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Das Phänomen der Zeitgleichung

Markus Muller, Andreas Muller

Abstract: The apparent solar motion is not uniform and the lenght of a solar day is not constant
throughout a year. The difference between apparent solar time and mean (regular) solar time is called
the equation of time. Two well-known features of our solar system lie at the basis of the periodic
irregularities in the solar motion: The angular velocity of the earth relative to the sun varies periodically

in the course of a year. The plane of the orbit of the earth is inclined with respect to the equatorial

plane. Therefore, the angular velocity of the relative motion has to be projected from the
ecliptic onto the equatorial plane before incorporating it into the measurement of time. The mathematical

expression of the projection factor for ecliptic angular velocities yields an oscillating function
with two periods per year. From both results the equation of time is obtained.

The difference between the extreme values of the equation of time is about half an hour. The
response of the equation of time to a variation of its key parameters is analyzed. In order to visualize
factors contributing to the equation of time a model has been constructed which accounts for the
elliptical orbit of the earth, the periodical changing angular velocity, and the inclined axis of the earth.

Zusammenfassung: Der scheinbare Lauf der Sonne ist nicht gleichförmig, und die Länge eines
Sonnentages variiert während eines Jahres. Die daraus resultierende Differenz zwischen wahrer Ortszeit
(Sonnenzeit) und mittlerer Ortszeit nennt man Zeitgleichung. Sie ist auf zwei bekannte Eigenschaften

unseres Sonnensystems zurückzuführen: Erstens schwankt die Winkelgeschwindigkeit der Erde
bezüglich der Sonne mit der Periode von einem Jahr. Andererseits ist die Ebene der Erdumlaufbahn
gegenüber der Äquatorebene geneigt. Daher muss die Relativbewegung von Sonne und Erde auf die
Äquatorebene projiziert werden, bevor sie in die Zeitmessung einbezogen werden kann. Der
mathematische Ausdruck, der den Projektionsfaktor für Winkelgeschwindigkeiten auf der Ekliptik
beschreibt, ist eine sinusähnliche Funktion mit zwei Perioden pro Jahr. Aus beiden Faktoren kann die
Zeitgleichung berechnet werden.

Die Differenz der Extremwerte, die die Zeitgleichung annimmt, beträgt ungefähr eine halbe
Stunde. Die Abhängigkeit der Zeitgleichung von ihren Parametern wird nach der Herleitung einer
allgemeinen Formel untersucht. Zur Veranschaulichung der oben genannten Ursachen haben wir ein
Modell gebaut, das sowohl die elliptische Umlaufbahn der Erde als auch die ändernde
Winkelgeschwindigkeit und die Neigung der Erdachse berücksichtigt.
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Im Februar 1993 machte mein Biologielehrer Dr. Bernardo J. Gut beiläufig auf das Phänomen der
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Im Interesse der Verständlichkeit achteten wir darauf, den Text möglichst gut bildlich zu illustrieren.
Aus diesem Grund ist der Umfang des Projektberichts etwas grösser geworden.

Text und Bilder sind mit Hilfe des Programms Microsoft Word 5.1, die Graphiken mit Microsoft
QuickBasic auf einem Apple Macintosh IIvx erstellt worden.
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Zusammenfassung

Das Phänomen der Zeitgleichung
Im Schulunterricht wurden wir darauf aufmerksam gemacht, dass die Sonne kaum einmal genau um
zwölf Uhr ihren Höchststand einnimmt, beziehungsweise dass die Zeitspanne von Sonnenaufgang
bis zwölf Uhr meist nicht genau jener von zwölf Uhr bis Sonnenuntergang entspricht, auch dann
nicht, wenn man die Uhrzeit auf die (mittlere) Ortszeit (siehe Bild 1.1) berichtigt. Das beruht darauf,
dass der scheinbare Lauf der Sonne nicht ganz regelmässig ist. Die so auftretende Differenz zwischen
<Sonnenzeit> (Zeitangabe einer Sonnenuhr) und mittlerer Ortszeit nennt man Zeitgleichung. Unsere
Arbeit beschäftigt sich mit den Ursachen und dem Ausmass dieser Erscheinung.

Im ersten Teil leiten wir dieses Phänomen auf eigene Weise mathematisch her und diskutieren das

Ergebnis. Der unregelmässige Lauf der Sonne ist auf folgende zwei Ursachen zurückzuführen:
1. Nach dem Flächensatz von Kepler variiert die Winkelgeschwindigkeit der Erde bezüglich der

Sonne innerhalb eines Jahres. Die Keplerschen Gesetze leiten wir durch eine eigenhändige
Lösung der Newtonschen Bewegungsgleichungen her. Anschliessend ermitteln wir daraus die
Winkelgeschwindigkeit in Abhängigkeit der Zeit. Die so gewonnene Funktion hat sinusähnlichen
Charakter und weist eine Periode von einem Jahr auf.

2. Die Äquatorebene steht schief zur Ebene der Ekliptik (siehe Bild 1.2). Da die zeitrelevanten
Stundenwinkel der Sonne parallel zum Äquator gemessen werden, müssen die Winkel, die scheinbar
von der Sonne auf der Ekliptik zurückgelegt werden, auf die Äquatorebene normalprojiziert werden,

um in die Zeitmessung einbezogen werden zu können. Die mathematische Darstellung des

Projektionsfaktors eines Ekliptikwinkels auf einen Äquatorwinkel zu einem bestimmten Zeitpunkt
ist hier etwas einfacher. Man erhält ebenfalls eine Funktion mit sinusförmigem Verlauf, wobei die
Periodendauer ein halbes Jahr beträgt.
Die Überlagerung dieser zwei Komponenten liefert einen relativ komplizierten Ausdruck für die

Zeitgleichung, welcher durch Reihenentwicklungen und Integration in guter Näherung auf zwei Glieder

vereinfacht werden kann. Der Wert der Zeitgleichung erreicht im Oktober ein Maximum von +16
und im Februar ein Minimum von -14 Minuten. Im Mai und im Juli gibt es zwei relative Extrema.
Viermal im Jahr stimmt die Sonnenzeit genau mit der Ortszeit überein.

Der zweite Teil der Arbeit ist der Entwicklung eines eigens für die Veranschaulichung der
Gegebenheiten im Sonnensystem konstruierten Modells gewidmet. Dieses sollte folgende Bedingungen
erfüllen: Die Erde bewegt sich bezüglich der Sonne auf einer elliptischen Bahn, wobei die
Lineargeschwindigkeit in Sonnennähe deutlich grösser sein sollte als jene in Sonnenferne. Ausserdem

dreht sich die Erde um die eigene schief stehende Achse. Unsere Eigenkonstruktion beruht auf
den folgenden mechanischen Elementen: Die elliptische Bahn ergibt sich durch entsprechende
Führungsschienen, in denen die Erdachse durch einen kreisenden Stab angestossen wird. Durch die
exzentrische Lage des Drehzentrums dieses Stabes erreicht man ausserdem die gewünschten
Geschwindigkeitsunterschiede. Der Rotationsantrieb muss an den Revolutionsantrieb gekoppelt sein
und zugleich mit der sich bewegenden Erde in Verbindung stehen, was durch eine trickreiche
Kettenführung gelöst ist. Die Ekliptikschiefe ist verhältnismässig einfach durch ein Kreuzgelenk an der
Erdachse verwirklicht.

1. Einführung
1.1. Über die Zeitbestimmung
Diese Arbeit beschäftigt sich mit einem Problem der astronomischen Zeitmessung. Zum besseren
Verständnis der nachfolgenden Entwicklung werden hier die Grundbegriffe der Zeitmessung kurz
erläutert. Das natürlichste Mass der Zeitbestimmung ist die Rotation der Erde, die sich im täglichen
scheinbaren Lauf der Sonne äussert und somit unseren Tagesablauf bestimmt. Einen Tag messen wir
als Zeitintervall zwischen zwei aufeinanderfolgenden Mittagen, wobei wir unter <Mittag> den Zeit-
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punkt verstehen, an dem die Sonne ihren Höchststand einnimmt. Dies ist zugleich der Moment, in
dem ein senkrechter Stab den kürzesten Schatten wirft (Bild 1.1). Dieses Zeitintervall wird Sonnentag

genannt, da sich die Messung auf die Sonne bezieht. Die Zeitangabe, für die zwölf Uhr genau
Mittag ist und deren Tageslänge jeweils genau dem Sonnentag entspricht, heisst wahre Ortszeit oder
auch wahre Sonnenzeit. Sie ist selbstverständlich nur für Orte auf demselben Meridian* gleich.

Die Astronomen
bedienen sich gewöhnlich
für die Zeitmessung
eines Fixsterns, der nachts
sichtbar ist. Hierbei wird
ein Tag als das Zeitintervall

zwischen zwei
aufeinanderfolgenden
Höchstständen
(Kulminationen) des Sternes
definiert. Der so
gemessene Sterntag ist um
etwa vier Minuten kürzer

als der Sonnentag, da
durch den jährlichen
Umlauf der Erde um die
Sonne eine Rotation der
Erde aufgewogen wird.
(Die Erde dreht sich
zwar 366mal, die Sonne

macht aber nur 365mal ihren scheinbaren Lauf.) Die Zeitmessung, die auf dem Sterntag als Zeiteinheit

beruht, heisst Sternzeit.
Vergleicht man Stern- und Sonnenzeit, so stellt man aber nicht eine linear wachsende Abweichung

fest. Vielmehr unterliegt die Sonnenzeit periodischen Schwankungen, d.h. die Sonne bewegt sich
nicht gleichmässig am Himmel. Auch die Länge des Sonnentages ist nicht konstant. Aus praktischen

Ein Sterntag ist das

Zeitintervall zwischen
zwei Rotationen der Erde
und ist deshalb immer
gleich lang.
Ein Sonnentag ist das

Zeitintervall zwischen
zwei Sonnenhöchstständen

(Mittagen),
dauert also länger. Seine

Länge hängt etwas von
der Erdposition in der
Umlaufbahn ab.

Erdumlaufbahn '
Bild 1.2: Stern- und Sonnentag

sehr weit
entfernter
Fixstern

Revolutionsrichtung

* Längskreis der Erde.
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Gründen richten wir uns heute nach Uhren, denen ein streng periodischer Vorgang zugrunde liegt
(z.B. Quarz-, Atomuhr). Die Zeiteinheit ist aber so gewählt, dass die Zeitangabe relativ genau mit
der Sonnenzeit übereinstimmt. Als Tageslänge gilt nicht mehr der wahre Sonnentag, sondern das Mittel

der Tageslängen in einem Jahr, der sogenannte mittlere Sonnentag. Die auf diese Weise festgelegte

Zeitangabe heisst mittlere Sonnenzeit, im Gegensatz zur oben beschriebenen wahren Sonnenzeit

(auf einem bestimmten Meridian entsprechend wahre und mittlere Ortszeit). Die Differenz dieser

beiden Zeitwerte wird Zeitgleichung genannt. Sie beträgt im Februar ungefähr -14 Minuten, im
November ungefähr +16 Minuten! Ihr wollen wir uns in dieser Arbeit widmen.

Um den Reise- und Geschäftsverkehr zu erleichtern, hat man die ganze Welt in Zeitzonen mit
jeweils gleicher Zeit eingeteilt. Abgesehen von einigen Ausnahmen, wie zum Beispiel Japan oder
Indien, gilt für zwei benachbarte Zeitzonen, dass die Zeitangabe der östlichen gegenüberjener der
westlichen Zone um eine Stunde fortgeschritten ist. Diese Bestimmung und die zusätzliche Einführung
von Sommer- und Winterzeit führen dazu, dass das Phänomen der Zeitgleichung im Alltag übersehen

wird, denn die Uhren zeigen nicht die Ortszeit, sondern diejenige eines ausgezeichneten
Meridians* an.

Es scheint nun so, als ob die Zeitgleichung nur für das Ablesen von Sonnenuhren oder die Kenntnis

des genauen Sonnenstandes von Bedeutung wäre. Dem ist aber nicht so: Durch exakte
Sonnenbeobachtungen kann auf die genaue Bewegung der Erde im Sonnensystem geschlossen werden.
Einige Parameter, insbesondere die Schiefe der Ekliptik und die Exzentrizität der Erdumlaufbahn, können

aufgrund genauer Analysen des Zeitgleichungsverlaufes bestimmt werden, da sich die
Unregelmässigkeiten in der wahren Sonnenzeit von ihnen herleiten. Zudem können Einwirkungen anderer
Planeten auf die Erdbahn schliesslich auch nur auf diese Weise experimentell nachgewiesen und überprüft

werden.
Im Folgenden wird die Zeitgleichung in Abhängigkeit der oben genannten zwei Parameter hergeleitet.

Es wird sich zeigen, wie sie den scheinbaren Lauf der Sonne beeinflussen und wie ihre Werte
aus der Sonnenbeobachtung ermittelt werden können. Anschliessend wird ein Modell zur
Veranschaulichung der Situation im Sonnensystem entwickelt.

1.2. Die Periodizitäten im scheinbaren Laufder Sonne
Wie kommt es nun eigentlich, dass die Sonne nicht regelmässig auf- und untergeht, sondern in ihrer
Bahn ziemlich grosse Schwankungen aufweist? Dieses Phänomen hat zweierlei Gründe:
1. Einerseits bewegt sich die Erde im Verlaufe einer Umdrehung um die Sonne - einer sogenannten

Revolution - nicht immer mit derselben Bahngeschwindigkeit. Im Winter beträgt diese
ungefähr 31km/s, im Sommer dagegen nur 29km/s, weil die Erde nicht immer gleich weit von der
Sonne entfernt ist. Denn wenn sich die Erde der Sonne nähert, wird sie von der Gravitationskraft
beschleunigt, entfernt sie sich, wird sie gebremst. Wegen der unterschiedlichen Geschwindigkeiten

der Erde ist übrigens der Nordsommer um etwa 7 Tage länger als der Nordwinter (siehe
Kapitel 2).

2. Der bedeutendere zweite Faktor rührt von der sogenannten Schiefe der Ekliptik her, die auch die
Jahreszeiten verursacht. Die Ekliptik ist die Bahn, die die Sonne innerhalb eines Jahres gegenüber
der Fixsternsphäre** beschreibt. Die Ebene dieser Bahn schliesst mit der Ebene des Äquators einen
Winkel von 23W ein (Bild 1.3).

* Unsere Zeit bezieht sich auf den Meridian 15° östlicher Länge (Winterzeit), im Sommer eigentlich auf 30° öL -»
Mitteleuropäische Zeit.

** Die Fixsternsphäre ist der Sternenhimmel, der sich nur aufgrund der Rotation der Erde zu drehen scheint. Da die
Sonne der Erde viel näher ist und von ihr im Jahr einmal umkreist wird, haben wir das Gefühl, die Sonne wandere
gegenüber den Fixsternen von Westen nach Osten.
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Normalprojektion der
Sonnenbahn auf die

Äquatorebene

Scheinbare jährliche
Sonnenbahn

(Ekliptik)

Aphel (kleine
Geschwindigkeit)

Sommer-

beginn

Winterbeginn

Perihel (grosse
Geschwindigkeit)

Sonne

Bild 1.3: Scheinbare Sonnenbahn von
der Erde als Fixpunkt gesehen

Äquator, der an die
Fixsternsphare projiziert

ist; Bahn der
"mittleren Sonne"

Im Perihel läuft die Sonne schnell,
im Aphel langsam. Gleiche Winkel ß

auf der Ebene der Ekliptik
entsprechen nicht gleichen Winkeln y
auf der Äquatorebene. Hier ist ßl ß2
aber yl < y2

Dies hat zur Folge, dass gleiche Winkel, die die Sonne auf ihrer zum Äquator geneigten Bahn am
Himmel zurücklegt, nicht gleichen Winkeln entsprechen, die wir parallel zur Äquatorebene messen
und die für die Zeitbestimmung massgebend sind. In Bild 1.3 ist die Situation verdeutlicht: Auf der
nördlichen Halbkugel haben wir den Eindruck, die Sonne vollführe einmal im Jahr relativ zum
Fixsternhimmel eine Drehung im Gegenuhrzeigersinn. Dabei steht sie einmal nördlicher, einmal südlicher.

Wir messen ihre Position in Horizontalwinkel, auch Stundenwinkel genannt parallel zum Äquator

(in Bild 1.3: yO und in Vertikalwinkel senkrecht zur Äquatorebene (in Bild 1.3: Spitze Winkel der
schraffierten Dreiecke). Die Zeit definieren wir wie schon erwähnt anhand der Rotation der Erdachse,
denn durch sie scheint die Sonne regelmässig ihren Horizontalwinkel bezüglich eines festen Punktes

auf dem Äquator zu ändern, d.h. sie wandert von Ost nach West. Dem überlagert sich nun aber
die jährliche Bewegung der Sonne im entgegengesetzten Sinn. Deshalb muss ein auf der schrägen
Ekliptikebene liegender Winkel in Horizontal- und Vertikalwinkel konvertiert werden, wobei aus
Bild 1.3 folgt, dass die Horizontalwinkel g sich nicht gleichmässig mit den schrägen Winkeln b
ändern. Folglich wäre die wahre Sonnenzeit auch kein regelmässiges Zeitmass, wenn die Sonne ihre
Bahn mit stetiger Geschwindigkeit abliefe (siehe Kapitel 3).

Den Effekt durch die schräge Ekliptik kann man sich auch wie folgt veranschaulichen:

Man denke sich die Sonne am Ende einer Speiche eines langsam, aber gleichmässig drehenden
Rades, das geneigt zum Untergrund aufgehängt ist, der die Projektionsebene des Äquators
widerspiegelt (Bild 1.4). Das Licht, das senkrecht auf den Untergrund einfällt, wirft einen elliptischen
Schatten des Rades. Läge das Rad parallel zur Unterlage, so würde sich der Schatten der Sonne
regelmässig bewegen. Da aber das Rad eine schiefe Lage einnimmt, bewegt sich der Sonnenschatten
an den Hauptscheiteln der Ellipse langsam und im Bereich der Nebenscheitel ziemlich schnell. Hinzu
kämen nun noch die oben angedeuteten Schwankungen in der Drehgeschwindigkeit des Rades, die
die Projektionsunterschiede überlagern.
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1.3. Die Zeitgleichung
Es gilt nun, die zwei erkannten Periodizitäten der scheinbaren Sonnenbewegung zu untersuchen und
ein möglichst einfaches Verfahren anzugeben, durch das der Wert der Zeitgleichung ermittelt werden

kann. Die Zeitgleichung ist definiert als die Differenz zwischen wahrer und mittlerer Ortszeit,
häufig auch kurz WOZ - MOZ (Wahre Ortszeit / Mittlere Ortszeit) geschrieben. Ist ihr Wert für
einen Zeitpunkt bekannt, so erhält man die wahre Ortszeit durch Addition des Zeitgleichungswerts zur
mittleren Ortszeit - der jeweiligen Uhrzeit - bzw. die mittlere Ortszeit resultiert aus der Differenz
von wahrer Ortszeit und Zeitgleichungswert.

Zeitgleichungswert WOZ - MOZ

2. Die variierende Geschwindigkeit der Erde

2.1. Die Bewegung der Planeten
Nachdem wir oben die zwei ausschlaggebenden Faktoren der Zeitgleichung identifiziert haben, sollen

sie nun mathematisch formuliert und ausgewertet werden. Zunächst gilt es, die Behauptung, dass
die Erde in ihrer Umlaufbahn um die Sonne (Revolution) keine konstante Geschwindigkeit habe, auf
eine solide Basis zu stellen. Dazu müssen wir uns mit der Planetenbewegung auseinandersetzen, die
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besonders von Johannes Kepler (1571-1630) untersucht wurde. Die drei Gesetze* Keplers, die die
Bahnen und Bewegungen der Planeten beschreiben, konnten später von Isaac Newton (1643-1727)
aus der von ihm entdeckten Gravitationskraft** abgeleitet werden. Die allgemeine Relativitätstheorie***

von Albert Einstein (1879-1955) brachte zwar einen Wandel in der Anschauung, doch
sind die an Newtons Resultaten anzubringenden Korrekturen so klein, dass sie für uns nicht von
Interesse sind. Im folgenden sollen also die Keplerschen Gesetze auf der Grundlage des Gravitationsgesetzes

hergeleitet werden. Dieses besagt, dass zwei Körper sich mit einer Kraft anziehen, die
direkt proportional zu ihren Massen und indirekt proportional zum Quadrat des Abstandes der Körper
ist. Denn gemäss einem Modell von M. Faraday nimmt man an, dass das Gravitationsfeld durch
Aussenden von Kraftträgerteilchen der Masse entsteht. In jeder Kugelschale mit Zentrum in der aussendenden

Masse muss zu jeder Zeit ein konstanter Betrag solcher Teilchen vorhanden sein. Demnach
nimmt die Teilchendichte und damit die Kraftstärke proportional zur Schalenfläche, also zum
Radiusquadrat ab.

Dabei ist:
F die Gravitationskraft

G die Gravitationskonstante 6.672 • 10" Nkg2/m2)
im die eine Masse, nachher m Planetenmasse
m2 die andere Masse, nachher ms Sonnenmasse

f der Vektor Sonne-Planet, r Irl

In einem Zentralkraftfeld benutzen wir
vorzugsweise die Polarkoordinaten r und (p des
Planeten in Bezug auf die Sonne, die wir als
fest im Koordinatenursprung annehmen (Bild
2.1). Eine dritte Dimension ist unnötig, da die
Umlaufbahn in einer Ebene liegt. R steht für
den Vektor Sonne-Erde mit der Länge r und
der Richtung tp. s ist der Einheitsvektor in
Richtung von R; n ist der Einheitsvektor
orthogonal zu s. Die Gravitationskraft wirkt in
entgegengesetzter Richtung von R, ist also ein
Vielfaches des Vektors s. Der Geschwindigkeitsvektor

v ist tangential zur Planetenbahn.
Er ist die erste Ableitung des Ortsvektors R
nach der Zeit. Die Beschleunigung a ist nach

dem Gravitationsgesetz antiparallel zu R. Sie entspricht der zweiten Ableitung von R nach der Zeit.

2.2. Die Berechnung der Planetenbahnen

v dR/dt

Planetenbahn ^
a d2R/dt2

*- tp 0

Sonne (Koordinatenursprung)

Bild 2.1: Skizze zur Herleitung
der Planetenbahnen

* Von Kepler publiziert in «Astronomia nova» (1609) und «Harmonice mundi libri V» (1619).
** Von Newton veröffentlicht in «Philosophiae naturalis principia mathematica» (1687).

*** Von Einstein begründet 1914/15.
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I r cos tp | dR [ r cos tp - rtp sin tp ] dr dtp d2r d2<p t t ^R ; wobei r ; tp ——; r ; tp —— gesetzt ist.
I rsmtpI dt l r sin <p + r<p cos p I dt dt dt2 dt2

d2R frcos 9 - rfflsin a - raisin a>-ra> cos ffl - rfflsin«)^
—~= =s r-rf +n 2r<p + n
d t ^r sm cp + rtp cos tp + rtp cos tp - rtpz sm tp + rtp cos <p J

v ' x

' cos tp) -sm tp
mit s und n

sm tp J l cos tp

Nach dem zweiten Newtonschen Axiom und dem Gravitationsgesetz gilt:

d2R F -G • mq fa Beschleunigung; F Gravitationskraft; G Gravitationskonstante
- a — s

dt2 m r2 i ms Sonnenmasse; m Planetenmasse

Wir ersetzen die zweite Ableitung von R wie oben:

-G mq d2R / \ /„ \
s ——=

2
~s (r_r¥> J + n (2r<p + r<pJ

Skalare Multiplikation mit s und n liefert

-G-m,
r-r<p2 2

r2
2f(p + rip 0

(la)
,da s s n n l ; s n 0 (lb)

(siehe Bild 2.1: die Kraft wirkt nur in Richtung Planet-Sonne)

Gleichung lb lasst sich einfach integrieren

2r<p + r<p 0 => — -2-
tp r

Wir substituieren folgendermassen.

u In tp
^21 — v In r ^21 — und erhalten damit
dt (p dt r

—2 Wir integrieren nach d t und erhalten
dt dt

u -2v +const. => In (p + 2 In r const => r2tp e"5' C —
m

Dieses Resultat ist nichts anderes als der bekannte Satz der Erhaltung des Drehimpulses Denn wenn man mit der Masse multipliziert,

erhalt man gerade den Drehimpuls |l |R x p| m|R x v| m|R x r| - m[r cos <p(r sin tp + rtp cos tp) - r sm <p(r cos (p-rtp sm (p)] mr2

r2<pm - L (L Drehimpuls, m* Planetenmasse, <p: momentane Winkelgeschwindigkeit) (2)
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Gleichung la ist schwieriger zu losen Wir ersetzen zuerst <p durch den eben gefundenen Drehimpuls <p - ^
i m r2

2 L2 -Gms L2 Gm sr-rip2 r- r => r -
3

' 9 A 0in r rz

Nun multiplizieren wir mit r
dt

r r l r =»

und integrieren nach d t

fQ^_GnO dr f
J ImV r2 J dt J

L2 Gms "1 L2 Gmsb 1 d r — + + const. (3)

Die Integrationskonstante bestimmen wir am besten mit der Energie des Systems

c c u y2 Gmsmh bv + hp m 2— wobei
2 r

dR dR fr cos <p - rip sm <p\ (r cos <p - ripsm <p} ,2 ^2
(r cos <p — r<p sin <p) + (r sm <p + rcp cos <p)

dt dt ^rsin <p + ripcos <p J ^rsin q> + ripcos <pj
v '

r2 + r2<p2 r2 + r2 —— r2 +' t d n

Damit wird

E ^- fr2 +-dr— I- —s- oder r2 =2^s_ + 2_^_m | .2 L2 1 Gmsm _2 _ „ Gms n E L2

E
Dieses Resultat ist identisch mit Gleichung (3), wenn man const. — setzt.

m

Da wir an der Abhängigkeit zwischen r und <p interessiert sind, eliminieren wir die Zeit, indem wir setzen

r _ dr _ _dr^ dip _ _dr^ _ _d^ L

dt dip dt dip dip mr2

Dies setzen wir in der eben gewonnenen Gleichung ein

r2 =f—T —^— 2-^^- + 2 — ——
yd<p J m2r4 r m m2r2

Durch Wurzelziehen erhalt man

dr L 2Gmsm2r + 2Emr2 - L2 dr r ^ 2 nT, 22 => — -v 2Gmqm2r + 2Emr2 - L2
d <p mr v m2r2 dip L
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Trennung der Variabein liefert

Lj

<p + co J" -

^2Gmsm2r + 2Emr2 - L2

L

dr

dr (m const.)
r^2Gmsmzr + 2Emr2 - L2

Um den Faktor r im Nenner zum Verschwinden zu bringen und alleine eine Wurzel aus

einer quadratischen Funktion zu erhalten, substituieren wir

z — dz - —dr => dr -r2 dz -^-5.
r r2 z2

Nun ist

<p + co I -Lz

2Gmsm2+2Em_L2
r dZ

1
2Gmsm2

_ i
2Em

~dz —

z + Zz
L2

1 -i
2Em T Gmsm2 V f Gmsm2

n2

it r V- J +l—LT

^dz

Diesen Integranden schreiben wir vereinfacht mit

GmQm

L2
sllL 12Em j

f Gmsm2 ^ Gmsm2 2EL2
| ^

L2 1, L2

<p + co =L_
J Vn2 -(z-

d z Arccos
a)2 V n

<p + m Are cos
Gmsm2 2EL2

L2 G2ms2m3
+ 1

L2 G2ms2m3

1 L2

Are cos

--1

2 EL2

G2ms2m3
- + 1

Umgeformt ergibt dies

1 Gmsm-= 77 12 '"""W ' "/A|A2 2 3r 1/ V G2m„ m3
1 + cos(<p + co) —r +1

(4)

(5)

1 l + ecos(<p+ü))
Die letzte Gleichung lässt sich kurz in der Form — 2 - schreiben, der allgemeinen

r P

Kegelschnittgleichung in Polarkoordinaten in Bezug auf einen Brennpunkt als Ursprung
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r, <p Polarkoordinaten des Planets bezüglich der Sonne.

e —— +1 Exzentrizität des Kegelschnitts.
^ G2ms m3

T 2

p Halbparameter des Kegelschnitts.
Gmsm2

co Winkel zwischen der grossen Halbachse des Kegelschnitts und der Nullrichtung
des Koordinatensystems.

Im Folgenden wird co 0 gesetzt.

Bild 2.2 verdeutlicht die Bedeutung der Parameter: (co 0)

Die (numerische) Exzentrizität bestimmt die Art des Kegelschnittes: Im Bild ist e < 1, es entsteht
eine Ellipse, für e 1 erhält man eine Parabel und für e > 1 Hyperbeln. Beim Spezialfall e 0 ist
nach der Kegelschnittgleichung r const., was einen Kreis darstellt. In der Ellipse ist e der Quotient
zwischen dem Abstand der Brennpunkte vom Mittelpunkt und der langen Halbachse. Je kleiner sie
ist, desto kreisähnlicher wird die Ellipse. (Für die Erde ist e 0,0167). Aus der Skizze ersieht man
folgende Beziehung:

(e a)2 + b2 a2 bzw. e ^ 1 -

Der Halbparameter p gibt die halbe Länge der Sehne an, die im Brennpunkt senkrecht

b2
zur grossen Halbachse steht. Für ihn gilt p —.

a
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2.3. Die Keplerschen Gesetze
Keplers erstes Gesetz besagt, dass die Planeten sich in elliptischen Bahnen um die Sonne bewegen,
wobei diese in einem der beiden Brennpunkte steht. Dies folgt unmittelbar aus Gleichung (5). Denn
alle Planeten kommen nach gleichen Zeiträumen wieder an denselben Ort im Raum, was nur bei
geschlossenen Kegelschnitten der Fall sein kann, also bei Kreisen oder Ellipsen. Kreise sind zwar nicht
ausgeschlossen, bedingen aber, dass die Exzentrizität 0 ist und damit ganz spezielle Beziehungen
zwischen Energie und Drehimpuls oder gegebenenfalls anderen Anfangsbedingungen bestehen.
Diese sind für keinen der Planeten im Sonnensystem gegeben, so dass alleine Ellipsen als
Bahnkurven übrigbleiben (Exzentrizität < 1).

Das zweite Keplersche Gesetz beschreibt die Bewegungsgeschwindigkeit der Planeten. Es wird
oft auch als Flächensatz bezeichnet und ist direkt aus Gleichung 2 zur Erhaltung des Drehimpulses
ersichtlich:

Die Verbindungslinie Sonne-Planet überstreicht in gleichen Zeitabschnitten gleich grosse
Flächen. (Bild 2.3)

dF r2 d <p L
(Denn das Flächenelement pro Zeiteinheit ergibt sich zu — - ~—— - -—, ist also konstant.)r ° dt 2 dt 2 m

Der Vollständigkeit halber sei noch das dritte Keplersche Gesetz erwähnt. Es beschreibt die
Gemeinsamkeit der Planeten eines Sonnensystems:

ellipse und T die Umlaufzeit bedeuten. Diese Beziehung lässt sich ohne weiteres aus den obigen
Gleichungen gewinnen.

Nach dem Flächensatz gilt

Planet

Bild 2.3: Zum Flächensatz

Die Fläche dF des Ellipsensektors
kann für infinitesimal kleine dip
als Kreissektor mit dem
Flächeninhalt r r • d ip/ 2

angenähert werden.

^Ellipse
__

7rab
_ L oder T —

2;rabm
L

clund damit gilt —
a3L2 aL2

T T 2m 47r2a2b2m2 47T2b2m:

b2
Mit — p erhalt man schliesslich

Gm,m2
a' aL2 L2Gmsm2 Gms

const.
a 4;r2b2m2 47T2m2L2 4 TT2

Hiermit wäre nun der eine Faktor der Zeitgleichung hinreichend mathematisch analysiert und
beschrieben. Nachstehend sind die für das weitere entscheidenden Ergebnisse nochmals zusammen-
gefasst:
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• Die Planeten, insbesondere die Erde, umkreisen die Sonne in elliptischen Bahnen, in deren
einem Brennpunkt die Sonne steht.

• In der Zeit t überstreicht der Vektor Erde-Sonne die Fläche — rrab
T

Der zweite Punkt ist von besonderem Interesse. Aus ihm folgt, dass die Erde in Sonnennähe pro
Zeiteinheit grössere Winkel zurücklegt als in Sonnenferne und sich auch mit grösserer Geschwindigkeit

bewegt (siehe Bild 2.4: Die Erde wandert entlang der Ellipse, wobei sie nach gleichen
Zeitabschnitten eine Sektorgrenze überschreitet). Dadurch ergeben sich unterschiedliche
Winkelgeschwindigkeiten bezüglich der Sonne.

Bild 2.4: Veranschaulichung des Flächensatzes von Kepler

Die Verbindungslinie Sonne-Erde uberstreicht in gleichen
Zeitintervallen gleiche Flachenstücke. Im Bild bedeutet das,
dass die Erde jeweils nach gleichen Zeitabschnitten die
Grenze zwischen zwei Sektoren uberschreitet. Daraus wird
deutlich, dass die Winkelgeschwindigkeit in der Nähe der
Sonne grosser ist als jene in Sonnenferne (Im Perihel, dem
sonnennächsten Punkt, betragt sie ca. 1.02°/Xag, im Aphel,
dem sonnenfernsten Punkt, ca. 0.95°/Tag. Auch die
Bahngeschwindigkeit ist natürlich unterschiedlich. In Wirklichkeit
betragt sie in Sonnennahe 30.3krn/s und in Sonnenferne
29.3km/s.

Nun geht es darum, die Winkelgeschwindigkeit in Abhängigkeit der Zeit darzustellen. Es hat sich
historisch eingebürgert, den Winkel, den die Erde seit Periheldurchgang bezüglich der Sonne zurückgelegt

hat, wahre Anomalie zu nennen (siehe [1]). Wir wollen ihn im folgenden mit W abkürzen. Der
Winkel, den die Erde in der gleichen Zeit zurückgelegt hätte, wenn sie sich das ganze Jahr hindurch
mit der gleichen Winkelgeschwindigkeit fortbewegen würde, wird mittlere Anomalie genannt. Wir
bezeichnen ihn hier mit M. In Bild 2.5 ist M von der Mitte der Ellipse aus abgetragen, da man sich
für die fiktive mittlere Sonnenzeit die Sonne in der Mitte einer kreisförmigen Umlaufbahn denken
muss, auf der sich die Erde mit konstanter Geschwindigkeit bewegt. Der Winkel M ist also direkt

M — In wobei T die Umlaufszeit ist.
T

Es hat sich gezeigt, dass es viel Rechenarbeit erspart, wenn man einen weiteren Winkel einführt,
sozusagen als Zwischenglied zwischen wahrer und mittlerer Anomalie (Bild 2.5). Er ist folgender-
massen definiert: Der rechte Schenkel ist wiederum die Perihelrichtung, den linken Schenkel erhält
man, indem man das Lot vom Planetenort (E) auf die grosse Halbachse der Ellipse nach hinten
verlängert und mit dem zur Ellipse gehörigen Grosskreis schneidet. Der erhaltene Punkt A liegt auf dem
linken Schenkel des bezeichneten Winkels. Dieser wurde von Johannes Kepler eingeführt und heisst
exzentrische Anomalie (siehe [1]). Im weiteren ist er mit E abgekürzt.
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Aphel

Ellipsengrosskreis
(Bahn der "mittleren
Erde")

E Erde

mittlere Erde

P Perihel

Fläche a"'Fläche

Bild 2.5: Winkel W, M und E zu einem bestimmten Zeitpunkt
Die wahre Anomalie W bezeichnet den tatsächlich zurückgelegten Winkel vom Perihel her gezählt. Die mittlere

Anomalie M stellt den Winkel einer fiktiven, gleichmässig auf einer Kreisbahn laufenden Erde dar, die dieselbe

Umlaufszeit wie die wahre Erde hat Die exzentrische Anomalie E ist eine Hilfsgrösse zwischen W und M.
Zwischen Ellipsengrosskreis und Bahnellipse besteht eine normale Affinität, der Affinitätsfaktor beträgt-^-. Dies

kann ausgenutzt werden, wenn Ellipsenflächen bestimmt werden müssen.

Die schraffierten Flächen stehen ebenfalls im Verhältnis 1: b/a, denn für eine gleichmässig laufende Erde gilt der

Flächensatz ebenso wie für die wahre Erde. Nur überstreicht der Fahrstrahl in einer Umdrehung bei der mittleren

Erde den Grosskreis, bei der wahren aber die Ellipse.

Aus Bild 2.5 ergeben sich nun einige Beziehungen zwischen W und E:

tan W —
FB _ b/a AB

_ b/a a sinE _b sinE _
V1-e2 sinE

SB ZB-ZS a cosE-e a a cosE-e cosE-e

cosW | 1
I (cosE-e)2

~
I (cosE-e)2 I (cosE-e)2

_ CosE-e

yi+tan2W u (cosE—e)2+(l-e2)-sin2E y cos2 E-2ecosE-e2 +sin2 E-e2 sin2 E yi-2ecosE+e2 cos2 E 1-ecosE

tantw_ ll-cosW ll-ecosE-cosE+e~ l(l+e) (1-cosE) / 1+e ll-cosE _ ll+e tanE
2 Vl+cosW i 1-ecosE+cosE-e y (l-e)-(l+cosE) yi-e y 1+cosE y 1-e 2
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Mit Hilfe der Fourierentwicklung im Anhang kann W nach E entwickelt werden:

— — + k smE + — sin2E + — sm3E+ +— smnE+ W(E 0) 0.
2 2 2 3 n

1 1-2,1^—^ 1-fl-- —
Mlt k= V + e '1+,e 1 + 6 =l + e + l-e-2Vl^el=l —V^=_l 2 SJ_ £ + «1 erglbt SIch

- 11 — e i_ 1
— 1 + e — 1 + e e e 2 °

1 + e

W ~ E + 2| — + — ]smE + (— + —1 sin2E + — f — + — I sm3E+ E +1 e + — IsmE + — sm2E + — sm3E28j U 8 3 \ 2 8 / l 4j 4 12

Der Winkel E ist deshalb so praktisch, weil durch ihn die vom Strahl Sonne-Erde überstrichene Fläche
F unter Ausnutzung der Affinität von Kreis und Ellipse leicht zu beschreiben ist:

F Ellipsensektor SEP — (Sektor ZAP - Dreieck ZAS) — ist der Affinitatsfaktor
a a

r b E „ u ZS AB) b (e 2 (a eHa sinE)"! b (E 2 2 esmE) ab /r T,^f 7 ^0ro-»-^-j 7 i J 7 Ua -a —J T (E~esmE) (6)

Die überstrichene Fläche lässt sich aber nach dem Flächensatz auch durch die Zeit ausdrücken,
beziehungsweise durch den mittleren Winkel M, der linear von der Zeit abhängt:

F — 7tab mit M — 2 n erhalt man F Msk
_TT 2

Daraus ergibt sich durch Vergleich mit (6)

M E - e • sinE

E M + e sinE (7)

Gleichung (7) ist die sogenannte Keplersche Gleichung. Sie lässt sich nicht elementar nach E auflösen;

d.h. die Position der Erde, gegeben durch E, kann nur näherungsweise durch die Zeit - mit Hilfe
von M - ausgedrückt werden. Das Reversionstheorem von Lagrange ermöglicht es uns, beliebige
Funktionen von E nach M zu entwickeln, insbesondere natürlich auch E selbst. Es geht aus von einer
Gleichung der allgemeinen Form

z y + x f(z).

Es soll eine beliebige Funktion g(z) nach den unabhängigen Variablen x und y entwickelt werden.
Nach Lagrange (siehe [1]) ergibt sich die Lösung

g(z) g(y) + x g'(y) f(y) + ^-.|-{g'(y).[f(y)]2} + |i ^Ljg'(y) [f(y)f}+ (8)

Im Falle der Keplerschen Gleichung können wir setzen:

z E y M x e f(z) smE f(y) sinM.

Um E nach M zu entwickeln, setzen wir g(z) z und damit g(y) y ; g'(y) 1

In (8) eingesetzt ergibt dies

2D 3 D2 2 3
E M + e sinM + — (sin2M) + — (sin3 M)+.. M + e sinM + — sm2M + — • {3sin 3M - sinM)+...

2 <A4 6 dM2 2 8
J



106 Markus Muller und Andreas Muller Mitt. Naturf. Ges. beider Basel 1

Um W in M auszudrücken, entwickeln wir noch die Sinuswerte der Vielfachen von E so weit als

nötig:

sinE ——— sinM + — • sin2M + — |3sin3M - sinMj +..
e 2 8

sin2E sin2M + e sinM 2cos2M+...= sm2M + e• (sin3M-sinM)+...

sin3E sin3M+...

Damit erhalten wir:

[3^ 2 3 / 3 \ 2 3

e + — sin E + — sin 2E + — sin 3E M + 2e + — sin E + — sin 2E + — sm 3E
4) 4 12 l 4 J 4 12

M + ^2e + -^-j |sinM + ^ sin2M + y {3sm3M - sinM} j + -^-(sin2M + e • (sin3M - sinM)) + ^-sm3M

M + 2esinM + — e2 sin2M + e3|- —sinM + — sin3M | + e4
4 V 4 12 J

(9)
Es wurden in der ganzen Entwicklung immer Glieder bis zur Grössenordnung e3 berücksichtigt, was
schon eine sehr genaue Näherung liefert, da e 0.0167 ist. Betrachten wir nun die

Winkelgeschwindigkeit der Erde bezüglich der Sonne als Funktion der Zeit, so ergibt sich mit M 2

i.\ dW dW dM 2k dW 2it (- ~ 5 2 hj %( 1 „ 13
<w(t} — — l + 2ecosMi—e cos2M + e —cosMh cos3M (10)

dt dM dt T dM T 2 i, 4 4 JJ V!
In Bild 2.6 ist diese Funktion aufgetragen. Sie ist im Wesentlichen durch die einfache Kosinusfunk-

2k
tion des ersten Gliedes der Entwicklung bestimmt. Der Faktor — bedeutet die mittlere

Winkelgeschwindigkeit (im Bogenmass). Die Abweichungen von ±3.5% (==2e) gegenüber diesem Wert
erscheinen kaum beachtenswert, hingegen werden sie merklich, wenn die Winkelgeschwindigkeit über
längere Zeit über- oder unterdurchschnittlich gross ist.

Winkelgeschwindigkeit [Grad/Tag]

Die Winkelgeschwindigkeit schwankt zwischen 1.02 °/Tag und 0.95 °/Tag. Im Mittel beträgt sie

2tt/365.25 pro Tag oder 360/365.25 °/Tag 0.986 °/Tag
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3. Die Schiefe der Ekliptik

3.1. Die Erde im Raum
Die eingangs schon relativ ausführlich geschilderten Einflüsse der schrägen Lage der Erdachse
gegenüber der Ebene der Erdumlaufbahn sollen hier noch mathematisch beschrieben werden. Zuerst
ist zu erwähnen, dass die Erdachse immer ungefähr in dieselbe Richtung im Raum zeigt. Dadurch ist
einmal die Nordhalbkugel, einmal die Südhalbkugel der Sonne zugeneigt. Allerdings löst die
Gravitationskraft der Sonne ein Drehmoment auf die Erde aus, das durch die Abplattung der Kugelform
der Erde an den Polen und die inhomogene Massenverteilung in der Erde zustande kommt. Das
Drehmoment (Bild 3.1 links) versucht, die Erde so aufzurichten, dass ihre Achse senkrecht auf der
Umlaufebene stehen würde. Die rotierende Erde reagiert aber wie ein Kreisel und führt eine Drehung
senkrecht zur einwirkenden Kraft und der eigenen Rotationsachse aus. Dadurch ist die Erdachse nicht
raumfest (Bild 3.1 rechts). Sie unterliegt einerseits periodischen Schwankungen im Winkel, den sie
mit der Umlaufebene einschliesst (Nutation), andererseits ändert sich der Winkel zwischen der auf
die Umlaufebene normalprojizierten Erdachse und der Verbindungslinie Sonne-Perihel stetig, d.h. er
wächst immerzu mit ca. 50" pro Jahr (Präzession). Weitere Ursachen liegen bei Störungen durch
Planeten und besonders bei der Nutation durch den Mond. Das Ausmass der Präzession ist jedoch nicht
derart, dass sie innerhalb Jahresfrist zu berücksichtigen wäre, ausserdem ist die
Präzessionsgeschwindigkeit keine Konstante. Im folgenden werden wir also beide oben erwähnten Winkel und
damit die ganze Erdachse als fest betrachten.

N

/ \ - F2\ fl
zur Sonne

j / V
N S

« •

««
F1 \ / A

S

Präzession /
Nutaüon

Äquator

Bild 3.1: Präzession und Nutation

Da Fl > F2, entsteht ein Drehmoment, Die Erde weicht aus: Es resultiert eine forüaufende
das die Erdachse aufrichten möchte. Drehung parallel zur Erdumlaufbahn und eine

periodische Schwankung in der Achsenschiefe.

Links: parallel, rechts: senkrecht zur Umlaufebene

gesehen

Zur Zeit schliesst die Äquatorebene mit der Ebene der Erdumlaufbahn einen Winkel von 23.45°
oder 23° 27' ein, den wir e nennen. Der Winkel zwischen der projizierten Erdachse und der Richtung
von der Sonne zum Perihel beträgt ungefähr 12.25° oder 12° 15'. (Dies ist der Winkel, den die Erde
von der Sonne aus gesehen zwischen Winterbeginn, ca. 21. Dezember, und Periheldurchgang, ca. 2.
Januar, zurücklegt). Bezeichnen wir ihn mit P. Bild 3.2 zeigt die Erde im Winterpunkt am 21.
Dezember. e ist als Winkel zwischen Erdachse und Bahnnormalen eingezeichnet, der natürlich gleich
gross wie der Winkel zwischen den zugehörigen Ebenen ist.
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Nordpol
Meridian
senkrecht

zur Bahnebene

/ / \£
Äquator \

/^Perihel

^ — Winterpunkt

/ P ^^7 -
1

Zu Winterbeginn ist der

Nordpol am weitesten von
der Sonne abgeneigt, da die
Sonne genau in der

Neigungsrichtung der
Erdachse steht. Der Neigungswinkel

beträgt 23.45°.
Der Winkel, den die Erde

\ noch bis zum Perihel

\ Achse senkrecht

\ zur Bahnebene

j zurücklegen muss, misst
/ zur Zeit ungefähr 12.25°.

Er nimmt Jahr für Jahr um
etwa 50" zu.

Erdumlaufbahn

Bild 3.2: Winkel P und Ekliptikschiefe zum Winterbeginn

3.2. Die Projektion des Sonnenwinkels
Der Winkel, der scheinbar von der Sonne bezüglich der Erde zurückgelegt wird, entspricht genau
jenem, der von der Erde tatsächlich relativ zur Sonne zurückgelegt wird. Für die Zeitgleichung benötigen

wir aber den auf den Äquator bezogenen Winkel (Horizontalwinkel); d.h. der auf der Umlaufebene

liegende Winkel muss auf den Äquator normalprojiziert werden. Dabei wird er entweder
gestreckt oder gestaucht. Der Faktor der Streckung eines infinitesimalen Winkels ist eindeutig bestimmt
durch die Grössen e und cp in Bild 3.3 und 3.4.
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Bild 3.3 zeigt die Situation im Sonnensystem (kurz vor Sommerbeginn), Bild 3.4 die Ansicht von
der Erde aus an den Fixsternhimmel projiziert (Spätsommer), tp ist vom Winterpunkt aus gemessen,
auf den wir uns im folgenden beziehen wollen. Strecken parallel zur Richtung Erde-Frühlingspunkt
werden nicht verkürzt, jene senkrecht dazu hingegen werden mit dem Faktor cos e gekürzt, was in
Bild 3.4 durch das schraffierte Projektionsdreieck anschaulich dargestellt ist ({Erde-Winterpunkt}-cos

e {Erde-Xp}). Demnach wird der Tangens eines Winkels, der vom Winterpunkt

gemessen wird, mit dem Faktor Ycos e vergrössert (da die Gegenkathete unverändert bleibt, die

Ankathete jedoch verkürzt wird).

Sonne in kurzem Zeitabstand

Winterpunkt (X) { Eklipük

Himmelsäquator

Bild 3.4: Geozentrische Sicht zur Projektion

Der Winkel cd auf der Eklipük
wird auf sein Bildco^auf der

Äquatorebene normalprojiziert.
Rechnerisch erhält man
(Danach untenstehender Formel.

Frühlingspunkt

Fixstemsphäre

tan<p cos£tancpp

tan(<p + <u) cos£-tan(<pp +<up)

Für einen sehr kleinen Winkel ergibt sich damit der Projektionsfaktor f:

f (<p) lim } lim
<D-»0 I

ßj
I O)-*0

Arctanl
(tan((p+co) f ten(pArctan —

l cos £ -_A_ Arctanf^lU L
dip [ VcoseJJ ftanqjV cos£ cos' tp

(cos2 £+tan21p) cos £ cos21p (cos2 £ cos2 ip+sin21p) (cos2 £ cos2 ip+l-cos2 ip) (l-cos2 q> {l-cos2 cj) 1-cos2 ip sin2

Mit einer Fourierentwicklung (s. Anhang) erhält man die rasch konvergente Form:

f(<p) 1 + 2tan2 — • cos2ip + 2tan4 — cos4<p +1 tan6 — cos6ip+.
2 2 2 (11)

Oder mit q> W + P ist entsprechend
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f(<p) f(W + P) 1 + 2tan2 • cos2(W + P) + 2 tan4 cos4(W + P) + 2 tan6 — • cos6(W + P)+...

Für eine grobe Näherung kann man W ~ M setzen und erhält

f(ip) f(W(t) + p) f(M + P) 1 + 2tan2 cos2(M + P).

Für die Dauer eines Jahres kann der Projektionsfaktor f als Funktion der Zeit, beziehungsweise
des mittleren Winkels M aufgetragen werden (Bild 3.5). Wir erhalten einen Graphen, der hauptsächlich

vom ersten Glied der obigen Näherung bestimmt wird. Die Amplitude der Doppelschwankung

ist hier mit ±81/2% 2 tan2 jedoch grösser als bei den Winkelgeschwindigkeiten.

Im Frühlings- und im Herbstpunkt ist die Stauchung minimal (f cos e).

Die Extrema liegen jeweils zu Beginn einer Jahreszeit. Im Sommer- bzw. im Winterpunkt steht
die Sonne am nördlichsten bzw. am südlichsten, ein Ekliptikwinkel wird am stärksten gestreckt. Im
Frühlings- oder im Herbstpunkt (Tag- und Nachtgleiche) steht sie senkrecht über dem Äquator, Eklip-
tikwinkel werden am stärksten verkürzt.
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4. Die Berechnung der Zeitgleichung

4.1. Eine einfache Näherung
Wir wollen nun die beiden Ursachen der Zeitgleichung - die verschiedenen Geschwindigkeiten in
der Revolution und die Projektionsunterschiede - verknüpfen. Wir wollen berechnen, um welche
Winkel die wahre Sonne (in der Äquatorebene gemessen) von der mittleren, gleichmässig umlaufenden

Sonne abweicht. Dazu müssten wir zuerst festlegen, wann die mittlere Sonne mit der wahren
koinzidiert. Diese Definition soll vorerst noch offen gelassen und die Schwankungen der Zeitgleichung

nur bis auf einen konstanten Wert berechnet werden, der dann durch diese Festlegung noch zu
bestimmen ist. Zu gegebener Zeit soll noch auf die allgemein verwendete Definition der mittleren
Sonne eingegangen werden.

Wir nehmen den Periheldurchgang als Zeitnullpunkt (t 0) an und betrachten nun den Stand der

beiden Sonnen zur Zeit t,. Die mittlere Sonne hat bis dahin den Winkel M, 2k^ (T Umlaufzeit

365.25 Tage) in der Ekliptik zurückgelegt, die Erde hat sich mittlerweile

* Rotation 366.25 366.25 mal gedreht (Dieser Wert sei nur zur besseren Übersicht gegeben;
T 2k

man wird weiter unten sehen, dass die Rotationszahl die Zeitgleichung nicht beeinflusst). Die mittlere

Sonne hat bis dahin am Himmel also einen Winkel von
Sonnenwinkelm 2tü xRotatlon -M, =366.25 M, -M, =365.25 M,

zurückgelegt. Der Winkel Mi wird subtrahiert, weil die Sonne jeden Tag ihren Lauf von Ost nach
West beschreibt, innerhalb eines Jahres aber gegenüber dem Fixsternhimmel von West nach Ost, also
entgegengesetzt wandert.
Die wahre Sonne hingegen bewegt sich nicht regelmässig. Zu einer beliebigen Zeit t hat die Erde
nach Gleichung (10) näherungsweise die Winkelgeschwindigkeit

w(t) 4jT (l + 2ecosM)

Um die Winkelgeschwindigkeit bezüglich der Äquatorebene zu erhalten, ist dies noch mit dem
Projektionsfaktor f(t) im Zeitpunkt t zu multiplizieren. Dieser ist nach Gleichung (11) ungefähr

f(t) f(w(t) + p) f(M + P) 1 + 2 tan2 cos 2(M + P) wobei W M gesetzt wird.

Man erhält also

filAq„aior ~ ~~ {l + 2ecosM} jl + 2tan2p cos 2(M + P) j=jl + 2e cosM + 2 tan2
p cos2(M + P)J

Die wahre auf den Äquator projizierte Anomalie Wp bis zur Zeit ti berechnet sich bis auf eine
Konstante, die noch durch die Beziehung zwischen wahrer und mittlerer Sonne definiert werden muss,
zu

M,

1 + 2ecos M + 2 tan2 — cos
2

2(M + P)| d t I jl + 2e cos M + 2 tan2 • cos 2(M + P)| d M

o o

M

+ 2esin M, + tan2 sn^fMj + P) - tan2 ~ sm2P + const.

Schlagt man - tan2 sin 2P zur Konstanten, soistWp +2esmM1 + tan2 sm2(M1 + P) + const.



112 Markus Müller und Andreas Müller Mitt. Naturf. Ges. beider Basel 1

Für den genäherten Winkel der wahren Sonne erhält man insgesamt

Sormenwinkelw In xRotation - Wp 366.25 Mj - |mj + 2e sin M, + tan2 • sin 2(Mj + P)J + const.

Sonnenwinkelw Sonnenwinkelm - |2e sin Mj + tan2 •|--sin2(M1 + P)J + const. und damit wird

Zeitgleichung Sonnenwinkelw - Sonnenwinkelm _|^e S2n ^ + ':an2 ~ ' S2n + J + const- •

Man sieht, dass die Rotation der Erde die Differenz von wahrem und mittlerem Sonnenwinkel nicht
beeinflusst. Die Zeitgleichung ist nun der Zeitwert, der der Differenz zwischen wahrer projizierter
und mittlerer Anomalie entspricht. Diesen Wert erhält man durch Konvertierung des Bogenmasses
in Minuten und Sekunden. 24 Stunden entsprechen einer vollen Umdrehung, also 2rc im Bogenmass.

Zeitgleichung -^ ^ ^-j^esiriMj +tan2-^- siri2(M1 +P)| + const. [sec] (12)

Im wesentlichen besteht die Zeitgleichungsfunktion aus der Überlagerung der Stammfunktionen der
ersten Glieder der Entwicklungen für die Winkelgeschwindigkeit der Erde bezüglich der Sonne und
des Projektionsfaktors. Diese zwei ausschlaggebenden Glieder sind in den folgenden Graphiken (4.1
a/b) nochmals mit ihren Stammfunktionen eingezeichnet.

Bild 4.1 a: Das Hauptglied der
Winkelgeschwindigkeit

y2 stellt die Stammfunktion von yi dar, dem
ersten Glied der Entwicklung für die
Winkelgeschwindigkeit der Erde. Das
Vorzeichen ist wie in der Näherung (12) negativ

gewählt. Die Extremalstellen der Funktion

yi und damit die Nullstellen der
Stammfunktion befinden sich nach wie vor
im Perihel und im Aphel.

Bild 4.1 b: Das Hauptglied des
Projektionsfaktors

Auch hier stellt y2 die Stammfunktion von
yi dar, dem ersten Glied der Entwicklung
für den Projektionsfaktor von der Ekliptik
auf den Äquator. Das Vorzeichen ist ebenfalls

negativ. Die Extremalstellen der Funktion

yi fallen zusammen mit den Nullstellen

der Stammfunktion in den Beginn der
Jahreszeiten.
Die Summe der beiden Stammfunktionen
ist schon eine gute Approximation der
Zeitgleichung (vgl. Bild 4.3)
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4.2. Ableitung einer genaueren Näherung
Um zu einer exakteren Näherung zu gelangen, gehen wir folgendermassen vor:

Wp - I dWp I f(W + P)dW d W multipliziert mit dem Projektionsfaktor ergibt das Differential der projizierten Anomalie

Der Projektionsfaktor f(W+P) ist nach Gleichung (11) gegeben durch

f(W + P) l + 2tan2-|-cos2(W + P) + 2tan4-| cos4(W + P) + 2tan6 cos6(W + P)+... Damit ist

WP JdWP Jf(W + P)dW j"jl + 2tan2-| cos2(W + P) + 2 tan4cos 4(W + P) + 2 tan6cos6(W + P)+ jdW

W + tan2 — sin2(W + P) + — tan4 — sin4(W + P) + 3- tan6 sin6(W + P)+ -tconst (13)

Die Integrationskonstante wird nachher bestimmt. Nach Gleichung (9) können wir W durch M
ersetzen:

W M + 2e sin M + — e2 sin 2M + e3 f - — sm M + — sin3M I

4 4 12

Hiermit ist

Wp M + 2e sin M + — e2 sin 2M + e31 - — sin M + — sin 3M |+.
12

+ tan2 sm|2(M + P) + 2^2esin M + ^-e2 sin2M + e3^sinM + ^sin3Mj+ ..jj

+ tan4 sm|4(M + P) + 4^2esm M + -^-e2 sin2M + e3^--^sinM + -^-sin3Mj+...j

+ — tan6 — sinjöjM + P) + 6^2esinM + — e2 sin2M + e3^- —sinM + -^-sin3]V[j+ ..jj+... +const.

Die entstehenden Winkelfunktionen Sm{2n(M + P) + x} werden nun umgeformt:
2

sin|2n(M + P) + x} sin 2n(M + P) cos x + cos 2n(M + P) sin x und da x sehr klein ist, wird mit sm x x; cos x 1 - —

sin{2n(M + P) + xj sin 2n(M + P) |l - ^-j + cos2n(M + P) x

Dadurch entstehende Produkte von Winkelfunktionen werden anschliessend goniometrisch in Summen

umgeformt und gleiche Terme gruppiert. Hier ist das Schlussresultat mit allen berücksichtigten
Gliedern der Grösse nach aufgeführt.
Wp M + tan2 — (l — 4e2 sm2(M + P) + 2e sinM-2etan2 — sm(M + 2P) + 2e tan2 sm(3M + 2P) + 3-tan4 ^-sin 4(M + P)

+ -^e2 sm2M-2etan4 ^ sin(3M + 4P) + 2e tan4 ^ sin(5M + 4P) + ~e2 tan2 ^ sin(4M + 2P) + -f. tan6 ^ sin 6(M + P) + const

Für die Zeitgleichung gilt nun
Zeitgleichung Wahrer Sonnenwinkel - Mittlerer Sonnenwinkel (geozentrische Sicht)

-(Wahre, projizierte Anomalie - Mittlere Anomalie) (heliozentrische Sicht)
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Mit obigen Beziehungen entsprechend

Zeitgleichung M - Wp

-jtan2 ^(l - 4e2) sin2(M + P) + 2e sinM-2etan2-^ sin(M + 2P) + 2e tan2 ^ sin(3M + 2P) + 4 tan4 ^ sin 4(M + P)|

-e2 sin 2M - 2e tan4 ^ sin(3M + 4P) + 2e tan4 sin(5M + 4P) + 14 e2 tan2 ^ sin(4M + 2P) + 4 tan6 ^ sin 6(M + P)| + const.

Berechnet man die Koeffizienten mit e 23.45° und e 0.0167 und konvertiert das Bogenmass noch
in Zeiteinheiten (Sekunden), so ergibt sich:

Zeitgleichung ~ -591.7 • sin 2(M + P) - 459.6 sin M + 19.8 sin(M + 2P) -19.8 • sin(3M + 2P) -12.8 sin 4(M + P)

- 4.8 • sin2M + 0.9 sin(3M + 4P) - 0.9 sin(5M + 4P) - 0.5 sin(4M + 2P) - 0.4 • sin 6(M + P) + const. [sec].

Zur Zeit misst der Winkel P etwa 12.25°.

W"-M

M Pp- P

P

äquatoriale
mittlere.
Sonne

Winterpunkt p

Ekliptik

Äquator

Frühlingspunkt

wahre und ekliptische
mittlere Sonne im Perihel

Bild 4.2: Zur Bestimmung der Integrationskonstanten

Nun ist noch die Integrationskonstante zu bestimmen. Nach einer allgemein verwendeten Definition
soll die mittlere Sonne genau dann im Frühlingspunkt ankommen, wenn eine gedachte <dyna-
mische>Sonne, die mit gleichmässiger Geschwindigkeit in der Ekliptik läuft und mit der wahren
Sonne das Perihel verlässt, dort anlangt (siehe [2]). Deshalb sind die Winkel der beiden gedachten
regelmässig laufenden Sonnen bezüglich des Frühlingspunkts immer gleich. Folglich ist in der Zeichnung

der Winkel P der ekliptischen Sonne zum Winterpunkt gleich dem Winkel der äquatorialen
Sonne zur projizierten Winterpunktsrichtung. Wir wollen nun die Integrationskonstante anhand des

Periheldurchgangs ermitteln (Bild 4.2). Dort ist:

P P

M-Wp P- PP P- J*f(^)d^? P- J*^l + 2 tan2 — cos 2 tp + 2 tan4 —. cos 4tp + 2 tan6 — • cos6<p+... jd (p

o o

P - P - tan2 — • sin2P - — tan4 — • sin 4P - — tan6 — • cos6P-...= — tan2 — sin2P - — tan4 — sin 4P - — tan6 — cosöP-...
2 22 32 2 22 32

Mit Gleichung (13) erhält man aber:

M(t 0) - Wp(t 0) 0 - WP(W 0) - tan2 — • sin2P - — tan4 — sin 4P - — tan6 — cos6P-...+const.\ i \ \ i 2 2 2 3 2
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Der Vergleich ergibt, dass die Integrationskonstante verschwindet. Beschränken wir uns auf die sechs
wesentlichsten Glieder, so ist schliesslich
Zeitgleichung =-591.7 sin2(M + P) - 459.6 sinM + 19.8 sin(M + 2P) - 19.8 sin(3M + 2P) -12.8 sin4(M + P) - 4.8 sin2M [sec].

Um die Qualität dieser Näherung zu überprüfen, haben wir ein Computerprogramm geschrieben, das
die Zeitgleichungswerte so genau wie möglich berechnet und mit den Ergebnissen dieser Näherung
vergleicht. (Durch Iterationsverfahren [ E0 M ; E„ M - e • sin En_j ] gewinnt man E aus M [anstelle

des Reversionstheorems]. W ergibt sich nach Kapitel 2 zu: W 2Arctan| tan — I. Die Beziehung

in Bild 3.4 ergibt Wp + const. Arc tan
(tan{W + P}

^ cos e

1-e 2

Zeitgleichung M- WP M- Are tan
tanjW + P}

+ const. Die Konstante wird am Periheldurch-
cos e

gang oder am Frühlingspunkt bestimmt: Da hier

M - Wp 0 - Are tanl tan ^
| + const. -Pp + const. P - Pp ist, folgt const. P

cos e

Die Auswertung ergibt, dass die Wurzel aus der mittleren quadratischen Abweichung weniger als
eine Sekunde beträgt! Die zwei Hauptglieder in sin M, abhängig von der Exzentrizität der
Erdumlaufbahn, und in sin 2(M+P), abhängig von der Ekliptikschiefe, weisen zusammen noch eine mittlere

Streuung von 21 Sekunden auf, stellen aber schon eine recht gute Näherung dar (vgl. Gleichung
12). In Bild 4.3 ist die exakte Zeitgleichung aufgetragen. Im Winter nimmt der Wert der Zeitgleichung

am stärksten ab, weil die Winkelgeschwindigkeit der Sonne in der Ekliptik am grössten ist
und zugleich der Projektionsfaktor ein Maximum erreicht. Die gegensätzliche Situation tritt zwischen
Aphel und Herbstbeginn ein. Jeweils nachfolgend nimmt die Zeitgleichung einen Extremwert an.
Zwischen jenen beiden Situationen - besonders im Sommer - gleichen sich kleinere
Winkelgeschwindigkeit und grösserer Projektionsfaktor mehr oder weniger aus.
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Bild 4.3: Die Zeitgleichung mit den zwei Hauptgliedern
Die Differenz zwischen dem Maximum im Oktober (ca. +16 min) und dem Minimum im Februar (ca. -14 min) beträgt

etwa eine halbe Stunde! Wenn eines der Hauptglieder Null wird, so entspricht der Wert der Zeitgleichung gerade etwa

dem anderen. Der Beitrag durch die Ekhptikschiefe (Kurve mit zwei Schwankungen) verschwindet jeweils zu Beginn der

Jahreszeiten, jener von der Exzentrizität der Erdbahn in Aphel und Perihel.

Bild 4.4: Das Analemma

Diese Aufnahme (siehe [2]) zeigt das

praktische Resultat der Zeitgleichung:
Das Bild entstand dadurch, dass man
etwa alle zehn Tage morgens um 8.14
Uhr mittlerer Ortszeit die Sonne am
Himmel fotografierte. Da sich der
Standort der Kamera auf ungefähr
42° n.Br. befand, weist die tägliche
scheinbare Sonnenbahn einen Winkel
von ebenfalls 42° zur Vertikalen auf.
Diese Schiefe wird durch die die drei
Langzeitaufnahmen (1) der Sonne
verdeutlicht. Die unterste entstand bei
Winterbeginn, die oberste bei
Sommerbeginn.

Würde sich die Sonne mit regelmässiger

Geschwindigkeit am Himmel fortbewegen, so lägen alle Sonnenbilder auf einer geraden Strecke
(2), die senkrecht zur täglichen Laufrichtung der Sonne stehen würde. Infolge der Schiefstellung der
Erdachse bezüglich der Erdumlaufbahnebene steht die Sonne im Sommer höher, im Winter tiefer.
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Bei dieser Fotografie kommt nun die Unregelmässigkeit der Sonnenbewegung und damit die
Zeitgleichung anschaulich zum Ausdruck: Im Frühjahr und im Sommer ist die Sonne in ihrer Bahn
weniger weit vorangeschritten als erwartet (sie liegt unterhalb der <Durchschnittslinie> (2)), entsprechend

ist der Zeitgleichungswert negativ (vgl. Bild 4.3). Dagegen geht die Sonne zwischen April und
Juni und gegen Jahresende vor (sie liegt oberhalb der "Durchschnittslinie"), und der
Zeitgleichungswert ist positiv.
Durch diese Schwankungen entsteht auf dem Bild die Form einer schiefen langgestreckten Acht, die
man sich als Zeitgleichungskurve vorstellen kann, die durch Umklappen bei Sommer- und Winterbeginn

zu einer geschlossenen Kurve wird.

4.3. Die Zeitgleichung in Abhängigkeit ihrer Parameter
Der Verlauf der Zeitgleichung hängt ab von:
• der Exzentrizität der Erdumlaufbahn
• der Schiefe der Ekliptik
• dem Winkel P (Winkel zwischen Winterpunkt und Perihel)
bzw. der Zeitspanne At zwischen Winterbeginn und Periheldurchgang
Die letzten zwei Parameter ändern sich allmählich durch Präzession und Nutation. Es ist deshalb
interessant, die speziellen Einflüsse der einzelnen Parameter genauer zu untersuchen. Die Bilder
4.5a-c zeigen, wie sich die Zeitgleichung ändert, wenn ein Parameter verschiedene Werte annimmt.

Bild 4.5a: 1. Parameter: Die
Exzentrizität

+ + + e 0.000
o o o e 0.005

e 0.010

• •• e 0.015

xxx e 0.020

Für e 0 resultiert eine regelmässige
Doppelschwankung, verursacht
durch die Schiefe der Ekliptik. Je

grösser e ist, desto grösser werden
die Wellenberge im Winter und im
Herbst. D.h. die Extrema der
jahresperiodischen Schwankung werden
dominant. Zur Zeit des Aphel- und

Periheldurchgangs haben alle Kurven gleichen Wert, da dieser dort nur von der Schiefe der Ekliptik
und vom Winkel P abhängt. (Vgl. Bild 4.2)



118 Markus Müller und Andreas Müller Mitt. Naturf. Ges. beider Basel 1

Bild 4.5b: 2. Parameter: Die
Ekliptikschiefe

+ + + 8=0°
o o o s=8°

8 16°

• • • e 24°
XXX 8 32°

Ist 8 0, so erhält man eine
punktsymmetrische Schwankung bezüglich

des Apheldurchgangs. Mit
zunehmender Ekliptikschiefe überlagert

sich dieser eine Schwankung mit
halbjährlicher Periode, die schon
ungefähr bei 8 20° den bedeutenderen
Teil der Zeitgleichung ausmacht.
Jeweils zu Jahreszeitenbeginn schneiden

sich die Kurven, da dort der
Polarwinkel bezüglich des Winterpunktes bei der Projektion nicht verändert wird, also allein die
Exzentrizität der Erdbahn und der Winkel P den Zeitgleichungswert bestimmen.
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Bild 4.5c: 3. Parameter: Die
Zeitspanne von Winterbeginn bis Peri-
heldurchgang

+ + + At 0 Tage
o o o At 20 Tage

At 40 Tage
At 60 Tage

xxx At 80 Tage

Für At 0 sind die zwei
verursachenden Faktoren nicht phasenverschoben,

und man erhält einen
symmetrischen Verlauf mit Extremwerten

in Winter und Herbst. Mit
wachsendem At verlagert sich der Perihel-
durchgang in den Frühling. Dadurch

heben sich die beiden Komponenten im Winter tendenziell auf, verstärken sich aber im Sommer im
negativen Bereich.

"w"
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5. Das Modell

5.1. Einleitung
Der Gedanke an ein Modell kam erst gegen Ende der Entwicklungen des theoretischen Teiles. Um
die Zeitgleichung zu verstehen, muss man sich die Begebenheiten im Sonnensystem vorstellen können,

da sonst die Erklärungen im theoretischen Teil dieser Arbeit schwer veranschaulicht werden
können. Aus diesem Grund beschlossen wir, ein Modell zu konstruieren, das die Ursachen der
Zeitgleichung möglichst naturgetreu und anschaulich darstellt.

Um dies zu erreichen, müssen alle Komponenten, die in dieser Arbeit eine Rolle spielen, berücksichtigt

werden. Dazu gehören primär die im ersten Teil der Arbeit hergeleiteten Ursachen der
Zeitgleichung: die verschiedenen Geschwindigkeiten in der Revolution und die Schiefstellung der
Erdachse. Diese zwei Punkte können jedoch nicht im Modell verwirklicht werden, ohne dass alle mit
ihnen zusammenhängenden Begebenheiten ebenfalls einbedacht worden sind. Die
Revolutionsgeschwindigkeit ist beispielsweise nicht konstant, weil die Erdumlaufbahn elliptisch ist. Ausserdem
muss die Erde nicht nur um die Sonne kreisen, sondern auch noch um die eigene Achse rotieren, was
die Konstruktion eines Modells erheblich erschwert. Weitere komplizierende Details werden im
nachfolgenden Text genauer erläutert.

5.2. Die Erdumlaufbahn
Zuerst wollen wir uns nur um die Revolution kümmern. Um diese möglichst echt darzustellen, müssen

wir verschiedene Punkte beachten:
• Die Erdumlaufbahn muss elliptisch sein, und die Sonne hat in einem ihrer Brennpunkte zu stehen.
• Die Revolutionsgeschwindigkeit ist beim Aphel langsamer als beim Perihel.

Die Verwirklichung des ersten Punktes stellt einen grundlegenden Unterschied zu bereits vorhandenen

Erde-Sonne-Modellen dar. Wenn dieses erste Problem gelöst ist, ist die Konstruktion des
Modells festgelegt. Es ist anzunehmen, dass es mehrere Lösungen gibt, die diese Voraussetzung für das

Modell realisieren, doch nachdem man sich für eine Variante entschieden hat, müssen alle folgenden
Überlegungen auf dieser Festlegung aufbauen.

Bei den meisten Erde-
Sonne-Modellen ist die
Erde an einem herumdrehenden

<Arm> befestigt,
der die Erdkugel in einer
Kreisbahn um die Sonne
kreisen lässt. Da nun die
Erdumlaufbahn elliptisch
sein soll, muss man sich
von dieser Variante lösen.
Es existiert kein Punkt, der
zu jedem Punkt auf einer
Ellipse den gleichen
Abstand hat. Daher kann die

Erde nicht an einem festen Arm fixiert sein, sondern muss eine Bewegungsfreiheit haben. Eine
einfache Lösung für dieses Problem sind Führungsschienen, die in zwei parallelen Ebenen die Erdachse
senkrecht in ihrer Umlaufbahn führen (Bild 5.1). Diese vertikale Achse wird von einem
herumschwenkenden horizontalen Stab vorwärtsgeschoben. Da die Erdachse nicht an diesem Stab fixiert
ist, kann sie verschiedene Distanzen zum Drehzentrum des Antriebsstabes einnehmen. Dabei muss
man aber bedenken, dass sich die Revolutionsgeschwindigkeit der Erde trotz konstanter
Drehgeschwindigkeit des Antriebsstabes verändert: Je weiter die Erde vom Drehzentrum des Stabes entfernt
ist, desto schneller bewegt sie sich vorwärts. Diese Begebenheit kann man nun also geschickt aus-
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nützen, um die zweite Forderung von realisieren, nämlich dass beim Perihel die Revolutionsgeschwindigkeit

am grössten, beim Aphel am kleinsten sein soll. Das ist leicht zu erreichen, indem man
das Drehzentrum des Antriebsstabes in die Nähe des Aphels setzt, denn dann ist die Distanz zum
Perihel grösser, was eine höhere Geschwindigkeit in der Revolution der Erde hervorruft (Bild 5.2).
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Bild 5.3: Antriebssystem für Vor- und
Rückwärtsbewegung

Erdaclise,

CV

gleitfähiges
Teilchen

Das Problem der verschiedenen
Revolutionsgeschwindigkeiten ist schon beinahe zufriedenstellend

gelöst, doch bis jetzt kann die Erde nur in eine
Richtung um die Sonne kreisen. Es sollte aber für
Demonstrationszwecke möglich sein, die Erde
vor- und rückwärts bewegen zu können. Um das

zu verwirklichen, muss der Antriebsstab die
senkrechte Erdachse sowohl vor sich herstossen als
auch hinter sich herziehen können. Die Erdachse
ist also mit einem gleitfähigen Teilchen so zu
fixieren, dass sie immer noch alle Stellen in der
Umlaufbahn einnehmen kann (Bild 5.3). Wie man
im Bild erkennen kann, wird es der senkrechten
Erdachse auch mit diesem Teilchen möglich sein,
zu rotieren. Bevor wir genauer auf die Einzelheiten

der Verwirklichung der oben beschriebenen
Lösung für die Revolution eingehen können, müssen

wir uns noch um die anderem Voraussetzungen

für ein Modell kümmern. Vorläufig
beschränken wir uns auf den Antrieb durch einen

horizontal hemmdrehenden Stab, an dem die (senkrechte) Erdachse durch ein gleitfähiges Teilchen
beweglich fixiert ist. Das Drehzentrum des Antriebsstabes soll sich irgendwo in der Nähe des Aphels
befinden; die genaue Stelle wird später noch festgelegt.

5.3. Die Rotation
Obwohl sich die Erde in der Revolution mit verschiedenen Geschwindigkeiten fortbewegt, muss die
Rotation der Erdkugel gleichmässig sein. Ausserdem ist für eine möglichst echte Demonstration ein
geregeltes Verhältnis zwischen der Revolution - der Verlauf eines Jahres - und der Rotation - Dauer
eines nach der Sonne gerichteten Tages - erforderlich. Es lohnt sich nicht, das echte Verhältnis von
1 : 365 zu verwirklichen, da auch bei nur annähernden Werten der Zweck des Modells erfüllt ist.
Trotzdem ist aber darauf zu achten, dass der Betrachter des Modells einen wahren Eindruck von dem
Verhältnis gewinnt.

Die Geschwindigkeit der Erdachse in der Revolution ist zwar ungleichmässig, doch der Antriebsstab

dreht sich gleichförmig. Das bedeutet, dass sowohl der Antrieb der Revolution als auch derjenige

der Rotation konstant sind. Deshalb kann man die beiden Antriebe durch eine Übersetzung
miteinander verkoppeln und mit einer zentralen Kurbelwelle kontrollieren. Bevor wir uns genauer mit
der Verbindung der beiden Antriebe auseinandersetzen, beschäftigen wir uns zuerst nur mit dem
Antrieb der Rotation.

Wir haben nun entschieden, dass der Rotationsantrieb durch ein Getriebe mit dem Antrieb der
Revolution verbunden werden soll. Das bedeutet, dass die Antriebe an einem festen Ort bleiben müssen,

während die Erdachse stetig um die Sonne kreist. Es steht also fest, dass sich zwischen dem
fixen Antrieb der Rotation eine bewegliche Verbindung zur Erdachse befinden muss. Für diesen Zweck
eignet sich eine Kette sehr gut. Es gäbe wahrscheinlich auch andere Lösungsvarianten, doch da das

uns zur Verfügung stehende Material uns keine grosse Wahl bietet, wollen wir uns auf die Kette
festlegen. Damit sie ihren Zweck erfüllen kann, muss die Kette immer gespannt sein. Da sie jedoch aus
Metallteilen besteht und somit nicht elastisch ist, muss sie bei jeder Position, die die Erde einnimmt,
auf ihre gesamte Länge beansprucht werden. (Eine elastische Kette würde bei der Verformung viel
zu starke Kontraktionskräfte auslösen, so dass grosse Verluste durch die Reibung in der Ellipsenführung

entstünden). Eine elegante Lösungsvariante erhält man, indem man eine besondere Eigenschaft

der Ellipse ausnützt;



122 Markus Muller und Andreas Müller Mitt. Naturf. Ges. beider Basel 1

(Vergleiche: Gärtner- bzw. Fadenkonstruktion)

In jeder Ellipse ist die Abstandssumme

von den Brennpunkten zu
einem beliebigen Punkt auf der

Ellipse gleich.

Bild 5.4: Die Besonderheit der Ellipse

Wenn man nun die Kette, die die Rotation antreibt, über die beiden Brennpunkte und um die
Erdachse leitet, bleibt die Kette theoretisch immer gespannt.

Bild 5.5: Kettenführung in drei verschiedenen Positionen

Schon kleine Ungenauigkeiten, die während des Modellbaus unterlaufen, bewirken, dass die Kette
an verschiedenen Stellen ungespannt ist. Dadurch kann die Kette von den Kettenrädern gleiten, worauf

der Rotationsantrieb unterbrochen ist. Nach Fertigstellung des Modells behoben wir jedoch diesen

Fehler, indem wir eine separate Einrichtung installierten, die die Kette bei den kritischen Stellen
spannt.

Nachdem wir nun sowohl das Prinzip der ungleichmässigen Revolution als auch den Rotationsantrieb

festgelegt haben, können wir diese nun miteinander verbinden. Sicher ist, dass für die
Kettenräder in beiden Brennpunkten der Umlaufbahn eine senkrechte Achse zu stehen hat. Um die
Rotation anzutreiben, genügt es, wenn eine dieser Achsen gedreht wird. Die Frage ist nun, wo wir das
Drehzentrum der Revolution plazieren sollen. Wie aus Bild 5.5 hervorgeht, kann dieses Drehzentrum
ausschliesslich in den schraffierten Raum zwischen den Brennpunkten gesetzt werden, da sonst die
Kette des Rotationsantriebes gestört würde. Ausserdem kann die Achse auch in jenem Brennpunkt
stehen, der noch nicht für die Rotation reserviert ist. Gleichzeitig würde sie dann auch als Achse für
das zweite Kettenrad dienen. Um den idealen Platz für das Drehzentrum zu finden, greifen wir noch
einmal auf die Entwicklung des Revolutionsproblems zurück. Dort haben wir festgestellt, dass das
Zentrum des sich drehenden Antriebsstabes möglichst nahe beim Aphel stehen sollte, damit die
Unterschiede in der Revolutionsgeschwindigkeit möglichst gross sind. Im zugelassenen Bereich ist der
Punkt, der dem Aphel am nächsten steht, der Sonnenferne Brennpunkt. Wenn man das Drehzentrum
des Revolutionsantriebes in diesen Brennpunkt plaziert, muss der Antrieb der Rotation folglicher-
weise im andern stehen. Das Kettenrad, das um die Achse des Antriebsstabes für die Revolution dreht,
darf natürlich nicht an der Achse fixiert werden, da diese nur eine Umdrehung macht, während das
Kettenrad sich in der gleichen Zeit etwa 360mal dreht.

Zu den Abständen von den Brennpunkten
zur Peripherie kommt noch die Verbindung

zwischen den Brennpunkten und der

Umfang eines Kettenrades hinzu, welche
aber konstant bleiben und also keine

Schwierigkeiten bereiten.
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Somit sind die Standorte der Antriebsachsen festgelegt: In den Brennpunkt, in dem die Sonne steht,
setzen wir den Rotationsantrieb; in den Sonnenfernen Brennpunkt wird das Drehzentrum des
Antriebsstabes für die Revolution plaziert. Jetzt gilt es, diese zwei Achsen durch ein Getriebe zu
verbinden, so dass zwischen den Umdrehungen der Achsen ungefähr ein Verhältnis von 1 : 360 herrscht.
In Bild 5.6 ist die Übersetzungsmechanik schematisch dargestellt:

Der zweite Antriebsstab wurde zur Kontrolle der sich schiefstellenden Erdachse eingebaut. Das
Kettenrad an der Achse des Revolutionsantriebs wurde später entfernt, um der Installation für die
Kettenspannung Platz zu machen.

5.4. Die Schiefstellung der Erdachse um 23,5°
Die Achse, die in den elliptischen Führungsschienen (Bild 5.1)
rotierend um die Sonne kreist, steht senkrecht zur Ebene der
Umlaufbahn. Eine wichtige Ursache der Zeitgleichung ist
jedoch die Schiefstellung der Erdachse. Die Achse, die in den
Ellipsenführungen von den Antriebsstäben (—> siehe Bild 5.6)
geschoben beziehungsweise gezogen wird, kann unmöglich
schiefstehen. Sie hat sowohl wegen der Antriebsstäbe als auch

wegen der Kette des Rotationsantriebes senkrecht zu stehen.
Das bedeutet also, dass eine zweite, schiefe Achse - die wirkliche

Erdachse - an diese senkrechte Achse angebracht werden
muss. Zu diesem Zweck steht uns ein Kreuzgelenk (aus dem
Stokys-Bausatz) zur Verfügung, das eine Schiefstellung bis
knapp unter 90° erlaubt (Bild 5.7).
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Kreuzgelenk

7
Obere
Ellipsenführungsplatte

Erdachse

Erdachsenstütze für
23,5°-Schiefstellung

Scheibe, auf der die Stütze

befestigt ist

senkrechte Achse

Bild 5.8: Die senkrechte Achse ist mit der schiefen durch
das Kreuzgelenk verbunden und durch die Stütze
fixiert

Damit aber die schiefe
Erdachse in der korrekten
Schiefstellung fixiert ist,
muss sie durch einen Arm
gestützt werden, der sie aber
trotzdem frei rotieren lässt.
Diese Stütze muss natürlich
mit der revoltierenden
Erdachse <mitfahren>, also
legen wir unter das Kreuzgelenk

eine Scheibe, auf die
dann die Stütze befestigt
wird (Bild 5.8). Das
Problem der Schiefstellung
wäre also somit gelöst. Jetzt
muss noch auf die schiefe
Erdachse eine Styroporku-
gel als Erde gesetzt werden.
Bild 5.9 zeigt die gesamte
Erdachsenmechanik, so
weit, wie sie im Moment
entwickelt ist.
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In Bild 5.9 sind über den beiden Ellipsenfuhrungsplatten Gleitplatten eingezeichnet. Diese sorgen
dafür, dass die Erdachse auf der gegebenen Hohe bleibt und dass die Revolution keine allzu starke
Reibung auf der oberen Platte verursacht
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Bild 5.10: Die herumschwenkende
Erdachse

Die Erdachse ist
zwar nun in ihrer
Schiefstellung von
23,5° fixiert, doch
kann sie momentan
noch
umherschwenken (Bild
5.10). Dieses neu
entstandene
Problem gilt es nun zu
lösen.

Die räumliche Richtung der Erdachse wird durch
ihre Stütze bestimmt. Deshalb muss man die Scheibe,
auf der die Stütze angebracht ist, so fixieren, dass die
Rotation der Erdachse nicht behindert wird. Um eine

unschöne Installation zu vermeiden, müssen wir die Fixierung unter der oberen Ellip-
senfuhrungsplatte anbringen. Zu diesem Zweck befestigen wir an der Scheibe, auf der die Stütze
steht, einen Zylinder, der die senkrechte Erdachse umschliesst und somit nicht am Drehen hindert.

Bild 5.11: Schema eines

Zeichnerpultes
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Dieser Zylinder führt unter die Führungsplatte, wo er nun fixiert werden muss. Die Lösung dieses
Problems, die wir in unserem Modell verwenden, basiert auf dem Prinzip eines einfaches Zeichnerpultes

(Bild 5.11). Auf beiden Seiten der Ellipse verläuft längs je eine Kette. Damit diese sich
synchron bewegen, sind zwei der Kettenräder miteinander verbunden. An jeder Kette ist ein Ende eines
Querstabes befestigt. An diesem wiederum ist der Zylinder durch ein Gleitglied fixiert, das an dem
Querstab hin- und hergleiten kann. Bild 5.12 zeigt die Erdachsenmechanik, zu der nun noch der
Zylinder und das damit verbundene Gleitglied hinzugefügt worden ist (vgl. Bild 5.9). Die gesamte Installation

ist in Bild 5.13 schematisch dargestellt. Mit diesem System wird die Erdachse auf jeder Position

der Ellipse kontrolliert, und die Scheibe mit ihrer Stütze kann nicht mehr wie in Bild 5.10 drehen.

Bild 5.13: System zur räumlichen Fixierung
der schiefen Erdachse

Sonne

I Eide

5.5. Das Modellgehäuse
Nun haben wir alle Bedingungen für das Modell in Betracht gezogen und die Lösungen miteinander
verbunden. Jetzt bleibt nur noch die Anordnung der einzelnen Mechanismen innerhalb eines Gehäuses.

Beginnen wir mit den Ellipsenführungsplatten.
Zwischen ihnen befindet sich der grösste Teil des

Bewegungsapparates: die senkrechte Erdachse, die Kette des
Rotationsantriebes und die Vorrichtung für die Revolution.

Die beiden Antriebe sind unter den
Ellipsenführungen durch das Getriebe verbunden. Oberhalb der
Ellipsenplatten ist die schiefe Erdachse
mit der Erdkugel zu sehen. Ausserdem plazieren wir
noch eine Glühbirne als Sonne im Brennpunkt über dem
Rotationsantrieb. Nun wollen wir uns noch das mittlere

Q
System für raumfeste Erdachse

Antriebsstäbe des Revolutionsantriebes
Kettenantrieb der Rotation

Getriebe
(zentraler Antrieb)

Bild 5.14: Aufbau des Modells
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Stockwerk zwischen den Ellipsenführungen genauer ansehen: Diesen Teil des Modells kann man
schematisch in drei Schichten einteilen (Bild 5.14). Die Achse des Rotationsantriebes ragt über die
untere Führungsplatte heraus und treibt dort die Kette an, die um die Erdachse und das Kettenrad im
anderen Brennpunkt gespannt ist. Die Achse im Sonnenfernen Brennpunkt - das Drehzentrum des
Revolutionsantriebes - ist länger und reicht bis in die zweite Ebene hinauf, wo die Antriebsstäbe an
ihr fixiert sind und die senkrechte Erdachse in ihrer Bahn vorwärtsschieben. Direkt unter der oberen
Führungsplatte befindet sich die Installation für die raumfeste Erdachse. Diese Schichten kann man
auch in Bild 5.12 erkennen.

Im groben Umriss gesehen, kann man den Aufbau des Modells folgendermassen darstellen: Im
untersten Teil befindet sich der zentrale Antrieb der Rotation und der Revolution. Durch zwei Achsen

wird dieser Antrieb in die mittlere Etage geleitet, wo sich alle beweglichen Vorrichtungen
befinden. Über der oberen Führungsplatte kann man schliesslich das Resultat der unteren Mechanismen

sehen: Die Erdkugel, wie sie in verschiedenen Geschwindigkeiten um die Sonne kreist, während
sie sich um die eigene, schiefe Erdachse dreht.

Soweit sind noch keine Probleme aufgetreten. Doch betrachten wir einmal die Ellipsenführungen.
Die Führungsplatten bestehen aus zwei Teilen, die durch die herausgesägte Schiene getrennt sind.
Den äusseren Teil der Platten kann man in den Ecken des Modells mit Pflöcken stützen, doch bei der
inneren Ellipsenplatte wird es schwieriger. Bei der unteren Platte gibt es kein Problem, da es neben
der Antriebsmechanik ausreichend Platz für dünne Pflöcke hat, die den inneren Teil stützen können.
Erst bei der oberen Platte stellt sich die Frage, wie der innere Teil der Schiene befestigt werden soll.
Denn darunter muss der Raum frei sein, damit die Antriebsstäbe und die Kette nicht behindert werden.

Infolgedessen muss die obere Ellipse von oben her fixiert werden (Bild 5.15).
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In Kapitel 2 erscheint die Gleichung tan — + 6 tan — bzw. in Kapitel 3 die Beziehung

Anhang

1 2 erscheint die Gleichung tan —
1-e

tanm
tanipP -cose

Dabei soll W als Funktion von E und cpp durch <p ausgedrückt werden. Allgemein können die
Gleichungen geschrieben werden in der Form

tan v
tan x

> »der mit cosa q : tany
tanx

<=> y Are tan( tan x ] (1)
y

q cosa Vcos a)

W E
(Im ersten Fall ist y — x — cosa -—- im zweiten gilt

2 2 V1+e

y (pv x f, cosa COS£ (2)

Differentiation der letzten Gleichung von (1) ergibt nach Seite 14:

dy cosa cosa 2 cos a 2 cos a
dx l-sin2acos2x (l + cos2x) 2-sin2 a-sin2 acos2x 1 + cos2 a-sin2 acos2xl-sinza 2

2

Da dieser Ausdruck eine periodische Funktion in x ist, kann er in eine Fourierreihe entwickelt werden:

f(x) —— cosa— — _ +a^ cosx +1,1 sinx + a2 cos2x + b2 sin2x+...+an cosnx + bn sinnx+...
dx 1-sin acos x

wobei nach den Euler - Fourierschen Formeln gilt.

2 K 1K 2 K 2 K

a0=— I f(x)dx =— I f(x)cos0xdx, an =— I f(x)cosnxdx furn>0, bn=— I f(x)smnxdx.
2K] 2k] K] K]

0 0 0 0

Nun ersetzen wir Kosinus und Sinus durch imaginäre Exponentialfunktionen:

pinx inx pinx_p-mx
cos nx sin nx Damit wird

2 2i
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an =— I f(x)cosnxdx —
n I nJ'

0

In

h

2tt

J 2 COS OL

1 + cos2 a-sin2 a-2 | e2ix+e-2ix
dx

cosa-(emx + e 1I1X)

2 • 2 [ e2ix + e~2ix
+ cos a-sin a 1

dx

Wir substituieren nun die Exponentialfunktion:

z e2lx => dz 2i-e2lx dx 2iz-dx => dx dz -— dz Hiermit erhält man:
2iz 2z

1
an =-

n

-,2t in

1
COSCt-l Z'2 +z 72

1 + cos a-sin a
f 1 / A

z + X
2

v /

-i J idz —ij cosa-l z/2 +z %

2z TT J -2z(l + cos2 a) + sin2 a-(z2+l)

e4l7T

iS
cosa-l z% +z %

Oo sin oo z2 -2-
(l + cos2 a)
2 : -Z +1

-dz

sm' a (3)

Der Nenner hat die Nullstellen

NT _
1 + cos2 a |ri + cos2al _Ni/2-——J— ±1 —1 I

l + cos2 a±A|(l + cos2a)2-(l-cos2a)2
_

1 + cog2 a±^^
sm'a i|V sin a

i j. ^2
1 + cos a

sin a V sm a 2

Nun können wir Gleichung (3) in folgender Form schreiben:

Ni=(l^cos«y=tan2^
^ N2=(rl±cosa>|2=cot2|.

sin a

e

j_ I cosa
7i J sin2 a

W2. -n/2)
dz

ji | sm' a lz_tan2 «J|z_cot2
a1) ^ J sin2« tan2-^-cot2-

I cos et

k J sin2 a

zn/2 +z -n/2)

z-tan2—1 f z —cot2 —

dz



1995 Das Phänomen der Zeitgleichung 131

oder mit tan cot —
tx J.2«_l~cos a 1 + cos a _

(1 ~ cos °Q -(1 + cosa)
_ 4cosa

e4l?r

J_ I cosa
k J sin2 a

2 1 + cosa 1-cosa (1 + cosa)-(1-cosa)

(zn/2 +z-n/2\;a V-

ergibt sich

4 cos a

e4l7r

si<—I (zn/2 +z n!z\-
4k 1 v '

z-tan2 — ] f z — cot2 —

dz

dz

z-tan 2 a z-cot2 —
(4)

Beide Integrationsgrenzen (e° und e4l)r) sind 1, d. h. für jede Funktion der Form g(a) • zP, p * -1 gilt:

g(a)-zP dz g(a)-I p + 1
g(«)~ 0 •

p + 1

e

s(a) (* s(a) g-.».
Einzig die Terme der Form bilden eine Ausnahme, denn es ist I dz g(a) ln(z)|e„ g(a) 4m.

z J z e

Dies sieht man auch ein, wenn vor der Integration rücksubstituiert wird: |—dz=| g(a)-2i-dx 4i;r.

e4'* 2 TT

Wir können also die Brüche im Integranden (4) in konvergente Potenzreihen entwickeln und nur mit

ct( a)
der Form ——L weiterarbeiten, weil alle anderen Potenzfunktionen von z zum Integral den Betrag

z
Null liefern.

Es ist
1 1

2 ^ 7 L 2 & 7z-tan — A tan — ^
2 : 2

tan2 — tan4 — tan6 —
1 + ^ + —r^ + — und

1 2 «tan — •

z

1

4.2 (Xz-cot2 — 2 1 4- 2 OL1-ztan —

2 (X \ 1 l 2 & 2 x. 4 & 3i. 6 &tan — -<U + z• tan —l-z2 - tan4 —l-zö tan6 —1-...
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Beide Reihen sind konvergent, weil der Betrag und damit sowohl der Realteil als auch der Ima-

2 oc
— aginärteil von 2_ und von z tan2 — kleiner als 1 ist. (Denn z 1 und

2

cosa > 0 => tan2 — < 1, also
2

Der Integrand (4) ist nun damit

tan 2 a
2 oc

z-tan — tan2 —)
2

4 71

Z,,/z + z~

tan2 — tan4— tan6 —
1 + ^ +—^ +^+... ±. 2^1-1. i. 2 & 2i. 4®, 3i 6 ®

i+ tan —11 + z-tan —yt. -tan4 — + z* - tan6 —+..

Ausdrückein — z_1 ergeben sich nur dann, wenn der Exponent — ganzzahlig ist. Mit anderen Wor-
z 2

ten: an verschwindet für ungerade n.

Für gerade n erhält man im Integranden für den Term — :

z

l
4tt

,n/2 .1.
tan n OC

n/2 • tan 2 — • 7. l+n/2 tan 2+n —+ z ll/^-tan —z ' -tan'
z zn/2 2 2

i 1 L na,. 2at -2+n a
1 tann —h tanz — • tan z+n —

An z

i 1 n atan" —
In z 2

Integration dieses Ausdrucks ergibt:

(5)

j" tan" — • — dz ——-tann— • f —dz ——-tan11 — ln(z)|e0 =—— tann — • Ain 2tann —
In J 2 z In 2 J z 2n 2 le 2n 2 2

2 n

unddamitist: a_=2tann— für gerade n und n > 0. an I f(x)cos0xdx — -2tan0 — 1
2 2 nj 2 2

Die Koeffizienten bn erhält man analog. Für ungerade n verschwindet bn Aber auch für gerade n

1
wird der Koeffizient von — Null, wenn man in (5) die durch die Pfeile markierten Änderungen vor-

z
nimmt:
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4 i k
T

tan" —
jn/2 _L

— z~nl2 tan2 — • z~1+n/2 tan"2+n —
z zn/2 -^2 2

—— • tan" - -— tan" — [ 0
4k [Z 2Z

Folglich besteht die Fourierentwicklung nur aus den Kosinusgliedern mit geradem Koeffizienten im
Argument:

y _ cosa __^ + 2tan2 —.cos2x + 2tan4 — -cos4x + 2tan6 — cos6x+.,.+2tan2n — cos2nx+...
dx l-sin2acos2x

1 + 2k• cos2x +2k2 • cos4x +2k3 cos6x+...+2kn cos2nx+... k tan2 —

Im ersten Fall folgt aus den Beziehungen (2): Cosa
1-e

1 + e

k tan

d(t

2 a _
1 - cos a

1-
1 + e und damit

2 1 + cos a j
I 1-e
1 + e

2

Durch Integration folgt sofort

^ 2
l + 2k-cos[ 2- — 1 + 2k2 -cosl 4- — | + 2k3 -cosf 6 — |+...+2kn -cosf 2n- —]+...= dW

dE

9V3 9kn
W E + 2k • sin E + k 2 sin 2E h sin 3E+... H sin nE+... +const. > und wegen

3 n

W(E 0) 0 auch const. 0

Für den Projektionsfaktor f(cp) ergibt sich sogleich:

f(«p) c°s£—-— l + 2tan2 —-cos2ffl + 2tan4 —-cos4ffl + 2tan6 —-cos6©+...+2tan2n — -cos2n<p+...
dip 1-sin ecos ip 2 2 2 2

Diesen Ausdruck belassen wir in dieser Form, da wir uns vorerst nur für den Projektionsfaktor
interessieren, nicht aber für tpp. Später wird tp durch W+P und cpp durch (W+P)p Wp+const. ersetzt
und die Integration vorgenommen. Da Wp dadurch nur bis auf eine Konstante bestimmt ist, muss
noch eine Anfangsbedingung für Wp definiert werden.
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Anmerkung der Redaktion

Markus und Andreas Müller haben, damals Schüler am Gymnasium Münchenstein, ihre Arbeit 1993
bei «Schweizer Jugend forscht» vorgelegt und sind dafür im Mai 1994 mit dem Prädikat «hervorragend»

ausgezeichnet worden. Auch an europäischen Wettbewerben wurde ihre Abhandlung
gebührend gewürdigt. In der Meinung, dass solche herausragenden wissenschaftlichen Leistungen von
Jugendlichen einer breiteren Öffentlichkeit zugänglich gemacht werden sollten, hat sich die Redaktion

entschlossen, die Arbeit in den «Mitteilungen» zu publizieren. Als Ergänzung werden zwei
Kurzarbeiten über praktische Anwendungen angefügt.

Markus und Andreas Müller
Grellingerstrasse 5

4142 Münchenstein


	Das Phänomen der Zeitgleichung

