espèces) et du Bade-Wurtemberg (51 espèces). En ce qui concerne les charançons, 10 espèces (25 %) sont inscrites sur les listes rouges d'Allemagne (Allemagne, Bavière et Bade-Wurtemberg). Cela montre que la protection des prairies anciennes permet de maintenir une abondance exceptionnelle de la Faune locale, même au sein de régions fortement habitées et exploitées au niveau agricole.

Key words: Petite Camargue Alsacienne, Carabidae, Staphylinidae, Curculionoidea, ground beetles, rove beetles, weevils, faunistics, Alsace, France.

1. Einleitung

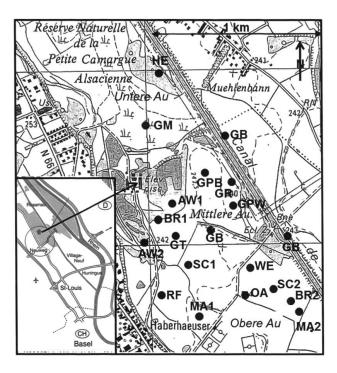
In Mitteleuropa gehörten dynamische Flussauen zu den typischen Landschaftselementen, welche jedoch durch anthropogene Einflüsse stark verändert wurden. Die Dynamik eines Flusses, die mit ihren Hoch- und Niedrigwassern grosse Teile der Flusslandschaften prägte, wurde vielerorts durch Begradigungen, Kanalisierungen und Meliorationen ausser Kraft gesetzt. Diese Eingriffe führten zu grossen Veränderungen der ursprünglichen Landschaft und der dort heimischen Flora und Fauna. Aufgrund der wissenschaftlichen Erkenntnisse über das Ausmass der Verluste an Biodiversität, welche die oben erwähnten Eingriffe verursachten, wurden bisher vereinzelte Renaturierungsprojekte an Auenlandschaften durchgeführt.

Ein Beispiel ist das hier ausgewählte Renaturierungsprogramm der Auenlandschaft in der Petite Camarque Alsacienne (PCA, Elsass, Frankreich) in der Nähe von Basel (Durrer 1992). Dieses mehrjährige Programm wird durch For-

schungen in verschiedenen Bereichen der Biologie aktiv begleitet. Die Renaturierung eines ehemaligen Ackerstandortes in seine ursprüngliche Form der Auenlandschaft ist eines von vielen Projekten in der PCA. Das Ziel ist, aus konventionell bewirtschafteten Wiesen durch gezieltes Wasser- und Beweidungsmanagement (Schutz vor Verbuschung), neue Feuchtstandorte zu schaffen. Die erzielten Veränderungen der Renaturierungsmassnahmen wurden mit Hilfe der epigäischen Arthropoden als Bioindikatoren überwacht und kontrolliert.

1.1 Laufkäfer

Kommentierte Artenlisten der Laufkäfer der PCA wurden bisher durch Walther (1994) und Luka et al. (1998) veröffentlicht, wobei sieben Standorte der PCA berücksichtigt wurden (bei 149 nachgewiesenen Laufkäfer-Arten und 29'952 Individuen). Elf weitere Arten aus einer Erfolgskontrolle der Renaturierung der Oberen Au (Durrer und Luka 2006) erhöhten die Ge-


samtartenzahl der PCA-Laufkäfer auf 150. 2008 wurde eine faunistische Istzustandesaufnahme von drei Grünlandstandorten durchgeführt (PCA-Bericht, Durrer und Luka 2011), und zur Erfassung des Nahrungsspektrums für Nachtigallen wurde eine Untersuchungsfläche mit 27 Gebüschen mit Bodenfallen beprobt (Roth et al. 2009). Diese beiden Untersuchungen erbrachten insgesamt zehn weitere Arten für die PCA; dies ergibt für die PCA 160 nachgewiesene Laufkäferarten (Stand 2011).

1.2 Kurzflügelkäfer (ohne Pselaphinae)

Die unpublizierte Artenliste der Kurzflügelkäfer der PCA, welche die Untersuchungen von 1999 und 2003 berücksichtigt, führte 98 Arten auf (PCA-Bericht, Luka und Durrer 2006). 2008 wurde Kurzflügelkäfermaterial von drei Grünlandstandorten und einer Untersuchungsfläche mit 27 Gebüschen bearbeitet, was die Anzahl der Kurzflügelkäferarten auf 176 Arten erhöhte (PCA-Bericht, Durrer und Luka 2011).

1.3 Rüsselkäfer

Für die artenreiche Familie der Rüsselkäfer im weiteren Sinn (Curculionoidea) gab es bisher keine kommentierte Artenliste für die PCA. Ger-

mann (PCA-Bericht, 2011a) stellte erstmals eine Liste anhand der Beifänge einer faunistischen Studie zum Ist-Zustand des Gebiets im Jahr 2008 auf. Dabei wurden 34 Arten aus den Familien Apionidae (7 Arten), Curculionidae (25 Arten) und Erirhinidae (2 Arten) nachgewiesen. Zudem wurden im Mai 2011 ergänzend zur obigen Studie dazu Handfänge durchgeführt. Die Bodenfallen- und Handfänge erbrachten insgesamt 50 Rüsselkäferarten für die PCA.

Aufgrund der Resultate mehrerer ökologischer Untersuchungen von 1991 bis 2008 (Walther 1994, Luka et al. 1998, Durrer und Luka 2006, Roth et al. 2009; PCA-Berichte: Sabot 1999, Luka und Durrer 2006, Durrer und Luka 2011), wurde die bestehende Artenliste von Laufkäfern aktualisiert sowie neue Artenlisten von Kurzflügel- und Rüsselkäfern der PCA erstellt und in Hinsicht auf die Artenvielfalt und das Vorkommen seltener und gefährdeter Arten analysiert und diskutiert.

2. Untersuchungsgebiet

Die Petite Camargue Alsacienne ist seit 1984 ein Naturschutzgebiet im französischen Departement Haut-Rhin. Es liegt im Rheintalgrabenbruch zwischen dem Schwarzwald und den Vogesen, ca. 10 km nördlich von Basel (Abb. 1).

Abb. 1: Untersuchungsstandorte 1991 bis 2008 (10 km nördlich von Basel). Karte Nr 3615, 1: 25'000, Ausschnitt Region Saint-Louis la Chaussée, Institut Géographique National, 107, rue de la Boétie, F-75008 Paris (Reproduktionsbewilligung DC/SVAE I CUFA n° 12.1630).

AW1: Auenwald 1, AW2: Auenwald 2, BR1: Ruderalstandort Brache 1 «Spargelfeld», BR2: Ruderalstandort Brache 2 Obere Au, GB: Gebüsche, GM: Riedfläche Grand Marais, GPB: Extensivwiese beweidet Grand Pré, GPW: Extensivwiese unbeweidet Grand Preé, GR: Ruderalstandort Graben Grand Pré, GT: Riedfläche Grand Triangle, HE: Trockenrasen «Heide», MA1: Maisfeld 1 Mittlere Au, MA2: Maisfeld 2 Obere Au, OA: Riedfläche Obere Au, RF: Ruderalstandort Ruderalfläche «Zwetschgenmatte», SC1: Schilf 1 Grand Triangle, SC2: Schilf 2 Obere Au, WE: Brache beweidet «Weide» Obere Au.

Das Gebiet der PCA ist eine Restfläche einer ehemals sehr grossen Auenlandschaft, die durch den Rhein über Jahrhunderte hinweg stark geprägt, aber auch in ihrer Grösse und Natürlichkeit durch frühere Bewirtschaftung wie etwa durch Maisanbau nachhaltig gestört wurde. Trotz der anthropogenen Einflüsse hebt sich das Gebiet aber weiterhin als tier- und pflanzengeographische Besonderheit hervor (PCA-Bericht, Lenzin und Durrer 1997). Durch aktive Schutzmassnahmen und ständige Vergrösserung soll dieser Hotspot der Biodiversität ausgebaut und gefestigt werden.

Von 1991 bis 2008 wurde die epigäische Arthropdenfauna an 18 Standorten in der PCA mittels Bodenfallen erfasst (Abb. 1, Tab. 1 und 2).

2.1 Auenwälder

- «Auenwald 1» (AW1), 1995: Auen-Wald (Alno-Ulmion) mit den dominierenden Arten Fraxinus excelsior, Tilia cordata, Corylus avellana, Prunus padus, Hedera helix und Brachypodium sylvaticum.
- «Auenwald 2» (AW2), 1999: Damm zwischen zwei seichten Gewässern, bewachsen mit Bäumen und Sträuchern der Weichholzaue. Zu den häufigsten Bodenpflanzenarten zwischen Weiden, Eschen, Erlen und Eichen gehören: Calystegia sepium, Carex sp., Solidago gigantea und Rubus caesius.

2.2 Schilfflächen

• «Schilf 1» (SC1), 1999: Alte Schilffläche; zeitweise überschwemmt; Störung durch

- Wildschweine. Zu den häufigsten Pflanzenarten gehören, *Phragmites australis, Carex sp., Urtica dioica* und *Humulus lupulus*.
- «Schilf 2» (SC2), 2003: Ein naturnahes Rudiment der ehemaligen Auenlandschaft mit bis 2 m hohem, dichtem Schilfbestand, durchsetzt mit *U. dioica*.

2.3 Riedflächen

Riedfläche beweidet

• «Riedfläche Grand Triangle» (GT), 1992, 1994, 1996, 1999 und 2008: Eine vernässte Extensivweide mit einem Mosaik aus folgenden Vegetationstypen: Pfeifengraswiese (Molinion), Knoten-Binsenwiese (Calthion), Sumpfseggen-Ried (Magnocaricion) Schilfröhricht (Phragmition). Zu den häufigsten Pflanzenarten gehören Carex acutiformis, Juncus subnodulosus, Poa palustris, Calamagrostis epigeios, Lysimachia vulgaris, Mentha aquatica, Vicia cracca, Molinia arundinacea, Juncus inflexus, Phragmites australis, Galium elongatum, Salix cinerea, Agrostis gigantea, Carex flava, Oenanthe lachenalii, Epipactis palustris und Salix purpurea.

Riedfläche beweidet und unbeweidet

 «Riedfläche Grand Marais» (GM), 1991, 1992 und 1995: Riedfläche, deren grösster Teil seit 1991 zeitweise beweidet wird. Sie weist folgende Vegetationstypen auf: Pfeifengraswiese (Molinion), Knoten-Binsenwiese (Calthion),

	Total	Auen- wälder	Schilf- flächen	Riedflächen unbeweidet	Riedflächen beweidet	Gebüsche	Extensivwiese unbeweidet	Extensivwiese beweidet	Brache beweidet	Trocken- rasen	Ruderal- standorte	Mais- felder
Laufkäfer												
Anzahl Jahre	8	2	2	3	7	1	4	4	1	1	4	2
Anzahl Standorte	18	2	2	1	2	1	1	1	1	1	4	2
Anzahl Fallen	554	8	8	139	207	27	60	60	4	4	29	8
Anzahl Fangtage	3323	189	147	482	734	14	434	434	70	112	560	147
Kurzflügelkäfer												
Anzahl Jahre	3	1	2		2	1	1	1	1		2	2
Anzahl Standorte	13	1	2	keine	1	1	1	1	1	keine	3	2
Anzahl Fallen	115	4	8	Aufnahmen	20	27	16	16	4	Aufnahmen	12	8
Anzahl Fangtage	1050	77	147		175	14	98	98	70		224	147
Rüsselkäfer												The second secon
Anzahl Jahre	1				1		1	1				
Anzahl Standorte	3	keine	keine	keine	1	keine	1	1	keine	keine	keine	keine
Anzahl Fallen	48	Aufnahmen	Aufnahmen	Aufnahmen	16	Aufnahmen	16	16	Aufnahmen	Aufnahmen	Aufnahmen	Aufnahme
Anzahl Fangtage	98				98		98	98				

Tab. 1: Anzahl Untersuchungsjahre, Standorte, Fallen und Fangtage pro Lebensraumtyp.

Lebensraumtyp					Intersuchur	ngsjahre			
Lebensiaumtyp		1991	1992	1994	1995	1996	1999	2003	2008
	Standorte				AW1		AW2		
	Anzahl Fallen				4		4		
Auenwälder	Anzahl Fangtage				112		77		
	Fangperiode				Mär-Okt		Jun-Aug		
	Standorte						SC1	SC2	
	Anzahl Fallen						4	4	
Schilfflächen	Anzahl Fangtage						77	70	
	Fangperiode						Jun-Aug	Mai-Aug	
	Standorte	GM	GM		GM / OA				
D. 1811 1	Anzahl Fallen	45	45		30 / 19				
Riedflächen unbeweidet	Anzahl Fangtage	98	104		112 / 98				
	Fangperiode	Jun-Sep	Jun-Sep		Mär-Okt				
	Standorte	GM	GM / GT	GT	GM	GT	GT		GT
	Anzahl Fallen	45	45 / 27	24	30	16	4		16
Riedflächen beweidet	Anzahl Fangtage	98	104 / 21	112	112	112	77		98
	Fangperiode	Jun-Sep	Jun-Sep	Mär-Nov	Mär-Okt	Mär-Okt	Jun-Aug		Apr-Okt
	Standorte	•	3333	100000000000000000000000000000000000000					GB
	Anzahl Fallen								27
Gebüsche	Anzahl Fangtage								14
	Fangperiode								Apr-Mai
	Standorte			GPW	GPW	GPW			GPW
	Anzahl Fallen			24	4	16			16
Extensivwiese unbeweidet	Anzahl Fangtage			112	112	112			98
	Fangperiode			Mär-Nov	Mär-Okt	Mär-Okt			Apr-Okt
	Standorte			GPB	GPB	GPB			GPB
	Anzahl Fallen			24	4	16			16
Extensivwiese beweidet	Anzahl Fangtage			112	112	112			98
	Fangperiode			Mär-Nov	Mär-Okt	Mär-Okt			Apr-Okt
	Standorte			10101-1400	Wai-Okt	Wai-Okt		WE	Api-Okt
	Anzahl Fallen							4	
Brache beweidet	Anzahl Fangtage							70	
	Fangperiode		25					Mai-Aug	
	Standorte				HE				
Trockenrasen	Anzahl Fallen				4				
	Anzahl Fangtage				112				
	Fangperiode				Mär-Okt				
	Standorte			GR	GR / BR1		RF / BR1	BR2	
Ruderalstandorte	Anzahl Fallen			8	8 / 1		4/4	4	
raderal standorte	Anzahl Fangtage			112	112 / 112		77 / 77	70	
	Fangperiode			Mär-Nov	Mär-Okt		Jun-Aug	Mai-Aug	
	Standorte						MA1	MA2	
	Anzahl Fallen						4	4	
Maisfelder	Anzahl Fangtage						77	70	
	Fangperiode						Jun-Aug	Mai-Aug	
	i angpendue						JuirAug	iviar-Aug	

Tab. 2: Anzahl Fallen und Fangtage sowie Fangperiode pro Standort und Jahr. **AW1:** Auenwald 1, **AW2:** Auenwald 2, **SC1:** Schilf 1 Grand Triangle, **SC2:** Schilf 2 Obere Au, **GT:** Riedfläche Grand Triangle, **GM:** Riedfläche Grand Marais, **OA:** Riedfläche Obere Au, **HE:** Trockenrasen «Heide», **GB:** Gebüsche, **GPW:** Extensivwiese unbeweidet Grand Preé, **GPB:** Extensivwiese beweidet Grand Pré, **WE:** Brache beweidet «Weide» Obere Au, **GR:** Ruderalstandort Graben Grand Pré, **BR1:** Ruderalstandort Brache 1 «Spargelfeld», **BR2:** Ruderalstandort Brache 2 Obere Au, **RF:** Ruderalstandort Ruderalfläche «Zwetschgenmatte», **MA1:** Maisfeld 1 Mittlere Au, **MA2:** Maisfeld 2 Obere Au.

Grossseggen-Ried (Magnocaricion) und Schilfröhricht (Phragmition). Zu den häufigsten Pflanzenarten gehören *Phragmites australis, Carex acutiformis, Carex elata, Lysimachia vulgaris, Molinia arundinaceae, Iris pseudacorus, Agrostis gigantea* und *Euphorbia cyparissias*.

Riedfläche unbeweidet

«Riedfläche Obere Au» (OA), 1995: Die Vegetation ist ein Mosaik aus folgenden Vegetationstypen: Schilf-Seggen-Fläche (Carex acutiformis, Solidago gigantea, Phragmites australis und Urtica dioica); Grosser Gebüschkomplex (Salix cinerea, Salix fragilis und Alnus glutinosa); Gebüsch aus Aschgrauer Weide (Salix cinerea) mit Juncus inflexus, Carex hirta, Carex otrubae, Carex acutiformis und Phragmites australis; Ufernaher Bereich am Augraben mit Populus x canadensis, Salix cinerea, Urtica dioeca, Colchicum autumnalis und Phalaris arundinacea; Feuchter waldiger Bereich (Salix alba und Carex acutiformis); Trockener waldiger Bereich (Prunus avium, Prunus spinosa, Sambucus nigra, Rubus fruticosus aggr., Rubus caesius, Geum urbanum und Brachypodium sylvaticum); Wiese (Lolium perenne, Trifolium pratense und Taraxacum officinale).

2.4 Trockenrasen

• «Trockenrasen Heide» (HE), 1995: Trespen-Trockenrasen (Xerobrometum) mit dominierenden Bromus erectus, Koeleria pyramidata, Euphorbia cyparissias, Helianthemum nummularium s. 1., Festuca ovina s. 1., Anthericum ramosum und Origanum vulgare sowie einem Mosaik initialer Trespenrasen mit Gebüsch (Berberidion) auf Kies mit dominierenden Populus sp., Rubus caesius, Ligustrum vulgare, Cornus sanguinea, Prunus padus, Prunus spinosa, Fraxinus excelsior, Crataegus monogyna, Helianthemum nummularium s. 1. und Euphorbia cyparissias.

2.5 Gebüsche

 «Gebüsche» (GB), 2008: In der Mittleren Au werden seit vielen Jahren Untersuchungen an Nachtigallen durchgeführt. Die Brut und Aufzuchträume liegen in den Gebüschsäumen und Waldrändern oft in der Nähe von Gewässern.

2.6 Extensivwiesen

Extensivwiese unbeweidet

• «Extensivwiese unbeweidet Grand Pré» (GPW), 1994, 1996 und 2008: Es handelt sich um eine Glatthaferwiese (Arrhenatheretum elatioris) mit einer Ausdehnung von 100 auf 300 m; seit 1994 ohne Düngung genutzt. Sie wird einmal pro Jahr geschnitten (bei spätem Heutermin ab 1. Juli). Sie grenzt allseitig an Feuchtgebiete an, ist aber trotz geringem Grundwasserabstand (50–70 cm) relativ trocken und beginnt auszumagern. Zu den häufigsten Pflanzenarten gehören: Holcus lanatus, Lotus corniculatus, Onobrychis viciifolia, Arrhenatherum elatius, Taraxacum officinale, Dactylis glomerata und Poa trivialis.

Extensivwiese beweidet

 «Extensivwiese beweidet Grand Pré» (GPB), 1994, 1996 und 2008: Ein Teil der Extensivwiese die seit 1994 zeitweise extensiv beweidet wird und vom extensiven Wiesenstandort GPW durch einen renaturierten Altarm des Rheins (Ruderalstandort Graben) getrennt ist. Die Weide ist im Vergleich zur Wiese GPW deutlich feuchter und unterliegt zudem einem von Osten nach Westen fallenden Nässegradienten. Die Vegetation zeigt somit einen Übergang vom Gänsefingerkraut-Rohrschwingel-Saum (Potentillo anserinae-Festucetum arundinaceae (Dierschke, 2012) bis zur Rossminzen-Blaubinsen-Gesellschaft (Mentho longifoliae-Juncus inflexi). Die Weide wird seit 1994 mit Schottischen Hochlandrindern als Winterweide (September bis Mai) extensiv beweidet (Abb. 2). Die häufigsten Pflanzen im Bereich der Fallen waren Arrhenatherum elatius, Lotus corniculatus, Dactylis glomerata, Holcus lanatus, Poa trivialis, Onobrychis viciifolia, Trifolium repens, Juncus inflexus, Festuca pratensis, Potentilla anserina und Potentilla reptans.

Abb. 2: Schottische Hochlandrinder im Grand Triangle. In Vordergrund ist der hohe Grundwasserstand sichtbar (Foto H. Durrer 2008).

2.7 Brache beweidet

• «Brache beweidet Weide» (WE), 2003: Brache auf vorwiegend Kiesboden mit natürlicher Pflanzenbesiedlung ab 2000. Um das Aufkommen von Gebüschen (v. a. Weiden und Erlen) zu verhindern, wird die Fläche im Spätsommer mit Schottischen Hochlandrindern beweidet. Zudem wurde zur Reduktion der Goldrute unregelmässig ausgemäht. Als Pflanzen herrschen vor: Potentilla reptans, Erigeron annuus s. l. und Lythrum salicaria.

2.8 Ruderalstandorte

- «Ruderalstandort Graben» (GR), 1994 und 1995: Zwischen der Extensivwiese beweidet GPB und der Extensivwiese unbeweidet GPW wurde ein Wassergraben durch Aushub angelegt, der in einem renaturierten Altarm des Rheins verläuft. Häufigste Pflanzen: Eleocharias palustris s. l., Lythrum salicaria, Juncus inflexus, Carex hirta und Festuca arundinacea s. str.
- «Ruderalstandort Brache 1 Spargelfeld» (BR1), 1995 und 1999: Jährlich gemähte Fläche mit Spontanbesiedlung (v. a. Solidago sp.) auf vorwiegend sandigem, trockenem Boden. Zu den häufigsten Pflanzenarten gehören: Erigon annuus s.l., Solidago gigantea, Daucus carota, Vicia cracca, Artemisia verlotiorum, Calystegia sepium, Equisetum arvense, Ly-

- thrum salicaria, Medicago lupulina, Melilotus officinalis, Plantago major, Silene pratensis sowie Cirsium sp. und Rubus sp..
- «Ruderalstandort Ruderalfläche Zwetschgenmatte» (RF), 1999: Diese Fläche wird seit 1995 nicht mehr landwirtschaftlich genutzt. Das Gebiet wurde bei der Renaturierung eines Altarms durch dessen Aushub (vorwiegend Kies) neu gestaltet. Es erfolgte eine Spontanbesiedlung, wobei viele Wühlspuren von Wildschweinen vorwiegend durch Fingerkraut (Potentilla anserina) stets neu besiedelt wurden. Zu den häufigsten Pflanzenarten gehören: Calystegia sepium, Cirsium arvense, Phleum pratense, Potentilla anserina, Equisetum arvense, Taraxacum officinale, Trifolium hybridum, Artemisia vulgaris, Erigeron annuus s. l., Solidago gigantea und Salix purpurea.
- «Ruderalstandort Brache 2 Obere Au» (BR2), 2003: Ab 2001 feuchte Brache mit vorwiegend spontaner Ruderalvegetation. Als Besonderheit stellte sich an nassen Stellen Bolboschoenus maritimus ein.

2.9 Maisfelder

- «Maisfeld 1 Mittlere Au» (MA1) 1999: Seit Jahren wird diese Ackerfläche auf Kiesboden ohne Einsatz von Pestiziden bewirtschaftet. Zu den häufigsten Pflanzenarten gehören: Zea mays, Phragmites australis, Equisetum arvense und Calystegia sepium.
- «Maisfeld 2 Obere Au» (MA2) 2003: Das Maisfeld war noch bis ins Untersuchungsjahr 2003 intensiv genutztes Ackerland mit Pestizideinsatz. Der Boden hatte, bedingt durch den Einsatz von Herbiziden, keinerlei Begleitflora.

2.10 Beweidung mit Schottischen Hochlandrindern

Seit 1990 werden in der PCA Schottische Hochlandrinder (Abb. 2) für die extensive Beweidung eingesetzt und für verschiedene Projekte genutzt, um ihre Auswirkung auf Flora und Fauna zu beobachten (Walther 1994). Die Robustheit dieser Tiere (Winterhärte), ihr geringes Gewicht

sowie die Spalthufigkeit (kein Festsaugen der Hufe im Schlamm) waren ausschlaggebende Argumente für ihre Auswahl. Dieses Pflegekonzept hat sich in den letzten Jahren bewährt und gilt europaweit als Modellkonzept bei anderen Projekten (Schulz 2003).

3. Material und Methoden

3.1 Bodenfallenfänge

Die verwendeten Bodenfallen waren 1991 und 1992 Plastikbecher mit 8 cm Durchmesser und ab 1994 Trichterbodenfallen von 10 cm Durchmesser. Als Fangflüssigkeit diente 1991 bis 1996 4 % Formaldehyd mit Seifenzusatz, ab 1999 Äthylenglycol mit Seife. Pro Standort wurden 1 bis 45 Fallen aufgestellt (Tab. 1 und 2). Der Abstand zwischen den Fallen eines Standortes betrug 1991 und 1992 5 m und ab 1994 10 m.

3.2 Fangperiode

Der Zeitraum der meisten Beprobungen erstreckte sich über eine Periode von März bis Oktober (Tab. 2). Als natürliches Indiz für den Start der Beprobung diente die Vollblüte des Löwenzahns (Duelli et al. 1990). Die Fänge mussten mehrfach wegen Überschwemmungen und wühlenden Wildschweinen unterbrochen werden.

In der Tab. 1 werden Angaben betreffend Beprobungsintensität der einzelnen Lebensraumtypen pro Tiergruppe dargestellt. Während 8 Jahren wurden 18 Standorte mit 554 Fallen mit insgesamt 3323 Fangtagen untersucht, wobei je nach Tiergruppe eine unterschiedliche Anzahl Fallen bearbeitet wurde. Die meisten Fallentage wurden in Ried- und Extensivwiesen sowie an Ruderalstandorten durchgeführt.

3.3 Handfänge (nur Rüsselkäfer)

Nur die Verwendung einer möglichst grossen Palette von verschiedenen Fangtechniken ermöglicht es bei phytophagen Käfern wie den Rüsselkäfern eine möglichst vollständige Erfassung in einem Gebiet durchzuführen. Die starke Abhängigkeit von ihren Wirtspflanzen und die starke Einnischung in die jeweiligen Substrate führen dazu, dass Fallenfänge immer nur einen kleinen Teil der Arten erfassen können.

So wurde ergänzend zum Bodenfallenfang aus der Saison 2008 mit dem Kescher (Durchmesser 40 cm), dem Klopfschirm (Durchmesser 70 cm) und einem Plastikteller (Durchmesser 30 cm) sowie durch Sichtfang an den jeweiligen Wirtspflanzen gearbeitet. Die Gebiete Riedfläche Grand Triangle (GT) und Extensivwiese beweidet Grand Pré (GPB) wurden auf diese Weise zusätzlich an einem Exkursionstag (10. Mai 2011) untersucht.

3.4 Untersuchte Tiergruppen

Für die naturschutzfachliche Bewertung von Landschaftselementen ist es notwendig, mehr als eine Tiergruppe zu berücksichtigen, da je nach Tiergruppe die Bewertung unterschiedliche Ergebnisse hervorbringen kann (Hänggi 1989, Kiechle 1992, Nagel 1999, Luka 2004). Mit Bodenfallen wurden vorwiegend die drei Tiergruppen, Lauf- und Kurzflügelkäfer sowie Spinnen gefangen. 2008 wurden auch die Rüsselkäfer aus Bodenfallen ausgewertet und im Frühling 2011 durch Handfänge ergänzt.

Laufkäfer (Coleoptera: Carabidae)

Die Laufkäfer sind eine über alle Gebiete der Erde verbreitete artenreiche Familie aus der Insektenordnung der Käfer. Bisher sind ca. 40'000 Arten beschrieben worden; 523 Arten kommen in der Schweiz vor (Luka et al. 2009a).

Sie sind in nahezu allen Lebensräumen zu finden: Wälder, Felder, Moore, Gebirge, Wüsten sowie Meeresküsten. Laufkäfer leben sowohl im Larval- als auch im Adultstadium meist räuberisch und vertilgen während ihres Lebens grosse Mengen von Schadinsekten, Larven, Puppen, Schnecken usw., weshalb sie als wichtige Nützlinge angesehen werden (Scherney 1959, Basedow 1973, Luka 1996, Holland 2002).

Unter den epigäischen Arthropoden (auf der Bodenoberfläche lebenden) sind die Laufkäfer geeignete Bioindikatoren für verschiedenste Fragestellungen. Zudem sind sie einfach und mit reproduzierbaren Methoden zu fangen (Luka 2004).

Kurzflügelkäfer (Coleoptera: Staphylinidae)

Kurzflügelkäfer (Staphylinidae) sind weltweit mit über 56'768 bekannten Arten und Unterarten vetreten (Assing und Schülke 2012). In der Schweiz konnten bisher 1'421 Kurzflügelkäferarten (ohne Unterfamilie Pselaphinae) aufgenommen werden (Luka et al. 2009b). Es ist jedoch zu erwarten, dass noch weitere Arten dazu kommen werden. Staphylinidae sind weltweit verbreitet und in nahezu allen Lebensraumtypen zu finden.

Die meisten Kurzflügelkäfer leben räuberisch (carnivor), aber viele von ihnen ernähren sich von Pilzen (mycetophag), von verwesenden tierischen und pflanzlichen Stoffen (saprophag) und von Pflanzen (Pollen, Blütenteile / phytophag). Auch parasitieren die Larven einiger Arten die Puppen von Fliegen. Viele Arten leben nur in Nestern von Vögeln und Säugetieren (Nidikolie). Weitere bewohnen Wespen-, Ameisen- oder Termitennester (Myrmecophilie), wo auch teilweise ihre Entwicklung stattfindet. Auch die Staphylinidae sind gut als Bioindikatoren geeignet (Luka 2004).

Rüsselkäfer (Coleoptera: Curculionoidea)

Rüsselkäfer im weiteren Sinn (Curculionoidea) stellen mit weltweit über 62'000 bisher beschriebenen Arten (Oberprieler et al. 2007) eine der artenreichsten Gruppen innerhalb der Käfer dar. Durch ihren verlängerten Kopf, der als Rüssel (Rostrum) bezeichnet wird, sind sie gut charakterisiert.

Aus der Schweiz sind bisher 1061 Arten gemeldet worden, davon 874 aus dem schweizerischen Mittelland (Germann 2010, Germann und Borer 2010). Aus dem Elsass sind bisher 777 Arten bekannt (Schott 2006), aus dem benachbarten Deutschland deren 961 (Köhler und Klausnitzer 1998).

Bis auf wenige Ausnahmen leben Rüsselkäfer mono-, oligo-, und polyphag an den unterschiedlichsten Pflanzenfamilien an praktisch allen Pflanzenorganen und können auch schädlich werden.

3.5 Faunistik, Nomenklatur, Taxonomie, Gefährdung und Ökologie

Als Grundlage für den Erfassungsstand der einzelnen Käferfamilien im Elsass wurde der Catalogue et Atlas des Coléoptères d'Alsace genutzt:

Laufkäfer Band 5 (Callot und Schott 1993, Schott 2009 online), Kurzflügelkäfer Band 15 (Callot 2005, 2011 online) sowie Rüsselkäfer Bände 10 und 11 (Schott 1999, 2000, 2006 und 2010 online).

Zwischen PCA-Daten (Anzahl Individuen pro Standort) und Angaben im Katalog (Anzahl Meldungen pro Standort, ohne Individuenzahl) bestehen grosse methodische Unterschiede. Deswegen wurden keine quantitativen Vergleiche vorgenommen und nur Präsenz-Absenz angegeben. Die grosse Zahl an Neumeldungen für das Elsass und Oberelsass liegt gemäss Callot (persönliche Mitteilung) darin, dass die im Katalog enhaltenen Daten (v.a. Kurzflügelkäfer) das naturnahe PCA-Gebiet schlecht abdecken.

Da keine Rote Liste der Laufkäfer für Frankreich existiert, wurden diejenigen der Schweiz (Huber und Marggi 2005) sowie Baden-Württenbergs (Trautner et al. 2005) herangezogen. Für die Rüsselkäfer war die Rote Liste Deutschlands massgebend (Rheinheimer und Hassler 2010). Für die Kurzflügelkäfer stehen keine Roten Listen zur Verfügung.

Laufkäfer

Die Nomenklatur folgt Luka et al. (2009a), die mehrheitlich der Systematik in Löbl und Smetana (2003) folgt und in einigen wenigen Fällen neueste systematische Einstufungen anderer Autoren übernimmt. Die Käfer wurden mit Hilfe des Bestimmungswerkes für die mitteleuropäischen Laufkäfer von Müller-Motzfeld (2006) determiniert.

Die Angaben zur Ökologie stammen aus Marggi (1992) und Luka et al. (2009a). Die Angaben betreffend Artnachweise für das Elsass wurden aus Callot und Schott (1993) und Schott (2009 online) entnommen.

Kurzflügelkäfer

Die Nomenklatur folgt Luka et al. (2009b), die sich grundsätzlich nach Löbl und Smetana (2004) richtet. In einigen Fällen wurden neueste systematische Einstufungen von Assing und Schülke (2006) übernommen.

Für die Bestimmungsarbeiten wurden die Standardwerke Freude et al. (1964 und 1974), Lohse und Lucht (1989), Lucht und Klausnitzer (1998) und Assing und Schülke (1999, 2001, 2006 und 2012), sowie verschiedene kleine gattungs- oder gruppenspezifische Arbeiten verwendet.

Die Angaben zur Autökologie und Verbreitung der einzelnen Arten stammen aus Horion (1963, 1965 und 1967), Freude et al. (1964 und 1974), Luka (2004) sowie Assing und Schülke (2012). Das Vorkommen einzelner Arten im Elsass wurde aus Callot (2005 und 2011 online) entnommen.

Rüsselkäfer

Die Nomenklatur und die Verbreitungsangaben für die Schweiz richten sich nach der Checkliste der schweizerischen Rüsselkäfer (Germann 2010). In der Diskussion der Funde wurden die Verbreitungsangaben aus Deutschland von Köhler und Klausnitzer (1998) entnommen. Für die Region Elsass bietet die Checkliste von Schott (2006 online) einen Überblick über das Artenspektrum. Schott (1997, 1999 und 2000) führt detaillierte Verbreitungsdaten zu sämtlichen Arten auf.

Die Angaben zur Ökologie stammen, leicht modifiziert, aus der Zusammenstellung von Koch (1992), ebenso die aufgelisteten Wirtspflanzen, dazu wurden zusätzlich Angaben aus Colonnelli (2004) entnommen. Die Spezialisierung «monophag» bezieht sich auf das Gattungsniveau.

3.6 Ökologische Angaben

In Anlehnung an Luka et al. (2009a) wurden die ökologischen Charakterisierungen wie folgt definiert:

Lebensraum-Präferenz

Es werden neun Lebensraumpräferenz-Klassen unterschieden: Ufer- und Feuchtgebietsarten, Sonderstandortarten, Grünlandarten, Übergangszonenarten, Waldarten, Pioniervegetationsarten, Ackerarten, Arten in Bauten und Anlagen und

Eurytope Arten (keine Lebensraum-Präferenz vorhanden).

Lebensraum-Bindung

Arten werden als *stenotop* bezeichnet bei Vorkommen in einem einzigen Lebensraumbereich (eine Gruppe von ähnlichen Lebensraumtypen) und als *eurytop* bei einem Vorkommen in zwei oder mehr Lebensraumbereichen (Delarze et al. 1999).

Feuchtigkeits-Präferenz

Als Grundlage wurde die Zuordnung zu fünf Klassen von Feuchtigkeits-Präferenzen verwendet: *steno-xerophil* (ausgesprochen trockenheitsliebende Arten), *xerophil* (trockenheitsliebende Arten), *mesophil* (keine ausgeprägte Feuchtigkeits- oder Trockenheitspräferenz feststellbar), hygrophil (feuchtigkeitsliebende Arten) sowie *steno-hygrophil* (ausgesprochen feuchtigkeitsliebende Arten).

4. Resultate

4.1 Laufkäfer

4.1.1 Überblick:

Artenvielfalt und Individuenzahlen

In der PCA wurden während acht Untersuchungsjahren total 45'774 Laufkäfer bestimmt und 160 Arten nachgewiesen (Tab. 3). Die höchsten Aktivitätsdichten (mit Bodenfallen gemessene Individuenzahl) und Artenzahlen wurden 1994 gemessen, die niedrigsten 1991.

In der Tab. 4 wird die Aktivitätsdichte pro Lebensraumtyp dargestellt. Am meisten Laufkäfer wurden in der Extensivwiese unbeweidet (GPW), Extensivwiese beweidet (GPB) und in den Riedflächen beweidet (GT) gefangen.

Beim Vergleich der mittleren Aktivitätsdichten pro Fallentag (Abb. 3) wurde die höchste Aktivitätsdichte in der beweideten Brache (WE, hauptsächlich die Art *Harpalus rufipes* mit fast 60 % Anteil), in den Gebüschen (GB), den Maisfeldern (MA) und in den Schilfflächen (SC) gemessen.

Mit über 100 Arten zeigten die Riedflächen beweidet (114 Arten), Extensivwiese beweidet (103 Arten) und die Riedflächen unbeweidet (102 Arten) die höchste Artenvielfalt.

4.1.2 Die häufigsten Arten

Zu den dominanten Arten (> 5 % Anteil an der Gesamtaktivitätsdichte) der PCA gehörten 5 Arten, Harpalus rufipes, Poecilus cupreus, Amara aenea, Harpalus affinis sowie Bembidion lampros. Es handelt sich vorwiegend um xerophile Arten.

Die Analyse der häufigsten Arten in den einzelnen Lebensraumtypen bringt ein deutlich

differenzierteres Bild hervor: Zu den dominanten Arten in den Auenwäldern gehörten Abax parallelus, Agonum emarginatum und Nebria brevicollis. In den Schilfflächen Oxypselaphus obscurus, Agonum emarginatum, Oodes helopioides und Pterostichus anthracinus. In den Riedflächen unbeweidet Poecilus cupreus, Pterostichus anthracinus, Abax parallelus und Amara lunicollis. In den Riedflächen beweidet Oodes helopioides, Agonum emarginatum, Poecilus versicolor und Poecilus cupreus. In den Gebüschen Platynus assimilis, Abax parallelus, Agonum emarginatum, Nebria brevicollis und Pterostichus anthracinus. In den Extensivwiesen unbeweidet Harpalus affinis,

	Untersuchungsjahre											
Anzahl	Total	1991	1992	1994	1995	1996	1999	2003	2008			
Aktivitätsdichte (AD)	45774	884	1449	15126	3009	9961	3387	7436	4522			
AD pro 1 Fallentag	0.11	0.10	0.12	1.69	0.26	1.85	1.83	6.64	0.62			
Anzahl Arten	160	57	72	122	98	101	86	67	115			

Tab. 3: Aktivitätsdichte und Anzahl Arten der Laufkäfer pro Jahr.

Lebensraum- typ	Auen- wälder	Schilf- flächen	Riedflächen unbeweidet	Riedflächen beweidet	Gebüsche	Extensivwiese unbeweidet		Brache beweidet		Ruderal- standorte	Mais- felder
Aktivitäts- dichte	273	1874	3611	8758	933	13107	10015	2667	63	2458	2015

Tab. 4: Aktivitätsdichte der Laufkäfer pro Lebensraum-Typ.

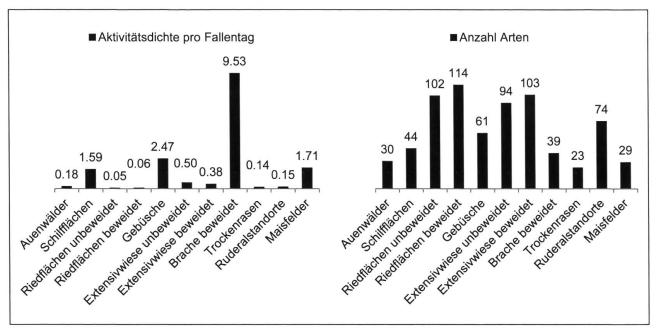


Abb. 3: Aktivitätsdichte der Carabidae pro Fallentag (links) und Anzahl Arten pro Lebensraum-Typ (rechts).

Arten	СН	BW	Total		sc	RFU			EWU	EWB	BRB	TF	RS	MF
Acupalpus exiguus	0	3	5			1	3			1				
Agonum viridicupreum	1	2	105			26	61		5	11	2			
Amara tibialis	1	3	3						1	2				
Leistus terminatus	1	3	1			1								
Pterostichus aterrimus	1	1	2				1			1				
Acupalpus maculatus	2	3	7			1	5							1
Acupalpus parvulus	2	3	5				5							
Agonum gracile	2	3	1	1										
Calosoma inquisitor	2	3	2					2						
Cylindera germanica	2	1	4			1					3			
Dicheirotrichus placidus	2	2	4	_		1	3							
Elaphrus cupreus	2		10	7			1	2						
Elaphrus riparius	2		1							1				
Agonum scitulum	3	2	33				30							
Badister dilatatus	3	3	15			1	11			_				
Drypta dentata	3	•	92		1	21	45		16	7			2	2
Elaphrus aureus	3	2	3					3						
Odacantha melanura	3	3	1		1	00	000							
Oodes helopioides	3	V	1347		234	90	980	4	31	8				
Paradromius longiceps	3 D	2	1				1 1					-	<u> </u>	
Agonum hypocrita	R	1	2				1						2	
Acupalpus luteatus Amara cursitans	R	3	3	1			1							
Amara cursitans Amara kulti	R	3	309	1			1		81	227			1	
Amara littorea	R	G	1						01	1			,	
Anthracus consputus	R	2	4				2		1	1				
Leistus fulvibarbis	R	_	2				_	2	1	1				
Acupalpus dubius	V	V	37			11	23		1	2				
Agonum piceum	v	2	2		2	• • •				-				
Anisodactylus	•	_	_		_									
nemorivagus	V	3	2						1	1				
Badister peltatus		2	9			2	7							
Bradycellus caucasicus		2	10			1	8		1					
Harpalus subcylindricus		2	103						101	2				
Amara municipalis		3	1							1				
Bembidion guttula		3	7			3	4							
Callistus lunatus		3	61			1	10		16	34				
Chlaenius nitidulus		3	39					4	4	1			30	
Harpalus serripes		3	14						14					
Badister meridionalis		D	13			4	5			4				
Agonum thoreyi		V	25	1	16	5	3							
Amara eurynota		V	9						1				8	
Amara montivaga		V	174						34	140				
Anisodactylus signatus		V	268		3	9	15		7	18	44		155	17
Bembidion assimile		V	141		63	18	57			3				
Chlaenius nigricomis		V	604		13	121	406	2	6	13	30		4	9
Demetrias monostigma		V	18			5	13							
Harpalus anxius		V	215				2	_	105	108				
Harpalus dimidiatus		V	124			00		2	122	0.10	^			
Harpalus luteicomis		V	1165			29	1	3	862	248	6		16	
Harpalus pumilus		V	1				4	20	1					
Notiophilus rufipes		V V	37 121			7	4 104	32	2	4		1	^	
Panagaeus cruxmajor		V V	634			7 2			3	1			6	
Parophonus maculicomis		V	177		7	32	9 137		457	145		1	20	
Pterostichus diligens Pterostichus minor		V	146	3	7 11	19	111	1		1				
		V	4	3	11	19	4	1		1				
Pternstichus rhaeticus														
Pterostichus rhaeticus Aktivitätsdichte		•	6126	13 3	351	412 2		63	1871	983	85	2	246	26

Tab. 5: Laufkäferarten der Roten Listen der Schweiz (CH: Gefährdungskategorien) und Baden-Württemberg (BW: Gefährdungskategorien) pro Lebensraum-Typ. AW: Auenwälder, SC: Schilfflächen, RFU: Riedflächen unbeweidet, RFB: Riedflächen beweidet, GB: Gebüsche, EWU: Extensivwiese unbeweidet, EWB: Extensivwiese beweidet, BRB: Brache beweidet, TR: Trockenrasen, RS: Ruderalstandorte und MF: Maisfelder. Sortiert nach Land und Gefährdungskategorie.

Poecilus cupreus, Bembidion lampros, Anchomenus dorsalis, Amara aenea, Harpalus luteicornis, Brachinus explodens und Poecilus versicolor. In der Extensivwiese beweidet Amara aenea, Harpalus affinis, Poecilus cupreus, Bembidion lampros und Bembidion properans. In der Brache beweidet Harpalus rufipes, Poecilus cupreus und Bembidion quadrimaculatum. Im Trockenrasen Abax parallelus, Abax parallelepipedus, Nebria brevicollis, Carabus nemoralis und Abax ovalis. In den Ruderalstandorten Harpalus rufipes, Bembidion lampros, Poecilus cupreus sowie Anisodactylus signatus. In den Maisfeldern Harpalus rufipes, Pterostichus melanarius und Poecilus cupreus.

4.1.3 Seltene und bemerkenswerte Arten

Seit Luka et al. (1998), konnten drei weitere Laufkäferarten, Agonum piceum (Linné, 1758), Amara littorea C. G. Thomson, 1857 und Harpalus subcylindricus Dejean, 1829 neu für das Elsass nachgewiesen werden (Schott 2009 online, Marggi et al. 2010) sowie zwei neue Arten, Elaphrus aureus P. Müller, 1821 und Tachyura parvula (Dejean, 1831). für das Oberelsass (Callot und Schott 1993).

Die Untersuchungen von 2008 erbrachten 10 neue Laufkäferarten, Acupalpus parvulus (Sturm, 1825), Amara littorea C. G. Thomson, 1857, Amara municipalis (Duftschmid, 1812), Calosoma inquisitor (Linné, 1758), Carabus monilis Fabricius, 1792, Elaphrus aureus P. Müller, 1821, Harpalus atratus Latreille, 1804, Harpalus subcylindricus Dejean, 1829, Leistus fulvibarbis Dejean, 1826 und Paranchus albipes (Fabricius, 1796) für die PCA.

Für das Elsass neu nachgewiesene Arten: Agonum piceum (Linné, 1758)

Eine in Mitteleuropa nicht häufige Art, die von Frankreich über Nord- und Mitteleuropa bis Siebenbürgen verbreitet ist (Marggi 1992). In Frankreich ist sie vor allem im Norden verbreitet (Jeannel 1941).

Nach Marggi (1992) lebt sie nur in den Übergangszonen in Schilfgebieten und wurde sogar auf schwimmendem Schilfdetritus beo-

Abb. 4: Harpalus subcylindricus Dejean, 1829 (Männchen), Originalgrösse 6.8 mm (Foto W. Marggi).

bachtet. Nach Luka et al. (2009a) handelt es sich um eine stenotope Art der Ufer- und Feuchtgebiete mit Phänologiemaximum im Juni. Sie steht in der Schweiz auf der Vorwarnliste der Roten Listen (Huber und Marggi 2005) (Tab. 5).

Im Elsass wurde sie bisher noch nicht nachgewiesen (Callot und Schott 1993, Schott 2009 online). In der PCA wurden 2 Individuen 1999 im Schilfbereich am Rande des Grand Triangle gefunden.

Harpalus subcylindricus Dejean, 1829 (Abb. 4) Diese Art wurde 2008 in der PCA erstmals im Elsass nachgewiesen (Erstmeldung für das Elsass und die Schweiz Marggi et al. 2010). Sie wurde höchstwahrscheinlich bis 2008 als Schwesterart von H. anxius determiniert und als solche für die PCA aufgeführt.

Sie ist eurosibirisch verbreitet (Wrase 2006). In Frankreich kommt H. subcylindricus in Südfrankreich (Region Fréjus), im Departement Nièvre und in der Region Rhône-Alpes an zahlreichen Standorten zuweilen gemeinsam mit H. anxius vor. H. subcylindricus gilt als wärmeliebende Art der Trocken- und Halbtrockenrasen sowie xerothermen Standorte, die seit mehreren Jahren als extensives Grünland bewirtschaftet werden (Marggi et al. 2010).

Die Verteilung der Funde in der PCA belegt, dass die xerotherme Extensivwiese Grand Pré mit 101 gefangenen Individuen (57 Männchen und 44 Weibchen) eindeutig der bevorzugte Lebensraum ist. In der Extensivwiese beweidet (Grand Pré) wurden nur 2 Individuen (1 Männchen und 1 Weibchen) nachgewiesen.

Amara littorea C. G. Thomson, 1857

Osteuropäisch-sibirische Art der extensiv bewirtschafteten Wiesen, die sich postglazial nach Mittel (-West) -Europa auszubreiten vermochte (Marggi 1992). Scheint bei uns stark xero-thermophil zu sein. In der Schweiz bis 1992 sehr selten (Marggi 1992), heute vermehrt gefunden (Luka et al. 2009a). In Callot und Schott (1993) und Schott (2009 online) ist sie für das Elsass nicht erwähnt. 2008 konnte ein Individuum in der Grand Pré Wiese gefangen werden.

Für das Oberelsass neu nachgewiesene Arten: *Elaphrus aureus* P. Müller, 1821

Eine europäische Art der breiten Flussufer mit vegetationsreichen, feuchten Sandböden; auch in Auenwäldern nachgewiesen (Marggi 1992, Luka et al. 2009a). Eine steno-hygrophile Art. Im Elsass im Unterelsass an 6 Standorten nachgewiesen (Callot und Schott 1993, Schott 2009 online). In der PCA konnten 3 Individuen 2008 in den Gebüschen gefunden werden.

Tachyura parvula P. Müller, 1821

In Mittel- und Südeuropa sowie Nordafrika, Azoren und den Kanaren vorkommende Art. Sie bevorzugt Pioniervegetation sowie Ufer und Feuchtgebiete. Xero-thermophile Art, die in der Nähe von Gewässern, mit Vorliebe für lehmigtonige Böden sowie Sand, Kies und Schotter auf Trockenrasen und Magerwiesen sowie an Ufern ohne Vegetation vorkommt (Marggi 1992, Luka et al. 2009a). Sie wurde bisher nur im Unterelsass an 24 Standorten gefunden (Callot und Schott 1993). In der PCA wurde 2003 ein Individuum im Mais und 2008 ebenfalls ein Individuum in den Gebüschen nachgewiesen.

Ausgewählte seltene und/oder interessante Arten:

Acupalpus parvulus (Sturm, 1825)

Paläarktische Art. Sie kommt meist in Gewässernähe (steno-hygrophil) an sumpfigen Ufern von Wald- und Heidetümpeln und Mooren vor. Sie ist eine stenotope Ufer- und Feuchtgebietsart (Luka et al. 2009a), die oft in Gemeinschaft von *Acupalpus flavicollis* getroffen wird. Sie ist im Elsass an 27 Fundorten (davon 3 im Oberelsass) gemeldet (Callot und Schott 1993). Diese Art wurde bisher nicht in der PCA gefunden.

2008 konnten 5 Individuen im sumpfigen Teil der Grand Pré beweidet (Extensivwiese beweidet) nachgewiesen werden. In der Schweiz wurden bisher nur 48 Individuen gefunden (Luka et al. 2009a).

Pterostichus aterrimus (Herbst, 1784)

Diese paläarktische Art scheint nicht häufig zu sein. Sie wird von Lindroth (1945) für Fennoskandien (skandinavische Halbinsel, Finnland, Karelien und die Halbinsel Kola) als sehr selten bezeichnet. Von Trautner et al. (1997) für Deutschland als «stark gefährdet», für Baden-Württemberg (Trautner et al. 2005) und für die Schweiz (Huber und Marggi 2005) als vom Aussterben bedroht eingestuft (Tab. 5). Der Käfer lebt an feuchten Uferstellen von Teichen und stehenden Gewässern mit hohem Anteil an organischer Substanz (stenotope Ufer- und Feuchtgebietsart, Luka et al. 2009a).

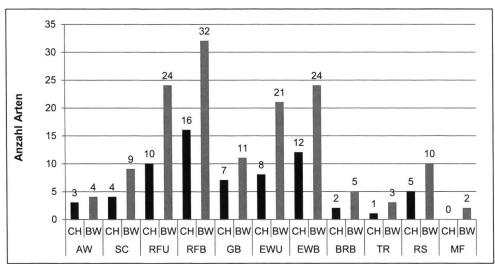
Im Elsass wurde diese Art bis jetzt an 3 Fundorten im Oberelsass nachgewiesen (Callot und Schott 1993). In der PCA wurde bisher ein Individuum an einer nassen, morastigen Stelle des Grand Marais 1995 (Riedfläche beweidet) gefangen (Luka et. al. 1998). 2008 wurde in einer Falle, die im sehr nassen Bereich der Grand Pré beweidet (Extensivwiese beweidet) platziert war, ein weiteres Individuum gefangen.

Calosoma inquisitor (Linné, 1758)

Westpaläarktische Art, die auch in Nordafrika, Kleinasien und Iran vorkommt. Sie wurde Anfangs des 20. Jahrhunderts nach Nordamerika zur biologischen Schädlingsbekämpfung eingeschleppt. Es handelt sich um eine stenotope Waldart, die Laubwälder bevorzugt, wo sie auf den Bäumen Eichenwickler-Raupen (Tortrix viridiana) jagt (Luka et al. 2009a, Wachmann et al. 1995). In der Schweiz ist sie stark gefährdet (Huber und Marggi 2005), in Deutschland und in Baden-Württemberg gefährdet (Trautner et al. 2005) (Tab. 5). Im Elsass insgesamt mit 73 Fundorten (davon 48 im Oberelsass) wurde diese Art häufig gemeldet (Callot und Schott 1993, Schott 2009 online). Sie wurde erst 2008 in der PCA nachgewiesen (2 Individuen in den Gebüschen).

4.1.4 Arten der Roten Liste

Insgesamt wurden 56 Rote Liste-Arten (35 % aller Laufkäfer-Arten) nachgewiesen, wovon 30 Arten (19 % aller Arten) in der Schweiz als gefährdet geführt werden (Huber und Marggi 2005) und 51 Arten (32 % aller Arten) in Baden-Württemberg (Trautner et al. 2005) (Tab. 5).


Eine in der Schweiz als ausgestorben geltende Art (Kategorie 0), Acupalpus exiguus, wurde mit 4 Individuen in den Riedflächen sowie 1 Individuum in der Extensivwiese beweidet gefunden (Tab. 5). Sechs vom Aussterben bedrohte Arten (Kategorie 1) konnten nachgewiesen werden: Agonum viridicupreum, Amara tibialis und Leistus terminatus (Rote Liste Schweiz) und Cylindera germanica und Acupalpus luteatus (Rote Liste Baden-Württenberg) sowie Pterostichus aterrimus (Rote Listen Schweiz und Baden-Württemberg) (Tab. 5).

Am meisten Rote Listen-Arten beherbergten die Riedflächen (RFU und RFB) und Extensivwiesen (EWU und EWB) (Abb. 5). Es handelte sich vorwiegend um steno-hygrophile Ufer- und Feuchtgebietsarten oder steno-xerophile Grünland- und Pioniervegetationsarten.

Das Vorkommen der Rote Listen-Arten pro Lebensraumtyp wurde in Tab. 5 zusamengefasst. Mehrere Arten wurden sehr individuenreich nachgewiesen, z.B. in den Riedflächen *Oodes helopioides* (1'347 Individuen) und *Agonum viridicupreum* (105 Individuen) oder *Amara kulti* (309 Ind.) in den Extensivwiesen.

4.1.5 Ausschliesslich in einem Lebensraumtyp vorkommende Arten

Insgesamt kamen 28 Arten vor, die ausschliesslich in einem Lebensraumtyp gefunden wurden. **Auenwälder:** Agonum gracile, (1 Individuum) (stenotope Ufer- und Feuchtgebietsart). Schilf**flächen**: Agonum piceum, (2 Individuen) (stenotope Ufer- und Feuchtgebietsart) und Odacantha melanura, (1) (stenotope Ufer- und Feuchtgebietsart). Riedflächen unbeweidet: Bradycellus harpalinus, (1) (eurytope Pioniervegetations-, Ufer- und Feuchtgebietsart) sowie Leistus terminatus, (1) (stenotope Ufer- und Feuchtgebietsart). Riedflächen beweidet: Acupalpus parvulus, (5) (stenotope Ufer- und Feuchtgebietsart), Agonum hypocrita, (1) (stenotope Ufer- und Feuchtgebietsart), Bembidion articulatum, (3) (stenotope Ufer- und Feuchtgebietsart), Ophonus schaubergerianus, (1) (eurytope Pioniervegetations- und Grünlandart) und Pterostichus rhaeticus, (4) (stenotope Ufer- und Feuchtgebietsart). Gebüsche: Calosoma inquisitor, (2) (stenotope Waldart), Carabus monilis, (1) (eurytope Acker- und Pioniervegetationsart), Elaphrus aureus, (3) (eurytope Ufer-, Feuchtgebiets- und Waldart), Harpalus atratus, (1) (eurytope Übergangszonen- und Waldart), Leistus fulvibarbis, (2) (stenotope Übergangszonenart), Paranchus albipes, (2) (stenotope Ufer- und Feuchtgebietsart) sowie Tachyura parvula (2) (eurytope Pioniervegetations-, Ufer- und Feuchtgebietsart). Extensivwiese unbeweidet: Harpa-

Abb. 5: Anzahl Rote Listen-Arten der Schweiz (CH) und Baden-Württembergs (BW) pro Lebensraum-Typ.

AW: Auenwälder, SC: Schilfflächen, RFU: Riedflächen unbeweidet, RFB: Riedflächen beweidet, GB: Gebüsche, EWU: Extensivwiesen unbeweidet, EWB: Extensivwiesen beweidet, BRB: Brache beweidet, TR: Trockenrasen, RS: Ruderalstandorte und MF: Maisfelder.

lus pumilus, (1) (eurytope Übergangszonen- und Grünlandart), Harpalus serripes, (14) (Eurytope Art), Nebria salina, (1) (Eurytope Art), Syntomus foveatus, (1) (eurytope Übergangszonenund Grünlandart) sowie Synuchus vivalis, (3) (eurytope Übergangszonen- und Ackerart). Extensivwiese beweidet: Amara littorea, (1) (eurytope Pioniervegetations- und Ackerart), Amara municipalis, (1) (eurytope Pioniervegetationsund Grünlandart), Elaphrus riparius, (1) (stenotope Ufer- und Feuchtgebietsart) und Harpalus signaticornis, (2) (eurytope Pioniervegetationsund Ackerart). Ruderalstandorte: Acupalpus luteatus, (2) (eurytope Ufer-, Feuchtgebiets- und Pioniervegetationsart) und Bembidion illigeri, (3) (stenotope Ufer- und Feuchtgebietsart).

4.1.6 Feuchtigkeits-Präferenzen

Insgesamt waren die mesophilen Arten mit den 3 häufigsten Arten, Harpalus rufipes, Poecilus cupreus und Harpalus affinis am stärksten vertreten, gefolgt von hygro- und steno-hygrophilen Arten wie Pterostichus anthracinus, Carabus granulatus und Abax parallelus beziehungsweise Agonum emarginatum, Oodes helopioides sowie Oxypselaphus obscurus und xero- und steno-xerophilen Arten wie Amara aenea, Microlestes maurus und Microlestes minutulus beziehungsweise Brachinus explodens, Cicindela campestris und Callistus lunatus.

In den feuchten Lebensraumtypen wie Auenwäldern, Schilfflächen, Riedflächen (unbeweidet und beweidet) und Gebüschen nahmen die hygro- und steno-hygrophilen Arten mit über 50 % (Riedflächen) bis über 90 % Anteil (Auenwälder und Schilfflächen) an der Aktivitätsdichte teil. Mit einer Ausnahme (Extensivwiese beweidet) sahen die Individuen- und Artenverteilung der restlichen Standorte ähnlich aus. Auf der beweideten Extensivwiese waren die xerophilen Arten häufig und artenreich (Abb. 6).

4.2 Kurzflügelkäfer

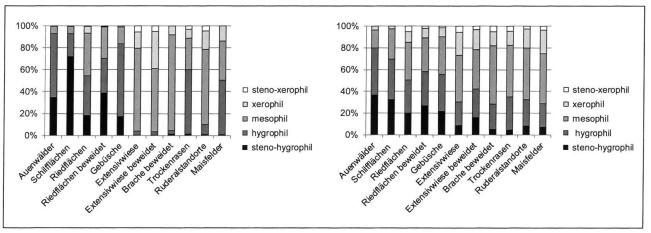
4.2.1 Überblick:

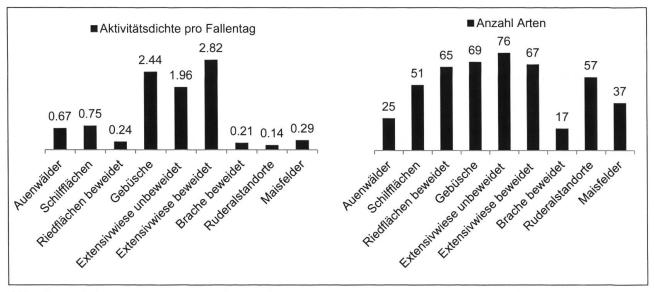
Artenvielfalt und Individuenzahlen

Kurzflügelkäfer wurden in der PCA in den Jahren 1999, 2003 und 2008 an 13 Untersuchungsflächen erfasst. Insgesamt konnten 11'158 Individuen und 176 Arten nachgewiesen werden (Tab. 6).

In der Tab. 7 ist die Aktivitätsdichte pro Lebensraumtyp dargestellt. Die meisten Kurzflügelkäfer wurden in der Extensivwiese beweidet (GPB) und in der Extensivwiese (GPW) unbeweidet gefangen.

Vergleicht man die mittlere Aktivitätsdichte pro Fallentag (Abb. 7), wird ersichtlich, dass die höchsten Werte in der Extensivwiese beweidet und die zweithöchste Aktivitätsdichte in den Gebüschen gemessen wurde. Die höchste Artenvielfalt wurde generell in den Wiesen nachgewiesen: Extensivwiese unbeweidet 76 Arten, Extensivwiese beweidet 67 Arten und die Riedflächen beweidet 65 Arten. Die Gebüsche waren mit 69 Arten ähnlich artenreich. Am wenigsten




Abb. 6: Feuchtigkeits-Präferenz der Laufkäfer. Verteilung der Aktivitätsdichte (links) und Arten (rechts).

		Untersuch	ungsjahre	
Anzahl	Total	1999	2003	2008
Aktivitätsdichte (AD)	11158	1052	902	9204
AD pro 1 Fallentag	0.40	0.57	0.81	1.25
Anzahl Arten	176	76	60	152

Tab. 6: Aktivitätsdichte und Anzahl Arten der Kurzflügelkäfer pro Jahr.

Lebensraum- typ	Total	Auen- wälder	Schilf- flächen	Riedflächen beweidet	Gebüsche	Extensivwiese unbeweidet	Extensivwiese beweidet	Brache beweidet	Ruderal- standorte	Mais- felder
Aktivitäts- dichte	11158	206	883	853	923	3078	4436	58	380	341

Tab. 7: Aktivitätsdichte der Kurzflügelkäfer pro Lebensraum-Typ.

Abb. 7: Aktivitätsdichten der Kurzflügelkäfer pro Fallentag und Lebensraumtyp (links) und Anzahl Arten (rechts).

Arten konnten in der Brache beweidet mit 17 Arten festgestellt werden. Es handelte sich allerdings um den Standort mit den wenigsten Fallentagen (vgl. Tab. 2).

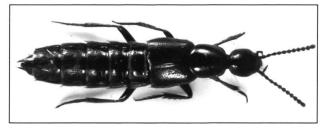
4.2.2 Die häufigsten Arten

Zu den dominanten Arten (> 5 % Anteil an der Gesamtaktivitätsdichte) der PCA gehörten die 2 Arten, Rabigus tenuis und Drusilla canaliculata. In den Auenwäldern waren es, Falagria sulcatula und Falagrioma thoracica, in den Schilfflächen Anotylus rugosus, Falagria sulcatula, Paederus riparius, Drusilla canaliculata und Bledius cribricollis, in der Riedfläche beweidet Drusilla canaliculata, Scopaeus laevigatus, Anotylus ru-

gosus, Carpelimus corticinus und Philonthus fumarius, in den **Gebüschen** Oxypoda acuminata, Liogluta longiuscula, Omalium rivulare, Drusilla canaliculata und Omalium caesum, in der Extensivwiese unbeweidet Drusilla canaliculata, Falagria sulcatula und Rabigus tenuis, in der Extensivwiese beweidet Rabigus tenuis und Rabigus pullus, in der Brache beweidet Scopaeus laevigatus, Paederus riparius, Philonthus cognatus, Xantholinus longiventris, Anotylus rugosus und Stenus biguttatus, in den Ruderalstandorten Staphylinus dimidiaticornis, Dinaraea angustula, Tachyporus nitidulus, Philonthus carbonarius und Xantholinus longiventris sowie in den Maisfeldern Dinaraea angustula, Anotylus rugosus, Atheta oblita und Ocypus nitens.

4.2.3 Für das Elsass neu nachgewiesene Arten

Die PCA wurde bislang noch nicht auf Staphylinidae untersucht. Die sieben Arten: Alevonota rufotestacea (Kraatz, 1856), Atheta pervagata (G. Benick, 1975), Bledius crassicollis (Lacordaire, 1835), Callicerus obscurus (Gravenhorst, 1802), Oxypoda brachyptera (Stephens, 1832), Oxypoda lurida (Wollaston, 1857) sowie Quedius semiobscurus (Marsham, 1802) sind Neunachweise für das Elsass (Callot 2005 und Callot 2011 online). Dazu konnten 50 Arten neu für das Oberelsass nachgewiesen werden.


4.2.4 Ausgewählte, seltene und/oder interessante Arten

Rabigus tenuis (Fabricius, 1793)

Paläarktische Region ausser Japan (Schillhammer 2012): Es handelt sich wahrscheinlich um eine sibirisch-osteuropäische Art, die den atlantischen Bereich weitgehend meidet. Im mittleren und südlichen Europa nicht häufig (Schillhammer 2012). In Frankreich vereinzelt in der Gascogne und in den Pyrenäen vorkommend; dazu eine alte Meldung von der Kanalzone (Horion 1965). Schweiz: Zahlreiche Meldungen, im Alpengebiet stellenweise bis ca. 1400 m. Deutschland: Im Süden und in der Mitte in hügeligen und gebirgigen Gegenden verbreitet und nicht selten; im Westen (besonders im Rheingebiet) nur sehr zerstreut und selten.

Auf sonnenexponierten Lehm- und Sandböden, gerne bei Ameisen (Horion 1965). Vielfach als ripicole (Ufer bewohnende) Art gemeldet: An Fluss- und Seeufern auf Sandboden mit schütterem Grasbewuchs, auch im Hochwassergenist. Daneben wird diese Art aber auch vielfach aus Sand- und Ziegelei-Gruben gemeldet, weitab vom Wasser. Sie kommt in unbewaldeten, meist trockenwarmen Biotopen vor (Schillhammer 2012). Der auffallende Rückgang im Rheingebiet dieser ursprünglich ripicolen Art ist wahrscheinlich durch die Wasserverschmutzung zu erklären (Horion 1965).

Für das Elsass meldete Callot (2005) 10 Fundorte, jedoch keine für das Oberelsass. In der PCA wurden bisher 3'212 Individuen nachgewiesen, 2008 war sie mit 3'211 Individuen die häufigste

Abb. 8: Rabigus pullus (Nordmann, 1837), Original-grösse 5.0 mm (Foto H. Luka).

Art der Untersuchung überhaupt und mit 2'989 Individuen die häufigste Art der Grand Pré Weide (Extensivwiese beweidet). In der Schweiz wurde sie mit insgesamt 91 Individuen bisher nicht besonders häufig gefunden (Luka et al. 2009b).

Rabigus pullus (Nordmann, 1837) (Abb. 8) Südpaläarktische Art: Süd- und Mitteleuropa; Kleinasien bis Sibirien. In Frankreich im ganzen Gebiet. Deutschland: In Süden und Mitte, zerstreut bis selten (Schillhammer 2012). Im 19. Jahrhundert anscheinend weiter verbreitet und in vielen Gebieten häufiger als heute (Horion 1965).

An Fluss-, Bach- und See-Ufern an sandigen Stellen mit schütterem Pflanzenbewuchs oder unter Steinen und faulenden Stoffen. An feuchten Stellen in Ziegeleigruben unter Steinen oder im Pflanzenbewuchs der Böschungen. In subalpinen Lagen auch aus feuchten Moosen gesiebt. Vielfach zusammen mit *Rabigus tenuis* oder anderen ripicolen Arten, dabei immer die seltenste Art (Horion 1965). Winterquartiere im Grasbewuchs der Uferböschungen.

Diese Art wurde durch Callot (2005) nur aus 3 Fundorten für das Elsass (davon keine für das Oberelsass) gemeldet. In der PCA konnten bisher 297 Individuen (alle 2008) nachgewiesen werden. Mit 276 Individuen trat sie in der Grand Pré Weide (Extensivwiese beweidet) am häufigsten auf. In der Schweiz wurden bisher 74 Individuen gemeldet (Luka et al. 2009b).

Philonthus fumarius (Gravenhorst, 1806) In ganz Europa verbreitet und häufig (Schillhammer 2012). Hygrophile Art in Sumpfgebieten, Erlenbrüchen und an verschlammten Ufern. Sie wird in faulenden Stoffen in Schilf, Erlenund Weidenlaub-Genist gefunden, auch an faulenden Pilzen. Besonders im Frühjahr und Herbst, den Winter hindurch vereinzelt vorkommend (Horion 1965). Callot (2005) meldet sie aus 24 Fundorten im Elsass, davon ein Fundort im Oberelsass. In der PCA konnten bisher 90 Individuen nachgewiesen werden, davon 88 an Feuchtstandorten. In der Schweiz wurden bisher 74 Individuen gemeldet (Luka et al. 2009b).

Callicerus obscurus (Gravenhorst, 1802)

Diese Art kommt in Mittel- und Südeuropa vor. In Frankreich verbreitet, aber nur stellenweise und nicht häufig. In Deutschland im ganzen Gebiet, in der Ebene und in niederen montanen Lagen, nicht im höheren Gebirge. Hygrophil: Auf sumpfigen, anmoorigen Wiesen, an feuchten Waldrändern, an See- und Fluss-Ufern. Im späten Frühjahr (Ende April–Anfang Mai) in grossen Schwarmflügen. *C. obscurus* wurde noch nicht im Elsass nachgewiesen (Callot 2005, Callot 2011 online). In der PCA konnte 2008 1 Individuen in der Grand Pré Wiese (Extensivwiese) nachgewiesen werden. Diese Art wurde in der Schweiz bisher nur mit 12 Individuen gemeldet (Luka et al. 2009b).

Pella cognata cognata (Märkel, 1842)

Eine nord- und mitteleuropäische Art. In Mitteleuropa bis zum Vorland der Gebirge in Südfrankreich. Myrmecophile Art in Nestern von Lasius fuliginosus und stellenweise auch Lasius brunneus, gelegentlich auch auf Moor und Wiesengelände in der Bodenstreu (Horion 1967). P. cognata ist für das Elsass nur an einem Fundort im Unterelsass belegt (Callot 2005). Auch in der Schweiz wurden bisher nur 28 Individuen nachgewiesen. In der PCA trat 2008 ein Individuum in der Grand Pré Wiese (Extensivwiese unbeweidet) auf.

Anotylus hamatus

(Fairmaire & Laboulbène, 1856)

Transpaläarktisch, von Westeuropa bis ins nördliche China verbreitet (Schülke 2012). In Mitteleuropa vermutlich überall, kommt stellenweise auch im gebirgigen Südosteuropa vor (Horion 1963). Es handelt sich um eine seltene Art, die für die Schweiz nur mit 5 Individuen (Luka et al. 2009b) und für das Elsass mit 2 Individuen

(Ober- und Unterelsass je 1 Individuum) gemeldet wurde. Kommt in Dung sowie in Nestern unterirdisch lebender Säugetiere vor (Schülke 2012). In der PCA konnte 2008 1 Individuum in der Grand Pré Weide (Extensivwiese beweidet) nachgewiesen werden.

Lomechusa paradoxa (Gravenhorst, 1806) Eine myrmecophile Art in Nord- und Mitteleuropa, die ihre Entwicklung von Frühjar bis Herbst als Gast (Symphile) in den Nestern der Ameise Formica rufibarbis durchmacht. Im Herbst Abwanderung der Adulten zu Myrmica-Arten: M. scabrinodis, M. laevinodis oder M. ruginodis wo sie überwintert. Im Frühjahr (April–Mai) kehren sie zu Formica rufibarbis zurück und lassen dort ihre Larven aufziehen (Horion 1967).

Sehr seltene Art, in der Schweiz wurden bisher nur 4 Individuen gefunden (Luka et al. 2009b). Für das Elsass meldet sie Callot (2005) von 2 Fundorten, davon einen im Oberelsass. In der PCA 2008 konnte 1 Individuum in der Grand Pré Weide (Extensivwiese beweidet) nachgewiesen werden.

4.2.5 Ausschliesslich in einem Lebensraumtyp vorkommende Arten

65 Kurzflügelkäfer-Arten konnten auschliesslich in einem Lebensraumtyp nachgewiesen werden. Auenwälder 1 Art Aleochara tristis (1 Individuum). Schilfflächen 5 Arten: Bledius longulus (6 Individuen), Lathrobium impressum (2) sowie Atheta pervagata, Philonthus atratus und Rugilus orbiculatus mit je 1 Individuum. Riedflächen beweidet 8 Arten: Stenus carbonarius (11), Tachyporus transversalis (7), Erichsonius cinerascens (5) und Tetartopeus terminatus (5) sowie Cypha longicornis, Quedius picipes, Stenus nigritulus und Tachyporus abdominalis mit je 1 Individuum. Gebüsche 25 Arten, davon 8 Arten mit mehr als 5 Individuuen: Liogluta longiuscula (161), Omalium rivulare (117), Pella funesta (21), Plataraea brunnea (10), Stenus fuscicornis (8), Tetralaucopora longitarsis (8), Anthobium atrocephalum (7) und Platydracus chalcocephalus (6). Extensivwiese unbeweidet 9 Arten: Quedius semiobscurus (4), Ilyobates

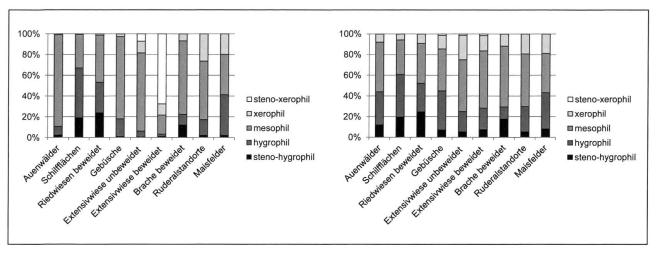


Abb. 9: Feuchtigkeits-Präferenz der Kurzflügelkäfer. Verteilung der Aktivitätsdichte (links) und Arten (rechts).

18 %	Total	Riedfläche beweidet	Extensivwiese beweidet	Extensivwiese unbeweidet
Bodenfallenfänge				
Aktivitätsdichte (AD)	693	57	633	3
AD pro 1 Fallentag	0.147	0.012	0.135	0.001
Anzahl Arten	34	7	27	3
Handfänge				
Anzahl individuen	34	9	25	lusina
Anzahl Arten	16	7	12	keine Aufnahmen
Total Individuen	727	66	658	3
Total Arten	50	14	39	3

Tab. 8: Aktivitätsdichte (und Individuenzahl, Handfänge) sowie Anzahl Arten der Rüsselkäfer pro Lebensraum-Typ und Total.

propinguus (3), Mycetoporus sp. (clavicornis-Gruppe) (2), Ocypus fulvipennis (2) sowie Bolitobius castaneus, Callicerus obscurus, Gabrius nigritulus, Ocypus aeneocephalus und Stenus ochropus mit je 1 Individuum. Extensivwiese beweidet 11 Arten: Philonthus rubripennis und Stenus nitens mit je 3 Individuen, Amischa decipiens, Oxypoda lurida und Platystethus capito mit je 2 Indinividuen sowie Acrotona parvula, Anotylus hamatus, Lomechusa paradoxa, Oxypoda brachyptera, Pella lugens und Stenus cicindeloides mit je 1 Individuum. Ruderalstandorte 2 Arten, mit je 1 Individuum: Ocypus ophthalmicus und Ontholestes haroldi. Maisfelder 4 Arten: Lathrobium laevipenne (5) und Oxypoda opaca (3) sowie Astenus pulchellus und Ocalea picata mit je 1 Individuum.

4.2.6 Feuchtigkeits-Präferenzen

Die mesophilen Arten (*Drusilla canaliculata, Falagria sulcatula* und *Dinaraea angustula*) waren dominant, gefolgt von xerophilen Arten, namentlich *Rabigus tenuis* (fast 29 % Anteil an der gesamten Aktivitätsdichte der Untersuchng) sowie *Rabigus pullus, Xantholinus elegans* und *Stenus nanus* und hygrophilen Arten wie *Anotylus rugosus, Stenus circularis* und *Carpelimus corticinus*.

Neben den mesophilen Arten waren auch die hygrophilen Vertreter der Kurzflügelkäfer zahlreich. Nur in den Schilfflächen und beweideten Riedwiesen traten steno- und hygrophile-Arten individuenreich auf. Auffallend sind die sehr hohen (68 %) Anteile der steno-xerophilen Arten (namentlich *Rabigus tenuis*) an der Aktivitätsdichte in der beweideten Extensivwiese (Abb. 9).

4.3 Rüsselkäfer

4.3.1 Überblick: Artenvielfalt und Individuenzahlen

Die Rüsselkäfer wurden nur im 2008 und an 3 Standorten mit Bodenfallen aufgenommen: Riedfläche beweidet Grand Triangle (GT), Extensivwiese unbeweidet Grand Pré (GPW) und Extensivwiese beweidet Grand Pré (GPB). Dabei wurden 693 Individuen in 34 Arten aus den Familien Apionidae (7 Arten), Curculionidae (25 Arten) und Erirhinidae (2 Arten) gezählt (Tab. 8).

Durch den Handfang anlässlich eines Sammeltages im Mai 2011 konnten ergänzend zu den bisher vorliegenden Fallenfunden weitere 16 Rüsselkäfer-Arten in der PCA nachgewiesen werden. Momentan liegen somit 50 Arten der Rüsselkäfer im weiteren Sinn (Curculionoidea) vor. Alle Arten sind bereits aus dem Elsass gemeldet worden. Im Folgenden wird ein Überblick über die Funde gegeben.

4.3.2 Die häufigsten Arten

Wie bereits in Germann (2011a) aufgeführt, wurden die Arten Trichosirocalus troglodytes (203 Individuen), Neophytobius quadrinodosus (in überraschenden 123 Individuen; die Art wird sonst nur selten gefunden), Sitona lepidus (105), S. hispidulus (29), Brachypera zoilus und Limnobaris t-album (je 27), sowie der überall häufige Protapion fulvipes (26) in grösseren Individuenzahlen gefangen. Beim Handfang wurden nur Pelenomus commari (7) an Lythrum und Limnobaris t-album (9) beim Keschern in grösserem Umfang gesammelt; alle weiteren Arten wurden zumeist in Einzelexemplaren gefunden.

4.3.3 Seltene und bemerkenswerte Arten

Alle 50 gesammelten Arten wurden bereits aus dem Elsass gemeldet, zu einigen Arten lagen bisher jedoch nur wenige Funde vor. Acht der gefundenen Arten können als bemerkenswert bezeichnet werden. Zu drei Arten wurden weitere Einblicke oder eine Bestätigung derselben

in ihrer Biologie und Ökologie gewonnen; Neophytobius quadrinodosus lebt nachgewiesenermassen auf Potentilla reptans, Hypera striata lebt auch in Feuchtwiesen und Mononychus punctumalbum weicht vor der Blüte seiner Wirtspflanze auf die Blüten anderer Pflanzen aus.

Bagous lutulentus (Gyllenhal, 1813)

Deutschland: Aktuelle Funde liegen aus 15 Bundesländern vor, aus einem weiteren sind nur alte Funde bekannt. Schweiz: Aus 14 Kantonen liegen Funde vor, Nachweise aus dem Jura und den östlichen Zentralalpen fehlen. Ein Grossteil der Funde liegt vor 1960. Von B. lutulentus lagen bisher nur Funddaten von drei Exemplaren aus dem Elsass vor (Schott 1999). In der PCA wurde 1 Individuum in der Riedfläche Grand Triangle beweidet gefunden.

Ceutorhynchus resedae (Marsham, 1802)
Deutschland: Aus 12 Bundesländern geme

Deutschland: Aus 12 Bundesländern gemeldet. Die Art wird in der Roten Liste als gefährdet eingestuft. Schweiz: Bisher liegen keine überprüften Funde vor. *C. resedae* wurde von Schott (2006 und 2010) erst in den Nachträgen zur Faunistik über das Elsass gemeldet und nur zwei neuere Funde lagen bisher vor. In der PCA konnten 2 Individuen in der Extensivwiese Grand Prè beweidet nachgewiesen werden.

Hylobius transversovittatus (Goeze, 1777) Deutschland: Die Art wird in der Roten Liste als gefährdet eingestuft. H. transversovittatus wird im Elsass nicht selten nachgewiesen (Schott 2000). In der PCA wurden jedoch nur 2 Individuen in Riedfläche Grand Triangle beweidet gefangen.

Mogulones abbreviatulus (Fabricius, 1792) Deutschland: Aktuelle Funde liegen aus 14 Bundesländern vor, aus weiteren 3 liegen nur alte Funde (vor 1950) vor. M. abbreviatulus ist zwar nur selten und lokal im Elsass nachgewiesen worden, es liegen jedoch Funde bis 1997 vor (Schott 2000). In der PCA wurden 2 Individuen in der Riedfläche Grand Triangle beweidet gefunden.


Abb. 10: Larve von *Neophytobius quadrinodosus* (Gyllenhal, 1813) mit typischen Frassspuren auf *Potentilla reptans* (Foto Ch. Germann).

Abb. 12: *Mononychus punctumalbum* (Herbst, 1784) beim Frass an Pollen von *Potentilla reptans* (Foto: Ch. Germann).

Neophytobius quadrinodosus (Gyllenhal, 1813) (Abb. 10 und Abb. 11)

Deutschland: Aktuelle Funde liegen aus 13 Bundesländern vor, aus weiteren 4 nur alte Funde (vor 1950). Von *N. quadrinodosus* sind nur wenige Fundpunkte am Nordrand des Elsass bekannt. Die zahlreichen Funde (122 Individuen) von *Neophytobius quadrinodosus* in der PCA 2008 (Extensivwiese Grand Prè beweidet) führten zudem während der ergänzenden Exkursion im Mai 2011 im Grand Triangle und der Extensivwiese Grand Prè beweidet zur Entdeckung der Larven dieser Art (7 Larven und eine Imago wurden gefunden) auf der erstmals dokumentierten Wirtspflanze *Potentilla reptans* (Germann 2011b).

Abb. 11: *Neophytobius quadrinodosus* (Gyllenhal, 1813) (Foto Ch. Germann).

Pelenomus commari (Panzer, 1794)

Deutschland: Aktuelle Funde liegen aus 17 Bundesländern vor. *P. commari* wurde im Elsass nicht selten gefunden (Schott 2000). In der PCA konnte 1 Individuum in der Extensivwiese Grand Prè beweidet nachgewiesen werden.

Handfänge erbrachten Funde von 16 weiteren Arten. Zwei bemerkenswerte Arten davon werden kurz vorgestellt und mit den bisher bekannten Funden verglichen:

Sitona waterhousei (Walton, 1846)

Diese Art wurde nur wenig häufig und lokal im Elsass wie auch in den Nachbarländern Deutschland und Schweiz nachgewiesen. Sie findet sich in trockenen, wie auch in dieser Arbeit bestätigt, in feuchten Lebensräumen. In der PCA wurden 3 Indiviuen in der Extensivwiese Grand Prè beweidet gefunden.

Hypera striata (Boheman, 1834)

Eine Larve wurde an *Vicia sativa* gefunden und bis zur Imago gezüchtet. Das Biotop der Weide – einer extensiv bewirtschafteten Weide im Übergang von Fingerkraut-Queckenrasen (Agropyro-Rumicion) bis zur Rossminzen-Blaubinsen-Gesellschaft (Mentho longifoliae-Juncus inflexi) – entspricht nicht dem als typisch bezeichneten Biotop der Art. Skuhrovec (2003) charakterisiert das typische Habitat von *H. striata* als Randgebiete von Steppen und Waldsteppen. Allerdings wurde *H. striata* in Südmähren

Taxon	N	Rote Liste D	Rote Liste B	Rote Liste BW
Cyanapion gyllenhalii (Kirby, 1808)	1	V	2	V
Bagous lutulentus (Gyllenhal, 1813)	1	3	2	3
Ceutorhynchus resedae (Marsham, 1802)	2	-	3	3
Grypus brunnirostris (Fabricius, 1792)	17	3	V	V
Hylobius transversovittatus (Goeze, 1777)	2	3	2	V
Neophytobius quadrinodosus (Gyllenhal, 1813)	131	3	3	G
Mogulones abbreviatulus (Fabricius, 1792)	2	3	V	-
Mogulones raphani (Fabricius, 1792)	1	-	3	-
Sitona waterhousei (Walton, 1846)	1	3	3	V
Thryogenes nereis (Paykull, 1800)	2	V	-	3

Tab. 9: Die 10 Rüsselkäfer-Arten, welche in den aktuellen Roten Listen Deutschlands (D), Bayerns (B) und Baden-Württembergs (BW) aufgeführt sind (aus Rheinheimer und Hassler 2010). - keine Einstufung, G: vermutlich gefährdet, Datenlage jedoch ungenügend, V: Vorwarnliste, 3: gefährdet, 2: stark gefährdet.

(Brno) auch einmal in Feuchtwiesen gefunden (Skuhrovec 2003). Diese Angabe wurde vom Autor jedoch als zweifelhaft eingeschätzt. Die bisherigen Funde aus der Schweiz (Germann 2007, 2011c, in Vorbereitung) stammen alle aus xerothermen Biotopen wie Kalk-Magerrasen (Neuchâtel und Genf).

Bisher lag nur eine Meldung von *H. striata* aus dem Süden des Elsass (Réguisheim) vor (Schott 2000). Auch aus dem Kaiserstuhl-Gebiet wurde *H. striata* erst vor Kurzem gemeldet (Köhler und Krumm 2009). In der PCA wurde 1 Individuum in der Extensivwiese Grand Prè beweidet gefunden.

Mononychus punctumalbum (Herbst, 1784) (Abb. 12)

Der weit verbreitete und häufig gefundene Mononychus punctumalbum wurde während der Exkursion am 10. Mai 2011 beim Frass an Pollen und Nektar von Euphorbia sp. und Potentilla reptans beobachtet (Abb. 12). Ein Fehlen von blühenden Iris pseudacoris, der Wirtspflanze im Biotop, könnte zu diesem Ausweichen auf andere Energie- und /oder Proteinlieferanten geführt haben. Diese Beobachtungen bestätigen ähnliche Ergebnisse von Nazarenko und Petrenko (2010), welche M. punctumalbum im Frühjahr in der Umgebung von Kiev (Ukraine) an Euphorbia sp. und Ranunculus sp. beobachten konnten. In der PCA wurden 2 Individuen in der Riedfläche Grand Triangle beweidet gefunden.

4.3.4 Arten der Roten Liste

Nur aus Deutschland liegen bisher Rote Listen für Rüsselkäfer vor, die Listen Deutschlands, Bayerns und Baden-Württembergs wurden zum Vergleich aus Rheinheimer & Hassler (2010) entnommen. Insgesamt liegen 10 Rote Liste-Arten (20 % der Rüsselkäfer-Arten) vor. Je nach Liste (Tab. 9) können 6 Arten als gefährdet (Deutschland), 3 Arten als stark gefährdet und 4 Arten als gefährdet (Bayern) oder 3 Arten als gefährdet bezeichnet werden (Baden-Württemberg).

4.3.5 Ausschliesslich in einem Lebensraumtyp vorkommende Arten (nur Bodenfallen)

Insgesamt kamen 31 Arten in einem einzigen Lebensraumtyp vor. Bei den Arten wird jeweils die Wirtspflanze (WP) mit angegeben. Riedflächen beweidet (Grand Triangle GT): Limnobaris t-album (Wirtspflanzen /WP/: Cyperaceae, Juncaceae). Grypus brunnirostris (WP: Equisetum), Hylobius transversovittatus (WP: Lythrum salicaria), Mogulones abbreviatulus (WP: Symphytum officinale) und Grypus equiseti (WP: Equisetum). Extensivwiese beweidet (Grand Pré beweidet GPB): Sitona lepidus (WP: Fabaceae), Sitona hispidulus (WP: Fabaceae), Brachypera zoilus (WP: Trifolium, Medicago), Protapion fulvipes (WP: Trifolium), Ischnopterapion virens (WP: Trifolium), Glocianus punctiger (WP: Taraxacum), Protapion apricans

(WP: Trifolium), Catapion seniculus (WP: Trifolium), Hypera plantaginis (WP: Lotus), Hypera meles (WP: Trifolium), Tanymecus palliatus (WP: unbekannt), Ischnopterapion loti (WP: Lotus corniculatus), Rhinoncus pericarpius (WP: Rumex), Lepyrus capucinus (WP: Rosaceae), Ceutorhynchus resedae (WP: Reseda), Hypera nigrirostris (WP: Fabaceae), Zacladus exiguus (WP: Geranium), Bagous lutulentus (WP: Equisetum), Mecinus pyraster (WP: Plantago), Pelenomus commari (WP: Rosaceae, Lythrum), Sitona sulcifrons argutulus (WP: Fabaceae), Stenopterapion meliloti (WP: Melilotus), Tychius junceus (WP: Fabaceae) und Tychius picirostris (WP: Trifolium). Extensivwiese unbeweidet: Sitona humeralis (WP: Fabaceae) und Stenocarus ruficornis (WP: Papaver).

4.3.6 Feuchtigkeits-Präferenzen

Im Grand Triangle (Riedfläche beweidet) wurden verhältnismässig viele hygrophile Arten gefunden, was vom Lebensraumtyp her auch erwartet werden konnte. In der Grand Pré Weide (Extensivwiese beweidet) fanden sich dazu überraschend viele xero-thermophile Arten, obwohl diese Fläche temporär überschwemmt wird. Dieses Ergebnis (und damit auch einige der nachgewiesenen Arten wie bei Hypera striata angesprochen) wurde nicht erwartet. Allerdings liegt die PCA im ausgesprochen wärmebegünstigten Rheintal und was sich im ersten Moment widersprüchlich anhört (Feuchtgebiet mit xerothermophilen Arten) kann vor Ort bestätigt werden: Die Wirtspflanzen der xerothermophilen Rüsselkäfer (Anhang 3) wachsen auf sandigem und nur lückenhaft bewachsenem Boden, der sich ohne Schatten werfende Bodendeckung stark durch die Sonne erwärmt. Zudem liegt ein Teil der Weide etwas erhöht und in diesem Bereich entstehen dadurch trockenere und kahlere Flächen.

5. Diskussion

Die Artenzusammensetzung der Artengemeinschaften sowie mögliche Einflussfaktoren, welche sich auf die Artenvielfalt auswirken werden zusammengestellt und diskutiert.

5.1 Fangmethode

Die Anzahl der erfassten Arten hängt von vielen Faktoren wie Anzahl Standorte und Lebensraumtypen, Jahreszeit, Anzahl Jahre, Fangintensität (Anzahl Fallen und Tage) sowie Diversität verwendeter Fangmethoden ab (Mühlenberg 1989).

In der PCA gibt es Lebensräume und Standorte, die sehr intensiv mit Bodenfallen beprobt wurden. Es gibt jedoch noch viele nicht untersuchte PCA-Teile, die weitere Arten beherbergen. So führte die spezielle Erfassung der Gebüsche 2008 in bisher vernachlässigte Lebensräume; es fehlten bisher die typischen Wald-, Busch- und Baumbewohner. Hier sind Arten gefunden worden, die vorher kaum erfasst wurden. Im Weiteren gibt es Arten, die auf und in den Pflanzen leben und kaum mit Bodenfallen zu erfassen sind.

Beim Einsatz von weiteren Fangmethoden wie Handfänge, Kescher, Klopfproben, Baumeklektoren, Fensterfallen oder Sieben sind vor allem bei Kurzflügel- und Rüsselkäfer noch zahlreiche weitere Arten zu erwarten.

5.2 Vernässung

Jede Landschaft unterliegt einer natürlichen Dynamik und somit einer steten Veränderung. Dabei sind abiotische Faktoren, im vorliegenden Fall der PCA vor allem die Anhebung des Grundwasserspiegels durch Wasserzufuhr (Einleitung von Rheinwasser), ebenso entscheidend wie Einflüsse eines gezielten Biotopmanagements (Beweidung, Mahd). Um hygrophile Arten in «renaturierten Auen» zu etablieren, ist allerdings eine dauerhafte Vernässung dieser Flächen notwendig (Fuellhaas 1998). Winterliche Überstauung ist zwar wichtig, aber Nässe ist für die steno-hygrophilen Frühjahrsbrüter zur Zeit der Reproduktion mitentscheidend.

Die extensive Beweidung und der hohe Wasserstand während der gesamten Vegetationsperiode (Hofmann und Mason 2006) in der beweideten Riedfläche Grand Triangle (GT) führte dazu, dass dort ein Lebensraum für viele seltene und anspruchsvolle steno-hygrophile Arten entstand. Dazu gehörten bei den Laufkäfern: *Ptero-*

stichus diligens, Bembidion mannerheimii oder Oodes helopioides, bei den Kurzflügelkäfern: Paederus riparius, Ocyusa picina sowie Stenus carbonarius und bei den Rüsselkäfern sind dies beispielsweise Vertreter der Gattungen Bagous, Microon, Nanophyes, Neophytobius, Pelenomus, Rhinoncus und Thryogenes. Das Vorkommen von steno-hygrophilen Arten in der beweideten Extensivwiese Grand Pré, wie der sehr seltene Laufkäfer Pterostichus aterrimus oder der Kurzflügelkäfer Gabrius toxotes untermauern dies.

Da jedoch nur ein Teil der beweideten Flächen vernässt war, waren die restlichen Teile xerotherm, deswegen traten dort auch mehrere xerothermophile Arten wie Ophonus puncticeps, Amara aenea oder Calathus melanocephalus bei den Laufkäfern sowie Rabigus tenuis und Rabigus pullus bei den Kurzflügelkäfern und Ceutorhynchus resedae, Hypera meles, H. plantaginis, H. striata, Larinus turbinatus, Lepyrus capucinus, Sitona waterhousei, Stenopterapion meliloti, Tychius junceus, Tychius pusillus und Zacladus exiguus bei den Rüsselkäfern auf.

Hygrophile Arten müssen eine Anpassung an Wasserschwankungen und Überschwemmungsperioden aufweisen. Nach Rothenbücher und Schaefer (2006) sind es 70 % der Laufkäfer-Arten, die Flussauen in jedem Frühjahr neu besiedeln. Viele dieser Arten haben einen hohen Spezialisierungsgrad. Einwandernde Arten wurden vor allem auf Flächen, die im Winter und im Sommer überflutet werden, gefunden. Da ein Grossteil der typischen Flussauenfauna den Lebensraum nach jedem Hochwasser neu besiedelt, sollten im Rahmen von Renaturierungsmassnahmen die typischen nicht überschwemmten Überwinterungshabitate dieser Arten mitberücksichtigt werden. Weiterhin haben Rothenbücher und Schaefer (2006) gezeigt, dass für einige seltene Auenarthropoden besonders regelmässige und lange andauernde Überflutungsereignisse von grosser Bedeutung sind.

5.3 Beweidung

Die Beweidung mit an den Standort angepassten Tierarten sowie Tierzahl- und Dichte (als Simulation der früher natürlich vorkommenden Grossherbivoren) wirkt sich auf die Arten- und Strukturenvielfalt positiv aus. Insgesamt gesehen hat also die extensive Beweidung einen positiven Einfluss auf die Artenvielfalt und zwar nicht nur auf Ruderalarten und eurytope Arten, sondern vor allem auf ökologisch hochspezialisierte Zielarten des Naturschutzes, die auf den in der Einleitung genannten Standorten vorkommen (Walther 1994, Schley und Leytem 2004). Dies trifft vor allem dann zu, wenn die Beweidung ganzjährig ist. Schulz (2003) stellte fest, dass durch die zunehmende Beweidungsintensität die Anteile der xero-thermophilen Laufkäfer-Arten ansteigen, während die Anteile hygrophiler Arten abnehmen. Gleichzeitig zeichnen sich die extensiv beweideten Flächen durch das Vorkommen seltener und gefährdeter Arten aus (Walther 1994). Auch in den beweideten Extensivwiese- und Riedflächen der PCA kamen viele sehr seltene steno-hygrophilen Arten vor.

Zu hohe Beweidungsintensität kann jedoch dazu führen, dass wenige Arten, die den unbewachsenen Boden bevorzugen, oder eurytope Arten dominant werden und Arten, die empfindlich auf Umweltveränderungen reagieren, abnehmen (Dennis et al. 2002). Eine niedrige Beweidungsintensität dagegen wirkt sich positiv auf eine ausgeglichene Laufkäfer-Artengemeinschaft aus (mehr Arten mit gleichmässigerer Individuenverteilung) (Dennis et al. 2004). Zahn et al. (2007) und Byers et al. (2000) stellten eine höhere Artenvielfalt der Lauf- und Kurzflügelkäfer in beweideten Flächen fest, gegenüber nicht beweideten Flächen. Dies war in der PCA bei den Laufkäfern und Rüsselkäfern der Fall; dazu wiesen die Kurzflügelkäfer der beweideten Extensivwiese Grand Pré die höchste mittlere Aktivitätsdichte auf.

Generell begünstigt die Beweidung xerothermophile Arten. Andererseits wird der Boden stellenweise verdichtet und es entstehen nasse Flecken (Mikrohabitate), die durch hygrophile Arten genutzt werden. Irmler (2003) zeigt auf, dass zu hohe Beweidungsintensität zur Senkung der Artendiversität bei Laufkäfern führen kann, deswegen ist es wichtig, diese Massnahme zu überwachen.

5.4 Kleinräumigkeit

Das kleinräumige Mosaik unterschiedlicher Lebensraumtypen mit einer hohen und niedrigen Vegetation (sowie nassen, feuchten und trockenen Flächen) ermöglicht in der PCA eine hohe Arten-Diversität der Fauna, weil sowohl Arten offener, besonnter Standorte als auch solche, die dichtere Vegetationsbestände bevorzugen, auf engem Raum geeignete Bedingungen vorfinden.

Oxbrough et al. (2007) stellen fest, dass dank hoher Lebensraumdiversität unterschiedliche Spinnenarten (Gruppen) von solchen Mosaiken profitieren. Solche Strukturvielfalt wirkt sich auf die Fauna und somit auch auf die darauf aufbauende Nahrungskette positiv aus (Schley und Leytem 2004, Walther 1994).

Die Erhöhung des Artenreichtums in den beweideten Flächen ist insbesondere auf eine höhere Zahl von feuchtigkeitsliebenden Arten zurückzuführen. Zum einen reduzieren die Rinder den Bewuchs und schaffen somit offene Flächen und zum anderen verdichtet der Viehtritt den Boden derart, dass so feuchtere Standorte entstehen. Zudem gibt es grosse Teile der beweideten Riedflächen, welche durch den hohen Grundwasserstand vernässt wurden.

Auch Bodeneigenschaften wie Textur und Bodenstruktur sowie PH-Wert sind sehr wichtig. Die sandigen Böden bieten einen Lebensraum für viele Uferbewohner, welche bewachsene Sandbänke bevorzugen, wie die Kurzflügelkäfer-Art Rabigus tenuis, die massenhaft in der beweideten Extensivwiese Grand Pré nachgewiesen wurde. Viele Kurzflügelkäfer-Larven oder sogar adulte Tiere von Ontholestes haroldi, O. murinus, Acrotona parvula oder Anotylus hamatus jagen Fliegenlarven im Kot. Bei den Kurzflügelkäfern gibt es auch mehrere Arten, die myrmecophil sind und bei diversen Ameisen-Arten leben.

5.5 Gefährdung und Naturschutz

Das Verschwinden von Auenlandschaften (in der Schweiz sind mittlerweile rund 90 % der Auen verschwunden) führte dazu, dass viele Auenbewohner ihre Lebensgrundlagen verloren und wegen ihres hohen Spezialisierungsgrads keine Ersatzlebensräume gefunden haben. Diese Arten sind oft gefährdet oder vom Aussterben bedroht.

Das naturnah gehaltene, revitalisierte und renaturierte Naturschutzgebiet PCA bietet für viele gefährdete Arten einen existentiellen Lebensraum. 35 % aller nachgewiesenen Laufkäfer-Arten sind in der Schweiz (30 Arten) oder Baden-Württemberg (51 Arten) auf den Roten Listen aufgeführt. Erhaltene oder durch Vernässung revitalisierte Schilf- und Riedflächen sind für viele steno-hygrophilen Arten die letzten Refugien, die ihr Überleben sichern können. So zeigt das Auffinden von Acupalpus exiguus (in der Schweiz ausgestorben) das Naturschutzpotential der PCA auf. Dies wird durch das individuenreiche Vorkommen von weiteren gefährdeten steno-hygrophilen Laufkäfer-Arten wie Agonum viridicupreum oder Oodes helopioides unterstrichen. Die Kleinräumigkeit, das Wassermanagement sowie die Beweidung führen dazu, dass in der PCA ein für die Auen typisches Mosaik verschiedener Lebensräume vorhanden ist, auch mit den für Auenlandschaften typischen trockenen Flächen, welche ihrerseits durch anspruchsvolle steno-xerophile Arten besiedelt werden.

Die durch diese Untersuchungen belegten Funde haben für ein Naturschutzgebiet wie die PCA und seine Betreuung eine grosse und vielseitige Bedeutung: So wird aufgezeigt, dass durch den Schutz von Resträumen der ehemaligen Auenlandschaft auch innerhalb einer stark besiedelten und landwirtschaftlich genutzten Region eine ausserordentliche Fülle der heimischen Fauna erhalten werden kann. Andererseits wird belegt, dass durch die Form der Hege und Pflege, wie ein gezieltes Wasserregime, die an diesen Lebensraum angepassten Arten gefördert werden können. Zudem wird durch die Beweidung nicht nur die sonst rasch fortschreitende Verbuschung verhindert, sondern es entsteht ein kleinräumiges Biotopmosaik, welches die Artendiversität zu steigern vermag. Dies zeigt, dass auch solche Formen der Pflege für den Naturschutz sich als sinnvoll erweisen.

6. Dank

Der Verein Pro Petite Camargue Alsacienne (Schweiz) hat über die Forschungsstation der PCA diese Studie finanziert. Die Leitung der Association PCA (Directeur: Philippe Knibiely) hat die Untersuchung bewilligt und wohlwollend gefördert. Dr. Henry Callot und Dr. Claude Schott (beide F-Strassbourg) danken wir für die kritische Durchsicht der Artenlisten und die biogeographischen Angaben aus dem Elsass und Benedikt Feldmann (D-Münster) für die Unterstützung im Bereich der Taxonomie und Autökologie der Kurzflügelkäfer. Tobias Roth und Dr. Philipp Sprau (Universität Basel) danken wir für die Belege an den Nachtigallen-Standorten und

die Hilfe bei Feldarbeiten. Jean Paul Binnert (F- Saint Louis), Dr. Barbara Walther (Agroscope, Liebefeld-Posieux, Bern) und Pascal Sabot (IUT Louis Pasteur, F-Schiltigheim) danken wir für die Hilfe bei der Fallenbetreuung. Jean Paul Binnert (F-Saint Louis) und Elodie Belz (Forschungsinstitut für biologischen Landbau / FiBL/, Frick) sei für die französische Übersetzung der Zusammenfassung gedankt. Dr. Charles Huber (Naturhistorisches Museum der Burgergemeinde Bern), Dr. Ambros Hänggi (Naturhistorisches Museum Basel) und Prof. Dr. Hermann Hecker (Liesberg) sind wir für die fruchtbare Diskussion sowie für die kritische Durchsicht des Manuskripts zu herzlichem Dank verpflichtet.

7. Literatur

PCA-Berichte

- Durrer, H. & H. Luka (Hrsg.) (2011): Epigäische Arthropodenfauna sowie Spinnen und Regenwürmer der Petite Camargue Alsacienne (PCA, Saint-Louis). Bericht 2011, Untersuchungsjahr 2008. Forschungsstation der Petite Camargue Alsacienne (PCA), 126 S.
- Germann, Ch. (2011a): Curculionoidea In: Durrer, H. & H. Luka (Hrsg.): Epigäische Arthropodenfauna sowie Spinnen und Regenwürmer der Petite Camargue Alsacienne (PCA, Saint-Louis). Bericht 2011. Forschungsstation der Petite Camargue Alsacienne (PCA): 73–75.
- Lenzin, H. & H. Durrer (1997): Botanische Erfassung der renaturierten Regionen der mittleren Au (Zustand: Sommer 1996) der »Petite Camargue Alsacienne" (F/Elsass). Bericht 2007. Forschungsstation der Petite Camargue Alsacienne (PCA), 62 S.
- Luka, H. & H. Durrer (2006): Kurzflügelkäfer (Staphylinidae) der Petite Camargue Alsacienne (PCA/Saint-Louis/F). Les Staphylins en Petite Camargue Alsacienne (PCA/Saint-Louis/F). Bericht 2006, Untersuchungen 1999 und 2003. Forschungsstation der Petite Camargue Alsacienne (PCA), 31 S.
- Sabot, P. (1999): Etude comparative des populations carabiques a la Petite Camargue Alsacienne. Raport de Stage, dut genie biologique. Forschungsstation der Petite Camargue Alsacienne (PCA) et Institut Universitaire de Technologie Luis Pasteur, F-67380 Schiltigheim, 21 S.

Literatur

- Assing, V. & M. Schülke (1999): Supplemente zur mitteleuropäischen Staphylinidenfauna (Coleoptera, Staphylinidae). Entomologische Blätter 95 (1): 1–31.
- Assing, V. & M. Schülke (2001): Supplemente zur mitteleuropäischen Staphylinidenfauna (Coleoptera, Staphylinidae). II. Entomologische Blätter 97 (2–3): 121–176.
- Assing, V. & M. Schülke (2006): Supplemente zur mitteleuropäischen Staphylinidenfauna (Coleoptera, Staphylinidae). III. Entomologische Blätter 102 (1–3): 1–78.
- Assing V, & M. Schülke (2012): Freude-Harde-Lohse-Klausnitzer – Die Käfer Mitteleuropas. Band 4. Staphylinidae I. Zweite neubearbeitete Auflage. Heidelberg: Spektrum Akademischer Verlag, 560 S.
- Basedow, T. (1973): Der Einfluss epigäischer Raubarthropoden auf die Abundanz phytophager Insekten in der Agrarlandschaft. Pedobiologia 13: 410–422.
- Byers, R.A., G.M. Barker, R.L. Davidson, E.R. Hoebeke & M.A. Sanderson (2000): Richness and abundance of Carabidae and Staphylinidae (Coleoptera), in northeastern dairy pastures under inten-

- sive grazing. Great Lakes Entomologist 33(2): 81–105.
- Callot, H.J. (2005): Catalogue Atlas des Coléoptères d'Alsace. Tome 15: Staphylinidae. Société Alsacienne d'Entomologie, Musée zoologique de l'Université et de la Ville de Strasbourg, Strasbourg, 285 S.
- Callot, H.J. (2011 online): Catalogue Atlas des Coléoptères d'Alsace. Tome 15: Staphylinidae (mise à jour par H. Callot, 27/05/2011). http://sites.estvideo.net/sae/MAJstaphylinidae.html.
- Callot, H.J. & Schott, C. (1993): Catalogue et atlas des Coléoptères d'Alsace. Tome 5: Carabidae. Societe Alsacienne du Entomologie, Musée zoologique de l'Université et de la Ville de Strasbourg, Strasbourg, 123 S.
- Colonnelli, E. (2004): Catalogue of Ceutorhynchinae of the World with a key to genera (Insecta: Coleoptera, Curculionidae). Argania edito, Barcelona, 124 S.
- Delarze, R., Y. Gonseth & P. Galland (1999): Lebensräume der Schweiz. Ökologie, Gefährdung, Kennarten. Bundesamt für Umwelt, Wald und Landschaft, 413 S.
- Dennis, P., R.J. Aspinall & I.J. Gordon (2002): Spatial distribution of upland beetles in relation to landform, vegetation and grazing management. Basic and Applied Ecology 3(2): 183–193.
- Dennis, P., J. Doering, J.A. Stockan, J.R. Jones, M.E. Rees, J.E. Vale & A.R. Sibbald (2004): Consequences for biodiversity of reducing inputs to upland temperate pastures: effects on beetles (Coleoptera) of cessation of nitrogen fertilizer application and reductions in stocking rates of sheep. Grass and Forage Science 59(2): 121–135.
- Dierschke, H. (2012): Polygono-Potentilletalia anserinae Kriech und Flutrasen. Synopsis der Pflanzengesellschaften 11. Flor.-soz. Arbeitsgem e.V., Göttingen.
- Duelli, P., M. Studer, M. Obrist & P. Wirz, (1990): Minimalprogramme für die Erhebung und Aufbereitung zooökologischer Daten als Fachbeiträge zu Planungen am Beispiel ausgewählter Arthropodengruppen. Schriftenreihe für Landespflege und Naturschutz 32: 211–222.
- Durrer, H. (1992): Die Auenlandschaft des Rheins unterhalb von Basel. Verhandlungen der Naturforschenden Gesellschaft Basel, 102(2): 297–310.
- Durrer, H. & Luka, H. (2006): Laufkäfer (Carabidae) in der Petite Camargue Alsacienne (PCA/Saint-Louis, Haut-Rhin, Frankreich): Ausgangslage zur Erfolgskontrolle der Renaturierung der Oberen Au. Mitteilungen der Naturforschenden Gesellschaften beider Basel, 9: 133–143.
- Freude, H., K.W. Harde & G.A. Lohse (1964): Die Käfer Mitteleuropas. Staphylinidae I. Goecke & Evers. Krefeld, 4, 264 S.
- Freude, H., K.W. Harde & G.A. Lohse (1974): Die Käfer Mitteleuropas. Staphylinidae II. Goecke & Evers, Krefeld, 5, 381 S.

- Fuellhaas, U. (1998): Restitution von Feuchtgrünland auf Niedermoor. Der Einfluß mehrjähriger Überstau- und Vernässungsmaßnahmen auf Laufkäferzönosen. Angewandte Carabidologie 1: 4–12.
- Germann, Ch. (2007): Zweiter Beitrag zur Rüsselkäfer-Fauna der Schweiz – mit der Meldung von 23 weiteren Arten (Coleoptera, Curculionoidea). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 80: 167–184.
- Germann, Ch. (2010): Die Rüsselkäfer der Schweiz Checkliste (Coleoptera, Curculionoidea) mit Verbreitungsangaben nach biogeografischen Regionen. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 83: 41–118.
- Germann, Ch. (2011b): *Potentilla reptans* (Rosaceae) ist Wirtspflanze von *Neophytobius quadrinodosus* (Gyllenhal, 1813) (Coleoptera, Curculionidae). Entomologische Nachrichten und Berichte 55 (2-3): 99–102.
- Germann, Ch. (2011c): Beobachtungen zu Rüsselkäfern in der Schweiz (Coleoptera, Curculionoidea). Entomo Helvetica 4: 65–75.
- Germann, Ch. & M. Borer (2010): *Polydrusus inustus* Germar, 1824 neu für die Schweiz (Coleoptera, Curculionidae). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 83 (3–4): 175–179.
- Hänggi, A. (1989): Erfolgskontrollen in Naturschutzgebieten Gedanken zur Notwendigkeit der Erfolgskontrolle und Vorschlag einer Methode der Erfolgskontrolle anhand der Spinnenfauna. Natur und Landschaft 64(4): 143–146.
- Hofmann, T.A. & C.F. Mason (2006). Importance of management on the distribution and abundance of Staphylinidae (Insecta: Coleoptera) on coastal grazing marshes. Agriculture Ecosystems & Environment 114(2-4): 397–406.
- Holland, J.M. (Ed.) (2002): The Agroecology of Carabid Beetles. Intercept Ltd, 356 S.
- Horion, A. (1963): Faunistik der Mitteleuropäischen Käfer. Band IX: Staphylinidae, 1. Teil Micropeplinae bis Euaestethinae. Überlingen Bodensee, 412 S.
- Horion, A. (1965): Faunistik der Mitteleuropäischen Käfer. Band X: Staphylinidae, 2. Teil Paederinae bis Staphylininae. Überlingen – Bodensee, 335 S.
- Horion, A. (1967): Faunistik der Mitteleuropäischen Käfer. Band XI: Staphylinidae, 3. Teil Habrocerinae bis Aleocharinae (ohne Subtribus Athetae). Überlingen Bodensee, 419 S.
- Überlingen Bodensee, 419 S. Huber, C. & W. Marggi (2005): Raumbedeutsamkeit und Schutzverantwortung am Beispiel der Laufkäfer der Schweiz (Coleoptera, Carabidae) mit Ergänzungen zur Roten Liste. – Mitteilungen der Schweizerischen entomologischen Gesellschaft 78: 375–397.
- Irmler, U. (2003): The spatial and temporal pattern of carabid beetles on arable fields in northern Germany (Schleswig-Holstein) and their value as ecological indicators. Agriculture, Ecosystems and Environment 98: 141–151.

- Jeannel, R. (1941): Coléoptères carabiques. Faune de France 39, 571 S.
- Kiechle, J. (1992): Die Bearbeitung landschaftökologischer Fragestellungen anhand von Spinnen. In: (Hsg. Trautner, J): Arten- und Biotopschutz in der Planung: Methodische Standards zur Erfassung von Tierartengruppen (BVDL-Tagung Bad Wurzach, 9.-10. November 1991). Ökologie in Forschung und Anwendung 5: 119–134.
- Koch, K. (1992): Die Käfer Mitteleuropas, Ökologie. Band 3. Goecke & Evers, 389 S.
- Köhler F. & G. Krumm (2009): *Hypera striata* (Boheman, 1834) am Kaiserstuhl Wiederfund für Deutschland (Coleoptera, Curculionidae). Mitteilungen des Entomologischen Vereins Stuttgart 44: 3–5.
- Köhler, F. & B. Klausnitzer (1998): Entomofauna Germanica. Verzeichnis der Käfer Deutschlands. Entomologische Nachrichten und Berichte, Dresden, Beiheft 4: 1–185.
- Lindroth, C.H. (1945): Die Fennoskandischen Carabidae. I. Spezieller Teil. Göteborg, 709 S.
- Löbl, I. & A. Smetana (Eds.) (2003): Catalogue of Palaearctic Coleoptera, Volume 2: Archostemata – Myxophaga – Adephaga. – Apollo Books, Stenstrup, 942 S.
- Löbl, İ. & A. Smetana (Hrsg.) (2004): Catalogue of Palaearctic Coleoptera, Volume 2: Hydrophiloidea
 Histeroidea Staphylinoidea. Apollo Books, Stenstrup, 942 S.
- Lohse, G.A. & W.H. Lucht (1989): Die Käfer Mitteleuropas. 1. Supplementband mit Katalogteil. Goecke & Evers. Krefeld, 12, 346 S.
- Lucht, W.H. & B. Klausnitzer (1998): Die K\u00e4fer Mitteleuropas. 4. Supplementband mit Katalogteil. Goecke & Evers. Krefeld, 15, 403 S.
- Luka, H. (1996): Laufkäfer: Nützlinge und Bioindikatoren in der Landwirtschaft. Agrarforschung, 3 (1):
- Luka, H. (2004): Ökologische Bewertung von Landschaftselementen mit Arthropoden. (Hrsg. Nagel, P., H. Durrer, & U. Niggli). Opuscula biogeographica basileensia 4, 253 S.
- Luka H., B. Walther & H. Durrer (1998): Die Laufkäferfauna (Coleoptera, Carabidae) des Naturschutzgebietes "Petite Camargue Alsacienne" (Elsass, F). Mitteilungen der Entomologischen Geselschaft Basel 48 (3): 99–140.
- Luka, H., W. Marggi, C. Huber, Y. Gonseth & P. Nagel (2009a): Coleoptera, Carabidae. Ecology Atlas.
 Fauna Helvetica, 24. Neuchâtel: Centre suisse de cartographie de la faune & Schweizerische Entomologische Gesellschaft, 678 S.
- Luka, H., P. Nagel, B. Feldmann, A. Luka & Y. Gonseth (2009b): Checkliste der Kurzflügelkäfer der Schweiz (Coleoptera: Staphylinidae ohne Pselaphinae). Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 82(1–2): 61–100.
- Marggi, W.A. (1992): Faunistik der Sandlaufkäfer und Laufkäfer der Schweiz (Cicindelidae und Ca-

- rabidae). Documenta Faunistica Helvetiae 13, Teil 1/Text. Neuchâtel, 477 S.
- Marggi, W., H. Luka, C. Huber, D. Wrase & H. Durrer (2010): *Harpalus* (s. str.) *subcylindricus* Dejean 1829 (Coleoptera: Carabidae) auch in der Schweiz und im Elsass (F). Entomologische Nachrichten und Berichte 106: 195–202.
- Mühlenberg, M. (1989): Freilandökologie. Quelle & Meyer (UTB), Heidelberg, Wiesbaden, 430 S.
- Müller-Motzfeld, G. (Hrsg.) (2006): Band 2, Adephaga 1: Carabidae (Laufkäfer) In: Freude, H., K.W. Harde, G.A. Lohse & B. Klausnitzer: Die Käfer Mitteleuropas. Spektrum-Verlag (Heidelberg/Berlin), 2. Auflage), 521 S.
- Nagel, P. (1999): Biogeographische Raumanalyse und Raumbewertung mit Tieren. In: Schneider-Sliwa, R., D. Schaub & G. Gerold (Hrsg.): Angewandte Landschaftsökologie Grundlagen und Methoden. Springer Verlag, Berlin, Heidelberg, New York: 397–425.
- Nazarenko V. Yu. & A. A. Petrenko (2010): «Unusual anthophyly in an Iris weevil, Mononychus punctumalbum (Coleoptera, Curculionidae)» / Zoologische Forschung in den Regionen Russlands und angrenzenden Gebieten: Materialien Int. wissenschaftlich. Konf. / Editorial Board:. AB. Ruchin (Hrsg.) et al. Saransk: Typografie «Progress»: 207–208.
- Oberprieler, R.G., A.E. Marvaldi, & R.S. Anderson (2007): Weevils, weevils, weevils everywhere. In: Zhang, Z.Q. & W.A. Shear (eds). Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa 1668: 491–520.
- Oxbrough, A.G., T. Gittings, J. O'Halloran, P.S Giller. & T.C. Kelly (2007): Biodiversity of the ground-dwelling spider fauna of afforestation habitats. Agriculture Ecosystems & Environment 120(2-4): 433–441.
- Rheinheimer, J. & M. Hassler (2010): Die Rüsselkäfer Baden-Württembergs. Naturschutz-Spectrum. Verlag Regionalkultur. Karlsruhe, 994 S.
- Roth, T., P. Sprau, R. Schmidt, M. Naguib & V. Amrhein (2009): Sex-specific timing of mate searching and territory prospecting in the nightingale: nocturnal life of females. Proceedings of the Royal Society, Series B 276: 2045–2050.
- Rothenbücher, J. & M. Schaefer (2006): Submersion tolerance in floodplain arthropod communities. Basic and Applied Ecology 7: 398–408
- Scherney, F. (1959): Unsere Laufkäfer, ihre Biologie und wirtschaftliche Bedeutung. Verlag A. Ziemsen, Wittenberg Lutherstadt, 79 S.
- Schillhammer, H. (2012): Subtribius Philonthina. In:
 Assing V, & M. Schülke (Hrsg.): Freude-Harde-Lohse-Klausnitzer Die Käfer Mitteleuropas.
 Band 4. Staphylinidae I. Zweite neubearbeitete Auflage. Heidelberg: Spektrum Akademischer Verlag: 397–450.
- Schley, L. & M. Leytem (2004): Extensive Beweidung mit Rindern im Naturschutz: eine kurze Lite-

- raturauswertung hinsichtlich der Einflüsse auf die Biodiversität. Bull. Soc. Nat. luxemb. 105: 65–85.
- Schott, C. (1997): Catalogue et Atlas des coléoptères d'Alsace. tome 8. Société Alsacienne d'Entomologie; Musée Zoologique de 1 'Université et de la Ville de Strasbourg.
- Schott, C. (1999): Catalogue et Atlas des coléoptères d'Alsace. tome 10. Société Alsacienne d'Entomologie; Musée Zoologique de l'Université et de la Ville de Strasbourg.
- Schott, C. (2000): Catalogue et Atlas des coléoptères d'Alsace. tome 11. Société Alsacienne d'Entomologie; Musée Zoologique de l'Université et de la Ville de Strasbourg.
- Schott C. (2006 online): Liste des espèces alsaciennes de Curculionoidea (pdf-Dokument). URL: http://claude.schott.free.fr/iconographie/Iconographies-listes.html.
- Schott, C. (2009 online): Liste des espèces Alsaciennes de Carabidae (espèces confirmées depuis 1950 pour la région ou de zones limitrophes des départements voisins). Online: http://claude.schott.free.fr/Carabidae/Liste_comm_carab_1.html.
- Schott, C. (2010 online): SAE Catalogue Supplément au tome 11 Curculionidae 2. URL: http://claude.schott.free.fr/Cataliste.html (eingesehen am 6.9.2011).
- Schulz, B. (2003): Die Reaktion ausgewählter Tierartengruppen (Coleoptera: Carabidae und Orthoptera: Acrididae) auf eine großflächige Extensivbeweidung am Beispiel der Weidelandschaft Oberes Eidertal. Aus dem Ökologie-Zentrum Kiel, Fachabteilung Landschaftsökologie. Kiel, Christian-Albrecht-Universität zu Kiel. Dissertation, 183 S.
- Schülke, M. (2012): Unterfamilie Oxytelinae. In: Assing V, & M. Schülke (Hrsg.): Freude-Harde-Lohse-Klausnitzer Die Käfer Mitteleuropas. Band 4. Staphylinidae I. Zweite neubearbeitete Auflage. Heidelberg: Spektrum Akademischer Verlag: 207–266.
- Skuhrovec, J. (2003): Distribution of weevils of the genus Hypera in the Czech Republic. Klapalekiana 39: 69–125.
- Thayer, M. (2005): Staphylinidae. In: Beutel, R.G. & R.A.B. Leschen (Hrsg.), Handbook of Zoology, Vol IV Arthropoda: Insecta, Part 38. Coleoptera, Beetles. Vol 1: Morphology and Systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). Walter de Gruyter, Berlin & New York, XI, 567S.
- Trautner, J., M. Bräunicke, J. Kiechle, M. Kramer, J. Rietze, A. Schanowski & K. Wolf-Schwenninger (2005): Rote Liste und Artenverzeichnis der Laufkäfer Baden-Württembergs (Coleoptera: Carabidae), 3. Fassung, Stand Oktober 2005. Naturschutz-Praxis, Artenschutz 9, 31 S.
- Trautner, J., G. Müller-Motzfeld & M. Bräunice (1997): Rote Liste der Sandlaufkäfer und Laufkäfer Deutschlands (Coleoptera: Cicindelidae et Carabidae). 2. Fassung, Stand Dezember 1996.

Dr. Werner Marggi

Naturschutz und Landschaftsplanung 29 (9): 261–273.

Wachmann, E., R. Platen & D. Barndt (1995): Laufkäfer: Beobachtungen, Lebensweise. Verlag Naturbuch, 295 S.

Walther, B. (1994): Biomanagement mit dem Schottischen Hochlandrind (Bos taurus primigenius scotticus). – Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie, Philosophisch-Naturwissenschaftliche Fakultät, Universität Basel, 208 S.

Wrase, D.W. (2006): Harpalina. – In: H. Freude, K.W. Harde, G.A. Lohse & B. Klausnitzer (Hrsg.): Die Käfer Mitteleuropas. Bd. 2 Adephaga 1: Carabidae (Laufkäfer) – Spektrum-Verlag (Heidelberg/Berlin) 2. Auflage, korrigierter Nachdruck: 352–396.

Zahn, A., A. Juen, M. Traugott, & A. Lang (2007): Low density cattle grazing enhances arthropod diversity of abandoned wetland. Applied Ecology and Environmental Research 5(1): 73–86.

Zimmermann, J. & W. Büchs (1999): Kurzflügelkäfer (Coleoptera: Staphylinidae) in unterschiedlich intensiv bewirtschafteten Ackerflächen. Agrarökologie 32: 1–154.

Dr. Henryk Luka
Forschungsinstitut für biologischen Landbau
(FiBL)
CH-5070 Frick
&
Universität Basel
Departement Umweltwissenschaften
NLU-Biogeographie
CH-4056 Basel

henryk.luka@fibl.org

Dr. Christoph Germann
Naturhistorisches Museum der Burgergemeinde
Bern
CH-3005 Bern
&
Natur-Museum Luzern
CH-6003 Luzern
germann.christoph@gmail.com

Rüttiweg 3A
CH-3608 Thun
&
Naturhistorisches Museum der Burgergemeinde
Bern
CH-3005 Bern
carfauna@bluewin.ch

Prof. Dr. Peter Nagel Universität Basel Departement Umweltwissenschaften NLU-Biogeographie CH-4056 Basel peter.nagel@unibas.ch

Agata Luka Universität Basel Departement Umweltwissenschaften NLU-Biogeographie CH-4056 Basel agata.luka@unibas.ch

Dr. Heiner Lenzin Universität Basel Departement Umweltwissenschaften NLU-Biogeographie CH-4056 Basel heiner.lenzin@unibas.ch

Andreas Ochsenbein Universität Basel Integrative Biology CH-4056 Basel andreas.ochsenbein@unibas.ch

Prof. Dr. Heinz Durrer
Forschungsstation der Petite Camargue
Alsacienne (PCA)
Rue de la Pisciculture
F-68300 Saint-Louis
heinz.durrer@unibas.ch

Anhang 1: Artenliste Laufkäfer (Carabidae) von Bodenfallenfängen der Petit Camargue Alsaciennne (F) in den Untersuchungsjahren 1991, 1992, 1994, 1995, 1996, 1999, 2003 und 2008.

Legende: A: Alsace (Elsass), Anzahl Fundorte nach Callot und Schott (1993) und Schott (2009 online). HR: Haut-Rhin (Oberelsass), Anzahl Fundorte nach Callot und Schott (1993) und Schott (2009 online). FP: Feuchtigkeits-Präferenz (sh: steno-hygrophil, h: hygrophil, m: mesophil, x: xerophil und sh: steno-xerophil). LP: Lebensraumgruppen-Präferenz (WA: Wälder, ÜZ: Übergangszonen, UF: Ufer- und Feuchtgebiete, GL: Grünland, PV: Pioniervegetation, A: Äcker, et: eurytope Arten). FS: 10 Feuchtstandorte (1566 Fallentage), 5 Lebensraumtypen (Auenwälder, Schilfflächen, Riedflächen unbeweidet, Riedflächen beweidet, Gebüsche). TS: 5 Trockenstandorte (672 Fallentage), 2 Lebensraumtypen (Ruderalstandorte und Trockenrasen). GS: 3 Grünlandstandorte (938 Fallentage), 3 Lebensraumtypen (Extensivwiese unbeweidet, Extensivwiese beweidet, Weide). AS: 2 Ackerstandorte (147 Fallentage), 1 Lebensraumtype (Maisfelder).

Gattung, Art, Autor, Jahr	A	HR	FP	LP	FS	TS	GS	AS	Total
Abax ovalis (Duftschmid, 1812)	53	27	h	ÜZ,WA	6	5			11
Abax parallelepipedus parallelepipedus (Piller & Mitterpacher, 1783)	116	57	h	ÜZ,WA	90	12	1		103
Abax parallelus parallelus (Duftschmid, 1812)	122	64	h	WA,ÜZ	643	20	6		669
Acupalpus dubius (Schilsky, 1888)	47	4	sh	GL,UF	34		3		37
Acupalpus exiguus (Dejean, 1829)	25	0	sh	UF	4		1		5
Acupalpus flavicollis (Sturm, 1825)	50	3	h	GL,UF	8	1	7		16
Acupalpus luteatus (Duftschmid, 1812)	2	0	m	UF,PV		2			2
Acupalpus maculatus (Schaum, 1860)	8	2	sh	et	6	1			7
Acupalpus meridianus (Linné, 1761)	61	16	m	PV,A	7	7	9		23
Acupalpus parvulus (Sturm, 1825)	27	3	h	UF	5				5
Agonum emarginatum (Gyllenhal, 1827)	40	6	sh	GL,UF	1656	2	13		1671
Agonum fuliginosum (Panzer, 1809)	76	28	sh	et	130				130
Agonum gracile (Sturm, 1824)	17	2	sh	UF	1				1
Agonum hypocrita (Apfelbeck, 1904)			sh	UF	1				1
Agonum micans (Nicolai, 1822)	70	3	sh	GL,UF	20				20
Agonum muelleri (Herbst, 1784)	100	15	m	et	469	50	253	12	784
Agonum piceum (Linné, 1758)			sh	UF	2				2
Agonum scitulum (Dejean, 1828)	19	11	sh	GL,UF	33				33
Agonum sexpunctatum (Linné, 1758)	125	50	т	et	110		13		123
Agonum thoreyi thoreyi (Dejean, 1828)	29	2	sh	et	25				25
Agonum viduum (Panzer, 1796)	31	6	sh	et	207		1	1	209
Agonum viridicupreum viridicupreum (Goeze, 1777)	24	4	h	GL	87		18		105
Amara aenea (De Geer, 1774)	120	31	x	GL,PV	22	73	3463	1	3559
Amara aulica (Panzer, 1796)	52	6	m	PV,GL	4	3	6		13
Amara bifrons (Gyllenhal, 1810)	73	7	x	PV		15	8		23
Amara communis (Panzer, 1797)	44	5	m	PV,GL	18	3	75		96
Amara convexior (Stephens, 1828)	60	20	m	GL,PV	180	24	719		923
Amara cursitans (Zimmermann, 1832)	17	2	x	PV,A	2	1			3

Gattung, Art, Autor, Jahr	A	HR	FP	LP	FS	TS	GS	AS	Total
Amara equestris equestris (Duftschmid, 1812)	16	1	x	et	11	1	22		34
Amara eurynota (Panzer, 1796)	27	4	x	PV,GL		8	1		9
Amara familiaris (Duftschmid, 1812)	110	35	m	PV,GL	7	2	12		21
Amara kulti (Fassati, 1947)	29	4	m	GL		1	308		309
Amara littorea (C. G. Thomson, 1857)			х	PV,A			1		1
Amara lunicollis (Schiødte, 1837)	78	18	m	GL,ÜZ	297	13	803		1113
Amara montivaga (Sturm, 1825)	20	7	х	GL,PV			174		174
Amara municipalis municipalis (Duftschmid, 1812)	9	0	х	PV,GL			1		1
Amara ovata (Fabricius, 1792)	110	35	m	et	5	3	11		19
Amara plebeja (Gyllenhal, 1810)	105	31	m	et	6	1	220		227
Amara similata (Gyllenhal, 1810)	87	29	m	PV	7	2	11		20
Amara tibialis (Paykull, 1798)	30	0	x	GL			3		3
Anchomenus dorsalis (Pontoppidan, 1763)	103	22	m	et	68	104	1374	1	1547
Anisodactylus binotatus (Fabricius, 1787)	114	26	m	et	26	27	422	30	505
Anisodactylus nemorivagus (Duftschmid, 1812)	2	0	x	GL			2		2
Anisodactylus signatus (Panzer, 1796)	89	16	m	PV,A	27	155	69	17	268
Anthracus consputus (Duftschmid, 1812)	27	0	sh	UF	2		2		4
Asaphidion flavipes (Linné, 1761)	62	7	m	A,PV	10	2	11		23
Badister bullatus (Schrank, 1798)	78	14	m	et	7	6	310		323
Badister dilatatus (Chaudoir, 1837)	19	0	sh	UF	15				15
Badister lacertosus (Sturm, 1815)	10	0	h	ÜZ,WA	36	1	1		38
Badister meridionalis (Puel, 1925)			h	WA,GL	9		4		13
Badister peltatus peltatus (Panzer, 1796)	9	0	sh	UF	9				9
Badister sodalis (Duftschmid, 1812)	30	1	m	et	148	2	47		197
Bembidion articulatum (Panzer, 1796)	96	10	h	UF	3				3
Bembidion assimile (Gyllenhal, 1810)	48	4	h	GL,UF	138		3		141
Bembidion biguttatum (Fabricius, 1779)	61	9	sh	et	285	1	4		290
Bembidion dentellum (Thunberg, 1787)	79	13	h	UF	3				3
Bembidion guttula guttula (Fabricius, 1792)	21	0	h	et	7				7
Bembidion illigeri (Netolitzky, 1914)	79	11	h	UF		3			3
Bembidion lampros (Herbst, 1784)	139	37	m	et	171	265	1842	60	2338
Bembidion lunulatum (Geoffroy, 1785)	48	4	h	et	9		8		17
Bembidion mannerheimii (C. R. Sahlberg, 1827)	32	3	h	GL	331		3		334
Bembidion obtusum (Audinet-Serville, 1821)	40	5	m	et	24	8	70	2	104
Bembidion properans (Stephens, 1828)	44	9	m	GL,PV	93	17	684	11	805
Bembidion quadrimaculatum quadrimaculatum (Linné, 1761)	115	25	x	et	100	6	200	42	348

Gattung, Art, Autor, Jahr	A	HR	FP	LP	FS	TS	GS	AS	Total
Bembidion tetracolum tetracolum (Say, 1823)	119	17	h	A,UF	18	1	4	3	26
Blemus discus discus (Fabricius, 1792)	32	0	h	et	3		1		4
Brachinus crepitans (Linné, 1758)	61	19	sx	PV,GL	3	16	5	1	25
Brachinus explodens (Duftschmid, 1812)	72	31	sx	PV,GL	4	64	1024		1092
Bradycellus caucasicus (Chaudoir, 1846)	23	2	m	GL,ÜZ	9		1		10
Bradycellus harpalinus (Audinet-Serville, 1821)	54	1	m	PV,UF	1				1
Bradycellus verbasci (Duftschmid, 1812)	56	9	m	et	5		1		6
Calathus fuscipes fuscipes (Goeze, 1777)	45	6	m	et	6	6	140		152
Calathus melanocephalus melanocephalus (Linné, 1758)	56	4	x	GL	1		22		23
Callistus lunatus lunatus (Fabricius, 1775)	50	27	sx	PV,GL	11		50		61
Calosoma inquisitor inquisitor (Linné, 1758)	73	48	x	WA	2				2
Carabus coriaceus coriaceus (Linné, 1758)	130	50	h	WA,PV	2	4	4		10
Carabus granulatus granulatus (Linné, 1758)	197	71	h	Α	601	5	60	4	670
Carabus monilis (Fabricius, 1792)	151	120	m	A,PV	1				1
Carabus nemoralis nemoralis (O. F. Müller, 1764)	259	113	h	et	406	21	149		576
Chlaenius nigricornis (Fabricius, 1787)	27	5	sh	GL	542	4	49	9	604
Chlaenius nitidulus (Schrank, 1781)	39	12	m	PV,A	4	30	5		39
Chlaenius vestitus (Paykull, 1790)	50	8	sh	UF	1	8	1		10
Cicindela campestris campestris (Linné, 1758)	166	95	sx	GL,PV	20	2	150		172
Clivina collaris (Herbst, 1784)	20	3	h	PV,GL	19	3	12		34
Clivina fossor fossor (Linné, 1758)	63	8	m	A,PV	95	19	73	2	189
Cychrus caraboides (Linné, 1758)	103	60	sh	WA	12				12
Cylindera germanica (Linné, 1758)	9	4	SX	PV	1		3		4
Demetrias monostigma (Samouelle, 1819)	51	3	sh	GL,UF	18		9		18
Diachromus germanus (Linné, 1758)	77	15	m	PV,GL	14	30	343		387
Dicheirotrichus placidus (Gyllenhal, 1827)	10	0	sh	UF,GL	4				4
Drypta dentata (P. Rossi, 1790)	86	31	h	GL	67	2	23		92
Dyschirius aeneus aeneus (Dejean, 1825)	50	2	h	et	2		1		3
Dyschirius globosus (Herbst, 1784)	66	2	h	GL,UF	244		3		247
Elaphrus aureus aureus (P. Müller, 1821)	6	0	sh	UF,WA	3				3
Elaphrus cupreus (Duftschmid, 1812)	67	24	sh	GL,UF	10				10
Elaphrus riparius (Linné, 1758)	83	26	sh	UF			1		1
Harpalus affinis (Schrank, 1781)	160	50	m	PV	25	78	2699		2802
Harpalus anxius (Duftschmid, 1812)	43	10	x	GL	2		213		215
Harpalus atratus (Latreille, 1804)	67	15	m	ÜZ,WA	1				1
Harpalus dimidiatus (P. Rossi, 1790)	66	25	x	GL,ÜZ	2		122		124

Gattung, Art, Autor, Jahr	A	HR	FP	LP	FS	TS	GS	AS	Total
Harpalus distinguendus distinguendus (Duftschmid, 1812)	105	34	x	PV	50	44	33	2	129
Harpalus griseus (Panzer, 1796)	63	7	x	PV,A	2	44	20	1	67
Harpalus latus (Linné, 1758)	40	21	m	ÜZ,WA	15				15
Harpalus luteicornis (Duftschmid, 1812)	30	2	m	PV,UF	33	16	1116		1165
Harpalus pumilus (Sturm, 1818)	32	6	sx	ÜZ,GL			1		1
Harpalus rubripes (Duftschmid, 1812)	97	42	m	et	6	14	562		582
Harpalus rufipes (De Geer, 1774)	115	28	m	et	721	734	1745	960	4160
Harpalus serripes (Quensel, 1806)	18	13	x	et			14		14
Harpalus signaticornis (Duftschmid, 1812)	17	6	x	PV,A			2		2
Harpalus subcylindricus (Dejean, 1829)			x	GL			103		103
Harpalus tardus (Panzer, 1796)	80	23	x	PV,GL	1		2		3
Leistus ferrugineus (Linné, 1758)	103	23	h	ÜZ,GL	18		5		23
Leistus fulvibarbis fulvibarbis (Dejean, 1826)			h	ÜZ	2				2
Leistus terminatus (Panzer, 1793)	15	1	sh	UF	1				1
Loricera pilicornis pilicornis (Fabricius, 1775)	130	36	h	et	151		24	6	181
Microlestes maurus maurus (Sturm, 1827)	17	2	x	PV,GL	6	15	608		629
Microlestes minutulus (Goeze, 1777)	62	10	x	PV,GL	53	42	361	97	553
Nebria brevicollis (Fabricius, 1792)	106	27	h	ÜZ,WA	265	22	158		445
Nebria salina (Fairmaire & Laboulbène, 1854)	16	7	m	et			1		1
Notiophilus biguttatus (Fabricius, 1779)	108	29	h	WA,ÜZ	6				6
Notiophilus palustris (Duftschmid, 1812)	93	20	h	ÜZ,PV	22	2	3		27
Notiophilus rufipes (Curtis, 1829)	20	9	m	ÜZ	36	1			37
Odacantha melanura (Linné, 1767)	22	5	sh	UF	1				1
Oodes helopioides helopioides (Fabricius, 1792)	47	1	sh	GL,UF	1308		39		1347
Ophonus ardosiacus (Lutshnik, 1922)	62	14	x	PV	2	2	3		7
Ophonus azureus (Fabricius, 1775)	64	32	x	PV	2	11	37		50
Ophonus puncticeps (Stephens, 1828)	85	11	x	PV		29	68		97
Ophonus schaubergerianus (Puel, 1937)	7	1	x	PV,GL	1				1
Oxypselaphus obscurus (Herbst, 1784)	61	6	sh	GL,UF	772	2	19		793
Panagaeus cruxmajor (Linné, 1758)	47	15	h	GL,UF	111	6	4		121
Paradromius linearis linearis (Olivier, 1795)	70	16	m	ÜZ,PV	3				3
Paradromius longiceps (Dejean, 1826)	17	2	sh	UF	1	1			2
Paranchus albipes (Fabricius, 1796)	78	22	sh	UF	2				2
Parophonus maculicornis (Duftschmid, 1812)	40	4	m	GL	11	21	602		634
Patrobus atrorufus (Strøm, 1768)	36	7	h	et	28				28
Platynus assimilis (Paykull, 1790)	152	64	h	ÜZ,WA	235	1			236

Gattung, Art, Autor, Jahr	A	HR	FP	LP	FS	TS	GS	AS	Total
Poecilus cupreus cupreus (Linné, 1758)	135	67	m	A,PV	943	192	2474	218	3827
Poecilus versicolor (Sturm, 1824)	72	28	m	GL	749	69	794		1612
Pterostichus anthracinus anthracinus (Illiger, 1798)	70	27	h	et	524	19	144	86	773
Pterostichus aterrimus aterrimus (Herbst, 1784)	3	3	sh	UF	1		1		2
Pterostichus diligens (Sturm, 1824)	37	9	sh	GL,UF	176		1		177
Pterostichus melanarius melanarius (Illiger, 1798)	101	44	h	A,PV	27	48	45	417	537
Pterostichus minor minor (Gyllenhal, 1827)	39	9	sh	et	145		1		146
Pterostichus niger niger (Schaller, 1783)	103	66	h	et	246	5	75	6	332
Pterostichus nigrita (Paykull, 1790)	50	12	sh	et	59		1		60
Pterostichus oblongopunctatus oblongopunctatus (Fabricius, 1787)	187	102	h	ÜZ,WA	10		3		13
Pterostichus ovoideus ovoideus (Sturm, 1824)	43	11	h	GL,A	263	8	20		291
Pterostichus rhaeticus (Heer, 1837)	39	15	sh	UF	4				4
Pterostichus strenuus (Panzer, 1796)	67	13	h	GL,WA	114		15		129
Pterostichus vernalis (Panzer, 1796)	91	18	m	PV,GL	241	11	209		461
Stenolophus mixtus (Herbst, 1784)	61	10	sh	GL,UF	6		4		10
Stenolophus teutonus (Schrank, 1781)	93	23	m	PV		18	36		54
Stomis pumicatus pumicatus (Panzer, 1796)	61	15	m	PV,A	10	1	12	14	37
Syntomus foveatus (Geoffroy, 1785)	49	5	x	ÜZ,GL			1		1
Syntomus truncatellus (Linné, 1761)	21	1	m	GL,ÜZ	3		10		13
Synuchus vivalis vivalis (Illiger, 1798)	14	4	m	ÜZ,A			2	1	3
Tachys bistriatus (Duftschmid, 1812)	76	4	m	PV,A	51	3	28	6	88
Tachyura parvula (Dejean, 1831)	24	0	x	PV,UF	1			1	2
Trechus quadristriatus (Schrank, 1781)	71	8	m	Α	3		5	4	12
Trechus secalis secalis (Paykull, 1790)	10	0	h	WA,GL	225				225
Anzahl Individuen Total					15449	2521	25789	2015	45774
Anzahl Individuen pro 1 Fallentag					9.87	3.75	27.49	13.71	13.77
Anzahl Arten					140	80	118	29	160

Anhang 2: Artenliste Kurzflügelkäfer (Staphylinidae) von Bodenfallenfänge der Petit Camargue Alsaciennne (F) in den Untersuchungsjahren 1999, 2003 und 2008

Legende: **A:** Alsace (Elsass), Anzahl Fundorte nach Callot (2005) und Callot (2011, online). **HR:** Haut-Rhin (Oberelsass), Anzahl Fundorte Callot (2005) und Callot (2011, online). **FP:** Feuchtigkeits-Präferenz (sh: stenohygrophil, h: hygrophil, m: mesophil, x: xerophil und sh: steno-xerophil). **LP:** Lebensraumgruppen-Präferenz (WA: Wälder, ÜZ: Übergangszonen, UF: Ufer- und Feuchtgebiete, GL: Grünland, PV: Pioniervegetation, A: Äcker, et: eurytope Arten die in mehr als zwei Lebensraumtypen ihren Vorkommensschwerpunkt aufweisen). **FS:** 5 Feuchtstandorte (414 Fallentage), 4 Lebensraumtypen (Auenwälder, Schilfflächen, Riedflächen beweidet und Gebüsche). **TS:** 3 Trockenstandorte (224 Fallentage), 2 Lebensraumtypen (Ruderalstandorte und Brachen). *GS:* 3 Grünlandstandorte (226 Fallentage), 3 Lebensraumtypen (Extensivwiese, Extensivwiese beweidet und Weide). **AS:** 2 Ackerstandorte (147 Fallentage), 1 Lebensraumtyp (Maisfelder).

Gattung, Art, Autor, Jahr	A	HR	FP	LP	FS	TS	GS	AS	Total
Acrotona parvula (Mannerheim, 1830)	6	0	m	et			1		1
Aleochara bilineata (Gyllenhal, 1810)	5	0	m	GL,A			1	10	11
Aleochara bipustulata (Linnaeus, 1760)	25	2	m	Α			2	6	8
Aleochara brevipennis (Gravenhorst, 1806)	27	0	sh	UF	19	2	1		22
Aleochara haematoptera (Kraatz, 1856)	9	1	h	A,GL	1		1	3	5
Aleochara tristis (Gravenhorst, 1806)	9	3	x	GL	1				1
Alevonota rufotestacea (Kraatz, 1856)	0	0	h	WA	2				2
Aloconota gregaria (Erichson, 1839)	31	5	m	A,GL	1		1		2
Amarochara forticornis (Lacordaire, 1835)	3	0	x	GL		1	3	3	7
Amischa analis (Gravenhorst, 1802)	54	3	m	A,GL	5		136		141
Amischa decipiens (Sharp, 1869)	19	1	h	et			2		2
Amischa nigrofusca (Stephens, 1832)	9	2	m	A,WA			10		10
Anotylus hamatus (Fairmaire & Laboulbène, 1856)	2	1	x	GL			1		1
Anotylus insecatus (Gravenhorst, 1806)	36	0	x	GL,A	7	6		12	25
Anotylus rugosus (Fabricius, 1775)	185	38	h	et	310	2	32	76	420
Anotylus sculpturatus (Gravenhorst, 1806)	108	10	m	et	2		5		7
Anotylus tetracarinatus (Block, 1799)	76	8	m	et	3		1	1	5
Anthobium atrocephalum atrocephalum (Gyllenhal, 1827)	117	21	h	WA	7				7
Arpedium quadrum (Gravenhorst, 1806)	24	9	h	et	14		4		18
Astenus gracilis (Paykull, 1789)	12	2	x	GL,A			6		6
Astenus immaculatus (Stephens, 1833)	32	1	m	et	2		12		14
Astenus pulchellus (Heer, 1839)	12	0	h	et				1	1
Atheta crassicornis (Fabricius, 1793)	22	1	m	A,WA	5	1			6
Atheta elongatula elongatula (Gravenhorst, 1802)	15	2	h	et			1	1	2
Atheta episcopalis (Bernhauer, 1910)	16	1	h	UF	2				2
Atheta fungi fungi (Gravenhorst, 1806)	65	8	h	et	4				4
Atheta luteipes (Erichson, 1837)	2	0	h	UF	8				8
Atheta oblita (Erichson, 1839)	7	0	h	et			2	34	36

Gattung, Art, Autor, Jahr	A	HR	FP	LP	FS	TS	GS	AS	Total
Atheta pervagata (G. Benick, 1975)	0	0	x	GL	1				1
Atheta triangulum (Kraatz, 1856)	36	4	m	WA,A	26	1		1	28
Bledius crassicollis (Lacordaire, 1835)	2	0	sh	UF	1				1
Bledius cribricollis (Heer, 1839)	1	0	h	UF	53		1		54
Bledius longulus (Erichson, 1839)	1	0	h	AF,A	6				6
Bolitobius castaneus (Stephens, 1832)	15	3	m	et			1		1
Bolitobius cingulatus (Mannerheim, 1830)	13	2	m	et	1		13		14
Callicerus obscurus (Gravenhorst, 1802)	0	0	h	GL			1		1
Callicerus rigidicornis (Erichson, 1839)	1	0	x	GL	1				1
Carpelimus bilineatus (Stephens, 1834)	30	1	h	UF	33				33
Carpelimus corticinus (Gravenhorst, 1806)	54	2	h	UF,WA	93		30	1	124
Carpelimus elongatulus (Erichson, 1839)	37	2	h	et	7		8		15
Carpelimus gracilis (Mannerheim, 1830)	13	2	sh	UF	6			1	7
Coprophilus striatulus (Fabricius, 1793)	109	27	m	GL,A	9			11	20
Cypha longicornis (Paykull, 1800)	8	0	h	GL	1				1
Dinaraea angustula (Gyllenhal, 1810)	42	2	m	et	53	47	178	80	358
Dropephylla ioptera (Stephens, 1834)	34	2	h	WA	2				2
Drusilla canaliculata canaliculata (Fabricius, 1787)	160	26	m	GL	286	6	1131		1423
Erichsonius cinerascens (Gravenhorst, 1802)	23	1	sh	UF	5				5
Euaesthetus ruficapillus (Lacordaire, 1835)	1	0	sh	UF	36		1		37
Falagria sulcatula (Gravenhorst, 1806)	19	0	X	GL	224	3	244		471
Falagrioma thoracica (Stephens, 1832)	3	1	m	GL	60	9	1	4	74
Gabrius breviventer (Sperk, 1835)	42	0	m	et	59	2	19	1	81
Gabrius nigritulus (Gravenhorst, 1802)	48	3	m	A,GL			1		1
Gabrius toxotes (Joy, 1913)	3	0	sh	UF	2		42		44
Geostiba circellaris (Gravenhorst, 1806)	73	5	m	et	15			1	16
Ilyobates bennetti (Donisthorpe, 1914)	5	1	h	GL,A	17	1	3		21
llyobates nigricollis (Paykull, 1800)	2	0	h	et	1				1
Ilyobates propinquus (Aubé, 1850)	1	0	x	GL,A			3		3
Ischnosoma splendidum (Gravenhorst, 1806)	24	1	m	A,GL	17	3	111		131
Lathrobium brunnipes (Fabricius, 1793)	31	3	h	et	12	2			14
Lathrobium fovulum (Stephens, 1833)	18	0	sh	UF	16			1	17
Lathrobium fulvipenne (Gravenhorst, 1806)	49	3	h	GL,A	5	4	11	6	26
Lathrobium geminum (Kraatz, 1857)	15	0	h	UF	2				2
Lathrobium impressum (Heer, 1841)	32	0	h		2				2
Lathrobium laevipenne laevipenne (Heer, 1839)	1	1	sh	UF,WA				5	5

Gattung, Art, Autor, Jahr	A	HR	FP	LP	FS	TS	GS	AS	Total
Lathrobium longulum longulum (Gravenhorst, 1802)	43	1	h	GL,A	3	4	8	3	18
Lathrobium pallidipenne (Hochhuth, 1851)	5	0	h	A,GL	2	4	1		7
Lathrobium pallidum (Nordmann, 1837)	9	0	m	GL	2	2	4		8
Lesteva longoelytrata longoelytrata (Goeze, 1777)	104	6	h	et	1				1
Lesteva punctata (Erichson, 1839)	26	0	sh	UF	4				4
Liogluta longiuscula (Gravenhorst, 1802)	30	10	m	et	161				161
Liogluta microptera (Thomson, 1867)	11	2	h	et	4				4
Lobrathium multipunctum multipunctum (Gravenhorst, 1802)	17	3	x	GL	1		6	2	9
Lomechusa paradoxa (Gravenhorst, 1806)	2	1	m	GL			1		1
Micropeplus porcatus (Paykull, 1789)	2	0	m	GL,A		1	4		5
Mycetoporus sp. (clavicornis-Gruppe)	0	0	sh	etUF			2		2
Mycetoporus longulus (Mannerheim, 1830)	5	2	m	etGL	2				2
Ocalea picata (Stephens, 1832)	119	4	h	UF				1	1
Ochthephilum fracticorne (Paykull, 1800)	43	0	m	et	8	1	12		21
Ocypus aeneocephalus (De Geer, 1774)	13	0	m	et			1		1
Ocypus brunnipes brunnipes (Fabricius, 1781)	61	19	m	et	8	4	13	5	30
Ocypus fulvipennis (Erichson, 1840)	13	5	x	GL			2		2
Ocypus nitens nitens (Schrank, 1781)	113	36	x	GL,A		1	8	31	40
Ocypus olens olens (O. Müller, 1764)	74	31	m	A,GL		6	108	1	115
Ocypus ophthalmicus ophthalmicus (Scopoli, 1763)	45	26	x	GL		1			1
Ocyusa picina (Aubé, 1850)	22	0	h	UF,WA	17				17
Omalium caesum (Gravenhorst, 1806)	44	4	h	et	50			1	51
Omalium rivulare (Paykull, 1789)	249	41	m	et	117				117
Ontholestes haroldi (Eppelsheim, 1884)	16	9	x	GL,A		1			1
Oxypoda acuminata (Stephens, 1832)	46	4	m	WA,GL	244		2		246
Oxypoda brachyptera (Stephens, 1832)	0	0	x	GL,A			1		1
Oxypoda lurida (Wollaston, 1857)	0	0	m	GL			2		2
Oxypoda mutata (Sharp, 1871)	2	0	m	etW	1				1
Oxypoda opaca (Gravenhorst, 1802)	63	1	m	et				3	3
Pachnida nigella (Erichson, 1837)	9	0	sh	UF	17		2		19
Paederus littoralis littoralis (Gravenhorst, 1802)	131	30	m	et	8	3	116		127
Paederus riparius (Linnaeus, 1758)	82	6	sh	UF	114	4	5		123
Pella cognata cognata (Märkel, 1842)	1	1	х	GL	4		1		5
Pella funesta (Gravenhorst, 1806)	3	0	m	etWA	21				21
Pella limbata (Paykull, 1789)	39	7	m	GL	1	1	149		151
Pella lugens (Gravenhorst, 1802)	15	2	m	GL			1		1

Gattung, Art, Autor, Jahr	A	HR	FP	LP	FS	TS	GS	AS	Total
Philonthus atratus (Gravenhorst, 1802)	53	11	h	et	1				1
Philonthus carbonarius (Gravenhorst, 1802)	107	23	m	et	2	25	57		84
Philonthus cognatus (Stephens, 1832)	119	30	m	et		16	7		23
Philonthus corruscus (Gravenhorst, 1802)	24	2	x	GL,A		4	11		15
Philonthus decorus (Gravenhorst, 1802)	97	54	h	WA,UF	16	5			21
Philonthus fumarius (Gravenhorst, 1806)	24	1	sh	UF	88		2		90
Philonthus micans (Gravenhorst, 1802)	17	0	sh	UF	6				6
Philonthus rubripennis (Stephens, 1832)	18	0	sh	UF			3		3
Philonthus succicola (Thomson, 1860)	53	7	m	et	9				9
Phloeocharis subtilissima (Mannerheim, 1830)	35	3	m	WA	1				1
Plataraea brunnea (Fabricius, 1798)	1	1	m	et	10				10
Platydracus chalcocephalus (Fabricius, 1801)	57	30	m	WA	6				6
Platydracus fulvipes (Scopoli, 1763)	28	13	h	et	4	3	2		9
Platydracus stercorarius stercorarius (Olivier, 1795)	43	16	x	GL,A	8	5	89		102
Platystethus capito (Heer, 1839)	2	1	h	UF			2		2
Platystethus nitens (Sahlberg, 1832)	59	3	x	GL,A	1			1	2
Proteinus brachypterus (Fabricius, 1792)	46	0	h	UF	1				1
Quedius cinctus (Paykull, 1790)	68	19	m	et	1				1
Quedius curtipennis (Bernhauer, 1908)	36	13	h	et	7	2	28		37
Quedius fuliginosus (Gravenhorst, 1802)	53	18	h	et	14	6	1		21
Quedius levicollis (Brullé, 1832)	3	0	X	GL	2	2	50		54
Quedius maurorufus (Gravenhorst, 1806)	8	0	sh	UF,WA	1				1
Quedius molochinus (Gravenhorst, 1806)	19	10	m	GL,UF	12		167		179
Quedius nitipennis (Stephens, 1833)	26	0	m	GL	1		7		8
Quedius picipes (Mannerheim, 1830)	21	4	h	WA	1				1
Quedius semiobscurus (Marsham, 1802)	0	0	x	GL			4		4
Rabigus pullus (Nordmann, 1837)	3	0	x	GL	2		295		297
Rabigus tenuis (Fabricius, 1793)	10	0	SX	GL	1		3211		3256
Rugilus orbiculatus (Paykull, 1789)	88	7	т	A,GL	1				1
Rugilus rufipes (Germar, 1836)	81	6	h	WA,UF	22		2		24
Rugilus similis (Erichson, 1839)	32	4	m	GL,A		7	33		40
Scopaeus laevigatus (Gyllenhal, 1827)	43	2	т	et	102	2	101	1	206
Scopaeus minutus (Erichson, 1840)	5	0	х	GL	1			6	7
Scopaeus sulcicollis (Stephens, 1833)	2	0	X	GL	1	2		11	14
Sepedophilus immaculatus (Stephens, 1832)	43	5	m	W,GL	3				3
Sepedophilus littoreus (Linnaeus, 1758)	10	1	h	W,UF	27	1		1	29

Gattung, Art, Autor, Jahr	A	HR	FP	LP	FS	TS	GS	AS	Total
Sepedophilus pedicularius (Gravenhorst, 1802)	43	2	m	et	2		14		16
Staphylinus dimidiaticornis (Gemminger, 1851)	62	14	x	GL,A	3	76	6		85
Stenus ater (Mannerheim, 1830)	43	13	m	et	1		1		2
Stenus biguttatus (Linnaeus, 1758)	52	16	h	A,GL		4	3	1	8
Stenus bimaculatus (Gyllenhal, 1810)	105	14	h	et	42				42
Stenus carbonarius (Gyllenhal, 1827)	25	0	sh	GL	11				11
Stenus cicindeloides (Schaller, 1783)	147	10	h	UF			1		1
Stenus circularis (Gravenhorst, 1802)	6	0	h	UF,GL	18	1	138		157
Stenus clavicomis (Scopoli, 1763)	117	26	m	GL,A	2		30		32
Stenus fuscicornis (Erichson, 1840)	20	2	h	et	8				8
Stenus humilis (Erichson, 1839)	119	1	m	GL	46	4	152		202
Stenus impressus (Germar, 1824)	111	1	h	WA,UF	1				1
Stenus juno (Paykull, 1789)	153	7	h	UF,GL	12				12
Stenus morio (Gravenhorst, 1806)	36	0	sh	UF	21				21
Stenus nanus (Stephens, 1833)	2	0	x	GL,A	1		109		110
Stenus nigritulus (Gyllenhal, 1827)	9	0	h	UF,GL	1				1
Stenus nitens (Stephens, 1833)	18	0	sh	UF			3		3
Stenus ochropus (Kiesenwetter, 1858)	19	9	x	GL			1		1
Stenus providus providus (Erichson, 1839)	113	5	sh	UF	12				12
Sunius melanocephalus (Fabricius, 1793)	19	2	m	GL,A			44		44
Tachinus corticinus (Gravenhorst, 1802)	31	1	x	GL	1	1	22		24
Tachinus rufipes (Linnaeus, 1758)	108	21	h	et	5	18	3	1	27
Tachyporus abdominalis (Fabricius, 1781)	2	0	sh	GL,UF	1				1
Tachyporus atriceps (Stephens, 1832)	9	2	x	GL	4		47		51
Tachyporus chrysomelinus (Linnaeus, 1758)	77	17	m	GL,A	1	4	36		41
Tachyporus dispar (Paykull, 1789)	36	2	m	GL,A			24		24
Tachyporus formosus (Matthews, 1838)	71	15	sh	UF	4	2	1		7
Tachyporus hypnorum (Fabricius, 1775)	181	50	m	GL,A	6	4	47		57
Tachyporus nitidulus (Fabricius, 1781)	96	11	m	GL,A	7	30	50	4	91
Tachyporus obtusus (Linnaeus, 1767)	82	13	m	et	1	1			2
Tachyporus pusillus (Gravenhorst, 1806)	23	3	m	GL,A		2	26		28
Tachyporus transversalis (Gravenhorst, 1806)	15	0	sh	UF	7				7
Tasgius melanarius melanarius (Heer, 1839)	45	8	m	et	4	1	3		8
Tasgius morsitans (Rossi, 1790)	12	12	m	et	5	1			6
Tetartopeus terminatus (Gravenhorst, 1802)	30	0	sh	UF	5				5
Tetralaucopora longitarsis (Erichson, 1839)	36	6	h	UF	8				8

Gattung, Art, Autor, Jahr	A	HR	FP	LP	FS	TS	GS	AS	Total
Xantholinus elegans (Olivier, 1795)	19	4	x	GL,A	4		157		161
Xantholinus linearis linearis (Olivier, 1795)	42	12	m	et		7	38		45
Xantholinus longiventris (Heer, 1839)	64	12	m	GL,A	15	19	51		85
Zyras collaris (Paykull, 1800)	3	1	sh	UF	8		1		9
Anzahl Individuen Total					2854	378	7550	332	11158
Anzahl Individuen pro 1 Fallentag					6.89	1.69	33.41	2.26	11.04
Anzahl Arten					132	57	104	37	176

Anhang 3: Artenliste Rüsselkäfer (Curculionoidea) der Petit Camargue Alsaciennne (F), unterteilt in Bodenfallen- und Handfänge, Untersuchungsjahr 2008

Legende: **WP:** Wirtspflanzen, **LB:** Lebensraumbindung (s: stenotop, e: eurytop), **SG:** Spezialisierungsgrad (m: monophag, o: oligophag, p: polyphag), **FP:** Feuchtigkeits- und Wärme-Präferenz (h: hygrophil, x: xerophil, t: thermophil). **FS:** 1 Feuchtstandort Grand Triangle beweidet (336 Fallentage), 1 Lebensraumtyp (Riedfläche beweidet). **GS1:** 1 Grünlandstandort Grand Pré Extensivwiese beweidet (336 Fallentage), 1 Lebensraumtyp (Extensivwiese beweidet). **GS2:** 1 Grünlandstandort Grand Pré Extensivwiese unbeweidet (336 Fallentage), 1 Lebensraumtyp (Extensivwiese unbeweidet).

Taxon (Bodenfallenfänge)	WP	LB	SG	FP	FS	GS1	GS2	Total
Bagous lutulentus (Gyllenhal, 1813)	Equisetum	S	m	h		1		1
Brachypera zoilus (Scopoli, 1763)	Trifolium, Medicago	е	0			27		27
Catapion seniculus (Kirby, 1808)	Trifolium	е	m			12		12
Ceutorhynchus resedae (Marsham, 1802)	Reseda	S	m	х		2		2
Glocianus punctiger (C. R. Sahlberg, 1835)	Taraxacum	е	m			18		18
Grypus brunnirostris (Fabricius, 1792)	Equisetum	S	m	h	17			17
Grypus equiseti (Fabricius, 1775)	Equisetum	е	m	h	1			1
Hylobius transversovittatus (Goeze, 1777)	Lythrum salicaria	s	m	h	2			2
Hypera meles (Fabricius, 1792)	Trifolium	s	m	х		10		10
Hypera miles (Paykull, 1792)	Fabaceae	е	0		7	1		8
Hypera nigrirostris (Fabricius, 1775)	Fabaceae	е	О			2		2
Hypera plantaginis (De Geer, 1775)	Lotus	s	m	t		12		12
Ischnopterapion loti (Kirby, 1808)	Lotus corniculatus	е	m			5		5
Ischnopterapion virens (Herbst, 1797)	Trifolium	е	m			22		22
Lepyrus capucinus (Schaller, 1783)	Rosaceae	s	0	t		4		4
Limnobaris t-album (Linné, 1758)	Cyperaceae, Juncaceae	S	0	h	27			27
Mecinus pyraster (Herbst, 1795)	Plantago	е	m			1		1
Mogulones abbreviatulus (Fabricius, 1792)	Symphytum officinale	s	m	h	2			2
Neophytobius quadrinodosus (Gyllenhal, 1813)	Potentilla reptans	s	m	h	1	122		123
Pelenomus commari (Panzer, 1794)	Rosaceae, Lythrum	s	р	h		1		1
Protapion apricans (Herbst, 1797)	Trifolium	е	m			14		14
Protapion fulvipes (Geoffroy, 1785)	Trifolium	е	m			26		26
Rhinoncus pericarpius (Linné, 1758)	Rumex	е	0			5		5
Sitona hispidulus (Fabricius, 1777)	Fabaceae	е	0			29		29
Sitona humeralis (Stephens, 1831)	Fabaceae	е	0				1	1
Sitona lepidus (Gyllenhal, 1834)	Fabaceae	е	0			105		105
Sitona sulcifrons argutulus (Gyllenhal, 1834)	Fabaceae	е	0			1		1
Stenocarus ruficornis (Stephens, 1831)	Papaver	s	m	t			1	1

Taxon (Bodenfallenfänge)	WP	LB	SG	FP	FS	GS1	GS2	Total
Stenopterapion meliloti (Kirby, 1808)	Melilotus	е	m	×		1		1
Tanymecus palliatus (Fabricius, 1787)		е	р			6		6
Trichosirocalus troglodytes (Fabricius, 1787)	Plantago lanceolata	е	m			202	1	203
Tychius junceus (Reich, 1797)	Fabaceae	е	0	x		1		1
Tychius picirostris (Fabricius, 1787)	Trifolium	е	m			1		1
Zacladus exiguus (Olivier, 1807)	Geranium	s	m	x		2		2
Anzahl Individuen Bodenfallen					57	633	3	693
Anzahl Individuen pro 1 Fallentag					0.17	1.88	0.01	0.69
Anzahl Arten Bodenfallen					7	27	3	34
Taxon (Handfänge)	WP	LB	SG	FP	FS	GS1	GS2	Total
Anthonomus rubi (Herbst, 1795)	Rosaceae	е	o			1		1
Cyanapion gyllenhalii (Kirby, 1808)	Vicia, Lathyrus	е	0		1			1
Eutrichapion viciae (Paykull, 1800)	Vicia, Lathyrus	е	o		1	1		2
Hypera striata (Boheman, 1834)	Vicia	s	m	t		1		1
Larinus turbinatus (Gyllenhal, 1836)	Cirsium, Carduus	s	o	t		1		1
Melanapion minimum (Herbst, 1797)	Salix	е	m		1	1		2
Mogulones raphani (Fabricius, 1792)	Symphytum officinale	s	т	h		1		1
Mononychus punctumalbum (Herbst, 1784)	Iris	s	m	h	2		men	2
Nanophyes marmoratus (Goeze, 1777)	Lythrum	s	m	h	2	2	ıfnahı	4
Neophytobius quadrinodosus (Gyllenhal, 1813)	Potentilla reptans	S	m	h		8	keine Aufnahmen	8
Phyllobius pomaceus (Gyllenhal, 1834)		е	р		1		<u> </u>	1
Rhinoncus perpendicularis (Reich, 1797)	Polygonum	е	m			2		2
Sitona suturalis (Stephens, 1831)	Lathyrus pratensis	е	m			3		3
Sitona waterhousei (Walton, 1846)	Lotus, Medicago	s	0	x		1		1
Tapeinotus sellatus (Fabricius, 1794)	Lysimachia vulgaris	s	т	h	1			1
Thryogenes nereis (Paykull, 1800)	Eleocharis, Scirpus	s	0	h		2		2
Tychius pusillus (Germar, 1842)	Trifolium	s	m	x		1		1
Anzahl Individuen Handfänge					9	25	0	34
Anzahl Arten Handfänge					7	13	o	17
Anzahl Individuen, total Bodenfallen und Hand	fänge				66	658	3	727
Anzahl Arten, total Bodenfallen und Handfänge					14	39	3	50