Zeitschrift: Mémoires de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 24 (2011)

Artikel: Les lichens terricoles de Suisse

Autor: Vust, Mathias

Kapitel: 2: Matériel et méthode

DOI: https://doi.org/10.5169/seals-320075

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

2. Matériel et méthode

2.1 Introduction

C'est, à notre connaissance, la première fois qu'une cartographie nationale est spécialement dédiée aux lichens terricoles. Il n'existe donc pas de référence méthodologique. Sur la base de travaux de terrain préliminaires, menés en 1995, dans toute la Suisse romande, il est remarqué que les stations de lichens terricoles sont très dispersées et les espèces plutôt rares. La méthode établie par DIETRICH & SCHEIDEGGER (1997a) pour les lichens épiphytes de Suisse semble inadaptée aux lichens terricoles, sur deux points importants.

- Les relevés, dits représentatifs, portent sur des placettes d'observation permanente de la forêt (EAFV & BFL 1988), l'orientation est donc nettement forestière. Ces relevés portent sur des surfaces de 500 m², soit 12,62 m à la ronde, autour d'un point central, défini par les intersections du grillage topographique kilométrique. Il était à craindre qu'une maille aussi restreinte ne permette pas de trouver les lichens terricoles.
- Les relevés complémentaires portent sur 56 surfaces de 400 km², représentant 50 % de la Suisse. Ces surfaces paraissaient trop grandes pour être parcourue entièrement, en vue d'une représentativité concernant les lichens terricoles.

Par contre, elle donne l'exemple d'un échantillonnage qui cherche à être représentatif pour toute la Suisse. Après réflexion, il est décidé de mettre au point une nouvelle méthode d'inventaire des lichens terricoles, spécialement adaptée à ces organismes et à leurs particularités.

2.1.1 Cahier des charges

Du point de vue qualitatif, il s'agit d'abord de faire l'inventaire actuel des espèces terricoles et des milieux qui leur sont favorables en Suisse, afin de le comparer avec les données passées issues de la littérature et des herbiers. L'ensemble des données récoltées doit permettre de connaître au mieux la répartition des espèces et de comprendre leurs caractéristiques écologiques.

Du point de vue quantitatif, la méthode utilisée doit permettre l'étude de la Suisse entière, par un échantillonnage qui permette de généraliser les résultats liés aux observations et qui réponde à des exigences de standardisation, afin de permettre des analyses statistiques. Idéalement, cette méthode devrait permettre de quantifier l'abondance et la diversité des espèces dans un milieu donné, pour une région donnée ou la Suisse entière. Plus encore, cette méthode doit être reproductible dans le temps, afin de cerner l'évolution de ces lichens et le déclin éventuel des populations, ceci notamment afin de pouvoir tirer des résultats une liste rouge des lichens terricoles de Suisse (voir CLERC & VUST 2002).

2.2 L'unité d'échantillonnage : le paysage végétal

La Suisse a été divisée en 6 zones biogéographiques définies comme homogènes quant à la flore et une partie de la faune par Gonseth et al. (2001) (figure 2). Il s'agit donc d'unités naturelles et homogènes à leur échelle, mais encore un peu grande pour servir de base d'échantillonnage. Pour chercher cette unité d'échantillonnage, j'ai réfléchi aux caractéristiques des lichens terricoles. Confrontés à la concurrence des plantes à fleurs, ils ne se trouvent que là où des facteurs édaphiques défavorables aux plantes réduisent cette concurrence. Les lichens jouent alors le rôle de pionniers sur des portions de sol encore dépourvues de végétation fermée (SCHÖLLER 1997). Si des lichens sont liés à ces milieux pionniers, alors ils sont peut-être liés aux successions de végétations qui y démarrent. En Suisse, un sol nu est colonisé par les plantes pionnières, bientôt envahies par la prairie, dans laquelle progresseront les buissons, euxmêmes bientôt surpassés par la forêt, à l'exception des hautes altitudes. Cette dynamique naturelle de la végétation mène des zones pionnières au climax, puis à nouveau aux zones pionnières suite à un événement catastrophique. Par définition, le climax est le stade de végétation à l'équilibre avec les conditions climatiques de l'endroit. Suivant le climat, l'altitude ou la géologie, la succession de végétations, et le climax auquel elle aboutit, diffèrent. Les zones à même climax sont donc des zones homogènes quant à la topographie, la géologie et le climat, ce qui conduit à la formation d'un même sol, sur lequel se développe une seule succession de végétations, menant à un seul climax. Pour la Suisse, une cartographie des unités climaciques a été réalisée sous le nom de cartographie des paysages végétaux de Suisse (HEGG et al. 1993). Cette cartographie présente des unités de végétation potentielle et non un état de la végétation à un moment donné. Elle présente donc l'intérêt d'offrir des unités naturelles et homogènes, représentatives de tous les types de conditions géoclimatiques existant en Suisse, et permet d'intégrer le caractère potentiellement éphémère des populations lichéniques terricoles. En outre, ces unités permettent d'obtenir un système arborescent particulièrement intéressant, uni par des liens biologiques et composé d'unités homogènes, à leur échelle, elles-mêmes composées de sous-unités, homogènes à leur plus petite échelle. La Suisse composée des 6

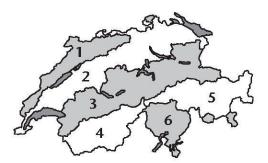
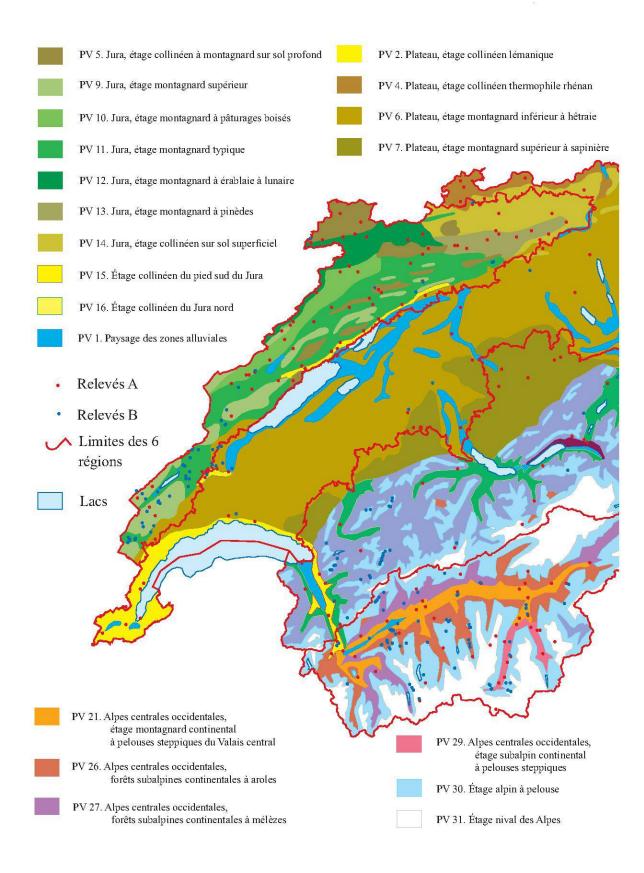



Figure 2. Les 6 zones biogéographiques de la Suisse, d'après Gonseth et al. (2001). 1: le Jura, 2: le Plateau, 3: le nord des Alpes, 4: les Alpes internes occidentales, 5: les Alpes internes orientales et 6: le sud des Alpes.

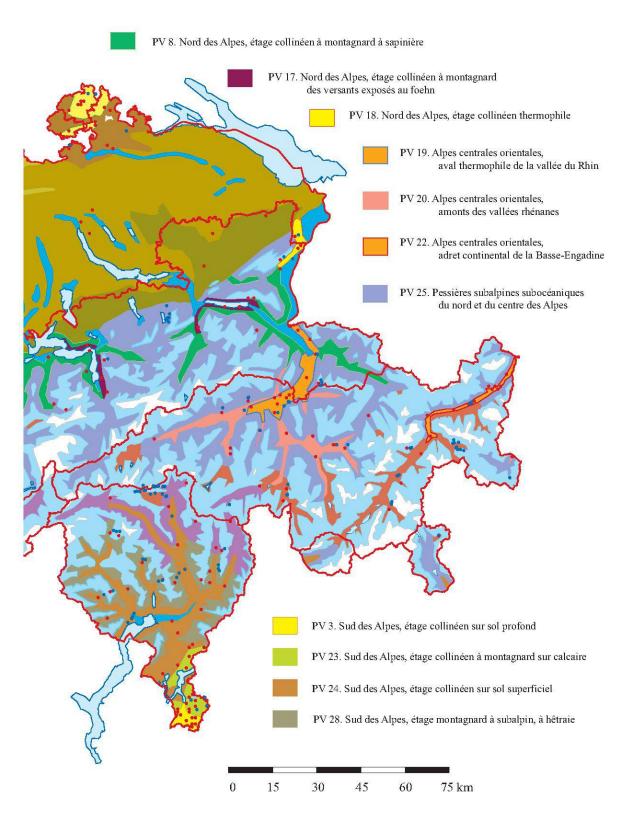
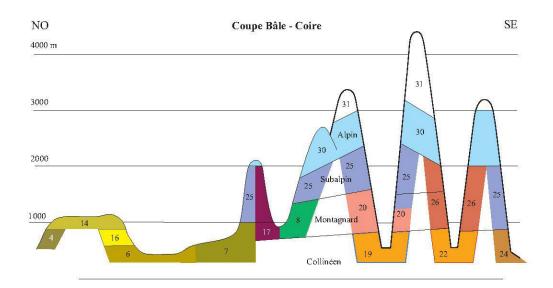


Figure 3. Carte des paysages végétaux de Suisse, d'après HEGG et al. (1993) avec les relevés A et B effectués.

grandes régions biogéographiques compose le premier niveau. Chaque région est ensuite subdivisée en plusieurs paysages végétaux, eux-mêmes composés d'une succession de milieux, qui leur est propre, menant de la zone pionnière au climax. Cette arborescence permet de généraliser les données obtenues, en passant d'une échelle à l'autre, tout en conservant les liens écologiques et biologiques. Voir la carte des paysages végétaux sur la figure 3 et la figure 4.

2.2.1 Plan d'échantillonnage

La Suisse d'abord divisée selon les 6 régions biogéographiques, définies par Gonseth et al. (2001), a ensuite été stratifiée selon les 31 unités de paysages végétaux définis par Hegg et al. (1993). Pour traiter de manière égale les unités de paysages végétaux, dont la surface varie de 47 km² à plus de 8000 km², il a été décidé d'y appliquer un échantillonnage aléatoire simple équitable. Cette méthode présente donc un échantillonnage aléatoire de la Suisse, stratifié selon les paysages végétaux.


Le kilomètre carré a été choisi comme unité de relevé. Encore homogène quant aux variables climatiques, prises à l'échelle de la Suisse, elle offre un bon intermédiaire, ni trop fin pour ne jamais contenir de lichens terricoles, ni trop grand pour ne pouvoir être parcouru entièrement en une seule journée. Étant l'unité topographique des cartes au 1 : 25 000, c'est en outre une maille pratique.

L'échantillonnage se compose de 10 relevés de 1 km², tirés au hasard sur la surface de chaque paysage végétal. Ce tirage au sort a été effectué grâce à un générateur aléatoire de nombres, programmé pour tirer des paires de coordonnées. L'image obtenue gagne en représentativité statistique, ayant intégré tous les milieux présents, qu'ils soient naturels ou non, et toute la flore lichénique qui y est liée, espèces rares comme fréquentes. Ces 10 km² constituent le compromis choisi pour tendre vers la représentativité maximale des milieux et des espèces présents dans les unités, compte tenu du temps à disposition pour cette étude.

2.2.2 Relevés A

Les paysages végétaux étant des unités naturelles et non orthogonales, il a fallu considérer des demi-km² pour tenir compte des cas où une partie des km² tirés au sort se trouvait soit sur un territoire extra-national limitrophe, soit sur un autre paysage végétal, soit sur un lac. Les 10 relevés théoriques sont alors devenus 10 ± 0.5 km² par paysage végétal. La surface totale de ces relevés, appelés relevés A (URMI *et al.* 1990), s'élève à 311,5 km² (tableaux 2 et 3). Ils constituent l'échantillonnage aléatoire stratifié.

Le travail sur le terrain s'est déroulé de la manière suivante. Le km², photocopié en couleur à 200 % (figure 5), constituait la base sur laquelle je préparais un itinéraire idéal qui me permette de visiter chaque milieu présent. Il

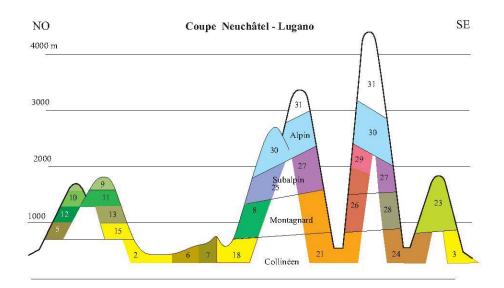


Figure 4. Coupes schématiques à travers la Suisse, représentant le relief et la position altitudinale des différents paysages végétaux (pour les légendes voir figure 3).

Tableau 2. Nombre de relevés A (en km²) et B effectués par paysage végétal (PV).

PV A B	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A	10	10	10,5	10	10	10	10	10,5	10	10	10	9,5	9,5	10	10	10
В	1	6	0	2	2	7	0	0	26	0	39	1	2	0	29	3
12.5				da d	B.			8					1,	į.		8
PV A B																

s'agissait en effet de se rendre d'abord compte si des lichens pouvaient y exister. Si je m'apercevais, sur place, que le champ avait été labouré, que la forêt était trop sombre ou trop en pente ou que la prairie ne contenait aucun affleurement, je me contentais de le noter sur ma feuille de relevé. Si le milieu pouvait présenter des structures favorables, je les cherchais ainsi que les lichens qui pouvaient s'y trouver. Toute localité comportant des lichens était reportée sur la feuille de relevé. Dans le cas où des échantillons étaient prélevés, toutes les informations utiles étaient reportées sur l'enveloppe comportant les échantillons. Si les espèces rencontrées étaient aisément reconnaissables et bien connues, les informations étaient saisies sur la feuille de relevé et un carnet de terrain, sans prendre d'échantillon. Toutes les localités comportant des lichens étaient reportées sur la feuille de relevé, mais les espèces étaient réunies par milieu et par structure (voir la définition d'une station, § 2.1.4). Je ne pouvais pas regarder à la loupe chaque centimètre carré de la surface; mais on s'aperçoit très vite que cela n'est pas nécessaire, tant les milieux défavorables aux lichens terricoles sont abondants. Il fallait néanmoins vérifier sur place que le milieu était bien défavorable. Je me suis par contre beaucoup plus attardé sur les localités où il y avait des lichens terricoles, essayant d'y relever toutes les espèces présentes, même les moins visibles. À force de parcourir le territoire, on apprend à connaître les structures favorables et à les repérer de loin. Il faut toutefois se méfier de l'expérience acquise, qui nous découragerait d'aller voir un milieu, sous prétexte qu'il ne peut logiquement pas contenir de lichens, ce qui est vrai dans le 99 % des cas. Il convient de garder dans sa tête une place pour les exceptions et les surprises; d'avoir à parcourir le km² pour passer d'un milieu à l'autre permet justement d'en rencontrer, comme ce Thrombium epigaeum récolté dans un pâturage gras, sans le moindre affleurement et abondamment piétiné par le bétail; il poussait sur la terre nue de l'ornière verticale provoquée par les sabots d'une vache!

De parcourir complètement un km² est quasiment toujours possible en plaine et on se fait assez vite une bonne idée des endroits où il peut y avoir des lichens et de ceux où il n'y en a pas. C'est beaucoup plus difficile en montagne. Les structures favorables peuvent être très localisées, peu visibles à distance ou peu accessibles. De tels relevés ont demandé de 1 heure pour les plus aisés, à plus de 8 heures pour les plus difficiles à parcourir ou les plus riches. Ce temps ne considère toutefois que le parcourt du km² lui-même, auquel il faut souvent ajouter un certain temps pour accéder au km² et en revenir. Néanmoins, aucun relevé n'a demandé plus d'une journée de travail; il a même souvent été possible d'en faire 2, éventuellement 3, par jour. Environ 2325 km ont été parcourus à pied sur les seuls relevés A, pour 84240 m de dénivelé positif, et autant pour la redescente!

De parcourir ainsi le terrain prend du temps, mais, les lichens terricoles étant rares, cela donne aussi le temps de réfléchir en marchant sur les causes des présences ou absences de lichens. Cela permet de voir les lichens à l'état

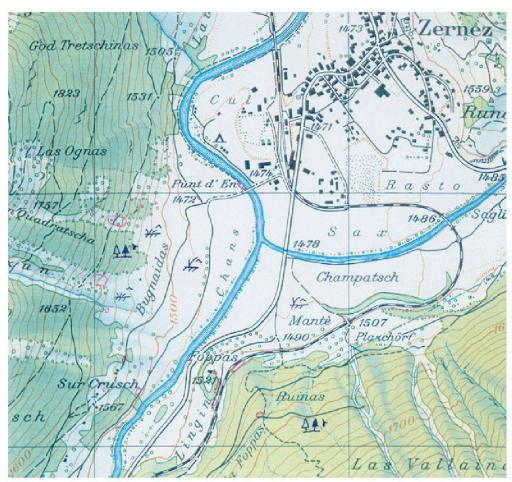


Figure 5. Exemple de relevé A d'un km² dans le paysage végétal n° 22 à Zernez (coordonnées 802/174, angle inférieur gauche). En rouge figurent la localisation des lichens terricoles et en bleu les indications sur la végétation (reproduit avec l'autorisation de swisstopo BA110425).

humide, à l'état sec ou en train de sécher, ce qui les fait souvent changer de couleur. On voit plusieurs individus d'une même espèce, d'âge différents, dans des conditions différentes, ce qui permet de se faire une idée de la variabilité morphologique des espèces ou des conditions favorables à une espèce. De visiter le km² entier permet de rapporter une image complète de la végétation et de la présence, comme de l'absence, de lichens terricoles. Le tout reste lisible de manière synthétique sur la feuille de relevé, comportant le fond topographique, les indications de végétations, représentées par des idéogrammes (Vust 1998) en bleu et les localités de lichens en rouge (voir figure 5).

2.2.3 Relevés B

À côté des relevés statistiques A, un certain nombre de relevés floristiques dits B ont été réalisés selon un échantillonnage préférentiel, soit sur le chemin menant aux relevés A, soit dans des endroits connus ou soupçonnés riches en

Tableau 3. Coordonnées (X et Y) des 311,5 km² composant les relevés A, classés par paysage végétal (PV), avec mention de la surface (S) en km² et des totaux par paysage végétal.

X	Y	S	599	243 1	539	195	1	688	280 1	PV 22		PV 27		T
PV 1			1377	10	540	201	1	688	281 1	801	181 1	574	104	1
568	113	0.5	PV 6	10	560	218	1	691	286 1	802	174 1	581	99	0.5
				144 1				091						
568	209	0.5	506	144 1	566	223	1	777.45	10	810	183 0.5	595	127	1
589	220	0.5	523	165 0.5	572	223	0.5	PV 17		815	185 0.5	610	132	0.5
590	224	0.5	589	220 0.5	580	224	0.5	648	179 1	817	186 1	693	153	1
595	120	1	592	187 1	583	228	1	652	178 1	822	191 1	713	150	1
598	121	0.5	598	227 0.5	593	238	1	653	177 1	823	190 1	719	158	0.5
598	227	0.5	607	214 0.5	597	232	0.5	685	205 0.5	824	191 1	722	145	1
607	214	0.5	610	182 0.5	597	241	1	690	194 0.5	825	190 0.5	729	136	1
610	182	0.5	638	243 0.5	15.50	5000	10	691	200 1	826	191 0.5	731	135	1
610	223	1	647	249 0.5	PV 12		10	692	189 1	828	195 1	734	145	1
1.0000000000000000000000000000000000000	129	0.5	649			210	1		\$250 PERSON NAMES	5 10 30 30 50 50		100000000000000000000000000000000000000		83000
641				228 0.5	552	219	1	723	211 1	830	167 1	744	157	1 10.5
647	249	0.5	654	241 1	559	245	0.5	732	218 1	832	201 0.5	771.00		10.5
649	228	0.5	683	247 0.5	561	228	1	737	218 1		10.5	PV 28		
683	247	0.5	686	243 1	563	246	0.5	740	221 0.5	PV 23		689	119	0.5
687	251	0.5	687	251 0.5	568	240	1	742	221 0.5	716	81 1	693	121	1
690	194	0.5	692	273 0.5	570	247	1		10	719	95 0.5	693	141	1
757	210	0.5	694	272 0.5	574	248	0.5	PV 18		720	85 1	696	140	0.5
757	238	0.5		10	578	247	1	562	132 1	720	99 1	699	122	1
1000000	00.75576	10	PV 7	07.5	586	251	1	564	129 1	721	86 1	704	131	0.5
PV 2			594	182 1	592	246	1	566	105 1	722	82 1	711	125	1
488	112	1.	614	205 1	597	248	1	567	123 1	722	84 1	715	124	0.5
495	121	1	20000000		371	240	9.5	F 12/3/3/3/3/3		28030000	\$20000 S0000	120000		300000000
1334432		9,000	623	196 1	D17-40		9.3	568	109 1	725	102 0.5	724	115	1
496	115	1	624	202 1	PV 13			568	113 0.5	725	85 1	724	125	1
496	121	1	633	199 1	608	244	1	569	115 1	726	82 1	727	124	1
501	117	1	642	205 1	609	244	1	751	234 0.5	726	84 1	727	128	1
501	127	1	644	206 1	612	243	1	756	242 1	-	10			10
502	129	1	725	232 1	619	246	1	757	238 0.5	PV 24		PV 29		- 1
505	142	1	728	243 1	622	249	1	758	239 1	689	119 0.5	623	95	1
531	152	1	746	249 1	623	248	1	L	9.5	692	112 1	625	97	1
540	150	0.5		10	629	247	1	PV 19		704	131 0.5	626	102	1
555	144	0.5	PV 8		634	249	1	741	184 1	711	93 1	627	104	1
5-8-8-7-6-28		10	565	118 1	640	248	0.5	749	182 0.5	714	111 1	629	115	1
PV 3			569	149 1	646	252	1	749	187 1	716	107 1	630	117	0.5
716	80	0.5	609	168 1	010	202	9.5	750	185 1	716	137 1	633	118	1
717	79	1		157 1	PV 14		2.3		188 1				114	0.5
			635	Mariana 2007				751		716	2000000 00000	634		20000000
719	77	1	660	197 1	614	258	1	753	187 1	720	102 1	636	113	1
719	83	1	672	201 1	618	260	1	754	188 1	721	103 1	637	113	1
720	80	1	674	185 1	623	255	1	757	210 0.5	732	123 1	638	105	1
720	81	1	685	196 1	626	259	1	760	194 1		10			10
721	75	1	686	203 1	632	240	1	761	207 1	PV 25	8	PV 30		1
721	76	0.5	742	221 0.5	637	246	1	763	202 1	557	127 1	581	99	0.5
721	78	1	751	231 1	638	243	0.5		10	576	140 1	589	112	0.5
722	76	1		10.5	640	248	0.5	PV 20		597	163 1	610	132	0.5
722	78	1	PV 9		641	255	1	708	173 1	638	169 0.5	613	114	0.5
723	75	0.5	500	158 1	652	263	1	731	182 1	678	183 1	625	109	1
255		10.5	504	155 1	665	268	1	734	168 1	734	170 0.5	634	114	0.5
PV 4		10.0	505	162 1		200	10	734	170 0.5	743	210 0.5	638	169	0.5
	259	1			PV 15		10	3						
610		1	506	152 1			0.5	740	186 1	744	176 0.5	696	140	0.5
610	266	1	515	172 1	522	167	0.5	744	176 0.5	749	182 0.5	715	124	0.5
611	264	1	532	186 1	523	165	0.5	753	175 1	773	170 0.5	743	210	0.5
632	267	1	548	198 1	524	167	1	762	174 1	781	181 1	751	234	0.5
662	272	1	549	215 1	527	168	1	763	167 1	816	185 1	752		1
679	272	1	553	209 1	531	167	1	769	171 1	825	190 0.5	764	192	1
681	274	1	580	224 0.5	556	203	1	770	171 1	826	191 0.5	788	149	0.5
681	282	1	597	232 0.5	566	208	1	773	170 0.5		10	792	158	0.5
692	273	0.5		10	568	209	0.5		10.5	PV 26		794	170	1
693	285	1	PV 10		569	211	1	PV 21		575	97 1	799	168	0.5
694	272	0.5	537	200 1	577	215	0.5	570	106 0.5	589	112 0.5	SSELECTED.	monday (i)	10.5
		10	538	200 1	580	216	0.5	576	111 1	601	117 1	PV 31		20.0
PV 5		10	544	209 1	581	217	0.5	585	116 1	604	107 1	595		1
553	198	1	545		582	217	0.5	597	123 1	613	107 1	596	89	1
				205 1										
557	202	0.5	550	212 1	590	224	0.5	598	121 0.5	633	133 1	598	95	1
558	246	1	552	217 1	-		10	609	126 1	646	129 1	608		1
563	246	0.5	553	218 1	PV 16		0.	617	129 1	753	156 1	614		1
568	259	1	569	235 1	679	278	1	630	117 0.5	788	149 0.5	620	108	1
569	255	1	572	237 1	679	285	1	632	129 1	792	158 0.5	622	111	1
572	223	0.5	575	235 1	682	287	1	633	124 1	799	168 0.5	622	86	1
574	248	0.5	A0150A000	10	683	287	1	641	129 0.5	805	140 1	631	149	1
576	252	1	PV 11		683	288	1	654	136 1	815	185 0.5	642		1
		1	522	167 0.5	684	288	1	Int the	10		103 0.3			10
	226				1001									4.90
579 582	226 229	1	532	197 1	684	291	1							

lichens, soit encore au hasard d'une excursion. Ces relevés ont pour but de compléter les relevés statistiques, pour les espèces rares ou pour des milieux qui ne seraient pas apparus dans les 311,5 km² tirés au sort. C'est le cas en particulier des tourbières, milieu azonal, rare en Suisse, qui, n'étant lié à aucune succession climacique, n'est concentré dans aucune unité particulière de paysage végétal.

Ces relevés ont été effectués chaque fois que s'est présentée l'opportunité de visiter un nouvel endroit et que des lichens terricoles ont été découverts. Cela explique l'énorme disproportion des relevés suivant les paysages végétaux. De nombreux paysages n'ont pas de relevés B, faute d'une occasion, de temps ou parce qu'il n'y avait pas de lichens terricoles. À l'opposé, le paysage des pelouses alpines comporte 122 relevés B (tableau 2), parce qu'il est le but de la plupart des excursions de fin de semaine et que c'est un des plus riches et un des plus vastes! Les absences de lichens ne sont, par contre, pas enregistrées dans ce type de relevé. Tous les relevés A et B ont été effectués de 1996 à 1999.

2.2.4 Définitions de localité et de station

Plusieurs termes décrivent les endroits où des lichens ont été relevés. La localité est un terme général utilisé pour parler de tout endroit comportant des lichens, c'est un individu, au moins, à un seul endroit. Une station est définie comme la surface occupée par l'ensemble de toutes les espèces trouvées sur une même structure d'un même milieu d'un même km² et d'un même paysage végétal. Cette définition correspond à une seule unité spatiale géoréférencée lorsqu'il n'y a qu'une seule localité, mais peut aussi être composée de plusieurs localités distinctes spatialement, mais homogènes quant à la structure et au milieu, au sein d'un même km² (figure 6). Cette imprécision permet de réunir en une seule station, par exemple, les 13 individus, appartenant à 3 espèces, dispersées en 13 localités, le long d'un talus de route de 500 m dans la pessière d'un même km². Autrement, il faudrait en faire 13 unités distinctes, identiques quant aux facteurs écologiques et composées d'un seul individu d'une seule espèce! Il n'y a que peu de perte d'information, à savoir la seule précision de la localisation.

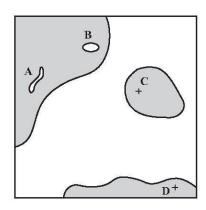


Figure 6. Définition d'une station. En gris, le milieu m apparaissant 3 fois dans le km² k; Les localités A, B, C et D possèdent une ou plusieurs espèces, ont la même structure, mais occupe des surfaces différentes. La station S pour le km² k, le milieu m et la structure s égale A+B+C+D; elle possède l'ensemble des espèces et la somme des surfaces.

2.2.5 La notion de milieu et de structure

Delarze et al. (1998) ont établi une liste exhaustive des milieux de Suisse, naturels ou non. Cette liste est une arborescence correspondant aux subdivisions phytosociologiques. Le niveau le plus détaillé, auquel il est habituellement donné le nom de milieu, correspond au niveau de l'alliance, en phytosociologie. L'appartenance d'une station à un milieu a été déterminée sur le terrain, d'après les descriptions et selon la nomenclature définie par Delarze et al. (1998). Aucun relevé floristique ou phytosociologique ne vient appuyer ces attributions.

Il est souvent souhaitable d'être plus précis pour décrire le micro-habitat d'une espèce, au sein d'un milieu. Delarze parle de structures pour décrire ces micro-habitats. Ce terme a été repris et une liste des structures pouvant accueillir des lichens terricoles a été établie a priori (pour plus de détail, voir Vust 2002b).

2.2.6 La notion de paysage végétal

Les unités définies par HEGG et al. (1993) ont la particularité d'être des unités potentielles et non des unités cartographiques représentant un état réel à un moment donné. Ces unités sont homogènes quant à la topographie, la géologie et le climat, ce qui conduit à la formation d'un même sol, sur lequel se développe une seule succession de végétations, menant à un seul climax potentiel.

La nomenclature utilisée ici diffère quelque peu de celle utilisée par HEGG et al. (1993). Chez ces auteurs, le nom de paysage végétal est attribué à la plus grande unité de végétation climacique. Cette unité est ensuite subdivisée en domaine, puis en secteur. Sont ainsi décrits, pour la Suisse, 9 paysages végétaux, 15 domaines et 15 secteurs. Les unités cartographiées, au nombre de 31, sont parfois des paysages végétaux (par exemple le N° 24), parfois des domaines (par exemple le N° 4) ou des secteurs (par exemple le N° 14), l'unité cartographiée étant hiérarchiquement la plus petite du paysage végétal. Ces subdivisions nomenclaturales ont été abandonnées ici. Nous n'avons conservé que les 31 unités cartographiques définies, auxquelles le nom global d'unités de paysages végétaux a été donné. Cela se justifie, au niveau nomenclatural, par le fait que ces unités sont considérées à égalité du point de vue de l'échantillonnage.

Les glaciers et les régions nivales, figurant en blanc sur la carte de HEGG et al. (1993), ne sont pas traités, chez ces auteurs, comme une unité à part entière. Considérant qu'il pouvait s'y trouver des lichens terricoles, il en a été fait le paysage végétal n° 31 (voir la carte des paysages végétaux sur la figure 3).

2.2.7 Régions biogéographiques et paysages végétaux

Lorsque les paysages végétaux ont été définis (HEGG et al. 1993), seules trois régions biogéographiques étaient considérées, le Jura, le Plateau et les Alpes. Gonseth et al. (2001) ont subdivisé les Alpes en 4 nouvelles régions (figure 2).

On pouvait penser que les 6 régions étaient composées d'un nombre entier de paysages végétaux, et vice-versa qu'un paysage végétal était entièrement inclus dans une seule des 6 régions. Ce n'est le cas qu'en première approximation : les 6 régions ont été définies sur des bases de répartition d'espèces, mais également en tenant compte des frontières politiques des communes, elles ne pouvaient donc correspondre exactement avec les ensembles naturels de Hegg et al. (1993). Le passage de 3 à 6 régions est également responsable de la partition de plusieurs paysages végétaux alpins (les n° 25, 26, 27, 30 et 31) entre plusieurs des 6 régions (figure 3).

2.3 Récoltes et identification

Toutes les espèces qui ne pouvaient être identifiées avec certitude sur le terrain ont été récoltées et déterminées au laboratoire à l'aide de la loupe binoculaire et du microscope. Lorsque c'était nécessaire, principalement pour identifier les genres *Cladonia* et *Stereocaulon*, la chromatographie sur couche mince a été utilisée (Culberson & Ammann 1979) pour identifier les substances lichéniques des taxons considérés. Quelque 900 analyses chimiques ont ainsi été effectuées.

Le tableau 4 indique, pour les principaux genres de lichens terricoles, l'ouvrage de référence utilisé pour la détermination des espèces. Pour les autres genres, les ouvrages généraux suivants ont été consultés: Wirth (1995), Poelt (1969), Poelt & Vězda (1977, 1981) et Purvis et al. (1992). La clé de détermination de Fryday & Coppins (1997) a également été utilisée.

Tableau 4. Liste des monographies utilisées pour la détermination, en regard des genres concernés.

Arthrorhaphis	OBERMAYER (1994)	Leptogium	Jørgensen (1994)
Buellia	Poelt & Sulzer (1974)	Peltigera	VITIKAINEN (1994)
Caloplaca	CLAUZADE & ROUX (1985)	Phaeophyscia	Moberg (1977)
Catapyrenium	Breuss (1990)	Physcia	Moberg (1977)
Cladonia	Анті (1977)	Placynthiella	COPPINS & JAMES (1984)
Collema	Degelius (1954)	Rinodina	Mayrhofer (1999)
Diploschistes	Lumbsch (1989)	Stereocaulon	Poelt & Vězda (1981)
Fulgensia	Poelt & Vězda (1977)	Toninia	TIMDAL (1991)

Dans le cas de certains taxons critiques, il a été nécessaire de se limiter à l'identification d'agrégats ou groupes de « petites » espèces difficilement séparables les unes des autres. Chaque fois que cette décision a été prise, c'était pour l'une ou l'autre des raisons suivantes: 1. Les espèces de l'agrégat ne se différencient que chimiquement, au moyen de la chromatographie sur couche mince (par exemple les petites espèces du groupe de *Cladonia chlorophaea*). Il aurait donc fallu récolter chaque échantillon observé sur le terrain pour pouvoir l'analyser au laboratoire, ce qui n'était pas possible dans le temps imparti pour ce projet. 2. Les espèces de l'agrégat n'étaient, selon moi et en accord avec

P. Clerc, pas suffisamment distinctes les unes des autres pour justifier une séparation claire et définitive. Les agrégats que nous avons définis ainsi que les espèces qu'ils contiennent sont les suivants :

Cladonia arbuscula aggr. = Cladonia arbuscula (Wallr.) Flotow ssp. arbuscula, C. arbuscula ssp. mitis (Sandst.) Ruoss, C. arbuscula ssp. squarrosa (Wallr.) Ruoss

Cladonia chlorophaea aggr. = C. chlorophaea (Flk. ex Sommerf.) Spreng. s. str., C. humicola (With.) J. R. Laundon, C. cryptochlorophaea Asah., C. grayi Merr. ex Sandst., C. merochlorophaea Asah.

Cladonia coniocraea aggr. = C. coniocraea (Flk.) Spreng. s. str., C. ochrochlora Flk.

Cladonia foliacea aggr. = C. convoluta (Lam.) P. Cout., C. foliacea (Huds.) Willd. s. str.

Cladonia macilenta aggr. = C. macilenta Hoffm. s. str., C. floerkeana Flörke, C. bacillaris (Leighton) Arnold.

Cladonia macroceras aggr. = C. gracilis (L.) Willd. var. gracilis, C. macroceras (Delise) Havaas, C. gracilis var. dilatata auct.

Cetraria aculeata aggr. = Cetraria aculeata (Schreber) Fr., C. muricata (Ach.) Kärnef.

Les spécialistes d'un certain nombre de groupes difficiles ont été consultés pour confirmer la détermination de certains échantillons problématiques. Il s'agit de O. Vitikainen (Helsinki) pour les *Peltigera*, de T. Ahti (Helsinki) pour les *Cladonia*, de H. Mayrhofer (Graz) pour les *Rinodina* et de R. Moberg (Upsala) pour les *Phaeophyscia*.

La nomenclature suit ensuite CLERC & TRUONG (2010).

2.4 Herbiers – banque de données

Après avoir récolté, étiqueté et déterminé les échantillons, les données issues des relevés A et B ont été introduites dans la banque de données nationale « LICHEN ». La structure de la banque de données, ainsi que d'autres informations, figure dans la partie « lichens épiphytes » de la liste rouge (SCHEIDEGGER *et al.* 2002), voir aussi www.swisslichens.ch.

Tous les échantillons récoltés sont déposés dans l'herbier des Conservatoire et Jardin botaniques de la Ville de Genève (G).

2.5 La classification informatique des relevés

Le logiciel MULVA-5 (WILDI & ORLOCI 1996) a été utilisé pour la classification informatique des relevés. Les détails des méthodes utilisées ne sont pas reproduits ici. Toute personne intéressée les trouvera dans VUST (2002a).

2.6 Carte de répartition réelle et potentielle

Une carte de répartition a été dessinée pour chaque espèce. Il y figure les données

réelles des km² des relevés A et B. Il y figure également, sous forme de points, des données issues de l'inventaire des lichens épiphytes (appelées relevés E) pour des espèces terricoles accessoirement épiphytes et des données d'herbiers (appelées relevés H) pour les espèces considérées dans les relevés H (tableau 1).

NIMIS & MARTELLOS (2008) proposent sur leur site internet consacré aux lichens d'Italie des cartes de répartition potentielles des espèces. Des cartes comparables sont obtenues pour les lichens terricoles de Suisse, à partir de leur indice d'abondance. Cet indice est basé sur la somme des surfaces des stations des relevés A, où l'espèce a été relevée. Un indice est calculé pour chaque

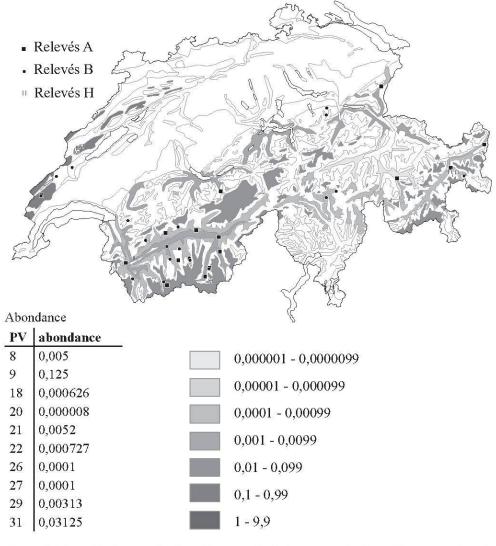


Figure 7. Exemple de carte de répartition, cas de *Peltigera lepidophora*. Y sont représentées par des points les données issues des inventaires récents, relevés A et B (terricoles), et des herbiers, relevés H. En niveau de gris figurent les unités de paysages végétaux (PV) où des relevés A ont signalé l'espèce. Le niveau de gris est fonction de la somme des surfaces des stations occupées par l'espèce dans les relevés A.

paysage végétal et sert de base à la trame des unités cartographiques. Les stations des relevés A ont été circonscrites cartographiquement sur le terrain. Ces dessins ont ensuite été comparés avec des unités standards de surface, dans le but d'en estimer la taille, puisqu'une mesure exacte était impossible. Ces unités standards ont été choisies équivalentes à des portions de km² (pour plus de détail, voir Vust 2002b). Bien qu'un lichen crustacé puisse occuper une surface réelle d'un dixième de millimètre carré, la surface minimale d'une station a été placée à 1 m², tandis que la surface maximale correspond au km² tout entier. Ces unités standards sont des valeurs semi-quantitatives, elles n'ont pas d'unités (ni m², ni %), mais il est possible d'en faire des sommes. Plus qu'une présence-absence par km², cet indice tient compte de la répartition de l'espèce dans un certain milieu et une certaine structure, qui apparaissent dans les relevés avec une certaine abondance. Les relevés B ne sont pas pris en compte pour ces cartes potentielles, parce que leur surface n'a pas fait l'objet de cartographie et reste donc indéfinie. Un exemple est donné à la figure 7.

2.7 Indices écologiques des espèces

La caractérisation de l'écologie d'une espèce par des indices écologiques est connue depuis les travaux d'ELLENBERG (1974) et de LANDOLT (1977). Pour les lichens, seul WIRTH (1992) a attribué de tels indices aux espèces les plus fréquentes d'Europe centrale. Récemment, NIMIS & MARTELLOS (2008) proposent sur leur site internet consacré aux lichens d'Italie une description des espèces comportant 5 indices écologiques. De tels indices ont été attribués aux lichens terricoles de Suisse à partir des données récoltées. Pour les détails sur la méthode utilisée, voir VUST (2010).

3. Résultats

3.1 Résultats généraux

287 taxons ont été relevés sur des substrats terricoles, entre 1996 à 1999. Ce chiffre comprend 283 espèces et 4 sous-espèces (cf. § 3.2.1). Ils se répartissent sur 311,5 relevés A et 506 relevés B, ce qui représente 1157 stations A et 569 stations B (cf. définition d'une station au § 2.2.4 et la figure 3 pour la répartition de ces relevés).

3.1.1 Relevés A sans lichens terricoles

Sur les 311,5 relevés A, 44 seulement ne contenaient aucun lichen (soit 14 %) (figure 8). Des lichens ont été trouvés dans chaque paysage végétal et aucun n'a plus de 5 relevés A sans lichens. Ces relevés sans lichens sont soit composés de surfaces urbaines, dans 4,5 % des cas, soit composés de surfaces agricoles, dans 27,7 % des cas, soit recouverts de forêts sur sols profonds, dans