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Das Phianomen der Zeitgleichung

MAaRrkUS MULLER, ANDREAS MULLER

Abstract: The apparent solar motion is not uniform and the lenght of a solar day is not constant
throughout a year. The difference between apparent solar time and mean (regular) solar time is called
the equation of time. Two well-known features of our solar system lie at the basis of the periodic ir-
regularities in the solar motion: The angular velocity of the earth relative to the sun varies periodi-
cally in the course of a year. The plane of the orbit of the earth is inclined with respect to the equa-
torial plane. Therefore, the angular velocity of the relative motion has to be projected from the ec-
liptic onto the equatorial plane before incorporating it into the measurement of time. The mathema-
tical expression of the projection factor for ecliptic angular velocities yields an oscillating function
with two periods per year. From both results the equation of time is obtained.

The difference between the extreme values of the equation of time is about half an hour. The re-
sponse of the equation of time to a variation of its key parameters is analyzed. In order to visualize
factors contributing to the equation of time a model has been constructed which accounts for the el-
liptical orbit of the earth, the periodical changing angular velocity, and the inclined axis of the earth.

Zusammenfassung: Der scheinbare Lauf der Sonne ist nicht gleichférmig, und die Lénge eines Son-
nentages variiert wihrend eines Jahres. Die daraus resultierende Differenz zwischen wahrer Ortszeit
(Sonnenzeit) und mittlerer Ortszeit nennt man Zeitgleichung. Sie ist auf zwei bekannte Eigenschaf-
ten unseres Sonnensystems zuriickzufiihren: Erstens schwankt die Winkelgeschwindigkeit der Erde
beziiglich der Sonne mit der Periode von einem Jahr. Andererseits ist die Ebene der Erdumlaufbahn
gegeniiber der Aquatorebene geneigt. Daher muss die Relativbewegung von Sonne und Erde auf die
Aquatorebene projiziert werden, bevor sie in die Zeitmessung einbezogen werden kann. Der mathe-
matische Ausdruck, der den Projektionsfaktor fiir Winkelgeschwindigkeiten auf der Ekliptik be-
schreibt, ist eine sinusidhnliche Funktion mit zwei Perioden pro Jahr. Aus beiden Faktoren kann die
Zeitgleichung berechnet werden.

Die Differenz der Extremwerte, die die Zeitgleichung annimmt, betrigt ungefidhr eine halbe
Stunde. Die Abhingigkeit der Zeitgleichung von ihren Parametern wird nach der Herleitung einer
allgemeinen Formel untersucht. Zur Veranschaulichung der oben genannten Ursachen haben wir ein
Modell gebaut, das sowohl die elliptische Umlaufbahn der Erde als auch die @ndernde Winkelge-
schwindigkeit und die Neigung der Erdachse berticksichtigt.
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Zusammenfassung

Das Phinomen der Zeitgleichung

Im Schulunterricht wurden wir darauf aufmerksam gemacht, dass die Sonne kaum einmal genau um

zwoOlf Uhr ihren Hochststand einnimmt, beziehungsweise dass die Zeitspanne von Sonnenaufgang

bis zwolf Uhr meist nicht genau jener von zwolf Uhr bis Sonnenuntergang entspricht, auch dann
nicht, wenn man die Uhrzeit auf die (mittlere) Ortszeit (siehe Bild 1.1) berichtigt. Das beruht darauf,
dass der scheinbare Lauf der Sonne nicht ganz regelmissig ist. Die so auftretende Differenz zwischen

«Sonnenzeit> (Zeitangabe einer Sonnenuhr) und mittlerer Ortszeit nennt man Zeitgleichung. Unsere

Arbeit beschiftigt sich mit den Ursachen und dem Ausmass dieser Erscheinung.

Im ersten Teil leiten wir dieses Phidnomen auf eigene Weise mathematisch her und diskutieren das
Ergebnis. Der unregelmissige Lauf der Sonne ist auf folgende zwei Ursachen zuriickzufiihren:

1. Nach dem Flédchensatz von Kepler variiert die Winkelgeschwindigkeit der Erde beziiglich der
Sonne innerhalb eines Jahres. Die Keplerschen Gesetze leiten wir durch eine eigenhindige Lo-
sung der Newtonschen Bewegungsgleichungen her. Anschliessend ermitteln wir daraus die
Winkelgeschwindigkeit in Abhéngigkeit der Zeit. Die so gewonnene Funktion hat sinusghnlichen
Charakter und weist eine Periode von einem Jahr auf.

2. Die Aquatorebene steht schief zur Ebene der Ekliptik (siehe Bild 1.2). Da die zeitrelevanten Stun-
denwinkel der Sonne parallel zum Aquator gemessen werden, miissen die Winkel, die scheinbar
von der Sonne auf der Ekliptik zuriickgelegt werden, auf die Aquatorebene normalprojiziert wer-
den, um in die Zeitmessung einbezogen werden zu kdnnen. Die mathematische Darstellung des
Projektionsfaktors eines Ekliptikwinkels auf einen Aquatorwinkel zu einem bestimmten Zeitpunkt
ist hier etwas einfacher. Man erhilt ebenfalls eine Funktion mit sinusformigem Verlauf, wobei die
Periodendauer ein halbes Jahr betrigt.

Die Uberlagerung dieser zwei Komponenten liefert einen relativ komplizierten Ausdruck fiir die
Zeitgleichung, welcher durch Reihenentwicklungen und Integration in guter Naherung auf zwei Glie-
der vereinfacht werden kann. Der Wert der Zeitgleichung erreicht im Oktober ein Maximum von +16
und im Februar ein Minimum von -14 Minuten. Im Mai und im Juli gibt es zwei relative Extrema.
Viermal im Jahr stimmt die Sonnenzeit genau mit der Ortszeit iiberein.

Der zweite Teil der Arbeit ist der Entwicklung eines eigens fiir die Veranschaulichung der Gege-
benheiten im Sonnensystem konstruierten Modells gewidmet. Dieses sollte folgende Bedingungen
erfiillen: Die Erde bewegt sich beziiglich der Sonne auf einer elliptischen Bahn, wobei die
Lineargeschwindigkeit in Sonnennéhe deutlich grosser sein sollte als jene in Sonnenferne. Ausser-
dem dreht sich die Erde um die eigene schief stehende Achse. Unsere Eigenkonstruktion beruht auf
den folgenden mechanischen Elementen: Die elliptische Bahn ergibt sich durch entsprechende
Fiihrungsschienen, in denen die Erdachse durch einen kreisenden Stab angestossen wird. Durch die
exzentrische Lage des Drehzentrums dieses Stabes erreicht man ausserdem die gewiinschten Ge-
schwindigkeitsunterschiede. Der Rotationsantrieb muss an den Revolutionsantrieb gekoppelt sein
und zugleich mit der sich bewegenden Erde in Verbindung stehen, was durch eine trickreiche Ket-
tenfiihrung gelost ist. Die Ekliptikschiefe ist verhéltnisméssig einfach durch ein Kreuzgelenk an der
Erdachse verwirklicht.

1. Einfithrung

1.1. Uber die Zeitbestimmung

Diese Arbeit beschiftigt sich mit einem Problem der astronomischen Zeitmessung. Zum besseren
Verstindnis der nachfolgenden Entwicklung werden hier die Grundbegriffe der Zeitmessung kurz er-
lautert. Das natiirlichste Mass der Zeitbestimmung ist die Rotation der Erde, die sich im téglichen
scheinbaren Lauf der Sonne dussert und somit unseren Tagesablauf bestimmt. Einen Tag messen wir
als Zeitintervall zwischen zwei aufeinanderfolgenden Mittagen, wobei wir unter <Mittag> den Zeit-
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punkt verstehen, an dem die Sonne ihren Hochststand einnimmt. Dies ist zugleich der Moment, in
dem ein senkrechter Stab den kiirzesten Schatten wirft (Bild 1.1). Dieses Zeitintervall wird Sonnen-
tag genannt, da sich die Messung auf die Sonne bezieht. Die Zeitangabe, fiir die zwolf Uhr genau
Mittag ist und deren Tagesldnge jeweils genau dem Sonnentag entspricht, heisst wahre Ortszeit oder
auch wahre Sonnenzeit. Sie ist selbstverstdndlich nur fiir Orte auf demselben Meridian* gleich.
Die Astronomen be-
Sonnen- dienen sich gewohnlich
hochststand o vare | fiir die Zeitmessung ei-
Sonnenbahn | D€S Fixsterns, der nachts
sichtbar ist. Hierbei wird
ein Tag als das Zeitinter-
vall zwischen zwei
aufeinanderfolgenden
Hochststinden (Kulmi-
nationen) des Sternes
definiert. Der so ge-
e messene Sterntag ist um
et etwa vier Minuten kiir-

e zer als der Sonnentag, da
kiirzester Schatten durch den jihrlichen
(= Mittag) Umlauf der Erde um die

Sonne eine Rotation der
Bild 1.1: Schattenwurf der Sonne zu Erde aufgewogen wird.

verschiedenen Zeitpunkten (Die Erde dreht sich

zwar 366mal, die Sonne

macht aber nur 365mal ihren scheinbaren Lauf.) Die Zeitmessung, die auf dem Sterntag als Zeitein-
heit beruht, heisst Sternzeit.

Vergleicht man Stern- und Sonnenzeit, so stellt man aber nicht eine linear wachsende Abweichung

fest. Vielmehr unterliegt die Sonnenzeit periodischen Schwankungen, d.h. die Sonne bewegt sich

nicht gleichmissig am Himmel. Auch die Linge des Sonnentages ist nicht konstant. Aus praktischen

Ein Sterntag ist das
Zeitintervall zwischen
zwei Rotationen der Erde
und ist deshalb immer
gleich lang.

Ein Sonnentag ist das
Zeitintervall zwischen
zwei Sonnenhochst-
stinden (Mittagen),
Revolutions- dauert also linger. Seine
richtung Linge hingt etwas von
der Erdposition in der
Umlaufbahn ab.

Rotations-

richtung \
-

sehr weit

~@—{ entfernter

Fixstern

Erdumlaufbahn

Bild 1.2: Stern- und Sonnentag

* Langskreis der Erde.
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Griinden richten wir uns heute nach Uhren, denen ein streng periodischer Vorgang zugrunde liegt
(z.B. Quarz-, Atomubhr). Die Zeiteinheit ist aber so gewihlt, dass die Zeitangabe relativ genau mit
der Sonnenzeit iibereinstimmt. Als Tageslénge gilt nicht mehr der wahre Sonnentag, sondern das Mit-
tel der Tagesldngen in einem Jahr, der sogenannte mittlere Sonnentag. Die auf diese Weise festge-
legte Zeitangabe heisst mittlere Sonnenzeit, im Gegensatz zur oben beschriebenen wahren Sonnen-
zeit (auf einem bestimmten Meridian entsprechend wahre und mittlere Ortszeit). Die Differenz die-
ser beiden Zeitwerte wird Zeitgleichung genannt. Sie betrégt im Februar ungefdhr —14 Minuten, im
November ungefihr +16 Minuten! Thr wollen wir uns in dieser Arbeit widmen.

Um den Reise- und Geschiftsverkehr zu erleichtern, hat man die ganze Welt in Zeitzonen mit je-
weils gleicher Zeit eingeteilt. Abgesehen von einigen Ausnahmen, wie zum Beispiel Japan oder In-
dien, gilt fiir zwei benachbarte Zeitzonen, dass die Zeitangabe der 6stlichen gegeniiber jener der west-
lichen Zone um eine Stunde fortgeschritten ist. Diese Bestimmung und die zusétzliche Einfiihrung
von Sommer- und Winterzeit filhren dazu, dass das Phidnomen der Zeitgleichung im Alltag {iberse-
hen wird, denn die Uhren zeigen nicht die Ortszeit, sondern diejenige eines ausgezeichneten Meri-
dians* an.

Es scheint nun so, als ob die Zeitgleichung nur fiir das Ablesen von Sonnenuhren oder die Kennt-
nis des genauen Sonnenstandes von Bedeutung wire. Dem ist aber nicht so: Durch exakte Sonnen-
beobachtungen kann auf die genaue Bewegung der Erde im Sonnensystem geschlossen werden. Ei-
nige Parameter, insbesondere die Schiefe der Ekliptik und die Exzentrizitdt der Erdumlaufbahn, kon-
nen aufgrund genauer Analysen des Zeitgleichungsverlaufes bestimmt werden, da sich die Unregel-
maissigkeiten in der wahren Sonnenzeit von ihnen herleiten. Zudem kénnen Einwirkungen anderer
Planeten auf die Erdbahn schliesslich auch nur auf diese Weise experimentell nachgewiesen und iiber-
priift werden.

Im Folgenden wird die Zeitgleichung in Abhédngigkeit der oben genannten zwei Parameter herge-
leitet. Es wird sich zeigen, wie sie den scheinbaren Lauf der Sonne beeinflussen und wie ihre Werte
aus der Sonnenbeobachtung ermittelt werden konnen. Anschliessend wird ein Modell zur Veran-
schaulichung der Situation im Sonnensystem entwickelt.

1.2. Die Periodizitditen im scheinbaren Lauf der Sonne

Wie kommt es nun eigentlich, dass die Sonne nicht regelméssig auf- und untergeht, sondern in ihrer

Bahn ziemlich grosse Schwankungen aufweist? Dieses Phinomen hat zweierlei Griinde:

1. Einerseits bewegt sich die Erde im Verlaufe einer Umdrehung um die Sonne — einer sogenann-
ten Revolution — nicht immer mit derselben Bahngeschwindigkeit. Im Winter betrigt diese un-
gefdhr 31km/s, im Sommer dagegen nur 29km/s, weil die Erde nicht immer gleich weit von der
Sonne entfernt ist. Denn wenn sich die Erde der Sonne nihert, wird sie von der Gravitationskraft
beschleunigt, entfernt sie sich, wird sie gebremst. Wegen der unterschiedlichen Geschwin-
digkeiten der Erde ist iibrigens der Nordsommer um etwa 7 Tage lédnger als der Nordwinter (siehe
Kapitel 2).

2. Der bedeutendere zweite Faktor riihrt von der sogenannten Schiefe der Ekliptik her, die auch die
Jahreszeiten verursacht. Die Ekliptik ist die Bahn, die die Sonne innerhalb eines Jahres gegeniiber
der Fixsternsphére** beschreibt. Die Ebene dieser Bahn schliesst mit der Ebene des Aquators einen
Winkel von 2314° ein (Bild 1.3).

* Unsere Zeit bezieht sich auf den Meridian 15° 6stlicher Léinge (Winterzeit), im Sommer eigentlich auf 30° 6L —
Mitteleuropéische Zeit. .
** Die Fixsternsphére ist der Sternenhimmel, der sich nur aufgrund der Rotation der Erde zu drehen scheint. Da die
Sonne der Erde viel niher ist und von ihr im Jahr einmal umkreist wird, haben wir das Gefiihl, die Sonne wandere
gegeniiber den Fixsternen von Westen nach Osten.
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Scheinbare jéhrliche Aphel (kleine
Sonne-nb.ahn Geschwindigkeit)
Normalprojektion der (Ekliptik)

Sonnenbahn auf die
Aquatorebene

Rotation
der Erde

Aquator, der an die

Fixsternsphire projiziert
ist; Bahn der

“mittleren Sonne”

Friihli -
NS Im Perihel liuft die Sonne schnell,

inter- beginn
:Zlg[:;e; } . im Aphel langsam. Gleiche Winkel B
auf der Ebene der Ekliptik
entsprechen nicht gleichen Winkeln y

auf der Aquatorebene. Hier ist f1 = 2
Bild 1.3: Scheinbare Sonnenbahn von aber ¥1 <72

der Erde als Fixpunkt gesehen

Perihel (grosse Sonne
Geschwindigkeit)

Dies hat zur Folge, dass gleiche Winkel, die die Sonne auf ihrer zum Aquator geneigten Bahn am
Himmel zuriicklegt, nicht gleichen Winkeln entsprechen, die wir parallel zur Aquatorebene messen
und die fiir die Zeitbestimmung massgebend sind. In Bild 1.3 ist die Situation verdeutlicht: Auf der
nordlichen Halbkugel haben wir den Eindruck, die Sonne vollfiihre einmal im Jahr relativ zum Fix-
sternhimmel eine Drehung im Gegenuhrzeigersinn. Dabei steht sie einmal nordlicher, einmal siidli-
cher. Wir messen ihre Position in Horizontalwinkel, auch Stundenwinkel genannt parallel zum Aqua-
tor (in Bild 1.3: y;) und in Vertikalwinkel senkrecht zur Aquatorebene (in Bild 1.3: Spitze Winkel der
schraffierten Dreiecke). Die Zeit definieren wir wie schon erwihnt anhand der Rotation der Erdachse,
denn durch sie scheint die Sonne regelmissig ihren Horizontalwinkel beziiglich eines festen Punk-
tes auf dem Aquator zu 4ndern, d.h. sie wandert von Ost nach West. Dem iiberlagert sich nun aber
die jdhrliche Bewegung der Sonne im entgegengesetzten Sinn. Deshalb muss ein auf der schrigen
Ekliptikebene liegender Winkel in Horizontal- und Vertikalwinkel konvertiert werden, wobei aus
Bild 1.3 folgt, dass die Horizontalwinkel g sich nicht gleichméssig mit den schrigen Winkeln b &n-
dern. Folglich wire die wahre Sonnenzeit auch kein regelméssiges Zeitmass, wenn die Sonne ihre
Bahn mit stetiger Geschwindigkeit abliefe (siehe Kapitel 3).

Den Effekt durch die schrige Ekliptik kann man sich auch wie folgt veranschaulichen:

Man denke sich die Sonne am Ende einer Speiche eines langsam, aber gleichmissig drehenden
Rades, das geneigt zum Untergrund aufgehéingt ist, der die Projektionsebene des Aquators wider-
spiegelt (Bild 1.4). Das Licht, das senkrecht auf den Untergrund einféllt, wirft einen elliptischen
Schatten des Rades. Lége das Rad parallel zur Unterlage, so wiirde sich der Schatten der Sonne re-
gelmissig bewegen. Da aber das Rad eine schiefe Lage einnimmt, bewegt sich der Sonnenschatten
an den Hauptscheiteln der Ellipse langsam und im Bereich der Nebenscheitel ziemlich schnell. Hinzu
kdmen nun noch die oben angedeuteten Schwankungen in der Drehgeschwindigkeit des Rades, die
die Projektionsunterschiede iiberlagern.
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Lichteinfall

Bild 1.4: Veranschaulichung des Ein-
flusses der schiefen Ekliptik

1.3. Die Zeitgleichung

Es gilt nun, die zwei erkannten Periodizititen der scheinbaren Sonnenbewegung zu untersuchen und
ein moglichst einfaches Verfahren anzugeben, durch das der Wert der Zeitgleichung ermittelt wer-
den kann. Die Zeitgleichung ist definiert als die Differenz zwischen wahrer und mittlerer Ortszeit,
héufig auch kurz WOZ - MOZ (Wahre Ortszeit / Mittlere Ortszeit) geschrieben. Ist ihr Wert fiir ei-
nen Zeitpunkt bekannt, so erhélt man die wahre Ortszeit durch Addition des Zeitgleichungswerts zur
mittleren Ortszeit — der jeweiligen Uhrzeit — bzw. die mittlere Ortszeit resultiert aus der Differenz
von wahrer Ortszeit und Zeitgleichungswert.

Zeitgleichungswert = WOZ - MOZ

2. Die variierende Geschwindigkeit der Erde

2.1. Die Bewegung der Planeten

Nachdem wir oben die zwei ausschlaggebenden Faktoren der Zeitgleichung identifiziert haben, sol-
len sie nun mathematisch formuliert und ausgewertet werden. Zunichst gilt es, die Behauptung, dass
die Erde in ihrer Umlaufbahn um die Sonne (Revolution) keine konstante Geschwindigkeit habe, auf
eine solide Basis zu stellen. Dazu miissen wir uns mit der Planetenbewegung auseinandersetzen, die
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besonders von Johannes Kepler (1571-1630) untersucht wurde. Die drei Gesetze* Keplers, die die
Bahnen und Bewegungen der Planeten beschreiben, konnten spiter von Isaac Newton (1643-1727)
aus der von ihm entdeckten Gravitationskraft** abgeleitet werden. Die allgemeine Relativitits-
theorie®*** von Albert Einstein (1879-1955) brachte zwar einen Wandel in der Anschauung, doch
sind die an Newtons Resultaten anzubringenden Korrekturen so klein, dass sie fiir uns nicht von In-
teresse sind. Im folgenden sollen also die Keplerschen Gesetze auf der Grundlage des Gravitations-
gesetzes hergeleitet werden. Dieses besagt, dass zwei Korper sich mit einer Kraft anziehen, die di-
rekt proportional zu ihren Massen und indirekt proportional zum Quadrat des Abstandes der Korper
ist. Denn gemiss einem Modell von M. Faraday nimmt man an, dass das Gravitationsfeld durch Aus-
senden von Krafttrigerteilchen der Masse entsteht. In jeder Kugelschale mit Zentrum in der aussen-
denden Masse muss zu jeder Zeit ein konstanter Betrag solcher Teilchen vorhanden sein. Demnach
nimmt die Teilchendichte und damit die Kraftstarke proportional zur Schalenfliche, also zum Radi-
usquadrat ab.

= m] ‘ m2 i;
F=-G.—2.-
r T

Qabei ist:
F die Gravitationskraft
G die Gravitationskonstante (= 6.672 - 10! Nkg*/m?)
m die eine Masse, nachher m = Planetenmasse
ms die andere Masse, nachher ms = Sonnenmasse
r der Vektor Sonne—Planet, r = |f|

2.2. Die Berechnung der Planetenbahnen

> = In einem Zentralkraftfeld benutzen wir vor-
v =dR/dt zugsweise die Polarkoordinaten r und ¢ des
Planeten in Bezug auf die Sonne, die wir als
fest im Koordinatenursprung annehmen (Bild

Planetenbahn -I?]* PI 2.1). Eine dritte Dimension ist unnétig, da die
anet Umlaufbahn in einer Ebene liegt. R steht fiir

E = ? a = d*R/dt? den Vektor Sonne-Erde mit der Linge r und

der Richtung ¢@. s ist der Einheitsvektor in

[0) Richtung von R; n ist der Einheitsvektor

» 9=0 orthogonal zu s. Die Gravitationskraft wirkt in
entgegengesetzter Richtung von R, ist also ein
Vielfaches des Vektors s. Der Geschwindig-
Bild 2.1: Skizze zur Herleitung keitsvektor v ist tangential zur Planetenbahn.

der Planetenbahnen Er ist die erste Ableitung des Ortsvektors R
nach der Zeit. Die Beschleunigung a ist nach
dem Gravitationsgesetz antiparallel zu R. Sie entspricht der zweiten Ableitung von R nach der Zeit.

Sonne (Koordinatenursprung) \

* Von Kepler publiziert in «Astronomia nova» (1609) und «Harmonice mundi libri V» (1619).
** Von Newton veroffentlicht in «Philosophiae naturalis principia mathematica» (1687).
*#*% Von Einstein begriindet 1914/15.
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2 2
dt dt dt? dt?

I COS r —r@si
R = [ ‘PJ . dR _ (r oS @—=IQsSIn g gesetzt ist.

rsin @ dt rsin@+r@cos @

d?R _(Tcos@—rt@sin@ —r1@sin @ —rp? cos ¢ —r@psin ¢
dt? | Fsin@+7cos @+ cos @ — rp? sin @ + r cos @

, [cos (p) (—sin rpj
mit s=| . und n= ;
sin @ cos @

Nach dem zweiten Newtonschen Axiom und dem Gravitationsgesetz gilt :

]:s.(f_r¢2)+n-(2f¢+r¢)

=g =—=

d2R F -G -my [a = Beschleunigung; F = Gravitationskraft; G = Gravitationskonstante J
dt? m TP ’

mg = Sonnenmasse; m = Planetenmasse

Wir ersetzen die zweite Ableitung von R wie oben:

-G-mg d2R - ‘a6
§:——=>= =s:(r-r19° )+n-(2ro+r
o= g s ({07 rn (206 +1¢)
Skalare Multiplikation mit s und n liefert
" - -G-m (13_)
i = s
e r2 ,da s:s=n-n=1;sn=0 . (1b)
2tp+r@=0

(siehe Bild 2.1: die Kraft wirkt nur in Richtung Planet-Sonne)
Gleichung 1b ldsst sich einfach integrieren :
2igp+rp=0 = =25

Wir substituieren folgendermassen :

u=Ing, d—=£ ,v=lInr, dv _1 und erhalten damit
dt ¢ dt r
du -2 Lo . Wir integrieren nach dtund erhalten :
dt dt
u=-2v+const. = In@+2Ilnr=const. = Tr’p=e°™ =C= L
m

Dieses Resultat ist nichts anderes als der bekannte Satz der Erhaltung des Drehimpulses. Denn wenn man mit der Masse multipliziert,
erhilt man gerade den Drehimpuls. (L =Rxp|=m|Rxv|= mlR x R‘ = m[r cos @(t sin @ + r¢ cos @) — r sin (T cos ¢ — r@ sin (p)] = mrqu)

r?gm =L (L: Drehimpuls, m: Planetenmasse, ¢: momentane Winkelgeschwindigkeit) o 2
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Gleichung la ist schwieriger zu 16sen. Wir ersetzen zuerst ¢ durch den eben gefundenen Drehimpuls [q) -~ J

12 -Gm . 12 Gm
Sy L om Gmg
2.4 2.3 2

f-rp?>=r-r 5
m?r r

m-r E

dr
dt

;.fz( L2 _Gms)g oty i(ﬁ)=( L _%]ﬂ
m?r? r? de\ 2 m?r? r? dt

und integrieren nach dt

=2 2 2 2
I = [ L —%)ﬂ-dt: (L——Gms)vdr=— L +Gm5+c0nst. 3)
2 m?r? 12 dt m?r3 r? 2m?r? T

Die Integrationskonstante bestimmen wir am besten mit der Energie des Systems :

Nun multiplizieren wir mitr =

2
E=EK+EP=mv7—Gm5m

, wobei
r

5 dR dR ([rcos@-—resing) (rcos¢@—r@sing . . 2 .. . 2
vizy.yv="b 8522 ‘ A ! =(rcos @ —rgsin @) +(rsin @ +rgcos @)
dt dt rsin@+r@cos¢ ) (rsin@+r¢cos @
2 2
=f2+r2¢)2=fz+rzL—=i-2+ L
m?r? m?r?

Damit wird

2 2
E:%-(fzwt L ]_Enin_ oderf2=2%+2£— L

m?r? T r m m?r?

Dieses Resultat ist identisch mit Gleichung (3), wenn man const.= E setzt.
m

Da wir an der Abhédngigkeit zwischen r und ¢ interessiert sind, eliminieren wir die Zeit, indem wir setzen

dr_dr de _dr . _dr L

& dg @t dg ¢ de mF

Dies setzen wir in der eben gewonnenen Gleichung ein

m?r? T m m?r

2

2 2

;2| dr L =2%+2£_ L°
d([) 2.2

Durch Wurzelziehen erhilt man

dr L \/2Gm5m2r+2Emr2 -1 _, dr
2

L= i\/ZGmsmzr +2Emr? - L* .

de mr m?r? do
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Trennung der Variabeln liefert

de= L dr
r\/ZGmszr +2Emr? — 12

_ L
J. r\/2GmSm2r +2Emr? - 12

0+ dr (o =const).

Um den Faktor r im Nenner zum Verschwinden zu bringen und alleine eine Wurzel aus

einer quadratischen Funktion zu erhalten, substituieren wir

z=1, dz=—l2dr = dr=—r2dz=~—d—zz.
T r z
Nun ist
P+w= I Lz dz
ZZ\/ZGmSm2 N 2Em 12
z 7
- J. — dz= I S _d
Jszsm 5 & 2Em _ 7 2Em 4 Gmgm? N Gmgm?
I? 1 12 12 12
Diesen Integranden schreiben wir vereinfacht mit
2
Gmgm? 2Em [ Gmgm? Gmgm? 2EL?
a=———,n= —+ = + 1
L? \/ J.2 I? 12 G’mg’m?
p+w= —;dz=Arccos(z_aJ
yn? - (z -a)? n
1 Gm5m2 - 1 L—Z ",
- 2 Gmgm?
¢ + @ = Arccos r2 L = Arccos ! 8
Gmgm JELF B ¢
L G’mg’m? G?’mg’m?®
Umgeformt ergibt dies
2 2
1 Cmgm® 1+ cos(¢ + o) i[;——+l
r 1.2 G’mg m?
- 1+ecos(p+w
Die letzte Gleichung lasst sich kurz in der Form L & schreiben, der allgemeinen

r P

Kegelschnittgleichung in Polarkoordinaten in Bezug auf einen Brennpunkt als Ursprung,

(@)

(&)
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r, o Polarkoordinaten des Planets beziiglich der Sonne.
e= |—2EL .1 Exzentrizitit des Kegelschnitts.
G*mg’m?
p= L Halbparameter des Kegelschnitts.
Gmgm?
® Winkel zwischen der grossen Halbachse des Kegelschnitts und der Nullrichtung

des Koordinatensystems.

Im Folgenden wird @ = 0 gesetzt.

a = grosse Halbachse
b = kleine Halbachse
e = Exzentrizitit

p p = Halbparameter

r = beliebiger Vektor
-
e-a
Annpunkt
im Ursprung

®=0

Bild 2.2: Die Parameter der Ellipse

Bild 2.2 verdeutlicht die Bedeutung der Parameter: (@ = 0)

Die (numerische) Exzentrizitit bestimmt die Art des Kegelschnittes: Im Bild ist e < 1, es entsteht
eine Ellipse, fiir e = 1 erhélt man eine Parabel und fiir e > 1 Hyperbeln. Beim Spezialfall e = 0 ist
nach der Kegelschnittgleichung r = const., was einen Kreis darstellt. In der Ellipse ist e der Quotient
zwischen dem Abstand der Brennpunkte vom Mittelpunkt und der langen Halbachse. Je kleiner sie
ist, desto kreiséhnlicher wird die Ellipse. (Fiir die Erde ist e = 0,0167). Aus der Skizze ersieht man
folgende Beziehung:

2 b?
(e-a)” +b% =a? bzw. e=,[1-—

aZ

Der Halbparameter p gibt die halbe Linge der Sehne an, die im Brennpunkt senkrecht

2
zur grossen Halbachse steht. Fiir ihn gilt p= b?'
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2.3. Die Keplerschen Gesetze ,
Keplers erstes Gesetz besagt, dass die Planeten sich in elliptischen Bahnen um die Sonne bewegen,
wobei diese in einem der beiden Brennpunkte steht. Dies folgt unmittelbar aus Gleichung (5). Denn
alle Planeten kommen nach gleichen Zeitraumen wieder an denselben Ort im Raum, was nur bei ge-
schlossenen Kegelschnitten der Fall sein kann, also bei Kreisen oder Ellipsen. Kreise sind zwar nicht
ausgeschlossen, bedingen aber, dass die Exzentrizitét O ist und damit ganz spezielle Beziechungen
zwischen Energie und Drehimpuls oder gegebenenfalls anderen Anfangsbedingungen bestehen.
Diese sind fiir keinen der Planeten im Sonnensystem gegeben, so dass alleine Ellipsen als Bahn-
kurven iibrigbleiben (Exzentrizitit < 1).

Das zweite Keplersche Gesetz beschreibt die Bewegungsgeschwindigkeit der Planeten. Es wird
oft auch als Fldchensatz bezeichnet und ist direkt aus Gleichung 2 zur Erhaltung des Drehimpulses
ersichtlich:

Die Verbindungslinie Sonne-Planet iiberstreicht in gleichen Zeitabschnitten gleich grosse
Flichen. (Bild 2.3)
de

5 ; : : dF ¢ L .
(Denn das Flichenelement pro Zeiteinheit ergibt sich zu e r? dt 2. st also konstant.)

_-— Planet

Bild 2.3: Zum Fldchensatz

Die Flache dF des Ellipsensektors
kann fiir infinitesimal kleine d @
als Kreissektor mit dem
Flicheninhaltr - r - d ¢/ 2
angendhert werden.

Der Vollstindigkeit halber sei noch das dritte Keplersche Gesetz erwihnt. Es beschreibt die Ge-
meinsamkeit der Planeten eines Sonnensystems:

3
Fiir alle Planeten eines Sonnensystems gilt % = const. , wenn a die grosse Halbachse der Bahn-

ellipse und T die Umlaufzeit bedeuten. Diese Beziehung lédsst sich ohne weiteres aus den obigen Glei-
chungen gewinnen.

Nach dem Fldchensatz gilt

Biitines 3 312 2
Ellipse _ mab __L oder T= 2 rabm , und damit gilt a’ _ . a’L _ als
T T 2m L T? 4x%a’b?m? 47°b%m?
2 2 2 12G > G
ME pi= L erhilt man schliesslich & = 8  _ WOMSM _BMs _ oht
a Gmgm? T? 47°b?m?  4r*m?l?  4nx®

Hiermit wire nun der eine Faktor der Zeitgleichung hinreichend mathematisch analysiert und
beschrieben. Nachstehend sind die fiir das weitere entscheidenden Ergebnisse nochmals zusammen-
gefasst:
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* Die Planeten, insbesondere die Erde, umkreisen die Sonne in elliptischen Bahnen, in deren
einem Brennpunkt die Sonne steht.

¢ In der Zeit t iiberstreicht der Vektor Erde-Sonne die Fliche % mab .

Der zweite Punkt ist von besonderem Interesse. Aus ihm folgt, dass die Erde in Sonnennihe pro
Zeiteinheit grossere Winkel zuriicklegt als in Sonnenferne und sich auch mit grosserer Geschwin-
digkeit bewegt (siehe Bild 2.4: Die Erde wandert entlang der Ellipse, wobei sie nach gleichen Zeit-
abschnitten eine Sektorgrenze iiberschreitet). Dadurch ergeben sich unterschiedliche Winkelge-
schwindigkeiten beziiglich der Sonne.

Bild 2.4: Veranschaulichung des Fliichensatzes von Kepler

Die Verbindungslinie Sonne-Erde iiberstreicht in gleichen
Zeitintervallen gleiche Flichenstiicke. Im Bild bedeutet das,
dass die Erde jeweils nach gleichen Zeitabschnitten die
Grenze zwischen zwei Sektoren iiberschreitet. Daraus wird
deutlich, dass die Winkelgeschwindigkeit in der Nihe der
Sonne grsser ist als jene in Sonnenferne (Im Perihel, dem
sonnenndichsten Punkt, betrigt sie ca. 1.02°/1,,, im Aphel,
dem sonnenfernsten Punkt, ca. 0.95%,,. Auch die Bahn-
geschwindigkeit ist natiirlich unterschiedlich. In Wirklichkeit
betriigt sie in Sonnenndhe 30.3¥™/; und in Sonnenferne
29 3km/

Nun geht es darum, die Winkelgeschwindigkeit in Abhéngigkeit der Zeit darzustellen. Es hat sich
historisch eingebiirgert, den Winkel, den die Erde seit Periheldurchgang beziiglich der Sonne zuriick-
gelegt hat, wahre Anomalie zu nennen (siehe [1]). Wir wollen ihn im folgenden mit W abkiirzen. Der
Winkel, den die Erde in der gleichen Zeit zuriickgelegt hiitte, wenn sie sich das ganze Jahr hindurch
mit der gleichen Winkelgeschwindigkeit fortbewegen wiirde, wird mittlere Anomalie genannt. Wir
bezeichnen ihn hier mit M. In Bild 2.5 ist M von der Mitte der Ellipse aus abgetragen, da man sich
fiir die fiktive mittlere Sonnenzeit die Sonne in der Mitte einer kreisformigen Umlaufbahn denken
muss, auf der sich die Erde mit konstanter Geschwindigkeit bewegt. Der Winkel M ist also direkt

M= % 2 ,  wobei T die Umlaufszeit ist.

Es hat sich gezeigt, dass es viel Rechenarbeit erspart, wenn man einen weiteren Winkel einfiihrt, so-
zusagen als Zwischenglied zwischen wahrer und mittlerer Anomalie (Bild 2.5). Er ist folgender-
massen definiert: Der rechte Schenkel ist wiederum die Perihelrichtung, den linken Schenkel erhilt
man, indem man das Lot vom Planetenort (E) auf die grosse Halbachse der Ellipse nach hinten ver-
lingert und mit dem zur Ellipse gehorigen Grosskreis schneidet. Der erhaltene Punkt A liegt auf dem
linken Schenkel des bezeichneten Winkels. Dieser wurde von Johannes Kepler eingefiihrt und heisst
exzentrische Anomalie (siehe [1]). Im weiteren ist er mit E abgekiirzt.
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Ellipsengrosskreis
(Bahn der "mittleren
Erde")

Umlaufbahn E Erde

: A

Aphel = :
Position der mittleren 7 e-a

Sonne

P Perihel

S Sonne

Flidche = %-Fléche |]I[|

Bild 2.5: Winkel W, M und E zu einem bestimmten Zeitpunkt

Die wahre Anomalie W bezeichnet den tatsichlich zuriickgelegten Winkel vom Perihel her gezéhlt. Die mittere
Anomalie M stellt den Winkel einer fiktiven, gleichmassig auf einer Kreisbahn laufenden Erde dar, die dieselbe
Umlaufszeit wie die wahre Erde hat. Die exzentrische Anomalie E ist eine Hilfsgrosse zwischen W und M.
Zwischen Ellipsengrosskreis und Bahnellipse besteht eine normale Affinitit, der Affinitétsfaktor betrﬁgt% . Dies
kann ausgenutzt werden, wenn Ellipsenflichen bestimmt werden miissen.

Die schraffierten Flichen stehen ebenfalls im Verhiltnis 1 : b/a, denn fiir eine gleichméssig laufende Erde gilt der
Flichensatz ebenso wie fiir die wahre Erde. Nur iiberstreicht der Fahrstrahl in einer Umdrehung bei der mittleren
Erde den Grosskreis, bei der wahren aber die Ellipse.

Aus Bild 2.5 ergeben sich nun einige Beziechungen zwischen W und E:

fnw-EB_b/aAB_bjaasnE b _sinE _yi-e sin
SB ZB-ZS a-cosE—-e-a a cosE-e cosE-e

W ‘ 1 (cosE—e)2 J (cosE—e)2 \/ (cosE—e)2 o B—@
cosW = = = - _
1+tan? W (cosE—e)2+(1—-e2)-sin2E cos? E—2ecosE—e? +sin? E—e?sin’E 1-2ecosE+e?cos?E  1-ecosE

Lanﬂz\ll—cosw =\jl—ecos]i‘.—cosE+e _ [(1+e)-(1-cosE) =\/1+e _\jl—cosE =\/1+e -
2 V1+cosW \|1-ecosE+cosE-e |\ (1-e)-(1+cosE) V1-e V1+cosE |l-e 2
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Mit Hilfe der Fourierentwicklung im Anhang kann W nach E entwickelt werden:

2 3
W_E ksinE+X sin2B+X . sin3E+..+X sinnE+... W(E=0)=0.
2 2 2 3 n
= = _ 2 a4
1- 1-e 1-2 1 e+1 e \/ . 1‘/ - 1_[1_032 _9_) .
Mit k= 1 ke Lre | Ideskl-e=2yl=e® l=wyl—et 8 :E+e—ergibtsich
14 (1=e 1_1=e l+e-1+e e e 2 8
l+e T+e

3 3 2 3 3 3 2 3
W=E+2(S+e—]sinE+{S+e—] sm2E+3(E+e—) si113E+...=E+(e+e—JsinE+e—sin2E+e—sinSE .
2 8 2 8 3l2 8 4 4 12

Der Winkel E ist deshalb so praktisch, weil durch ihn die vom Strahl Sonne-Erde {iberstrichene Fldche
F unter Ausnutzung der Affinitit von Kreis und Ellipse leicht zu beschreiben ist:

F = Ellipsensektor SEP = b, (Sektor ZAP - Dreieck ZAS) b ist der Affinititsfaktor.
a a
Fob (E e, -Z5-AB)_b (E (2:¢)(a-sinF) :g_(gaz_aze_sm_Ejzﬂ.(E_esmE) (6)
a \2x 2 a 2 2 a \ 2 2 2

Die iiberstrichene Fldche ldsst sich aber nach dem Flichensatz auch durch die Zeit ausdriicken,
beziehungsweise durch den mittleren Winkel M, der linear von der Zeit abhéngt:

Mab

F=%7zfab,' mit M=%2n erhdltman F =

Daraus ergibt sich durch Vergleich mit (6)
M=E-e-sinE
E=M+e-sinE (7)

Gleichung (7) ist die sogenannte Keplersche Gleichung. Sie ldsst sich nicht elementar nach E auflo-
sen; d.h. die Position der Erde, gegeben durch E, kann nur ndherungsweise durch die Zeit — mit Hilfe
von M — ausgedriickt werden. Das Reversionstheorem von Lagrange ermdglicht es uns, beliebige
Funktionen von E nach M zu entwickeln, insbesondere natiirlich auch E selbst. Es geht aus von einer
Gleichung der allgemeinen Form

z=y+x-f(z).

Es soll eine beliebige Funktion g(z) nach den unabhingigen Variablen x und y entwickelt werden.
Nach Lagrange (siehe [1]) ergibt sich die Losung

3

8(z) = g(y) +x-&(y) £(y) + - %{g'(y) [+ jy_Z{g'(y) )+ - ®

Im Falle der Keplerschen Gleichung konnen wir setzen:
z=E y=M x=e f(z)=sinE f(y)=sinM.

Um E nach M zu entwickeln, setzen wir g(z)=z und damit g(y)=y ; g'(y)=1.
In (8) eingesetzt ergibt dies
E =M+e<sinM+i-i(s,in2 M)+i‘ J*
2 oM 6 oM?

2 3
(sin3 M) +...=M+e<sinM+%-sin2M+%~{35in3M—sinM} +...
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Um W in M auszudriicken, entwickeln wir noch die Sinuswerte der Vielfachen von E so weit als
notig:

sinE = E

o 2
. =sinM+ > -sin2M + < {3sin3M - sinM} .
e

sin 2E = sin2M + e - sinM - 2cos 2M+...= sin2M + e - (sin 3M — sin M )+....
sin3E =sin3M+... .

Damit erhalten wir:

3 2 3 3 2 3
W= E+[e+e—]sinE+e~sin2E+e—sin3E=M+[2e+e—]sinE+e—sin2E+e—-sin3E

4 4 12 4 4 12

3 2 2 3
zM+(2e+%)~(sinM+§-sin2M+38—-{35in3M—sinM})+%(sin2M+eA(sin3M—sinM))+§3—zsin3M

—M+2esinM + 2 e? sin2M + e3(—lsinM +§sin3Mj +et.. .
4 4 12

9)

Es wurden in der ganzen Entwicklung immer Glieder bis zur Grossenordnung e® beriicksichtigt, was

schon eine sehr genaue Niherung liefert, da e = 0.0167 ist. Betrachten wir nun die Winkelge-

schwindigkeit der Erde beziiglich der Sonne als Funktion der Zeit, so ergibt sich mit M = ZH% -

w(t):dW:deMzz_n_dW:_Zj_t_' I+2ecosM+§e2cos2M+e3(—lcosM+Ecos3M) . (10)
dt dM dt T dM T 2 4 4

In Bild 2.6 ist diese Funktion aufgetragen. Sie ist im Wesentlichen durch die einfache Kosinusfunk-
tion des ersten Gliedes der Entwicklung bestimmt. Der Faktor 2?7: bedeutet die mittlere Winkel-

geschwindigkeit (im Bogenmass). Die Abweichungen von +3.5% (=2e) gegeniiber diesem Wert er-
scheinen kaum beachtenswert, hingegen werden sie merklich, wenn die Winkelgeschwindigkeit tiber
léngere Zeit tiber- oder unterdurchschnittlich gross ist.

Winkelgeschwindigkeit [Grad/Tag]

w+0,056° —
Mittlere Winkelgeschwindigkeit w = 0,986 [Grad/Tag]

w+0,03° =

w+0,01° -

L] 1 [ T T l L] L] Jahr

w-0,01° 4 Perihel

w-0,03° H

w-0,05° -
Bild 2.6: Die Winkelgeschwindigkeit der Erde als Funktion der Zeit

Die Winkelgeschwindigkeit schwankt zwischen 1.02 °/Tag und 0.95 °/Tag. Im Mittel betrigt sie
2mf365.25 pro Tag oder 360/365.25 °/Tag=0.986 °/Tag
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3. Die Schiefe der Ekliptik

3.1. Die Erde im Raum

Die eingangs schon relativ ausfiihrlich geschilderten Einfliisse der schrigen Lage der Erdachse ge-
geniiber der Ebene der Erdumlaufbahn sollen hier noch mathematisch beschrieben werden. Zuerst
ist zu erwéhnen, dass die Erdachse immer ungeféhr in dieselbe Richtung im Raum zeigt. Dadurch ist
einmal die Nordhalbkugel, einmal die Siidhalbkugel der Sonne zugeneigt. Allerdings 16st die Gravi-
tationskraft der Sonne ein Drehmoment auf die Erde aus, das durch die Abplattung der Kugelform
der Erde an den Polen und die inhomogene Massenverteilung in der Erde zustande kommt. Das
Drehmoment (Bild 3.1 links) versucht, die Erde so aufzurichten, dass ihre Achse senkrecht auf der
Umlaufebene stehen wiirde. Die rotierende Erde reagiert aber wie ein Kreisel und fiihrt eine Drehung
senkrecht zur einwirkenden Kraft und der eigenen Rotationsachse aus. Dadurch ist die Erdachse nicht
raumfest (Bild 3.1 rechts). Sie unterliegt einerseits periodischen Schwankungen im Winkel, den sie
mit der Umlaufebene einschliesst (Nutation), andererseits dndert sich der Winkel zwischen der auf
die Umlaufebene normalprojizierten Erdachse und der Verbindungslinie Sonne-Perihel stetig, d.h. er
wichst immerzu mit ca. 50" pro Jahr (Prédzession). Weitere Ursachen liegen bei Stérungen durch Pla-
neten und besonders bei der Nutation durch den Mond. Das Ausmass der Prézession ist jedoch nicht
derart, dass sie innerhalb Jahresfrist zu beriicksichtigen wire, ausserdem ist die Pridzessions-
geschwindigkeit keine Konstante. Im folgenden werden wir also beide oben erwihnten Winkel und
damit die ganze Erdachse als fest betrachten.

N
zur Sonne
= ——
F1
S

Prézession i'\qu —
Nutation
Bild 3.1: Prazession und Nutation
DaF1 > F2, entsteht ein Drehmoment, Die Erde weicht aus: Es resultiert eine fortlaufende
das die Erdachse aufrichten méchte. Drehung parallel zur Erdumlaufbahn und eine

periodische Schwankung in der Achsenschiefe.
Links: parallel, rechts: senkrecht zur Umlaufebene
gesehen

Zur Zeit schliesst die Aquatorebene mit der Ebene der Erdumlaufbahn einen Winkel von 23.45°
oder 23° 27’ ein, den wir e nennen. Der Winkel zwischen der projizierten Erdachse und der Richtung
von der Sonne zum Perihel betrdgt ungefidhr 12.25° oder 12° 15°. (Dies ist der Winkel, den die Erde
von der Sonne aus gesehen zwischen Winterbeginn, ca. 21. Dezember, und Periheldurchgang, ca. 2.
Januar, zuriicklegt). Bezeichnen wir ihn mit P. Bild 3.2 zeigt die Erde im Winterpunkt am 21. De-
zember. e ist als Winkel zwischen Erdachse und Bahnnormalen eingezeichnet, der natiirlich gleich
gross wie der Winkel zwischen den zugehorigen Ebenen ist.
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Meridian
senkrecht
zur Bahnebene

Nordpol

Zu Winterbeginn ist der
Nordpol am weitesten von
der Sonne abgeneigt, da die
Sonne genau in der
Neigungsrichtung der Erd-
achse steht. Der Neigungs-
winkel betragt 23.45°.

Der Winkel, den die Erde
noch bis zum Perihel

Winterpunkt

/ zuriicklegen muss, misst
achsesarireell zur Zeit ungefihr 12.25°,
Zur Bahncbene Er nimmt Jahr fiir Jahr um
etwa 50" zu.

Erdumlaufbahn

Bild 3.2: Winkel P und Ekliptikschiefe zum Winterbeginn

3.2. Die Projektion des Sonnenwinkels

Der Winkel, der scheinbar von der Sonne beziiglich der Erde zuriickgelegt wird, entspricht genau je-
nem, der von der Erde tatsidchlich relativ zur Sonne zuriickgelegt wird. Fiir die Zeitgleichung benoti-
gen wir aber den auf den Aquator bezogenen Winkel (Horizontalwinkel); d.h. der auf der Umlauf-
ebene liegende Winkel muss auf den Aquator normalprojiziert werden. Dabei wird er entweder ge-
streckt oder gestaucht. Der Faktor der Streckung eines infinitesimalen Winkels ist eindeutig bestimmt
durch die Grdssen e und ¢ in Bild 3.3 und 3.4.

¢ Winkel zwischen
Winterpunktrichtung und rechtem
Schenkel von ®:
¢ = wahre Anomalie + P
=W+P

® zu projizierender, infinitesimaler
Winkel

Erde nach
kurzem

Zeitintervall @bestimmt nebst € den

Projektionsfaktor.

Bild 3.3: Zur Projektion des Ekliptikwinkels




1995 Das Phinomen der Zeitgleichung 109

Bild 3.3 zeigt die Situation im Sonnensystem (kurz vor Sommerbeginn), Bild 3.4 die Ansicht von
der Erde aus an den Fixsternhimmel projiziert (Spdtsommer). ¢ ist vom Winterpunkt aus gemessen,
auf den wir uns im folgenden beziehen wollen. Strecken parallel zur Richtung Erde-Friihlingspunkt
werden nicht verkiirzt, jene senkrecht dazu hingegen werden mit dem Faktor cos € gekiirzt, was in
Bild 3.4 durch das schraffierte Projektionsdreieck anschaulich dargestellt ist ({Erde-Winter-
punkt}-cos € = {Erde-X?}). Demnach wird der Tangens eines Winkels, der vom Winterpunkt ge-

messen wird, mit dem Faktor Y/ .. vergrossert (da die Gegenkathete unverindert bleibt, die An-
kathete jedoch verkiirzt wird).

Sonne in kurzem Zeitabstand

Der Winkel @ auf der Ekliptik
wird auf sein Bild ®Pauf der
Aquatorebene normalprojiziert.
@ Rechnerisch erhilt man

oPnach untenstehender Formel.

P
X oP
€
Friihlingspunkt
Fixsternsphére
Erde
Winterpunkt (X) Ekliptik
Himmelsidquator tan ¢ = cos £ - tan P
Bild 3.4: Geozentrische Sicht zur Projektion tan(¢ + @) = cos £ - tan( P + wP)

Fiir einen sehr kleinen Winkel ergibt sich damit der Projektionsfaktor f:

t
Arctan[m)- Arctan[mj
d

cosE cos€
f(‘P)=lim{w—P}=1im =5 Arctan(taw) — -t
e N @ do cose 1+(tan¢J cose cos® ¢

COS €

cos? € Cos € Cos € cos € COs €

(cos? e+tan? p)-cos e-cos? ¢ - (cos? &:cos? p+sin? @) - (cos? £-cos? p+1-cos? @) B (]—cosZ ¢-{1-cos? a}) " 1-cos? @-sin?e

Mit einer Fourierentwicklung (s. Anhang) erhélt man die rasch konvergente Form:

f(p)=1+2tan? %-c052fp+2tan4 §~cos4(p+2tan"§-coségo+... .

(11)
Oder mit ¢ =W +P ist entsprechend
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f(@) = (W +P) =1+ 2 tan? -;- -c0s 2(W +P) + 2 tan* % cos 4(W +P) + 2 tan® § -cos 6(W +P)+...
Fiir eine grobe Niherung kann man W = M setzen und erhélt
f((p) = f(W(t) + P) =f(M+P)=1+2tan? % -cos2(M +P).

Fiir die Dauer eines Jahres kann der Projektionsfaktor f als Funktion der Zeit, bezichungsweise
des mittleren Winkels M aufgetragen werden (Bild 3.5). Wir erhalten einen Graphen, der hauptséch-
lich vom ersten Glied der obigen Niherung bestimmt wird. Die Amplitude der Doppelschwankung

ist hier mit +81/2% (= 2tan? '28“ ) jedoch grosser als bei den Winkelgeschwindigkeiten.

Projektionsfaktor f

1,10~ Sommerpunkt Winterpunkt

1,06 -+

LA LR Jahr

0,98 o Perihel

0,94 <

Frahlingspunkt Herbstpunkt
0,90 -~

Bild 3.5: Der Projektionsfaktor als Funktion der Zeit
Im Winter- und im Sommerpunkt wird ein kleiner Winkel am meisten gestreckt (f = 1/cose).
Im Friihlings- und im Herbstpunkt ist die Stauchung minimal (f = cos €).

Die Extrema liegen jeweils zu Beginn einer Jahreszeit. Im Sommer- bzw. im Winterpunkt steht
die Sonne am noérdlichsten bzw. am siidlichsten, ein Ekliptikwinkel wird am stirksten gestreckt. Im
Friihlings- oder im Herbstpunkt (Tag- und Nachtgleiche) steht sie senkrecht iiber dem Aquator, Eklip-
tikwinkel werden am stérksten verkiirzt. ‘
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4. Die Berechnung der Zeitgleichung

4.1. Eine einfache Néiherung

Wir wollen nun die beiden Ursachen der Zeitgleichung — die verschiedenen Geschwindigkeiten in
der Revolution und die Projektionsunterschiede — verkniipfen. Wir wollen berechnen, um welche
Winkel die wahre Sonne (in der Aquatorebene gemessen) von der mittleren, gleichméssig umlau-
fenden Sonne abweicht. Dazu miissten wir zuerst festlegen, wann die mittlere Sonne mit der wahren
koinzidiert. Diese Definition soll vorerst noch offen gelassen und die Schwankungen der Zeitglei-
chung nur bis auf einen konstanten Wert berechnet werden, der dann durch diese Festlegung noch zu
bestimmen ist. Zu gegebener Zeit soll noch auf die allgemein verwendete Definition der mittleren
Sonne eingegangen werden.

Wir nehmen den Periheldurchgang als Zeitnullpunkt (t = 0) an und betrachten nun den Stand der
beiden Sonnen zur Zeit t,. Die mittlere Sonne hat bis dahin den Winkel M, = Zﬂ% (T = Umlaufzeit
=365.25 Tage) in der Ekliptik zuriickgelegt, die Erde hat sich mittlerweile
M,
2z
man wird weiter unten sehen, dass die Rotationszahl die Zeitgleichung nicht beeinflusst). Die mitt-
lere Sonne hat bis dahin am Himmel also einen Winkel von

Sonnenwinkel | =27 - Xgouion — M; = 366.25- M, - M, = 365.25- M,

T % -366.25 = .366.25 mal gedreht (Dieser Wert sei nur zur besseren Ubersicht gegeben;

zuriickgelegt. Der Winkel M; wird subtrahiert, weil die Sonne jeden Tag ihren Lauf von Ost nach
West beschreibt, innerhalb eines Jahres aber gegeniiber dem Fixsternhimmel von West nach Ost, also
entgegengesetzt wandert.

Die wahre Sonne hingegen bewegt sich nicht regelmissig. Zu einer beliebigen Zeit t hat die Erde
nach Gleichung (10) ndherungsweise die Winkelgeschwindigkeit

o(t) =2Tnv(1+2ecosM) ’

Um die Winkelgeschwindigkeit beziiglich der Aquatorebene zu erhalten, ist dies noch mit dem Pro-
jektionsfaktor f(t) im Zeitpunkt t zu multiplizieren. Dieser ist nach Gleichung (11) ungefihr

f(t) = f(W(t) + P) = f(M +P) = 1+ 2tan? % cos2(M +P) , wobei W = M gesetzt wird.
Man erhilt also

=a)(t)-f(t)=2—n-{1+2ecosM}< 1+2tan2£-cos2(M+P) ~ 2K, 1+2ecosM+2tan2E-cosZ(M—i—P) .
T 2 T 2

wi'\quamr

Die wahre auf den Aquator projizierte Anomalie W, bis zur Zeit t; berechnet sich bis auf eine Kon-
stante, die noch durch die Beziehung zwischen wahrer und mittlerer Sonne definiert werden muss,
Zu
t; t M,
WP = J-co,-,\quamr dt= jzl{l +2ecos M + 2 tan? £~COSZ(M + P)}dt = J.{] +2ecos M + 2 tan? E-cosZ(M+P)}dl\/]
T 2 2
0 0 0

M,
= {M +2esin M + tan? % -sin2(M + P)} =M, +2esin M, + tan? % -sin2(M, + P) - tan? % -sin 2P + const. .
0

Schlagt man — tan? % -sin 2P zur Konstanten, so ist WP = M, + 2esin M, + tan? % -sin Z(M] + P) + const. .
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Fiir den genédherten Winkel der wahren Sonne erhilt man insgesamt

Sonnenwinkel , =27 - X pion — WF = 366.25- M, — {Ml +2esin M, + tan? % -sin Z(Ml + P)} + const.
Sonnenwinkel , = Sonnenwinkel, — {Ze sin M, + tan? .2_ -sin2(M; + P)} +const. , und damit wird

Zeitgleichung = Sonnenwinkel, — Sonnenwinkel | = —{Ze sin M, + tan? g -sin2(M, + P)} + const. .

Man sieht, dass die Rotation der Erde die Differenz von wahrem und mittlerem Sonnenwinkel nicht
beeinflusst. Die Zeitgleichung ist nun der Zeitwert, der der Differenz zwischen wahrer projizierter
und mittlerer Anomalie entspricht. Diesen Wert erhilt man durch Konvertierung des Bogenmasses
in Minuten und Sekunden. 24 Stunden entsprechen einer vollen Umdrehung, also 27 im Bogenmass.

Zeitgleichung = —M;’ﬂ . {Zesian +tan® % -sin2(M, + P)} +const. [sec] (12)
©

Im wesentlichen besteht die Zeitgleichungsfunktion aus der Uberlagerung der Stammfunktionen der
ersten Glieder der Entwicklungen fiir die Winkelgeschwindigkeit der Erde beziiglich der Sonne und
des Projektionsfaktors. Diese zwei ausschlaggebenden Glieder sind in den folgenden Graphiken (4.1
a/b) nochmals mit ihren Stammfunktionen eingezeichnet.

Bild 4.1 a: Das Hauptglied der Winkel-
v aupgies oo Winssachminagae (s = 0018 geschwindigkeit

e 4 8 S iR y2 stellt die Stammfunktion von y; dar, dem
] ersten Glied der Entwicklung fiir die
Winkelgeschwindigkeit der Erde. Das Vor-
zeichen ist wie in der Niherung (12) nega-
tiv gewihlt. Die Extremalstellen der Funk-
tion y; und damit die Nullstellen der
Stammfunktion befinden sich nach wie vor

Y

05e o Perihel Aphel

Jahre

05 e

se 1 e im Perihel und im Aphel.

. Bild 4.1 b: Das Hauptglied des Projek-
o g Das Haupigliod des Projoktionsiskiors (£ = 2345%) ti()nsfaktors
o AR Auch hier stellt y, die Stammfunktion von
y: dar, dem ersten Glied der Entwicklung

fiir den Projektionsfaktor von der Ekliptik
auf den Aquator. Das Vorzeichen ist eben-
w| falls negativ. Die Extremalstellen der Funk-
tion y; fallen zusammen mit den Nullstel-
len der Stammfunktion in den Beginn der
Jahreszeiten.

Die Summe der beiden Stammfunktionen
ist schon eine gute Approximation der Zeit-
gleichung (vgl. Bild 4.3)

EERTLE

¥2 = —ton'E gin2(M+P)
= —lan’*S e 220 UT+P)
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4.2. Ableitung einer genaueren Niherung
Um zu einer exakteren Niaherung zu gelangen, gehen wir folgendermassen vor:

WP = '[ d WP = J' f(W+P)dW d W multipliziert mit dem Projektionsfaktor ergibt das Differential der projizierten Anomalie.

Der Projektionsfaktor f(W+P) ist nach Gleichung (11) gegeben durch
- £, £, E,
f(W+P)=1+2tan’ o "0 2(W+P)+2tan* o 0 4(W +P)+2tan® 0 6(W +P)+... . Damit ist

WP =J.dWP =J.f(W+P)dW=J.{l+2tan2g-COSZ(W+P)+2tan4%-cos4(W+P)+2tan6%-cosé(W+P)+.‘.}dW

= W+tan2—§--sm2(W+P)+%tan4 §<sin4(W+P)+%tan6§~sin6(W+P)+,..+const, . (13)

Die Integrationskonstante wird nachher bestimmt. Nach Gleichung (9) konnen wir W durch M
ersetzen:

W zI\/I+263sinM+%e2 sm2M+e3(—ismM+%smSM] .

Hiermit ist
WP = M+ 2esinM + 2 ¢? sinZM+e3(—lsinM+Esin3M)+...
4 4 12
+tan? 2 sin{2(M +P)+ 2[2e sinM + % e? sin 2M + ¢ [—%sin M+ 1—2 sin 3Mj+]}

+ % tan' 2 sin{‘l(M +P)+ 4(29. sinM + % e? sin2M + e{—%sin M+ % sin3Mj+...]}

+ % tan® g . sin{G(M +P)+ 6[2e sinM + -Zez sin2M + e? (— i sinM + %sin 3M)+‘..J}+...+const.

Die entstehenden Winkelfunktionen sin{2n(M +P)+x} werden nun umgeformt:

2
sin{Zn(M + P) + x} =sin ZH(M + P) COS X + COS ZH(M + P) sinx , und da x sehr klein ist, wird mit sinx = x; cosx =1-— X?

2
sin{2n(M + P) + x} = sin2n(M + P) - {1 - 3‘2—} +cos2n(M+P)-x.

Dadurch entstehende Produkte von Winkelfunktionen werden anschliessend goniometrisch in Sum-
men umgeformt und gleiche Terme gruppiert. Hier ist das Schlussresultat mit allen bertiicksichtigten
Gliedern der Grosse nach aufgefiihrt.

1

WP = M + tan? %(1 —4e?)-sin2(M + P) +2e - sin M — 2e tan? % ~sin(M + 2P) + 2e tan? —g-sin(BM +2P)+tan* %sin 4(M+P)

+ %ez -sin2M - 2e tan* % -sin(3M + 4P) + 2e tan* g -sin(5M + 4P) + ==e? tan® = - sin(4M + 2P) + %tam6 % sin 6(M + P) + const.

Fiir die Zeitgleichung gilt nun
Zeitgleichung = Wahrer Sonnenwinkel — Mittlerer Sonnenwinkel (geozentrische Sicht)
= —(Wabhre, projizierte Anomalie — Mittlere Anomalie) (heliozentrische Sicht)



114 Markus MULLER UND ANDREAS MULLER Mitt. Naturf. Ges. beider Basel 1

Mit obigen Beziechungen entsprechend
Zeitgleichung = M — WP

= A{tanz %(l - 4e2) -sin2(M + P) + 2e - sin M — 2e tan? % -sin(M + 2P) + 2e tan? % -sin(3M + 2P) + %tan“ %sin 4M+ P)}

—{%ez ‘sin2M - 2etan® - in(3M +4P) + 2etan’ Z..sin(5M + 4F) +%eZ tan® = sin(4M + 2P) + %tané £ -sin6(M +P)} + const. .

Berechnet man die Koeffizienten mit € = 23.45° und € = 0.0167 und konvertiert das Bogenmass noch
in Zeiteinheiten (Sekunden), so ergibt sich:
Zeitgleichung =~ —591.7 - sin 2(M + P) — 459.6 - sin M + 19.8 - sin(M + 2P) — 19.8 - sin(3M + 2P) - 12.8 - sin 4(M + P)
—4.8-sin2M +0.9-sin(3M + 4P) - 0.9 - sin(5M + 4P) — 0.5 - sin(4M + 2P) - 0.4 - sin 6(M + P) + const.  [sec] .

Zur Zeit misst der Winkel P etwa 12.25°.

wWr-M

W-M=PLP

Aquator

Aquatoriale Friihlingspunkt

mittlere

Sonne wahre und ekliptische
Winterpunkt P mittlere Sonne im Perihel

Bild 4.2: Zur Bestimmung der Integrationskonstanten

Nun ist noch die Integrationskonstante zu bestimmen. Nach einer allgemein verwendeten Definition
soll die mittlere Sonne genau dann im Frithlingspunkt ankommen, wenn eine gedachte «dyna-
mische>Sonne, die mit gleichméssiger Geschwindigkeit in der Ekliptik 14uft und mit der wahren
Sonne das Perihel verlisst, dort anlangt (siehe [2]). Deshalb sind die Winkel der beiden gedachten
regelméssig laufenden Sonnen beziiglich des Frithlingspunkts immer gleich. Folglich istin der Zeich-
nung der Winkel P der ekliptischen Sonne zum Winterpunkt gleich dem Winkel der dquatorialen
Sonne zur projizierten Winterpunktsrichtung. Wir wollen nun die Integrationskonstante anhand des
Periheldurchgangs ermitteln (Bild 4.2). Dort ist:

M-WP=P-PP = P—Jf(qo)d(p = P—J.(1+2tan2 %-cos2(p+2tan“%-cos4q}+2’can6 §~cos6(p+...)d(p
0 0
=P-P—tan? £ .5in2P - Ltan® £ -sin4P - Ltan® £ cos6P—...= —tan? £ -5in2P - Ltan® £ -sin4P - L tan® £ - cos6P—...
2 2 2 3 2 2 2 2 3 2
Mit Gleichung (13) erhélt man aber:
E E .

M(t = 0) - WP (t = 0) = 0 —- WP(W =0) =—tan25-51n2P—%tan4 E-sm4P—%tan6-;—-COS6P—...+c0nst.
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Der Vergleich ergibt, dass die Integrationskonstante verschwindet. Beschrianken wir uns auf die sechs
wesentlichsten Glieder, so ist schliesslich
Zeitgleichung ~ —591.7 - sin2(M + P) — 459.6 - sinM + 19.8 - sin(M + 2P) — 19.8 - sin(3M + 2P) - 12.8 - sin4(M + P) - 4.8 - sin2M [sec].

Um die Qualitit dieser Ndherung zu iiberpriifen, haben wir ein Computerprogramm geschrieben, das
die Zeitgleichungswerte so genau wie moglich berechnet und mit den Ergebnissen dieser Ndherung
vergleicht. (Durch Iterationsverfahren [ E, =M ; E, =M —e-sinE__, ] gewinnt man E aus M [anstelle

des Reversionstheorems]. W ergibt sich nach Kapitel 2 zu: W =2Arc tan[ 1*€ tan EJ . Die Bezie-

tan{W+P}]. ©

hung in Bild 3.4 ergibt W? + const.= Arc tan[
COoSs €

tan{W + P}

= Zeitgleichung = M - WP = M — Arc tan(
Ccos €

J+ const. Die Konstante wird am Periheldurch-

gang oder am Friihlingspunkt bestimmt: Da hier

M- WP =0- Arc tan[ﬂj + const.= —PP + const.= P — PP ist, folgt const.=P.)

COs €

Die Auswertung ergibt, dass die Wurzel aus der mittleren quadratischen Abweichung weniger als
eine Sekunde betrigt! Die zwei Hauptglieder in sin M, abhingig von der Exzentrizitdt der Erdum-
laufbahn, und in sin 2(M+P), abhiéingig von der Ekliptikschiefe, weisen zusammen noch eine mitt-
lere Streuung von 21 Sekunden auf, stellen aber schon eine recht gute Niherung dar (vgl. Gleichung
12). In Bild 4.3 ist die exakte Zeitgleichung aufgetragen. Im Winter nimmt der Wert der Zeitglei-
chung am stérksten ab, weil die Winkelgeschwindigkeit der Sonne in der Ekliptik am grossten ist
und zugleich der Projektionsfaktor ein Maximum erreicht. Die gegensitzliche Situation tritt zwischen
Aphel und Herbstbeginn ein. Jeweils nachfolgend nimmt die Zeitgleichung einen Extremwert an.
Zwischen jenen beiden Situationen — besonders im Sommer — gleichen sich kleinere Winkelge-
schwindigkeit und grosserer Projektionsfaktor mehr oder weniger aus.
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WOZ-MOZ [min]

+15

+9

+3

Jahr

.15 o

Bild 4.3: Die Zeitgleichung mit den zwei Hauptgliedern ) .
Die Differenz zwischen dem Maximum im Oktober (ca. +16 min) und dem Minimum im Februar (ca. -14 min) betrégt

etwa eine halbe Stunde! Wenn eines der Hauptglieder Null wird, so entspricht der Wert der Zeitgleichung gerade etwa
dem anderen. Der Beitrag durch die Ekliptikschiefe (Kurve mit zwei Schwankungen) verschwindet jeweils zu Beginn der
Jahreszeiten, jener von der Exzentrizitit der Erdbahn in Aphel und Perihel.

Bild 4.4: Das Analemma

Diese Aufnahme (siehe [2]) zeigt das
praktische Resultat der Zeitgleichung:
Das Bild entstand dadurch, dass man
etwa alle zehn Tage morgens um 8.14
Uhr mittlerer Ortszeit die Sonne am
Himmel fotografierte. Da sich der
Standort der Kamera auf ungefihr
42° n.Br. befand, weist die tdgliche
scheinbare Sonnenbahn einen Winkel
von ebenfalls 42° zur Vertikalen auf.
Diese Schiefe wird durch die die drei
Langzeitaufnahmen (1) der Sonne ver-
deutlicht. Die unterste entstand bei
Winterbeginn, die oberste bei Som-
merbeginn.

Wiirde sich die Sonne mit regelmissi-
ger Geschwindigkeit am Himmel fortbewegen, so ldgen alle Sonnenbilder auf einer geraden Strecke
(2), die senkrecht zur tiglichen Laufrichtung der Sonne stehen wiirde. Infolge der Schiefstellung der
Erdachse beziiglich der Erdumlaufbahnebene steht die Sonne im Sommer hdher, im Winter tiefer.
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Bei dieser Fotografie kommt nun die Unregelmassigkeit der Sonnenbewegung und damit die Zeit-
gleichung anschaulich zum Ausdruck: Im Friihjahr und im Sommer ist die Sonne in ihrer Bahn we-
niger weit vorangeschritten als erwartet (sie liegt unterhalb der <Durchschnittslinie> (2)), entspre-
chend ist der Zeitgleichungswert negativ (vgl. Bild 4.3). Dagegen geht die Sonne zwischen April und
Juni und gegen Jahresende vor (sie liegt oberhalb der “Durchschnittslinie”), und der Zeit-
gleichungswert ist positiv.

Durch diese Schwankungen entsteht auf dem Bild die Form einer schiefen langgestreckten Acht, die
man sich als Zeitgleichungskurve vorstellen kann, die durch Umklappen bei Sommer- und Winter-
beginn zu einer geschlossenen Kurve wird.

4.3. Die Zeitgleichung in Abhdingigkeit ihrer Parameter

Der Verlauf der Zeitgleichung héngt ab von:

 der Exzentrizitit der Erdumlaufbahn

e der Schiefe der Ekliptik

* dem Winkel P (Winkel zwischen Winterpunkt und Perihel)

bzw. der Zeitspanne At zwischen Winterbeginn und Periheldurchgang

Die letzten zwei Parameter dndern sich allméhlich durch Prizession und Nutation. Es ist deshalb in-
teressant, die speziellen Einfliisse der einzelnen Parameter genauer zu untersuchen. Die Bilder
4.5a-c zeigen, wie sich die Zeitgleichung dndert, wenn ein Parameter verschiedene Werte annimmt.

Bild 4.5a: 1. Parameter: Die Ex-

WOZ-MOZ [min] zentrizitiat

" +++ e=0.000
ocoo e=0.005

R ooo e=0.010
eee c=00I5

" xxx e=0.020

s Fiir e = O resultiert eine regelméssige
Doppelschwankung, verursacht
durch die Schiefe der Ekliptik. Je
grosser e ist, desto grosser werden
die Wellenberge im Winter und im
Herbst. D.h. die Extrema der jahres-
periodischen Schwankung werden
dominant. Zur Zeit des Aphel- und
Periheldurchgangs haben alle Kurven gleichen Wert, da dieser dort nur von der Schiefe der Ekliptik
und vom Winkel P abhiingt. (Vgl. Bild 4.2)
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Bild 4.5b: 2. Parameter: Die Eklip-
tikschiefe

+++ g= (°
coo g= §°
ooo g=16°
eee ¢ =1724°
xxx g=732°

Ist € = 0, so erhélt man eine punkt-
symmetrische Schwankung beziig-
lich des Apheldurchgangs. Mit zu-
nehmender Ekliptikschiefe iiberla-
gert sich dieser eine Schwankung mit
halbjdhrlicher Periode, die schon un-
gefihr bei € =20° den bedeutenderen
Teil der Zeitgleichung ausmacht. Je-
weils zu Jahreszeitenbeginn schnei-
den sich die Kurven, da dort der Po-

larwinkel beziiglich des Winterpunktes bei der Projektion nicht verdndert wird, also allein die Ex-
zentrizitit der Erdbahn und der Winkel P den Zeitgleichungswert bestimmen.
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Bild 4.5c: 3. Parameter: Die Zeit-
spanne von Winterbeginn bis Peri-
heldurchgang
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3 5 X At:SOTage

Fiir At = 0 sind die zwei verursa-
chenden Faktoren nicht phasenver-
schoben, und man erhélt einen sym-
metrischen Verlauf mit Extremwer-
ten in Winter und Herbst. Mit wach-
sendem At verlagert sich der Perihel-
durchgang in den Friihling. Dadurch

heben sich die beiden Komponenten im Winter tendenziell auf, verstirken sich aber im Sommer im

negativen Bereich.
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5. Das Modell

5.1. Einleitung

Der Gedanke an ein Modell kam erst gegen Ende der Entwicklungen des theoretischen Teiles. Um
die Zeitgleichung zu verstehen, muss man sich die Begebenheiten im Sonnensystem vorstellen kon-
nen, da sonst die Erkldarungen im theoretischen Teil dieser Arbeit schwer veranschaulicht werden
konnen. Aus diesem Grund beschlossen wir, ein Modell zu konstruieren, das die Ursachen der Zeit-
gleichung moglichst naturgetreu und anschaulich darstellt.

Um dies zu erreichen, miissen alle Komponenten, die in dieser Arbeit eine Rolle spielen, beriick-
sichtigt werden. Dazu gehoren primér die im ersten Teil der Arbeit hergeleiteten Ursachen der Zeit-
gleichung: die verschiedenen Geschwindigkeiten in der Revolution und die Schiefstellung der Erd-
achse. Diese zwei Punkte konnen jedoch nicht im Modell verwirklicht werden, ohne dass alle mit ih-
nen zusammenhdngenden Begebenheiten ebenfalls einbedacht worden sind. Die Revolutions-
geschwindigkeit ist beispielsweise nicht konstant, weil die Erdumlaufbahn elliptisch ist. Ausserdem
muss die Erde nicht nur um die Sonne kreisen, sondern auch noch um die eigene Achse rotieren, was
die Konstruktion eines Modells erheblich erschwert. Weitere komplizierende Details werden im nach-
folgenden Text genauer erldutert.

5.2. Die Erdumlaufbahn

Zuerst wollen wir uns nur um die Revolution kiimmern. Um diese mdoglichst echt darzustellen, miis-
sen wir verschiedene Punkte beachten:

* Die Erdumlaufbahn muss elliptisch sein, und die Sonne hat in einem ihrer Brennpunkte zu stehen.
* Die Revolutionsgeschwindigkeit ist beim Aphel langsamer als beim Perihel.

Die Verwirklichung des ersten Punktes stellt einen grundlegenden Unterschied zu bereits vorhan-
denen Erde—Sonne-Modellen dar. Wenn dieses erste Problem gelost ist, ist die Konstruktion des Mo-
dells festgelegt. Es ist anzunehmen, dass es mehrere Losungen gibt, die diese Voraussetzung fiir das
Modell realisieren, doch nachdem man sich fiir eine Variante entschieden hat, miissen alle folgenden
Uberlegungen auf dieser Festlegung aufbauen.

Bei den meisten Erde—
Sonne-Modellen ist die
Erde an einem herumdre-

~/
henden <Arm> befestigt,
der die Erdkugel in einer
Kreisbahn um die Sonne
— kreisen ldsst. Da nun die
Erdumlaufbahn elliptisch
sein soll, muss man sich
von dieser Variante 16sen.

Es existiert kein Punkt, der
zu jedem Punkt auf einer
Bild 5.1 : Prinzip der Ellipsenfithrung Ellipse den gleichen Ab-

stand hat. Daher kann die
Erde nicht an einem festen Arm fixiert sein, sondern muss eine Bewegungsfreiheit haben. Eine ein-
fache Losung fiir dieses Problem sind Fiihrungsschienen, die in zwei parallelen Ebenen die Erdachse
senkrecht in ihrer Umlaufbahn fiihren (Bild 5.1). Diese vertikale Achse wird von einem herum-
schwenkenden horizontalen Stab vorwirtsgeschoben. Da die Erdachse nicht an diesem Stab fixiert
ist, kann sie verschiedene Distanzen zum Drehzentrum des Antriebsstabes einnehmen. Dabei muss
man aber bedenken, dass sich die Revolutionsgeschwindigkeit der Erde trotz konstanter Drehge-
schwindigkeit des Antriebsstabes verdndert: Je weiter die Erde vom Drehzentrum des Stabes entfernt
ist, desto schneller bewegt sie sich vorwirts. Diese Begebenheit kann man nun also geschickt aus-

Fihrungsschienen
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niitzen, um die zweite Forderung von realisieren, ndmlich dass beim Perihel die Revolutionsge-
schwindigkeit am grossten, beim Aphel am kleinsten sein soll. Das ist leicht zu erreichen, indem man
das Drehzentrum des Antriebsstabes in die Nédhe des Aphels setzt, denn dann ist die Distanz zum Pe-
rihel grosser, was eine hohere Geschwindigkeit in der Revolution der Erde hervorruft (Bild 5.2).

Antriebsstab
Ellipsenbahn

Q. B
gleitende %% 3 %
Befestigung der 3588
Erdachse BEZD
(siehe Bild 5.3!) F g Brennpunkt, in dem
Aphel - - dig Sonne steht

grosser Radius:

{? - ?' es entsteht eine
1582 grosse
582 Geschwindigkeit
=858
Y
®R o Brennpunkt

Erdachse, die vom e &

Antriebsstab vor sich

hergeschoben wird

Bild 5.2: Grundriss der Fiih-
rungsschiene mit

Antriebsstab an ver-
schiedenen Stellen P
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- Das Problem der verschiedenen Revolutionsge-
schwindigkeiten ist schon beinahe zufriedenstel-
lend gelost, doch bis jetzt kann die Erde nur in eine
Erdciice Richtung um die Sonne kreisen. Es sollte aber fiir
S~ Demonstrationszwecke moglich sein, die Erde

vor- und riickwirts bewegen zu konnen. Um das
zu verwirklichen, muss der Antriebsstab die senk-
: rechte Erdachse sowohl vor sich herstossen als
Q : auch hinter sich herziehen konnen. Die Erdachse
Antriebsstab | igt alg0 mit einem gleitfihigen Teilchen so zu fi-
xieren, dass sie immer noch alle Stellen in der
gleitfahiges Umlaufbahn einnehmen kann (Bild 5.3). Wie man
Teilchen im Bild erkennen kann, wird es der senkrechten
Erdachse auch mit diesem Teilchen moglich sein,
zu rotieren. Bevor wir genauer auf die Einzelhei-

h §

Q.’ ten der Verwirklichung der oben beschriebenen
Bild 5.3: Antriebssystem fiir Vor- und Losung fiir die Revolution eingehen konnen, miis-
Riickwiirtsbewegung sen wir uns noch um die anderern Voraussetzun-

gen fiir ein Modell kiimmern. Vorldufig be-
schrinken wir uns auf den Antrieb durch einen ho-
rizontal herumdrehenden Stab, an dem die (senkrechte) Erdachse durch ein gleitfahiges Teilchen be-
weglich fixiert ist. Das Drehzentrum des Antriebsstabes soll sich irgendwo in der Nihe des Aphels
befinden; die genaue Stelle wird spiter noch festgelegt.

5.3. Die Rotation

Obwohl sich die Erde in der Revolution mit verschiedenen Geschwindigkeiten fortbewegt, muss die
Rotation der Erdkugel gleichmissig sein. Ausserdem ist fiir eine moglichst echte Demonstration ein
geregeltes Verhiltnis zwischen der Revolution — der Verlauf eines Jahres — und der Rotation — Dauer
eines nach der Sonne gerichteten Tages — erforderlich. Es lohnt sich nicht, das echte Verhiltnis von
1 : 365 zu verwirklichen, da auch bei nur anndhernden Werten der Zweck des Modells erfiillt ist.
Trotzdem ist aber darauf zu achten, dass der Betrachter des Modells einen wahren Eindruck von dem
Verhiltnis gewinnt.

Die Geschwindigkeit der Erdachse in der Revolution ist zwar ungleichméssig, doch der Antriebs-
stab dreht sich gleichformig: Das bedeutet, dass sowohl der Antrieb der Revolution als auch derje-
nige der Rotation konstant sind. Deshalb kann man die beiden Antriebe durch eine Ubersetzung mit-
einander verkoppeln und mit einer zentralen Kurbelwelle kontrollieren. Bevor wir uns genauer mit
der Verbindung der beiden Antriebe auseinandersetzen, beschéftigen wir uns zuerst nur mit dem An-
trieb der Rotation.

Wir haben nun entschieden, dass der Rotationsantrieb durch ein Getriebe mit dem Antrieb der Re-
volution verbunden werden soll. Das bedeutet, dass die Antriebe an einem festen Ort bleiben miis-
sen, wahrend die Erdachse stetig um die Sonne kreist. Es steht also fest, dass sich zwischen dem fi-
xen Antrieb der Rotation eine bewegliche Verbindung zur Erdachse befinden muss. Fiir diesen Zweck
eignet sich eine Kette sehr gut. Es gibe wahrscheinlich auch andere Losungsvarianten, doch da das
uns zur Verfiigung stehende Material uns keine grosse Wahl bietet, wollen wir uns auf die Kette fest-
legen. Damit sie ihren Zweck erfiillen kann, muss die Kette immer gespannt sein. Da sie jedoch aus
Metallteilen besteht und somit nicht elastisch ist, muss sie bei jeder Position, die die Erde einnimmt,
auf ihre gesamte Lénge beansprucht werden. (Eine elastische Kette wiirde bei der Verformung viel
zu starke Kontraktionskrifte auslosen, so dass grosse Verluste durch die Reibung in der Ellipsen-
filhrung entstiinden). Eine elegante Losungsvariante erhélt man, indem man eine besondere Eigen-
schaft der Ellipse ausniitzt:
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In jeder Ellipse ist die Abstands-
summe von den Brennpunkten zu
einem beliebigen Punkt auf der
Ellipse gleich.

(Vergleiche: Gdrtner- bzw. Fadenkonstruktion)

Bild 5.4: Die Besonderheit der Ellipse

Wenn man nun die Kette, die die Rotation antreibt, {iber die beiden Brennpunkte und um die Erd-
achse leitet, bleibt die Kette theoretisch immer gespannt.

Zu den Abstéinden von den Brennpunkten
zur Peripherie kommt noch die Verbin-
dung zwischen den Brennpunkten und der
Umfang eines Kettenrades hinzu, welche
aber konstant bleiben und also keine
Schwierigkeiten bereiten.

Bild 5.5: Kettenfiihrung in drei verschiedenen Positionen

Schon kleine Ungenauigkeiten, die wihrend des Modellbaus unterlaufen, bewirken, dass die Kette
an verschiedenen Stellen ungespannt ist. Dadurch kann die Kette von den Kettenrddern gleiten, wor-
auf der Rotationsantrieb unterbrochen ist. Nach Fertigstellung des Modells behoben wir jedoch die-
sen Fehler, indem wir eine separate Einrichtung installierten, die die Kette bei den kritischen Stellen
spannt.

Nachdem wir nun sowohl das Prinzip der ungleichméssigen Revolution als auch den Rotations-
antrieb festgelegt haben, konnen wir diese nun miteinander verbinden. Sicher ist, dass fiir die Ket-
tenrdder in beiden Brennpunkten der Umlaufbahn eine senkrechte Achse zu stehen hat. Um die Ro-
tation anzutreiben, geniigt es, wenn eine dieser Achsen gedreht wird. Die Frage ist nun, wo wir das
Drehzentrum der Revolution plazieren sollen. Wie aus Bild 5.5 hervorgeht, kann dieses Drehzentrum
ausschliesslich in den schraffierten Raum zwischen den Brennpunkten gesetzt werden, da sonst die
Kette des Rotationsantriebes gestort wiirde. Ausserdem kann die Achse auch in jenem Brennpunkt
stehen, der noch nicht fiir die Rotation reserviert ist. Gleichzeitig wiirde sie dann auch als Achse fiir
das zweite Kettenrad dienen. Um den idealen Platz fiir das Drehzentrum zu finden, greifen wir noch
einmal auf die Entwicklung des Revolutionsproblems zuriick. Dort haben wir festgestellt, dass das
Zentrum des sich drehenden Antriebsstabes moglichst nahe beim Aphel stehen sollte, damit die Un-
terschiede in der Revolutionsgeschwindigkeit moglichst gross sind. Im zugelassenen Bereich ist der
Punkt, der dem Aphel am néchsten steht, der sonnenferne Brennpunkt. Wenn man das Drehzentrum
des Revolutionsantriebes in diesen Brennpunkt plaziert, muss der Antrieb der Rotation folglicher-
weise im andern stehen. Das Kettenrad, das um die Achse des Antriebsstabes fiir die Revolution dreht,
darf natiirlich nicht an der Achse fixiert werden, da diese nur eine Umdrehung macht, wihrend das
Kettenrad sich in der gleichen Zeit etwa 360mal dreht.
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Somit sind die Standorte der Antriebsachsen festgelegt: In den Brennpunkt, in dem die Sonne steht,
setzen wir den Rotationsantrieb; in den sonnenfernen Brennpunkt wird das Drehzentrum des An-
triebsstabes fiir die Revolution plaziert. Jetzt gilt es, diese zwei Achsen durch ein Getriebe zu ver-
binden, so dass zwischen den Umdrehungen der Achsen ungefihr ein Verhéltnis von 1 : 360 herrscht.
In Bild 5.6 ist die Ubersetzungsmechanik schematisch dargestellt:

Antriebsstibe
—— e <
=i T 1 1 /
1 1
I =
_—— Revolutionsantrieb
Kette
== 1 .
= e Rotationsantrieb

I
[

1

? - ? Brennpunkte der Ellipse
Bild 5.6: Getriebe mit einer Ubersetzung von etwa 1 : 350

Der zweite Antriebsstab wurde zur Kontrolle der sich schiefstellenden Erdachse eingebaut. Das
Kettenrad an der Achse des Revolutionsantriebs wurde spéter entfernt, um der Installation fiir die
Kettenspannung Platz zu machen.

5.4. Die Schiefstellung der Erdachse um 23,5° ‘
Die Achse, die in den elliptischen Fiithrungsschienen (Bild 5.1)
rotierend um die Sonne kreist, steht senkrecht zur Ebene der
Umlaufbahn. Eine wichtige Ursache der Zeitgleichung ist je-
doch die Schiefstellung der Erdachse. Die Achse, die in den
Ellipsenfiihrungen von den Antriebsstiben (— siehe Bild 5.6)
geschoben beziehungsweise gezogen wird, kann unmdglich
schiefstehen. Sie hat sowohl wegen der Antriebsstibe als auch
wegen der Kette des Rotationsantriebes senkrecht zu stehen.
Das bedeutet also, dass eine zweite, schiefe Achse — die wirk-
liche Erdachse — an diese senkrechte Achse angebracht werden
muss. Zu diesem Zweck steht uns ein Kreuzgelenk (aus dem
Bild 5.7: Kreuzgelenk Stokys-Bausatz) zur Verfiigung, das eine Schiefstellung bis

(aus STOKYS- | knapp unter 90° erlaubt (Bild 5.7).

Baukasten)
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Erdachse

Erdachsenstiitze fiir
23,5°-Schiefstellung
Kreuzgelenk @

IIIIIIIIJIIIH | ¢ L S T ST S e, ST ST SRR SRV SN T G S T B SR AR S A

Scheibe, auf der die Stiitze

Obere Ellipsen- befestigtist

fiihrungsplatte \
senkrechte Achse

Bild 5.8: Die senkrechte Achse ist mit der schiefen durch
das Kreuzgelenk verbunden und durch die Stiitze
fixiert

Mitt. Naturf. Ges. beider Basel 1

Damit aber die schiefe Erd-
achse in der korrekten
Schiefstellung fixiert ist,
muss sie durch einen Arm
gestiitzt werden, der sie aber
trotzdem frei rotieren lésst.
Diese Stiitze muss natiirlich
mit der revoltierenden Erd-
achse «mitfahren>, also le-
gen wir unter das Kreuzge-
lenk eine Scheibe, auf die
dann die Stiitze befestigt
wird (Bild 5.8). Das Pro-
blem der Schiefstellung
wire also somit gelost. Jetzt
muss noch auf die schiefe
Erdachse eine Styroporku-
gel als Erde gesetzt werden.
Bild 5.9 zeigt die gesamte
Erdachsenmechanik, o)
weit, wie sie im Moment
entwickelt ist.
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Erdachse

Obere Ellipsen- o
fithrung Erdachsenstiitze fiir

23,5°-Schiefstellung
Gleitplatte

=:=8 > Antriebshebel

Kettenrad

] Gleitplatte

i

/

Untere Ellipsen-
Fiihrung

Bild 5.9: bisher entwickelte Erdachsenmechanik

In Bild 5.9 sind iiber den beiden Ellipsenfiihrungsplatten Gleitplatten eingezeichnet. Diese sorgen

dafiir, dass die Erdachse auf der gegebenen Hohe bleibt und dass die Revolution keine allzu starke
Reibung auf der oberen Platte verursacht.

125
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Bild 5.10: Die herumschwenkende
Erdachse

Die Erdachse ist
zwar nun in ihrer
Schiefstellung von
23,5° fixiert, doch
kann sie momentan
noch umher-
schwenken (Bild
5.10). Dieses neu
entstandene  Pro-
blem gilt es nun zu
16sen.

Die rdumliche Richtung der Erdachse wird durch
ihre Stiitze bestimmt. Deshalb muss man die Scheibe,
auf der die Stiitze angebracht ist, so fixieren, dass die
Rotation der Erdachse nicht behindert wird. Um eine

Bild 5.11: Schema eines
Zeichnerpultes

unschone Installation zu vermeiden, miissen wir die Fixierung unter der oberen Ellip-
senfithrungsplatte anbringen. Zu diesem Zweck befestigen wir an der Scheibe, auf der die Stiitze
steht, einen Zylinder, der die senkrechte Erdachse umschliesst und somit nicht am Drehen hindert.

Obere Ellipsen-
fiihrung

Gleitplatte

Erdachsenstiitze fiir
23,5°-Schiefstellung

Verbindungszylinder
Gleitglied

i ‘E@) (Vorrichtung fiir raumfeste Erdachse)

-

_> Antriebshebel

-

Kette

Kettenrad

Gleitplatte

rd
Untere Ellipsen-
Fiihrung

Bild 5.12: vollstiindige Erdachsenmechanik
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Dieser Zylinder fiihrt unter die Fiihrungsplatte, wo er nun fixiert werden muss. Die Losung dieses
Problems, die wir in unserem Modell verwenden, basiert auf dem Prinzip eines einfaches Zeichner-
pultes (Bild 5.11). Auf beiden Seiten der Ellipse verlduft lings je eine Kette. Damit diese sich syn-
chron bewegen, sind zwei der Kettenrédder miteinander verbunden. An jeder Kette ist ein Ende eines
Querstabes befestigt. An diesem wiederum ist der Zylinder durch ein Gleitglied fixiert, das an dem
Querstab hin- und hergleiten kann. Bild 5.12 zeigt die Erdachsenmechanik, zu der nun noch der Zy-
linder und das damit verbundene Gleitglied hinzugefiigt worden ist (vgl. Bild 5.9). Die gesamte Instal-
lation ist in Bild 5.13 schematisch dargestellt. Mit diesem System wird die Erdachse auf jeder Posi-
tion der Ellipse kontrolliert, und die Scheibe mit ihrer Stiitze kann nicht mehr wie in Bild 5.10 drehen.

Kettenridder

Zylinder
mit rotierender
A Erdachse

Querstab
—

Gleitglied

Fiihrungsschiene

Verbindungsachse fiir
synchrone Bewegung

Kettenrdder

Bild 5.13: System zur rdumlichen Fixierung
der schiefen Erdachse

5.5. Das Modellgehduse

Nun haben wir alle Bedingungen fiir das Modell in Betracht gezogen und die Losungen miteinander
verbunden. Jetzt bleibt nur noch die Anordnung der einzelnen Mechanismen innerhalb eines Gehdu-
ses.

Beginnen wir mit den Ellipsenfiihrungsplatten. Zwi-
schen ihnen befindet sich der grosste Teil des Bewe-
?@ Erde gungsapparates: die senkrechte Erdachse, die Kette des
Rotationsantriebes und die Vorrichtung fiir die Revolu-
- - - - tion. Die beiden Antriebe sind unter den Ellipsen-
Antriebsstibe des Revolutionsantriebes || fijhrungen durch das Getriebe verbunden. Oberhalb der
Kettenantrieb der Rotation Ellipsenplatten ist die schiefe Erdachse
. mit der Erdkugel zu sehen. Ausserdem plazieren wir
Getriebe ; = . ..
. noch eine Gliihbirne als Sonne im Brennpunkt iiber dem
(zentraler Antrieb) ; oL . .
Rotationsantrieb. Nun wollen wir uns noch das mittlere

Sonne

System fiir raumfeste Erdachse

Bild 5.14: Aufbau des Modells
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Stockwerk zwischen den Ellipsenfiihrungen genauer ansehen: Diesen Teil des Modells kann man
schematisch in drei Schichten einteilen (Bild 5.14). Die Achse des Rotationsantriebes ragt iiber die
untere Fiihrungsplatte heraus und treibt dort die Kette an, die um die Erdachse und das Kettenrad im
anderen Brennpunkt gespannt ist. Die Achse im sonnenfernen Brennpunkt — das Drehzentrum des
Revolutionsantriebes — ist 1inger und reicht bis in die zweite Ebene hinauf, wo die Antriebsstébe an
ihr fixiert sind und die senkrechte Erdachse in ihrer Bahn vorwirtsschieben. Direkt unter der oberen
Fiihrungsplatte befindet sich die Installation fiir die raumfeste Erdachse. Diese Schichten kann man
auch in Bild 5.12 erkennen.

Im groben Umriss gesehen, kann man den Aufbau des Modells folgendermassen darstellen: Im
untersten Teil befindet sich der zentrale Antrieb der Rotation und der Revolution. Durch zwei Ach-
sen wird dieser Antrieb in die mittlere Etage geleitet, wo sich alle beweglichen Vorrichtungen be-
finden. Uber der oberen Fiihrungsplatte kann man schliesslich das Resultat der unteren Mechanis-
men sehen: Die Erdkugel, wie sie in verschiedenen Geschwindigkeiten um die Sonne kreist, wéhrend
sie sich um die eigene, schiefe Erdachse dreht.

Soweit sind noch keine Probleme aufgetreten. Doch betrachten wir einmal die Ellipsenfiihrungen.
Die Fiihrungsplatten bestehen aus zwei Teilen, die durch die herausgesigte Schiene getrennt sind.
Den dusseren Teil der Platten kann man in den Ecken des Modells mit Pflocken stiitzen, doch bei der
inneren Ellipsenplatte wird es schwieriger. Bei der unteren Platte gibt es kein Problem, da es neben
der Antriebsmechanik ausreichend Platz fiir diinne Pflocke hat, die den inneren Teil stiitzen konnen.
Erst bei der oberen Platte stellt sich die Frage, wie der innere Teil der Schiene befestigt werden soll.
Denn darunter muss der Raum frei sein, damit die Antriebsstibe und die Kette nicht behindert wer-
den. Infolgedessen muss die obere Ellipse von oben her fixiert werden (Bild 5.15).

Aufhéangungsgestell fiir
die obere Ellipse

Fiihrungsschienen fiir
Erdachsenmechanik

L~

Bild 5.15: Das Modellgehiuse
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Anhang

In Kapitel 2 erscheint die Gleichung tan w = 1+e tan E , bzw. in Kapitel 3 die Beziehung
2 —e 2

tan P = tang .
COS €
Dabei soll W als Funktion von E und ¢ durch ¢ ausgedriickt werden. Allgemein konnen die Glei-

chungen geschrieben werden in der Form

tany = tanx  oder mitcosa=q : tany= fanx o, y=Arctan( tanx) (1)
q cos o cos o
(Im ersten Fall ist v = W X = E coso = l-e ,im zweiten gilt
y ’ ’ g
2 2 1+e
y=@P, X=@, COSI=COSE). ()

Differentiation der letzten Gleichung von (1) ergibt nach Seite 14:

dy _ Ccos O _ cos & _ 2cos o _ 2cos o
dx 1-sin? %5 Leiti® @ (1+cos2x) 2-sin?2 @—sin? @cos2x 1+cos? o —sin? ocos2x
2

Da dieser Ausdruck eine periodische Funktion in x ist, kann er in eine Fourierreihe entwickelt wer-
den:

o COs

d
f(x)__Y: cos o .

= ———————————=a( +a; cosx+b;sinx+a, cos2x+b, sin2x+...4+a, cosnx+ b, sinnx+... ,
dx 1-sin? acos? x ! !

wobei nach den Euler - Fourierschen Formeln gilt:

27 2 2
a, =t f(x)dx e f(x)cosOxdx, a, =L f(x)cosnxdx firn>0, b, = f(x)sinnxd x .
2 2r T T
0

0 0 0
Nun ersetzen wir Kosinus und Sinus durch imaginire Exponentialfunktionen:
einx - e—inx . inx _ e—inx
cosnx=—————, sinnx= -
2 2i

_ Damit wird
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27 2z
inx —1inx
a, =L f(x)cosn)(dx:l 2E05F e dx
T T ’ - e2iX 4 g72ix 2
1+cos” oo—sin“ ¢¢-| —————
0 0 2
2r ] '
1 cosa-(em" +e‘“‘x)
== oy Y dx.
1+cos? a—sin? q-| & F€
0 2
Wir substituieren nun die Exponentialfunktion:
g=gfE = JE=2i-e dx=21z-dx = dx=$dz=—idz. Hiermit erhilt man:
2iz 2z
o2i2n ry _Iy N Iy _Iy
1 coso-|z/2+z /2 ) ) cosa—(z 2+z /2
— i
a, =— —dz=— d.
o z+y 2z n —Zz(1+cos2 oc)+sin2a-(z2+l)
o0 1+cos? a—sin? ¢-| —22Z e0
2
e41’n i
) cosa-(z% +Z %)
e 1 dz.
2 ) (1+cos? )
o SIN“ |25 -2 ————F7+1
sin® & (3

Der Nenner hat die Nullstellen

2 2, o\ % V"
N _1+Cosza+\/[1+cosz aj2_1=1+cos ai\/(1+cos o) —(1-cos’ @) _1+cos? a++4cos® o

1/2 —

sin? o sin? o sin? o sin? o
1+ ? 1 2 1+cosa ) o
+ o —cos Qo o cos
:[ .cos J = N, :( - ) =tan2 < , N, =(—‘ ) =cot2 = .
sin o sin o 2 sin o 2

Nun kénnen wir Gleichung (3) in folgender Form schreiben:
4im 4im
_1i | cosax (Zn/2+z_n/2) dZ:iJ. cosa (Zn/2+z—n/2) ‘ 1 1 e

an__J 2 ) -
T sm- o {z—tanzgj(z—cotzg] 4
2 2

.2
s~ o taan—COtzg Z—tanzg Z_COtzﬂ
] 5 2 2 2

e

el
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2 2
- l1-cosa)” —(1+cosa
oder mit tan? % — cot? & = 1=cos_ l+cosa =( ) = ) =_4'c02sa ergibt sich
2 2 1+cosa 1-cosa (1+cosa)-(1—-cos o) sin” &
etz

2 ¢ o2

o =i | cosa .(Zn/ +z7 ) 1 B 1 dz
" r)sin?aq _4cosa ( 20{) ( zaj
) Z—fan" — Z —icot” —
e0 sin® or 2 2
ediz
=L | (2222, 1 _ 1 dz.
N () o)
z—tan” — z—cot” —
g 2 2 “)

Beide Integrationsgrenzen (e” und e*”) sind 1, d.h. fiir jede Funktion der Form g(a)-zP?, p # -1 gilt:
edir i

21| 1-1

g(a)-zP dz=g(a)- =g(a)-—=0

p+1 o p+1

eO
e4il!'
Einzig die Terme der Form bilden eine Ausnahme, denn es ist dz=g(a) In(z)|, =g(o) 4ir.
z z
EU
efir 27
Dies sieht man auch ein, wenn vor der Integration riicksubstituiert wird: j 8(®) dz =I g(a)-2i-dx =4ir.
z
el 0

Wir kdnnen also die Briiche im Integranden (4) in konvergente Potenzreihen entwickeln und nur mit

(04 . . . .
der Form g(a) weiterarbeiten, weil alle anderen Potenzfunktionen von z zum Integral den Betrag

z
Null liefern.

’ . i i tan? % tan* % tan® &
Es ist =—. =—<1+ 2+ 2+ 2+... und

z—tan2 % Z tan2 &z z z? z°
2 2
z
- 1 —tan2 &. 1 =tanzg-{1+z-tanzg+zz-tan4g+z3-tan62+...}
Y 2 2 2 2 2



132 MARKUS MULLER UND ANDREAS MULLER Mitt. Naturf. Ges. beider Basel 1

Beide Reihen sind konvergent, weil der Betrag und damit sowohl der Realteil als auch der Ima-

» &
tan® — i
inérteil von 2 undvon z-tan? = kleiner als 1 ist. (Denn |z|=1 und
5 2
L
- tan2 &
cosor > 0= tan® = <1, also =z-tan2g}=tan2g)
2 Z 2
Der Integrand (4) ist nun damit
) , tan? tant % tan® %
—L-(Z“/2 +Z‘“/2)' =31+ + + 2, +tanzg-{1+z—tanzg+zz—tan4£+z3~tan6g+..} .
47 Z z z2 z3 2 2 2.

Ausdriicke in 1 =7

I ergeben sich nur dann, wenn der Exponent L ganzzahlig ist. Mit anderen Wor-
z 2

ten: a, verschwindet fiir ungerade n.

Fiir gerade n erhélt man im Integranden fiir den Term L 3

z
. tan™ & .
L2 L 2 o a2 @2 2 & =—L-lv(tan“ 2 +tan?2 & tan2+n gj
41 7z z"? 2 2 4w z 2 2
__L.ltanng .
Integration dieses Ausdrucks ergibt:
f541':1' e4irr
- dim 1
L anr 2 lgpo 1 e 2 | 1gpo 1 g0 @ In(z)|°, =—2 tan* & dig=2tan" < |
2r 2 = 2r 2 z 2n 2 ® 2r 2
80 CO
2r
i n @ .. 11 1 0o
und damitist: a, =2tan 9 , fiir gerade n und n > 0. aO—E-— f(x)cosOxdx——2~-2-tan Ezl.
T

0

Die Koeffizienten b erhilt man analog. Fiir ungerade n verschwindet b . Aber auch fiir gerade n

wird der Koeffizient von L Null, wenn man in (5) die durch die Pfeile markierten Anderungen vor-
Z

nimmt:
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. tan™ —
— 1 . Zn/z.l.iz—z_n/z.tanZE.Z_l*'n/z.tan_z*’ng :_l{ltanng_ltanng}zo
4irx z z"? T 2 2 47

Folglich besteht die Fourierentwicklung nur aus den Kosinusgliedern mit geradem Koeffizienten im
Argument:

d_}i _ cos

— o8&  _142tan? % cos2x+2tan? £ cosdx +2tan® £ cosbx+...+2tan?" L. cos2nx+...
dx 1-sin?acos®x 2 2 2 2

=142k cos2x +2k? -cosdx +2k? - cos 6x+...+2k™ - cos 2nx+... , k=tan2% .
Im ersten Fall folgt aus den Beziehungen (2): ¢oso = 1-e o
1+e
1— l-e
k:tanzg:l—cosa: 1+e , und damit
2 1+coso 1 l-e
+

1+e

d(Ws) E E E E dW
=1+2k ‘COS(Z : —) +9k? - cos[ll - —) 2k - cos(6 . —J+...+21<n ; cos(Zn ; —)+...: L5
d(%) 2 2 2 2 dE
Durch Integration folgt sofort

3 n
W =E+2k-sinE + k2 -sin2E+%-sin3E+...+2k
n

.sinnE+...+const. » und wegen

W(E=0)=0 auch const.= 0

Fiir den Projektionsfaktor f(¢) ergibt sich sogleich:

_do? _ cose
de 1-sin?ecos?¢

(o) =1+2tan? ?c:osZ(p%—Z’canr\4 g‘cos¢1(p+2tan6 %-cos6(p+...+2tan2“ %cosanﬁ... .

Diesen Ausdruck belassen wir in dieser Form, da wir uns vorerst nur fiir den Projektionsfaktor in-
teressieren, nicht aber fiir @P. Spiter wird ¢ durch W+P und ¢? durch (W+P)? = WP+const. ersetzt
und die Integration vorgenommen. Da WP dadurch nur bis auf eine Konstante bestimmt ist, muss
noch eine Anfangsbedingung fiir W? definiert werden.
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Anmerkung der Redaktion

Markus und Andreas Miiller haben, damals Schiiler am Gymnasium Miinchenstein, ihre Arbeit 1993
bei «Schweizer Jugend forscht» vorgelegt und sind dafiir im Mai 1994 mit dem Préidikat «hervorra-
gend» ausgezeichnet worden. Auch an europdischen Wettbewerben wurde ihre Abhandlung ge-
biihrend gewiirdigt. In der Meinung, dass solche herausragenden wissenschaftlichen Leistungen von
Jugendlichen einer breiteren Offentlichkeit zugéinglich gemacht werden sollten, hat sich die Redak-
tion entschlossen, die Arbeit in den «Mitteilungen» zu publizieren. Als Ergidnzung werden zwei Kurz-
arbeiten iiber praktische Anwendungen angefiigt.

Markus und Andreas Miiller
Grellingerstrasse 5
4142 Miinchenstein
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