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Dans le centre de dialyse de l'Hôpital cantonal de Fribourg, l'utilisation
de ce modèle a permis d'obtenir une meilleure thérapeutique; il a par exemple

été aisé de suivre les recommandations proposées à la suite de l'étude
multicentrique américaine NCDS Lowrie et al. (1980, 1981, 1983, 1984):
ainsi pour atteindre une concentration d'urée plasmatique prédialytique donnée,

(eu) permet plusieurs possibilités d'intervention, notamment sur le

temps de dialyse, la clairance et le débit sanguin à travers le filtre.
Dans les années 80, une approche différente a été proposée par MALCHES-

ky et al. (1982) et appelée quantification directe de la dialyse (qdd). Les
deux voies proposent de décrire le même phénomène et d'estimer, à partir de

(V) et (G), le taux de catabolisme protidique. Cependant les estimations
obtenues suivant (eu) ou (qdd) semblent diverger bien au-delà des erreurs de

mesure (Aebischer et al. 1985), ce qui nous a convaincus de la nécessité

d'une étude comparant les deux modèles.

La figure suivante contribuera à la compréhension de la situation. Un
traitement par hémodialyse itérative n'a de sens que s'il fait chuter la
concentration durant la phase dialytique et si cette concentration remonte dans

la phase qui suit.

1 C(t)

Figure 5- Evolution de la concentration de l'urée.

Présentation des modèles

Historiquement le travail de Sargent et Gotch (1975) a précédé celui de

Malchesky (1982). Ceci peut paraître étonnant car le modèle de Malch-
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esky est plus simple que celui de Sargent et Gotch. Dans une première
étape, nous nous proposons de familiariser le lecteur avec ces modèles en
lui donnant un condensé des expositions qu'il trouvera dans la littérature.
Le modèle de Sargent-Gotch sera appelé «(eu) » pour cinétique de l'urée
et celui de Malchesky «(qdd) » pour quantification directe de la dialyse.

Le modèle (eu)

Dans ce modèle, l'urée en solution est contenue dans un compartiment
unique. Son volume de distribution V est identifié au volume hydrique
du patient. Ce réservoir est alimenté par le catabolisme protidique selon

un taux de production instantané (urée) noté G. On désigne par Kp la
clairance du rein artificiel et par KR celle du rein naturel si celui-ci possède
une fonction résiduelle. De plus on notera C(t) la concentration de l'urée
dans le patient à l'époque /. Le bilan instantané de l'urée s'écrit alors de

la façon suivante

— (VC(t)) G- (KD + KR)C(t), sur l'intervalle dialytique,
dt

— (VC(t)) G - KRC(t), sur l'intervalle interdialytique.
dt

Ces deux équations fournissent des liaisons quantitatives entre les
grandeurs V et G, inaccessibles par une mesure directe dans un contexte
clinique, et C(t), 7\~£> et KR qui elles le sont. Nous supposons que la

phase de dialyse débute en / 0, se termine en t td, époque du début
de la phase interdialytique qui prend fin en t tg

Sargent et Gotch distinguent les deux cas suivants:

SG(1): le volume V est constant,
SG(2): le volume V est linéairement variable sur chacune des phases.

L'avantage en traitant ces deux situations réside dans le fait qu'il est possible
de résoudre explicitement les équations différentielles du bilan d'urée. On

peut cependant remarquer que SG(2) est plus réaliste que SG(1). En effet,
en cas d'insuffisance rénale, une partie ou la totalité du liquide absorbé par
le patient durant la phase interdialytique n'est plus éliminée par le rein. Il
faudra donc que la dialyse supplée à cette déficience. Ainsi le volume est

une fonction décroissante du temps durant la phase de dialyse et croissante
dans la phase qui lui succède. Nous introduisons les notations suivantes

pour traduire la variation linéaire du volume

V(t) := V(0) - edt durant la dialyse,

V(t) := V(0) — Sdtd + ee(t — td) durant la phase interdialytique,

où Ed et se sont des nombres non-négatifs accessibles à la mesure si

l'on identifie les variations de volume à celles du poids du patient. Posons
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V(0) := Vo et supposons que C(t) soit mesurée aux époques t 0 t td
et t te Nous noterons C(0) := C0 C(td) := Cd et C(te) := Ce ¦

La résolution des équations ci-dessus fournit, pour SG(1), les relations

Cd — [Co
KD + KR

KD + KR
Vo

td
+

G

KD + KR

Ce={

KR(te - td)
G \ G
— ¦ p V° + — si KR > 0C'-Kl)e

cà
G(tg - td)

Vo
,ÛKR Q

A l'aide de quelques manipulations algébriques, on parvient à exprimer G
en fonction de Vq dans les deux relations qui précèdent

/
Gd(Vo) (KD + KR)(Cd-

Co — Cd)
\

(KR + KD)td r
Ve v^ V

Gl(Vo)

KR Cô I
(C° ~ Cd^

KR(te — td

\ e Vo _J
si KR > 0

V0(C

te

?6 — Cd)
— td

si KR 0

Dans le cas des volumes linéairement variables, on choisit comme inconnue

V(0) Vo et on obtient, pour SG(2),

Cd [Co - Kd + Kr — Ed) V, Vq — Edfd

Vo
Kd + Kr

£d
1

+

+
G

KD+ Kr- Ed
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Cd

+
G

KR + £eJ \V0 -Edtd + £e{te -td)
£9 +

KR + ee

(Vo - £dtd)Cd + Gjtg - td)
Vo - Edfd + £e(td — te)

Et après transformation

/

G2(V0) (KD + Kr- Ed)

si KR > 0,

si KR 0

\

Cd-
Co - Cd

Vo

KD + KR
£d

- 1

G2e(V0) {

(Kr + es) Ce

V \Vo-edtd,

Ce — Cd

-1

\

Kr

Vq — Sdtd
1 + ee{te-td))£e +1_1

,ûKR> 0,
7

(Vo - sdtd)(Ce - Cd) + Ce£e(te - td)
si KR 0

/e - /d
Dans chacune des situations SG(1) et SG(2), les couples (Vó,G) qui
expliquent les mesures sont donnés par l'intersection des courbes définies

par Gd(Vo) et G0{Vo), i 1,2. Le problème est résolu numériquement

à l'aide d'un algorithme tel que celui de la bissection.

Il nous semble important d'insister sur la structure de ce problème.
Le phénomène est décrit à l'aide d'équations différentielles faisant intervenir

les deux paramètres inconnus Vo et G. On mesure les paramètres

accessibles td,te,Kr>,KR, Ed,Ee (ces deux derniers pour SG(2)
seulement), ainsi que C(0), C(td), C(tg), c'est-à-dire certaines valeurs des

solutions. On résoud chaque équation avec sa condition initiale C(0) pour
la première sur la phase de dialyse, C(td) pour la seconde sur la phase

interdialytique) et on impose alors les conditions finales C(td) et C(te).
Ces contraintes permettent de définir des courbes dans le plan (Vo,G) dont
les points d'intersection fourniront, s'il y en a, d'éventuelles solutions, c'est-
à-dire des valeurs de paramètres compatibles avec les observations. Il s'agit
d'un problème d'identification de paramètres.
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Le modèle (qdd)

Au contraire de (eu) qui se propose de suivre l'évolution du système à

chaque époque en s'appuyant sur le bilan instantané de l'urée, (qdd) se

contente des bilans globaux sur chaque phase. Le prix à payer est celui du

contrôle des sorties globales, c'est-à-dire la récolte du dialysat et des urines.

Nous formulons le problème pour une variation arbitraire du volume car la
situation générale n'est pas plus difficile à traiter dans ce nouveau contexte.
Nous utilisons les notations introduites pour (eu) auxquelles nous ajoutons

AdV := V(td) — V(0) variation du volume durant la dialyse,

AgV :— V(te) — V(td) variation du volume durant la phase inter¬

dialytique.

Rappelons que ces variations sont identifiées à celles du poids du patient

qd := quantité totale d'urée éliminée durant la dialyse,

qe := quantité totale d'urée éliminée durant la phase interdialytique.

En posant V(0) := Vo le bilan de l'urée sur chacune des phases fournit

(C70 - Cd)Vo + tdG CdAdV + qd

(Cd - Cg)Vo + (te - td)G Ce(AdV + AeV) - CdAdV + qe.

Il s'agit d'un système de deux équations à deux inconnues dont la
solution sera le couple cherché (Vq,G). (Nous donnons une version
légèrement différente de celle de Malchesky. En effet, cet auteur introduit
des clairances moyennes qui nous semblent superflues dans ce contexte.
Les idées générales restent cependant les mêmes).

Retour aux hypothèses

Nous allons tenter de dégager les jeux d'hypothèses sur lesquelles
reposent les modèles (eu) et (qdd), dans le but de permettre une meilleure
compréhension de leurs positions respectives. Nous espérons également
combler une lacune. Nous n'avons trouvé aucune discussion approfondie
de ces hypothèses dans la littérature concernée par ce sujet.

Le principe de la conservation de la matière

Le principe de la conservation de la matière, appliqué à l'urée, est l'élément
central de la théorie à partir duquel seront engendrés tous les modèles. Dans

cette perspective, un modèle particulier du comportement de l'urée sur les
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