Zeitschrift: Tätigkeitsbericht der Naturforschenden Gesellschaft Baselland

Herausgeber: Naturforschende Gesellschaft Baselland

Band: 20 (1953-1954)

Artikel: Wesen und Bedeutung klinischer hämodynamischer Untersuchung

Autor: Scholer, Hans

DOI: https://doi.org/10.5169/seals-676576

Nutzungsbedingungen

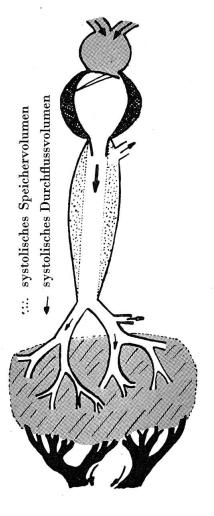
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more


Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wesen und Bedeutung klinischer hämodynamischer Untersuchungen

von HANS SCHOLER

Die Erkenntnis, dass das Herz als zusammengewachsene Doppelpumpe Volumen- und Druckarbeit leistet und rhythmisch ein wechselndes Volumen unter steigendem Druck in ein diskontinuierlich einseitig geschlossenes System grosser elastischer Röhren einpresst, stellte die Frage nach Wesen und Bedeutung des Flüssigkeitstransportes in elastischer Bahn mit wechselndem Druck und Volumen.

Fig. 1

Lungen-Venen

Vorhof

Herzkammer

Energie-Generator, rhythmisch diskontinuierliche Volumenverschiebung.

Coronarkreislauf

Windkessel-System:

Druckspeicher Energie-Umformer "Gleichrichter" für Druck und Strömungsgeschwindigkeit.

E' = Volumenelastizität

= elastischer Widerstand

= wirksamer Volumenelastizitäskoeffizient des Windkessels.

Gebiet der mittleren und kleinern muskulär gebauten Arterien:

Ort des peripheren Widerstandes W. Vascularisation im engern Sinne, Bedienung von Gefässprovinzen nach Massgabe des Bedarfs. Steuerung mit Lumen und mit arteriovenösen Shunts. Vorwiegend muskuläre Steuerung.

Kapillar-Gebiet:

Ort des Blutgas- und Stoffaustausches. Steuerung chemisch, Viscosität variabel.

Venen-Gebiet:

Blutrückführung

Man erfuhr, dass man einen Druckspeicher vor sich habe, der die Strömung einigermassen gleichrichtet, man stellte fest, dass von diesem System eine wichtige Steuerung ausgeht und dass die kardiale Druckarbeit weitgehend erfordert wird durch Fassungsraum und Dehnbarkeit dieses sogenannten Windkesselsystems. Das System ist nicht anatomisch,

Die Formelsysteme

Grösse	Sym- bol	Dimen- sion		ezler und Böger	Brömser und Ranke
Wellenlänge	λ	cm	λ =	a . ^T fem	
Windkessellänge	L	cm	L =	$\frac{\lambda}{a} = \frac{a \cdot ^{T} fem}{4}$	L = a.S
Schlag-Volumen	Vs	cm ³	Vs =	Δp.Q. ^T fem 2. Q. Q	$V_S = \frac{\Delta p.Q (S+D).S}{2Q.a.2D}$
Minuten-Volumen	Vm	cm³	Schl	agvolümen ×	Minutenfrequenz
elast. Widerstand	E'	dyn Cm ⁵	E' =	4 L. a Q. Tfem	$E' = \frac{2e \cdot a}{e \cdot s}$
peripherer Wider- stand	W		. W =	Pm (S+D)	$W = \frac{E'.D.Pd}{\Delta p}$
wirksammer mitt- lerer Blutdruck	Þ _m	dyn cm²	P _m =	\(\subseteq \text{(S+D)}^{(S+D)} \)	

(oder an Stelle des durch die Pulskurve eingeschlossenen Flächenintegrals dividiert durch Pulsdauer, [Höhe des flächengleichen Rechtecks] eine Vereinfachung:)

$$P_{m} = P_{d} + \frac{(P_{s} - P_{d}).43}{100}$$

es bedeuten:

T_{fem} = tempus femorale = Grundschwingung des Windkesselrohres, gemessen in der Art. femoralis.

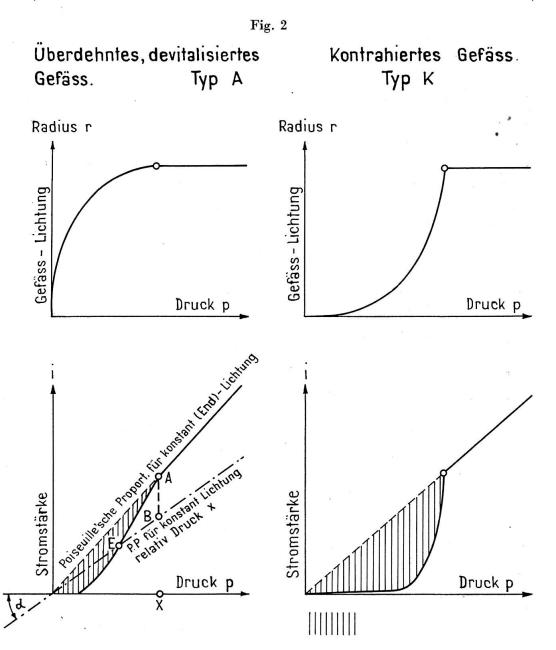
p_m = mittlerer, haemodynamisch wirksamer Blutdruck pro revolutione.

p_d = diastolischer Blutdruck.

p_S = systolischer Blutdruck.

 $\Delta p = Blutdruckamplitude = p_S - p_d$.

Q = Aortenquerschnitt.


S = Systolendauer.

D = Diastolendauer.

a = Pulswellengeschwindigkeit.

 ϱ = Dichte des Blutes.

sondern physiologisch begrenzt nach Massgabe elastischer und wellenmechanischer Momentaneigenschaften. Die Schule Otto Franks bearbeitet seit einem halben Jahrhundert diese Fragen physikalisch und mathematisch, wobei Methode, Beharrlichkeit und Erfolg gleicherweise zu bewundern sind. Die Tochterschulen Wezlers und Brömsers fanden Wege, die uns die Grösse des pro Revolution eingepressten Volumens berechnen lassen. Dieser Wert kann auf verschiedenen Wegen mit Elementen ermittelt werden, die verhältnismässig einfach am Windkesselsystem zu gewinnen sind. Beide Methoden benötigen den Aortenquerschnitt (Tabellenwert) und die Pulswellengeschwindigkeit, Wezler und Böger dann die sogenannte Grundschwingung des Windkesselsystems, Brömser und Ranke dafür Systolen- und Diastolendauer. Diese unblutigen Untersuchungen am Menschen haben aber durchaus nicht die Bestimmung des Schlag- bzw. Minutenvolumens als wichtigstes Ziel. Den Forschern war die Errechnung des elastischen Widerstandes, des Quotienten aus Druckzuwachs zu Volumenzuwachs wichtiger. Steigt dieser Wert E', so bringt ein bestimmter Volumenzuwachs einen höhern Druckzuwachs hervor, die Spannung im Windkessel steigt. Man erkannte, dass diese Spannung durchaus nicht nur durch die Materialeigenschaften der elastischen Rohrwand bestimmt und für lange Zeit gegeben ist, sondern dass Muskeleinwirkung auf das Windkesselsystem den Wert für E' kurzfristig verändern kann. Damit wurde eine wichtige vitale Steuerungsmöglichkeit entdeckt. Beide Forschergruppen gelangten auf verschiedenen Wegen auch zur Grösse des peripheren Gesamtwiderstandes W. Mit diesen gemessenen und errechneten Grössen, Pulswellengeschwindigkeit, Schlagvolumen, Zeitvolumen, elastischer Widerstand, peripherer Gesamtwiderstand und momentan wirksame Windkessellänge gelingt es nun Einblicke in die Kreislaufkonstellation zu bekommen. Es entstand eine Theorie des Blutdruckes, die uns sowohl die vom Herzen geforderte systolische Höhe, als auch die durch die Windkesselkonditionen und peripheren Widerstandsverhältnisse konfigurierte diastolische Blutdruckhöhe verstehen lässt. Die Schule Wezler wandte sich dann der Grundfrage zu, die übrigens auch von Alfred Fleisch und Alois Müller schon bearbeitet worden war: «welches sind die Gesetze, die die Strömung in elastischen Bahnen determinieren, und was für Besonderheiten ergeben sich aus diesen Einrichtungen?» Dieses Problem erforderte wie alle hämodynamischen Fragen Projektion auf die physikalischen Grundlagen und Bearbeitung mit dem Rüstzeug höherer Mathematik. Die Ergebnisse verschaffen uns Einblick in das Gebiet, der kleinen, muskelstarken, wanddicken Arteriolen, in einem Bezirk, wo der Widerstand entsteht, von wo ebenfalls wichtige Steuerungen ausgehen und wo die Lenkung des Blutstromes nach den Bedürfnissen der Peripherie stattfindet. Der Suspensionscharakter des Blutes eröffnet die Möglichkeit veränderlicher, das heisst druck- bzw. stömungspassiver Viskositätsverhältnisse. Die Bahnelastizität und der Druckwechsel schliessen als weitere Faktoren die Gültigkeit des Porseuilleschen Gesetzes aus. Das Stromvolumen ist in elastischer Bahn eine Funktion des Druckes als querschnittsändernder und als treibender Kraft. Ähnlich wie der Druck in Antriebskraft und Dehnungsdruck zerfällt, setzt sich die Gesamtstromstärke aus zwei Anteilen zusammen,

Strömungsgesetz für dehnbare Bahn, K. Wezler

$$i = \left[x_0 + \frac{c'(4m + \frac{m}{\mu})}{4m - f} \right] p$$

p = Dehnungsdruck P = Antriebskraft

X_o.P = Poiseuille'scher Term

$$\frac{\pi r_0^4}{8\eta \cdot l_0}$$
. p $\eta = Z \ddot{a} higkeitskoeffizient$

 $r = c_{1 \cdot p^m}$ $l = c_{2 \cdot p^f}$ (Potenzfunktionen für radiäre und longitudinale Dehnung) $\frac{c_1 + c_2}{c_2} = c'$ $\mu = -\frac{ldr}{rdl}$ (Querkontraktionskoeffizient)

nämlich aus demjenigen, der bei starrem Röhrensystem vorhanden wäre und aus dem Anteil, der dem dehnungsvariablen Strömungsanteil K. Wezler, entspricht. Im Kreislauf des Lebewesens kann infolge der Veränderlichkeit der Gefässelastizität bei Druckanstieg das Stromvolumen weit überproportional zunehmen oder bei Druckverlust überproportional abnehmen, was reziproken Änderungen des Widerstandes entspricht. Das Wezlersche Stömungsgesetz ist eine zusammengesetzte Potenzfunktion des Dehnungsdruckes. Der Widerstand kann nicht ausgedrückt werden als Differenzialquotient der Stromstärke nach dem Druck an einem Kurvenpunkt der Stromstärke/Druckkurve, sondern nur durch den reziproken Tangens der Poiseuilleschen Proportionalen durch diesen Kurvenpunkt. Auch in einem linearen Kurvenstück der i-P-Kurve ist der Widerstand somit nicht konstant. Gefässdimension und der periphere Widerstand sind eine Funktion des Druckes, und es werden nunmehr Konstellationen verständlich, die früher als paradox galten und Einwände gegen die Resultate der sphygmographischen Kreislaufuntersuchung zu begründen schienen. Der Kurzschluss Blutdruckerhöhung = Widerstandszunahme ist nicht zulässig. Das Minutenvolumen kann sinken mit dem Blutdruck bei gleichzeitigem Widerstandsanstieg. Der Wegfall eines Dehnungsdruckes kann den Widerstand erhöhen. Diese verwickelten Verhältnisse sind die Folge davon, dass die Bahnelastizität vitalen Einflüssen unterliegt, dass das devitalisierte überdehnte Gefäss ein ganz anderes druckpassives Verhalten aufweist als das kontrahierte Gefäss und davon, dass die Krümmung der r-P- und i-P-Kurven bei niedrigem und hohem Druck verschieden sind. Daraus geht hervor, dass Stromvolumen und Widerstand

		Klinische Beispiele	3 - 20	Tab. Nr.	Nr. 2							
Name	Diagnose, Befund weitere Entwicklung	Alter, Geschlecht Grösse, Gewicht	Blutdruck mm Hg	ĽΉ	Q cm ²	cm/Sek.	Tfem Sek.	L cm	V _s cm ³	V _m Liter	E' (2000)	W (1900)
M. St.	Vegetative Dystonie Schwankungsbereich	17 \(\triangle \) 172 cm 62,0 nach 2 Tagen	140/80	77	2,7	009	0,35	$52\frac{1}{2}$	60,0	4,4 5,2	2600 2800	1850 2000
	innerhalb eines grösseren Zeitraumes	nach 3 Wochen nach 2 Monaten andere Revolut.	140/80 130/75	88 79 64		600 506 614	0,35 0,38 0,42	53 481/2 641/3	58,5 64,0 63,0	5,0 4,0 0,0	2700 2100 2300	1650 1650 1950
D. Sch.	Gesunder Knabe Schwankungsbereich	$12 \circlearrowleft 142 \text{ cm } 36,4$ nach 2 Tagen nach 1 Monat	115/60 115/55 105/55	54 84 84	2,0	456 473 471	0,36 0,32 0,38	41 38 441/ ₂	53,8 49,0 50,0	9,2,4 6,2,4	2900 3200 2600	$2300 \\ 2400$
E. L. H. L.	Gesundes Mädchen Adipositas, endokrine	$7\ \cdot$ 128 cm 29,0 16 \cdot 161 cm 75,4	105/60 155/75	58 76 78	1,6	650 580	0,32	52	20,2 97,0	2,8 1,6 7,6	5300 2200	3900
E. SchW.	Storung Hyperthyreose Minutenvolumenvermehrg. Thiomidiltherapie	$43 \ \oplus \ 155 \ \mathrm{cm} \ 55,4$ nach 2 Tagen nach 1 Wochennach 3 Wochen	145/75 125/70 120/65 125/70	96 87 82 77	4,3	693 660 653 716	0,35 0,35 0,35	60½ 58 57 62½	90,0 77,0 77,0 70,0	8,0 6,0 6,0 6,0 6,0	2000 1920 1900 2050	950 1120 1100 1350
L. FTh.	Elastizitätshochdruck		250/110 250/120	68	5,3	1250 1400	0,24	75	87,0 81,0	5,9 6,3	4200	$2350 \\ 2300$
L. SchS.	Minutenvolumenhochdruck	$62\ \oplus\ 156\ \mathrm{cm}\ 62,0$ nach I Monat	190/90 180/95	79	5,3	714	0,40	$71\frac{1}{2}$	183,0 107,0	14,5	1450 2100	$\frac{750}{1400}$
F. WSch.	Hyperthyreose Therapie	아녕	$\frac{160/60}{130/70}$	85	4,6	836	0,26	541/2 561/2	89,0 56,5	1 ,4,1	2800 3200	1200
A. BSt. K. BSch.	Myasthenia gravis Nephrosklerose Widerstandshochdruck	$31\ \ \ \ \ 157\ \mathrm{cm} \ \ 54,0$ $64\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$105/75 \\ 280/130 \\ 240/120$	52 49 56	3,6	766 2700 2350	0,33 0,28 0,30	63 1 89 176	29,0 52,0 51,0	1,5 2,6 2,75	2800 7500 2800	4700 6000 5300
H. MR.	Nephrosklerose beginnende Urämie	$47 \ 3 \ 182 \ \text{cm} \ 82,4$ nach 8 Tagen	$\frac{170/120}{170/120}$	69	4,5	857	0,31	$\frac{661}{105}$	49,0	3,4 2,75	2700 3200	3400 4200
M. BW.	Nephrosklerose kombiniert mit Elastit. Hochdruck	$52 \ \bigcirc 167 \ \mathrm{cm} \ 79,1$ nach 2 Wochen nach 5 Wochen	$\begin{array}{c} 255/160 \\ 250/140 \\ 240/130 \end{array}$	69 81 71	4,8	1200 1770 1260	$0,22 \\ 0,22 \\ 0,24 \\ 0,24$	66 97 ¹ / ₂ 75	51,0 $49,0$ $62,0$	3,6 4,4 4,4	4500 7100 4600	$\frac{4200}{3700}$
F. BB.	paroxysmale Tachycardie bei Kentschem Bündel Anfall und freies Intervall	52 \(\popsis \) 163 cm 60,0 nach 5 Wochen	115/90 110/70	200 58	4,8	866 614	$0,14 \\ 0,42$	$\frac{30^{1/2}}{106^{1/2}}$	14,0 82,0	8 ,4 8 ,8	5460 1300	3900 1550
E. MM. A. H.	Aortenstenose Myocardose Valvuläre und muskuläre Cardiopathie, Oedeme	55 \(\triangle 160 \) cm 48,0 61 \(\delta \) 167 cm 68,0 \(\dots	95/70 105/80	71	4,9 5,3	909	0,40	27,2	61,0	4,2	1300 2650	1580 4300

schon intra revolutionem verschieden sein müssen und dass eine zweite kurzfristige Steuerung durch die Muskulatur erfolgt, die sich beide addieren zur «langfristigen Steuerung» durch die altersabhängige Wandbeschaffenheit.

Die sphygmographische Kreislaufuntersuchung, ergänzt durch phonographische Messungen der Herzrhythmik verschaffen uns als «populäre Grösse» das Schlagvolumen, von dem alle Kenner des Gebietes wissen, dass die Genauigkeit der Bestimmung nicht sehr gross sein kann. Viel bedeutungsvoller sind aber die übrigen Grössen a, E', W und L, die uns über die aktuelle Kreislaufkonstellation orientieren. Die Grössen an sich sind wertlos, sie zwingen uns aber, Überlegungen über die gegenseitigen Beziehungen anzustellen. Dieses Verständnis, wie der Kreislauf aktuell gesteuert ist, warum er so gesteuert werden muss, bzw. welche vorgegebene Tatsache eine Umstellung erzwungen hat und was diese Konstellation für eine Vitalleistung bedeutet, ist das Ziel unserer hämodynamischen Untersuchungen. Folgen baroaktiver Pharmaca, die künstliche Hypotonie und die schocksuspendierende Hypothermie führen uns bisher unbekannte Grenzsituationen des Kreislaufs vor Augen, die imperativ Beurteilung, Beherrschung und oft unsere Intervention erfordern.

Bewunderung erfüllt uns beim Einblick in Verhältnisse, die wir langsam zu überblicken beginnen. Die lebende Natur bedient sich mit der elastischen, vitalgesteuerten Bahn einer Lösung, die in der Technik praktisch nie benützt wird. Ich erlaube mir den Gedanken zu äussern, dass diese Lösung erzwungen wird, weil Druckgeneration und Volumenverschiebung nicht kontinuierlich erfolgen können, denn in der lebenden Natur ... fehlt das Rad. Trotzdem gelingt es, bei dieser Gegebenheit höchste Ökonomie und eine fast unbegrenzte Steuerungsfähigkeit zu erreichen.

Schweiz. Acad. der med. Wissenschaften Lausanne, 6. November 1954.