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MEM. SOC. VAUD. SC. NAT. 18.3, 1990

MODELES DYNAMIQUES EN BIOLOGIE, R. ARDITI (DIR.)
DYNAMICAL MODELS IN BIOLOGY, R. ARDITI (ED.)

Les modèles mathématiques en hémodialyse:
un retour aux hypothèses

PAR

Jean-Pierre GABRIEL: et Gilbert FELLAY 2

Résumé.-GABRIEL J.-P. et FELLAY G, 1990. Les modèles mathématiques en
hémodialyse: un retour aux hypothèses. In: Modèles dynamiques en biologie, R.
Arditi (dir.). Mém. Soc. vaud. Se. nat. 18.3: 285-344.
Les cliniciens sont de plus en plus confrontés à des modèles mathématiques censés

permettre un traitement mieux adapté à chaque malade. Dans notre centre, nous
avons utilisé deux modèles: la cinétique de l'urée (eu) et la quantification directe
de la dialyse (qdd). Alors que les deux approches se proposent de décrire le même
pénomène et permettent de déterminer le volume de distribution de l'urée V et son
taux de production G, l'expérience montre que les estimations obtenues suivant les
deux voies divergent manifestement. Nous tentons ici d'apporter une clarification
de ces deux modèles en montrant que, d'un point de vue théorique, la divergence
observée est loin d'être surprenante. La comparaison des deux modèles est effectuée
en les opposant l'un à l'autre dans leur univers conceptuel. Il en ressort que qdd est
plus adéquat que eu dans l'estimation de V et de G.
Mots-clés: Hémodialyse, modèles mathématiques, cinétique de l'urée, quantification
directe de la dialyse.

Abstract.-GAmAEL J.-P. and FELLAY G, 1990. Mathematical models in
hemodialysis: a discussion of the underlying hypotheses. In: Dynamical Models in
Biology, R. Arditi (ed.). Mém. Soc. vaud. Sc. nat. 18.3: 285-344.
The importance of mathematical modeling in dialysis arose recently as a consequence
of the achievment of individualized treatment therapies. Two distinct models were
used in our center, namely the urea kinetic model (UK) and the direct dialysis
quantification (ddq), for the estimation of the urea distribution volume V and the
urea rate G. It turned out that, for the same patient, they provided us with different
results. The basic hypotheses on which the two models rely are poorly described
in the literature. The aim of this paper is an attempt to fill this gap and to show

1Institut de mathématiques, Université de Fribourg, Pérolles, CH-1700 Fribourg,
Suisse.

2Centre d'hémodialyse de l'Hôpital cantonal, CH-1700 Fribourg, Suisse.
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that the discrepancy observed between the two models is not surprising at all. The
study also shows that from a theoretical viewpoint, ddq is more appropriate than
UK for the estimation of V and G. The question of the intrinsic quality of ddq is
not discussed here.

Key words: Hemodialysis, mathematical models, urea kinetic, direct dialysis
quantification.

Introduction

Ce travail est une réponse à la question du choix entre deux modèles

mathématiques proposés aux médecins. L'introduction qui suit voudrait
apporter au lecteur non familiarisé avec le domaine de l'insuffisance rénale et
de son traitement par «dialyse», quelques notions essentielles lui permettant
de mieux saisir l'approche par «modélisation» dans un contexte clinique.

Situés derrière le péritoine, allongés de part et d'autre de la colonne

vertébrale, les reins reçoivent un flux de sang qui vient de l'aorte, les

traverse, et va se jeter dans la veine cave. Ce flux, de l'ordre de 1200 ml/min
pour un adulte, peut varier considérablement, et correspond à quelque 20

pourcent du débit cardiaque.
Ces reins maintiennent l'équilibre du bilan hydrosodé, règlent la

concentration en electrolytes du plasma sanguin et débarrassent l'organisme
de produits acides du métabolisme; ils éliminent les déchets et notamment
l'urée, produit final du catabolisme protidique. Ils exercent également des

effets «à distance » par voie hormonale.

L'arrêt de leur fonctionnement, qu'il soit brutal ou progressif, menace
le malade de façon vitale: la rétention de sel et d'eau entraîne une
expansion des compartiments liquidiens. La surcharge intra-vasculaire qui en
résulte augmente notamment la pression artérielle, et l'hémorragie cérébrale,
l'insuffisance cardiaque et l'infarctus en sont les conséquences bien
connues. La perturbation des liquides de l'organisme mène, entre autres, à l'hy-
perkaliémie, à l'acidose, à l'hyperphosphatémie et l'hypocalcémie. Les
produits toxiques s'accumulent, responsables d'un cortège de manifestations
constituant le «syndrome urémique »(fatigue, perte de l'appétit, nausées,
difficultés respiratoires). La perte des fonctions endocrines complète le tableau,

l'érythropoïétine ne stimule plus la synthèse médullaire des globules rouges,
la renine ne joue plus son rôle dans la modulation de la tension artérielle et
le manque de vitamines D bioactives déséquilibre le métabolisme phospho-
calcique.

Le traitement par dialyse peut corriger le volume liquidien et ramener sa

composition vers des zones normales, éliminer des produits toxiques grâce à

des membranes artificielles ou à la membrane peritoneale qui permettent des

transferts d'eau et de solutés. Il n'enlève pas mais réduit les conséquences
des troubles endocriniens.
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Principes de la dialyse

Comme approche initiale, il est intéressant de rappeler l'expérience de

Graham (1805-1869). Ce chercheur étudiait la diffusibilité de différentes
substances. Dans une éprouvette, il superposait une solution aqueuse du

corps considéré et de l'eau. Des bases, des acides minéraux, des sels et du

sucre diffusaient rapidement dans le solvant. D'autres, comme la gélatine,
la gomme arabique et l'albumine, n'y pénétraient que très lentement et se

présentaient comme une espèce de colle (d'où colloïdes). Ce fait est à

l'origine d'une classification basée sur la vitesse de diffusion. Remarquons
encore que la séparation était plus nette en interposant une membrane entre
la solution et le solvant.

Graham définit ce procédé comme «une méthode de séparation par
diffusion à travers une membrane »et l'appela «dialyse».

Les membranes utilisées en dialyse sont généralement poreuses. Les

particules qui les traversent diffusent dans la solution; les grosses molécules
(protéines) sont freinées ou arrêtées, alors que les petites molécules (urée,
creatinine...) et les ions Na+, K+, Ca++, Cl-... passent facilement.
Cet effet tamis joue un rôle très important dans le modèle conçu par le
clinicien. Pour expliquer la perméabilité sélective, il faut également faire
appel à d'autres phénomènes, tels que la charge électrique, les propriétés de

solubilité, etc.

La facilité de passage qu'offre une membrane à une substance en solution
ou «coefficent de dialyse » est définie de façon empirique dans les conditions
mêmes d'utilisation.

Diffusion et ultrafiltration

Lorsque deux solutions différentes sont placées de part et d'autre d'une
membrane perméable, chaque soluté passe, par diffusion, de la solution où

sa concentration est élevée vers celle où elle est basse. La vitesse de passage
dépend du gradient de concentration et de la perméabilité de la membrane.

Membrane
Sang

*- 1 Metabolites
Esia

>i\ni))i))nl ¦ ¦ r-. z±z
b+olitHS \7\

otzoiés
ttiiuttrutiiii,

Electrolytes

Figure L- Schéma d'un dialyseur.

Le maximum du transfert correspond donc au maximum du gradient de

concentration qu'il faudra conserver afin de maintenir l'efficacité du procédé
d'extraction. Pour ce, dans un système où les deux solutions sont en mou-
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vement et qui correspond au principe utilisé en hémodialyse (fig. 1), le

gradient est maintenu élevé par renouvellement des surfaces liquidiennes
qui touchent la membrane. La perméabilité dépend bien sûr de la nature de

cette membrane (cuprophane, acétate de cellulose, acrylonitrile...) et, pour
une membrane donnée, de la nature du soluté et notamment de son poids
moléculaire.

Nous avons parlé de diffusion des solutés. Le transfert de masse de la
solution (solvant+solutés) peut également s'effectuer à travers la membrane

sous l'effet d'un gradient de pression hydraulique ou osmotique. On parle
alors de transfert par ultrafiltration (ou convection).

Une membrane semi-perméable sépare le sang et le dialysat qui circulent
à contre-courant. Le gradient de pression hydraulique permet une
soustraction d'eau et de solutés. Le gradient osmotique permet, en plus, une
extraction des metabolites azotés et des electrolytes (effet dominant).
Le problème qui sera discuté concerne surtout les transports d'eau et d'urée.
Le volume d'eau extrait par le dialyseur par unité de temps (fig. 2) est donné

par Dse — Dss D¿s — Dde et la quantité correspondante d'urée extraite

par DseCse — DSSCSS DdsCds, où D débit, C — concentration,
s sang se sang qui entre, ss sang qui sort, d dialysat, de —

dialysat qui entre, ds dialysat qui sort.

Clairance d'un dialyseur

Il est d'usage de mesurer la performance d'un dialyseur à l'aide de la notion
de clairance (clearance) définie par (fig. 2)

K
Cs a,

Les modes d'extraction utilisés par les dialyseurs rendent cette grandeur
indépendante (en principe) de la concentration Cse à l'entrée de la machine.
La clairance est en fait un débit: il s'agit du volume virtuel de sang (plasma)
complètement épuré par unité de temps. La même notion vaut pour le rein
naturel (on utilisera bien sûr la seconde forme pour K).

1

c*

•D^Cs, X 0oC*

1 ,*Q.

Figure 2- Débits et concentration en solutés à l'entrée et à la sortie du dialyseur.
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Figure 3.- Hémodialyse. Eléments principaux de l'ensemble du système.

Hémodialyse et dialyse peritoneale

La dialyse, au sens clinique, combine diffusion et ultrafiltration. Elle permet
ainsi de modifier la composition et le volume des liquides corporels.
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Un choix est offert aux insuffisants rénaux: l'hémodialyse et la dialyse

peritoneale. Dans l'hémodialyse, le sang et un dialysat de composition
proche du plasma traversent le dialyseur de part et d'autre de la membrane

(fig. 3). Un accès au système vasculaire est indispensable. Dans

une situation d'urgence, on ponctionne une veine de gros calibre (veine
jugulaire interne, sous-clavière ou fémorale) qui permet un débit suffisant

(environ 300 ml/minute), alors que pour un traitement chronique une fistule
artério-veineuse confectionnée chirurgicalement sur l'avant-bras, permet le

prélèvement de sang dans la partie veineuse dilatée et sa réinjection en
aval. L'introduction du sang dans les tubulures et dans le filtre déclenche

une réaction en cascade complexe -la coagulation- qui aboutit à la formation
du caillot. Un anticoagulant est donc nécessaire (héparine).

Dans la dialyse peritoneale (fig. 4), les échanges en eau et en solutés

s'effectuent entre le dialysat, introduit artificiellement dans la cavité peritoneale,

et les vaisseaux sanguins. Le péritoine joue le rôle de membrane
naturelle. Le dialysat est renouvelé 4 à 5 fois par jour.

Colonne
vertébrale

O Oc3
yiscereg
(Intestini, foie
rate)nc2 Gc2

D& Péritoine'7OO.'O
0

¡/aisseaux, sanguins

Cavile peritoneale

Figure 4- Schéma d'une coupe sagitale de l'abdomen permettant de situer le niveau
des échanges lors d'un traitement par dialyse peritoneale.

Remarques sur la composition du dialysat (ou bain de dialyse)

Si la composition du plasma est relativement fixe, celle du dialysat préparé

pour hémodialyse est modifiable et permet d'orienter le transfert de chaque
soluté (tableau 1). Ainsi, dans le bain de dialyse, une concentration nulle en
urée et en creatinine favorise leur extraction alors qu'une concentration
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en calcium plus élevée que celle du plasma engendre un flux diffusif
inverse. Quant au sodium, élément charnière dans les variations de volume

et d'osmolalité des différents compartiments de l'organisme (plasma-
tique, interstitiel, cellulaire), sa concentration est à adapter à chaque malade

en tenant compte de son contexte pathologique. Cependant la concentration

adéquate reste un problème clinique loin d'être résolu, pour lequel
l'élaboration d'un modèle mathématique, si délicate qu'elle soit, paraît
indispensable. En ce qui concerne le potassium, si l'élimination par voie
rénale est nulle, une soustraction artificielle est nécessaire afin d'éviter les

risques mortels d'une hyperkaliémie. Par contre, en cas de diurèse et kaliu-
rie conservées, une adaptation du gradient potassique transmembranaire permet

d'éviter l'hypokaliémie, source de troubles graves du rythme cardiaque.
Enfin la correction de l'acidose demande un apport de bicarbonate; mais
celui-ci, mis en présence de calcium forme un précipité. Cette difficulté
a d'abord été contournée, au prix d'autres ennuis, en utilisant du lactate

ou de l'acétate qui, après métabolisation hépatique, donnent du bicarbonate.

Actuellement, de nombreux appareils permettent, à partir de 2 dialysats
concentrés, l'un contenant du calcium et l'autre du bicarbonate, d'éviter la
précipitation de sel en effectuant le mélange en cours de dilution.

Plasma Dialysat
Sodium 135-145 132-150
Potassium 3,7-5,0 0-4
Chlore 90-108 97-110
Calcium total* 2,2-2,8 1,3-1,6

Phosphore minéral 0,8-1,6 0-0
Magnésium* 0,8-1,0 0,35-0,4
Bicarbonate 23-27 27-31,4
Glucose 3,9-6,1 0-10

Tableau L- Composition du plasma sanguin (selon normes données par le laboratoire)

et du dialysat utilisé pour l'hémodialyse à l'Hôpital cantonal de Fribourg. La
concentration des solutés est exprimée en mmol/1.
* Seule la fraction diffusible intervient dans le gradient transmembranaire effectif.

Application clinique

Si les expériences sur la diffusion conduisirent Graham à définir la dialyse
dans la seconde partie du XIXe, ce n'est qu'un demi-siècle plus tard que
Abel et al. (1913-1914) appliquent, chez l'animal, le principe à l'extraction
de solutés sanguins. Leur premier «rein artificiel » est étrangement proche
des filtres capillaires actuels. Malgré d'intenses recherches de part et d'autre
de l'Atlantique, deux obstacles majeurs freinent l'utilisation du procédé en

clinique humaine: un problème de membrane et un problème de coagulation
dès que le sang entre dans le système extra-corporel.
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Les premières tentatives d'applications chez l'homme datent des années

20. Haas (1923) figure parmi les pionniers. Les difficultés sont nombreuses:
les infections sans antibiotiques, les thromboses sans anticoagulants, les

membranes sans cellophane. Ces problèmes sont partiellement maîtrisés
dans les années 30; l'obstacle peut-être le plus difficile reste alors celui de

l'accès répété au courant vasculaire. C'est pourquoi, en 1946, KOLFF écrit
en substance que le rein artificiel est indiqué dans l'insuffisance rénale aiguë
temporaire, non dans l'insuffisance rénale chronique irréversible (pourtant
la cible initiale de l'auteur). Mais la recherche continue et apporte ses fruits

par la voie inévitable des échanges interdisciplinaires. La collaboration entre

Domingo et Kolff en est une belle illustration: le constructeur du photomètre
à flamme offre au médecin une analyse correcte du sodium et du potassium.

C'est en 1945 que l'on trouve le premier survivant à un épisode d'insuffisance

rénale aiguë traitée par dialyse (KOLFF 1946). Bientôt différents types
de dialyseurs sont inventés. Alwall et al. (1949) apportent une réponse
nouvelle à la question de l'accès vasculaire: une canule entre artère et veine.
Parmi les nombreuses techniques proposées, celle de Scribner et coll. verra
son application très étendue. Elle permettra, en 1960, le succès du premier
traitement par dialyse chronique (Hegstrom et al. 1961).

Les progrès technologiques adaptés aux connaissances de la Physiopathologie

favorisent l'expansion de la méthode. En 1965, dans quelque 40 centres

européens, plus de 150 malades sont en traitement chronique (Alberts
et Drukker 1965). Un grave problème éthique se pose alors: les malades

en insuffisance rénale terminale sont nombreux, et l'on ne peut en traiter

que quelques-uns. La multiplication des centres spécialisés, l'hémodialyse
à domicile et les recherches en matière de transplantation sont les réponses

qu'on y apporte.
Pour le malade traité, le risque de la coagulation et d'infection lié au

shunt externe menace toujours dangereusement l'accès vasculaire. En 1966,

Brescia, Cimino et al. proposent un nouvel abord: la confection chirugicale
d'une fistule arério-veineuse interne. Un pas décisif est franchi. Dans la
décennie suivante, le traitement dialytique devient courant dans la plupart
des pays industrialisés. A titre d'indication, à l'Hôpital cantonal de Fribourg
la première hémodialyse a été effectuée en janvier 1974, et en 1987 plus de

40 malades bénéficient d'un traitement chronique, soit de façon «définitive»,
soit dans l'attente d'une transplantation. Pour l'année, le nombre total de
séances (aiguës et chroniques) dépasse 4000. Le contexte socio-économique
permet de traiter chaque fois qu'il y a indication. Si celle-ci est claire dans

l'insuffisance aiguë transitoire, elle l'est beaucoup moins dans l'insuffisance
rénale chronique de certains malades âgés.



MODELES MATHEMATIQUES EN HEMODIALYSE 293

Evaluation du traitement

Jusque vers le milieu des années 60, la recherche touchant l'insuffisance
rénale terminale visait la survie du malade. Celle-ci atteinte il fallait en
améliorer les conditions. Dès lors s'est posé le problème complexe de

l'évaluation du traitement. En fait, le clinicien conduit son traitement surtout
selon sa propre expérience clinique. Différentes méthodes d'évaluation ont
été proposées (BOBB et al. 1971, 1975; Ginn et al. 1978; Lindholm et

al. 1969) et notamment des modèles mathématiques sensés permettre une
meilleure thérapeutique.

Premières approches par modélisation

Dans les années 70, les travaux de GOTCH et Sargent (1975, 1978, 1980)
et de Sargent et Lowrie (1982) faisant appel à un modèle mathématique
tentent de déterminer, chez l'hémodialyse, le volume de distribution de

l'urée (V) (assimilé à l'eau totale du corps), son taux de production
(G) et partant, le catabolisme protidique (PCR protein catabolic rate).
Ces paramètres intéressent directement la surveillance et le traitement des

malades. On retrouvera ce modèle sous le nom de cinétique de l'urée (eu).

Dans le travail qui suit, nous utiliserons les notations suivantes:

t : temps t > 0

0 : début de la dialyse,
td : début de la phase interdialytique,
te : début de la dialyse suivante.

Ainsi td est la durée de la dialyse et te— td celle de la phase interdialytique.
C(t) : concentration de l'urée à l'époque t, Co — C(0), Cd C(t¿),
Ce C(te),
V(t) : volume de distribution de l'urée à l'époque t, Vq V(0),
a(t) — V(t) — V(0) : variation du volume à l'époque t,
AdV V(td) — V(0) : variation du volume durant la dialyse,
¿S.gV V(te) — V(td) : variation du volume durant la phase interdialytique,
Qd : quantité d'urée présente dans le dialysat total à la fin de la dialyse,

qd : quantité d'urée éliminée par le rein naturel durant la dialyse,

qe : quantité d'urée éliminée par le rein naturel durant la phase interdialytique,

Ko : clairance du rein artificiel,

Kr : clairance du rein naturel,

Kd{t) : clairance totale du système sur [0,/,-),
Ke(t) : clairance totale du système sur [td,te),
— : dérivée par rapport à t sur (0,id) U (td,tg) et dérivée à droite en 0

et td.
Tableau 2.- Notations.
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Dans le centre de dialyse de l'Hôpital cantonal de Fribourg, l'utilisation
de ce modèle a permis d'obtenir une meilleure thérapeutique; il a par exemple

été aisé de suivre les recommandations proposées à la suite de l'étude
multicentrique américaine NCDS Lowrie et al. (1980, 1981, 1983, 1984):
ainsi pour atteindre une concentration d'urée plasmatique prédialytique donnée,

(eu) permet plusieurs possibilités d'intervention, notamment sur le

temps de dialyse, la clairance et le débit sanguin à travers le filtre.
Dans les années 80, une approche différente a été proposée par MALCHES-

ky et al. (1982) et appelée quantification directe de la dialyse (qdd). Les
deux voies proposent de décrire le même phénomène et d'estimer, à partir de

(V) et (G), le taux de catabolisme protidique. Cependant les estimations
obtenues suivant (eu) ou (qdd) semblent diverger bien au-delà des erreurs de

mesure (Aebischer et al. 1985), ce qui nous a convaincus de la nécessité

d'une étude comparant les deux modèles.

La figure suivante contribuera à la compréhension de la situation. Un
traitement par hémodialyse itérative n'a de sens que s'il fait chuter la
concentration durant la phase dialytique et si cette concentration remonte dans

la phase qui suit.

1 C(t)

Figure 5- Evolution de la concentration de l'urée.

Présentation des modèles

Historiquement le travail de Sargent et Gotch (1975) a précédé celui de

Malchesky (1982). Ceci peut paraître étonnant car le modèle de Malch-
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esky est plus simple que celui de Sargent et Gotch. Dans une première
étape, nous nous proposons de familiariser le lecteur avec ces modèles en
lui donnant un condensé des expositions qu'il trouvera dans la littérature.
Le modèle de Sargent-Gotch sera appelé «(eu) » pour cinétique de l'urée
et celui de Malchesky «(qdd) » pour quantification directe de la dialyse.

Le modèle (eu)

Dans ce modèle, l'urée en solution est contenue dans un compartiment
unique. Son volume de distribution V est identifié au volume hydrique
du patient. Ce réservoir est alimenté par le catabolisme protidique selon

un taux de production instantané (urée) noté G. On désigne par Kp la
clairance du rein artificiel et par KR celle du rein naturel si celui-ci possède
une fonction résiduelle. De plus on notera C(t) la concentration de l'urée
dans le patient à l'époque /. Le bilan instantané de l'urée s'écrit alors de

la façon suivante

— (VC(t)) G- (KD + KR)C(t), sur l'intervalle dialytique,
dt

— (VC(t)) G - KRC(t), sur l'intervalle interdialytique.
dt

Ces deux équations fournissent des liaisons quantitatives entre les
grandeurs V et G, inaccessibles par une mesure directe dans un contexte
clinique, et C(t), 7\~£> et KR qui elles le sont. Nous supposons que la

phase de dialyse débute en / 0, se termine en t td, époque du début
de la phase interdialytique qui prend fin en t tg

Sargent et Gotch distinguent les deux cas suivants:

SG(1): le volume V est constant,
SG(2): le volume V est linéairement variable sur chacune des phases.

L'avantage en traitant ces deux situations réside dans le fait qu'il est possible
de résoudre explicitement les équations différentielles du bilan d'urée. On

peut cependant remarquer que SG(2) est plus réaliste que SG(1). En effet,
en cas d'insuffisance rénale, une partie ou la totalité du liquide absorbé par
le patient durant la phase interdialytique n'est plus éliminée par le rein. Il
faudra donc que la dialyse supplée à cette déficience. Ainsi le volume est

une fonction décroissante du temps durant la phase de dialyse et croissante
dans la phase qui lui succède. Nous introduisons les notations suivantes

pour traduire la variation linéaire du volume

V(t) := V(0) - edt durant la dialyse,

V(t) := V(0) — Sdtd + ee(t — td) durant la phase interdialytique,

où Ed et se sont des nombres non-négatifs accessibles à la mesure si

l'on identifie les variations de volume à celles du poids du patient. Posons
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V(0) := Vo et supposons que C(t) soit mesurée aux époques t 0 t td
et t te Nous noterons C(0) := C0 C(td) := Cd et C(te) := Ce ¦

La résolution des équations ci-dessus fournit, pour SG(1), les relations

Cd — [Co
KD + KR

KD + KR
Vo

td
+

G

KD + KR

Ce={

KR(te - td)
G \ G
— ¦ p V° + — si KR > 0C'-Kl)e

cà
G(tg - td)

Vo
,ÛKR Q

A l'aide de quelques manipulations algébriques, on parvient à exprimer G
en fonction de Vq dans les deux relations qui précèdent

/
Gd(Vo) (KD + KR)(Cd-

Co — Cd)
\

(KR + KD)td r
Ve v^ V

Gl(Vo)

KR Cô I
(C° ~ Cd^

KR(te — td

\ e Vo _J
si KR > 0

V0(C

te

?6 — Cd)
— td

si KR 0

Dans le cas des volumes linéairement variables, on choisit comme inconnue

V(0) Vo et on obtient, pour SG(2),

Cd [Co - Kd + Kr — Ed) V, Vq — Edfd

Vo
Kd + Kr

£d
1

+

+
G

KD+ Kr- Ed
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Cd

+
G

KR + £eJ \V0 -Edtd + £e{te -td)
£9 +

KR + ee

(Vo - £dtd)Cd + Gjtg - td)
Vo - Edfd + £e(td — te)

Et après transformation

/

G2(V0) (KD + Kr- Ed)

si KR > 0,

si KR 0

\

Cd-
Co - Cd

Vo

KD + KR
£d

- 1

G2e(V0) {

(Kr + es) Ce

V \Vo-edtd,

Ce — Cd

-1

\

Kr

Vq — Sdtd
1 + ee{te-td))£e +1_1

,ûKR> 0,
7

(Vo - sdtd)(Ce - Cd) + Ce£e(te - td)
si KR 0

/e - /d
Dans chacune des situations SG(1) et SG(2), les couples (Vó,G) qui
expliquent les mesures sont donnés par l'intersection des courbes définies

par Gd(Vo) et G0{Vo), i 1,2. Le problème est résolu numériquement

à l'aide d'un algorithme tel que celui de la bissection.

Il nous semble important d'insister sur la structure de ce problème.
Le phénomène est décrit à l'aide d'équations différentielles faisant intervenir

les deux paramètres inconnus Vo et G. On mesure les paramètres

accessibles td,te,Kr>,KR, Ed,Ee (ces deux derniers pour SG(2)
seulement), ainsi que C(0), C(td), C(tg), c'est-à-dire certaines valeurs des

solutions. On résoud chaque équation avec sa condition initiale C(0) pour
la première sur la phase de dialyse, C(td) pour la seconde sur la phase

interdialytique) et on impose alors les conditions finales C(td) et C(te).
Ces contraintes permettent de définir des courbes dans le plan (Vo,G) dont
les points d'intersection fourniront, s'il y en a, d'éventuelles solutions, c'est-
à-dire des valeurs de paramètres compatibles avec les observations. Il s'agit
d'un problème d'identification de paramètres.
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Le modèle (qdd)

Au contraire de (eu) qui se propose de suivre l'évolution du système à

chaque époque en s'appuyant sur le bilan instantané de l'urée, (qdd) se

contente des bilans globaux sur chaque phase. Le prix à payer est celui du

contrôle des sorties globales, c'est-à-dire la récolte du dialysat et des urines.

Nous formulons le problème pour une variation arbitraire du volume car la
situation générale n'est pas plus difficile à traiter dans ce nouveau contexte.
Nous utilisons les notations introduites pour (eu) auxquelles nous ajoutons

AdV := V(td) — V(0) variation du volume durant la dialyse,

AgV :— V(te) — V(td) variation du volume durant la phase inter¬

dialytique.

Rappelons que ces variations sont identifiées à celles du poids du patient

qd := quantité totale d'urée éliminée durant la dialyse,

qe := quantité totale d'urée éliminée durant la phase interdialytique.

En posant V(0) := Vo le bilan de l'urée sur chacune des phases fournit

(C70 - Cd)Vo + tdG CdAdV + qd

(Cd - Cg)Vo + (te - td)G Ce(AdV + AeV) - CdAdV + qe.

Il s'agit d'un système de deux équations à deux inconnues dont la
solution sera le couple cherché (Vq,G). (Nous donnons une version
légèrement différente de celle de Malchesky. En effet, cet auteur introduit
des clairances moyennes qui nous semblent superflues dans ce contexte.
Les idées générales restent cependant les mêmes).

Retour aux hypothèses

Nous allons tenter de dégager les jeux d'hypothèses sur lesquelles
reposent les modèles (eu) et (qdd), dans le but de permettre une meilleure
compréhension de leurs positions respectives. Nous espérons également
combler une lacune. Nous n'avons trouvé aucune discussion approfondie
de ces hypothèses dans la littérature concernée par ce sujet.

Le principe de la conservation de la matière

Le principe de la conservation de la matière, appliqué à l'urée, est l'élément
central de la théorie à partir duquel seront engendrés tous les modèles. Dans

cette perspective, un modèle particulier du comportement de l'urée sur les
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phases concernées découlera tout simplement d'une spécialisation de ce

principe obtenue à l'aide d'un jeu spécifique d'hypothèses supplémentaires.
Voici donc l'énoncé du principe en question.

(A) La quantité d'urée dans le corps humain considéré comme système pouvant

contenir, produire et échanger cette substance avec le milieu extérieur
est une fonction continue du temps régie par l'équation

(l) Q(h) - Q(ti) - -%,t2) - S[tut2)

où ii, ¿2 désignent deux époques ii < Í2 [¿i, ¿2) l'intervalle de temps
entre t\ compris et /2 non-compris, Q(t) la quantité d'urée présente
dans le système à l'époque t (comptée positivement), E[tltt2) Ia quantité

d'urée ayant pénétré dans le système dans l'intervalle [íi,Í2) (comptée

positivement), <S'[t1,t2) la quantité d'urée ayant quitté le système dans

l'intervalle [íi,¿2) (comptée positivement).
Il faut signaler que la formulation générale de ce principe est

(i') Q(h) - Q(h) E(tlM] - s(tlM

Cependant la continuité de Q(t) garantit l'équivalence des relations (1) et

(1'). Nous avons choisi la première car elle est mieux adaptée au modèle

(eu) qui, de toute façon, assume implicitement la continuité de la fonction

Q(t). Dans un but d'unité de présentation, nous admettons la relation (1')
pour (qdd) également. Une autre remarque s'impose: l'équation (1) fournit
une liaison entre des grandeurs de natures différentes. En effet, Q(t) est

une fonction ponctuelle qui décrit un état instantané du système, tandis

que 7£[tljt2) et >S[*1)t2) sont des fonctions d'intervalles qui mémorisent une
partie de l'histoire entre les époques ¿i et /2 • D'une fonction d'intervalle

F[tljt2) telle que 7?[tlji2) ou S[tl,t2) on attendra, à priori, les propriétés
(évidentes) suivantes

(i) F[t,t)=0, V/,

(ii) F[tlM) > 0, Víi<í2,

(iii) Si [ii,f2) [tut) U \t,t2), h < t < Í2

F[ti,t2) F[ti,t) + F[t,t2) (additivité).

De (i), (ii) et (iii) on déduit que si [íi,Í2) C \t'\,t'2), alors F[tl^ <
F[t>itt<2) Il suffit d'écrire [ii, t'2) [t[,ti) U [h, t2) U [í2, i'2), d'où l'on tire

-F[ti,t2) F^m) + F[tut2) + F[t2,t>2) > F[tut3) ¦
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Dorénavant toutes nos fonctions d'intervalles vérifieront, par définition, les

propriétés (i), (ii) et (iii).
Dans notre contexte, nous travaillerons toujours sur l'intervalle [0, oo),
f 0 coïncidant avec le début de la dialyse. Toute fonction d'intervalle
F[t!,t2) avec [iii ^2) C [0, oo) est complètement déterminée par la fonction

ponctuelle /(f) F[0)t). En effet, on a F{tlM) -F[o,î2)-
F[o,t-¡) /(/2) — /(/1), et réciproquement, toute fonction non-décroissante

sur [0, 00) et nulle en f 0 induit une fonction d'intervalle à l'aide de

la relation ci-dessus.

L'hypothèse de l'uniformité de la concentration de l'urée

L'accès expérimental à la grandeur Q(t) est assuré par la mesure de la
concentration plasmatique de l'urée en un point déterminé par l'expérimentateur.
Pour donner un sens à cette mesure, il est nécessaire de supposer que la
concentration de l'urée ne dépende pas du point choisi. Il se trouve que
les modèles (eu) et (qdd) ne reposent pas sur la même hypothèse, d'où la
distinction suivante

(B*) A chaque instant, chaque point du volume de distribution de l'urée
admet la même concentration.

(B) A l'instant de chaque mesure, chaque point du volume de distribution
de l'urée admet la même concentration.
Il est clair que B* est plus fort que B. Remarquons également que l'approche
usuelle consiste à imaginer la distribution de l'urée dans un unique
compartiment avec une concentration uniforme à chaque instant. La première
partie de l'assertion est superflue en ce sens que si la seconde est vérifiée,
il devient inutile de se préoccuper du nombre de compartiments qui abritent
l'urée. L'uniformité de la concentration, par contre, ne découle nullement
de l'unicité d'un compartiment.

L hypothèse de la production linéaire de l'urée

Si la fonction Sttl¿2\ est en principe accessible à la mesure, il n'en va

pas de même pour E¡tltia\. Dans le contexte de la cinétique de l'urée ce

terme représente la production propre de l'individu comme conséquence de

son catabolisme protidique. Dans l'état actuel des connaissances, il paraît
difficile de formuler une hypothèse fondée sur une solide argumentation
phénoménologique. Les textes de physiologie semblent muets à ce propos.
On peut tout au plus affirmer que E[0,t) est à l'évidence une fonction
non-décroissante de t et prend la valeur 0 en f 0 La fonction la plus
simple dans cette catégorie est la fonction linéaire

E[o,t) — Gt, G > 0

ce qui équivaut à 7?*tl ¿2) -= G(f2 — fi).
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(C) Pour tout intervalle [fi, ¿2) :

F[tx,t2) - G(t2 -fi)
où G est une constante positive.

On peut bien sûr contester ce choix, d'autant plus qu'il est plus contraignant

qu'il n'y paraît à première vue. Pour mettre ce fait en évidence, nous
indiquons une famille de propriétés équivalentes à l'hypothèse de la
production linéaire. Nous aurons besoin de quelques notations. La production
moyenne d'urée sur l'intervalle [ti,t2) est, par définition,

(F[ti,t2)) ¦= -, 7--%,î2) •

t2 — îi
Le taux instantané de production de l'urée est, par définition,

A(t):=lim%^,
MO h

si cette limite existe.

PROPOSITION 1. L hypothèse C équivaut à chacune des assertions
suivantes.

(a) La production moyenne d'urée est indépendante de l'intervalle;
(b) Pour tout t > 0 E\o,t) Gt, où G est une constante positive;
(c) E¡o,t) est une fonction continue pour t > 0, le taux instantané de

production de V urée est partout défini et constant (en t 0 la continuité
est comprise comme continuité à droite);
(d) 7?[tlit2) est invariante pour les translations d'intervalles

VT > 0 E[tl+TM+T) E[tut2)

Démonstration. Nous procéderons en vérifiant les implications suivantes

(C) => (a) => (b) => (c) => (d) => (C)

Les trois premières étant évidentes, nous passons à (c) =>• (d). Par

hypothèse, A(f) existe et est constant. Appelons G la valeur admise par
cette fonction et posons e(f) :— E[0tt) ¦ Ainsi

/i|0 h MO h
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d'où l'on conclut que e(f), qui est continue par hypothèse, possède une
dérivée à droite constante, donc continue, en tout point t > 0. En vertu
d'un résultat classique de l'analyse, la fonction e(f) est derivable en tout
point f > 0 et on a

jt<t) G, f>0.
La solution générale de cette équation sur [0, oo) est bien sûr e(t) Gt+b
et, puisque e(f) est continue à droite en f 0, on a

E[o,o) 0 lim e(f) b

et donc 7?-0i•) Gt, ce qui entraîne évidemment la propriété cherchée

-B[ti+T,í2+T) G(t2 - fi) E[tlM)

Il reste à montrer que (d) => (C). Par hypothèse, 7J[ii+s) E[0<s) pour
tout s, t > 0 et donc

e(t + s) 7J[o,t+s) E[o,t) + E[t¡t+S)

E[o,t) + E[o,s)

f(t) + e(s)

Nous obtenons une équation fonctionnelle bien connue. Du fait que e(f >
0, un résultat de Darboux (voir Aczèl 1961) nous garantit l'existence d'une
constante G telle que e(f) Gt et notre assertion est démontrée ainsi que
la proposition.

Remarque. La notion de production moyenne est très souvent utilisée dans le
langage médical. Il nous semble important de remarquer que (a) caractérise
la propriété de production linéaire. Si cette dernière est fausse, alors il existe
au moins deux intervalles distincts pour lesquels les productions moyennes
diffèrent.

Le choix de (C) résulte d'une méconnaissance du phénomène fondamental

de la production de l'urée. Il est plausible d'imaginer des non-linéarités
qui sont nécessaires à la description de situations de saturation qui très
certainement apparaissent à haute concentration. Mais il n'est pas impossible
que, dans les conditions cliniques qui nous intéressent, (C) reflète la réalité
de manière satisfaisante.

L'hypothèse de l'élimination de l'urée

Il est clair que le patient élimine de l'urée par des voies différentes de celles
du rein naturel ou artificiel (selles, sueur, Il semble toutefois que ces
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quantités sont négligeables dans le contexte d'une dialyse. Nous postulons
donc:

(D) Les seules voies d'élimination de l'urée sont celles du rein artificiel et
naturel.

Retour aux modèles (eu) et (qdd)

La discussion concernant la validation du modèle (qdd) est beaucoup plus
simple que celle de (eu). Nous commencerons donc par (qdd). Nous avons

déjà remarqué que le travail de Malchesky parut après celui de Sargent
et Gotch et ne semble pas avoir retenu l'attention des cliniciens qui lui
préfèrent en général (eu).

Le modèle (qdd)

Le modèle (qdd) se déduit complètement de la famille d'hypothèses formées

par { (A),(B),(C),(D)} En effet, il suffit d'établir le bilan de l'urée sur
les intervalles [0, td) et [td,te) en utilisant les hypothèses susmentionnées.

Quelques manipulations algébriques fournissent

(Co - Cd)Vo + tdG CdAdV + qd,

(S) {
{ (Cd - Cg)Vo + (te - td)G= Ce(AdV + AeV) - CdAdV + q9

La recherche de Vo et de G se ramène donc à la résolution d'un système

inhomogène de deux équations à deux inconnues. En posant

Co - Cd td \ „ _ / Vo

Cd — Ce tg — tdJ ' \G

CdAdV + qd

\Ce(AdV + AeV) - CdAdV + qe

le système (S) prend la forme

AX B

On peut remarquer que A et B sont constitués exclusivement de grandeurs
accessibles à la mesure. On sait que notre problème possède une solution
et une seule si et seulement si

det(A) (Co - Ce)(te - U) + (Ce - Cd)td ¿ 0

Il est clair que sans conditions supplémentaires sur Co,Cd,Ce,td et te,
cette expression peut admettre la valeur 0. Dans un contexte de dialyse
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itérative nous avons naturellement les inégalités 0 < td < tg et Co >
Cd < Cg qui impliquent det(A) > 0. (Ces inégalités sont indépendantes
des unités choisies). On obtient alors facilement la solution de (S)

„ (te-td)(CdAdV + qd) - td((Cg - Cd)AdV + CgAgV + qg)
v0

G

(Co-Cd)(tg-td) + (Cg-Cd)td
(Ce - Cd)(CdAdV + qd)

(C0 - Cd)(te - td) + (Cg - Cd)td

|
(Cp-Cd)((Cg-Cd)AdV +CgAgV+ qg)

(Co — Cd)(tg — td) + (Cg — Cd)td

Il est entendu que le couple (Vo,G) ainsi obtenu aura un sens physiologique

si et seulement si

V0 > 0, V0 + AdV > 0, Vo + AdV + AgV > 0, G > 0

Il nous parait opportun, à ce stade, d'introduire quelques notions. En
particulier nous utiliserons celle de «donnée» qui regroupe les grandeurs à

mesurer pour obtenir une estimation de (Vo, G) à l'aide de (qdd).

DÉFINITIONS. Nous appellerons ((donnée pour (qdd) » toute famille de nombres

Mqdd M"dd(td, tg, Co, Cd, Ce, AdV, AgV, qd, qg)

vérifiant les conditions suivantes

0<td< tg,Co > 0, Cd > 0,Co > Cd < Ce,qd > 0,qg > 0

qg admet la valeur 0 si la fonction rénale résiduelle a disparu).
Nous appellerons ((solution de (qdd) pour la donnée Mqdd » toute solution

(Vo, G) du système (S). Si de plus

Vo > 0, Vo + AdV > 0, Vo + AdV + AgV > 0, G > 0

alors la solution (Vo,G) sera qualifiée de physiologique.

Remarques générales sur (qdd). Désignons par Rn l'ensemble des rî--uples
de nombres réels. Dans une situation de dialyse itérative, le patient est

représenté par une donnée fvtqdd qui consiste en une famille de 9 nombres,
donc un point de 7Î9. Les contraintes associées à ces nombres délimitent
un sous-ensemble D C R9 et la méthode (qdd) associe un couple (Vo, G),
à chaque point de D, de la manière suivante

P e D —> (A, B) —» A~XB
£ •
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On constate que la matrice A ne fait intervenir que les grandeurs td,tg,Co,
Cd, Cg (il en va donc de même de A-1 et que le vecteur B peut s'écrire

B Bq + Bv où

(qd\ AdVCd
q \qej' v V AdV(Ce - Cd) + AgVCg

Bq représente la sortie d'urée et Bv les corrections virtuelles de la quantité
d'urée dues aux variations de volume.

Si les grandeurs td, te, Co, Cd, Cg, AdV et AeV sont fixées, alors dans

(J«\ =A~1Bq + A-1Bv,

le terme A 1BV fixé agit comme translation. Dans ce cas on constate
Vi
G

G }
et I AnV

que I " I et Bq sont liés par une bijection. Il en va de même de

° et AdT/ lorsque td,te,C0,Cd,Ce,qd,qe sont fixés car

B,,
Cd 0 \ (AdV

Ce-Cd Ce \ AgV

ou

„
d „ „ est inversible (CdCe > 0)

\C0-C-d Ce J

Il nous semble important de constater que les inégalités Co > Cd <
Ce garantissent automatiquement l'existence et l'unicité d'une solution de

(qdd). La qualité de celle-ci est évidemment une autre question. En
particulier, si le couple solution (Vo,G) comprend un nombre non-positif, il
faudra essayer d'expliquer pourquoi on quitte le domaine physiologique.

Le modèle (eu)

La discussion de (eu) est bien plus délicate que celle de (qdd). Au contraire
de ce dernier qui ne se préoccupe pas du chemin suivi par le système entre les

époques des mesures, l'approche (eu) se propose de suivre ponctuellement
l'évolution de la concentration de l'urée. Le prix à payer réside dans un
renforcement des hypothèses.

Le modèle (eu) repose sur l'équation du bilan instantané de l'urée.
Commençons par considérer un intervalle [f, f -f h) avec h > 0, grandeur

que nous ferons ultimément tendre vers 0. Pour un tel intervalle,
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le principe de conservation de l'urée (A), joint à l'hypothèse (C) de la

production linéaire, nous autorise à écrire

Q(t + h)- Q(t) Gh- S[t>t+h)

ou encore

Q(t + h)-Q(t) Sltit+h)
W h G-—h—-
On constate ainsi que la fonction Q(t) admet une dérivée à droite si et
seulement si -"-^-w possède une limite pour h tendant vers 0 Il nous
faut introduire des propriétés de régularité a priori si l'on désire fabriquer
une équation différentielle. Afin d'éviter toute ambiguïté nous rappelons
quelques définitions.

DÉFINITIONS. Soit f une fonction à valeurs réelles définie sur un intervalle
[a,b] Nous dirons que

f est continue sur [a, b] si elle est continue sur (a, b), continue à

droite en a et continue à gauche en b ;

f est derivable sur [a, b] si elle est derivable sur (a, b), derivable à

droite en a et derivable à gauche en b ;

f est continûment derivable sur [a, b] si f est derivable sur [a, b] et

sa dérivée continue sur [a,b]

Hypothèse de régularité

(E) Les fonctions C(t) et V(t) sont continûment dérivables sur chacun des

intervalles [0,td] et [td,tg] De plus V(t) est strictement positive.

Remarques. La positività stricte de V(f) est naturelle puisque cette fonction
représente un volume. En ce qui concerne la régularité des fonctions ci-
dessus, nous postulons leur dérivabilité car nous ne voulons pas développer
ici le point de vue du calcul différentiel à droite. Il est nécessaire cependant

d'exclure la dérivabilité au point td car cette époque correspond à

un changement discontinu de régime (début de la phase interdialytique) qui
entraînera un saut des dérivées. La non-négativité de C(t) (concentration)
découlera du modèle.

Ainsi sous les hypothèses (A), (B*), (C), (E), nous pouvons écrire

d
où il faut comprendre — de la manière suivante

d
_

dérivée à droite en f 0 et t — i<*,

dt \ dérivée usuelle dans (0,td) U (td,tg)
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Nous aimerions insister sur le fait que ce modèle repose sur l'hypothèse forte
(B*) et non pas sur (B), car nous utilisons la relation Q(t) V(t)C(t) pour
tout t dans [0, tg] tandis que (qdd) l'exige seulement pour les époques de

mesure.

L'existence de la limite du membre de gauche de (*) lorsque h J, 0

implique celle du membre de droite et donc de

^(i):=lim^i).
Mo h

La fonction ß(t) exprime la quantité d'urée qui quitte le système par unité
de temps. Sous l'hypothèse (D), elle coïncide avec la quantité d'urée extraite

par les reins (naturels et artificiels) par unité de temps. Il se trouve que dans
les deux modes d'élimination (diffusion ou ultrafiltration), la quantité ainsi
extraite est proportionnelle à la concentration de l'urée à l'entrée du système

d'épuration considéré (voir le chapitre I). Désignons par K le facteur de

proportionnalité en question, c'est-à-dire

/3(f) KC(f)

La grandeur K, appelée «clairance totale», est un débit: il s'agit en fait
du volume virtuel complètement épuré par les systèmes d'extraction par
unité de temps. La question de savoir de quoi dépend K est délicate. Il
ne semble pas déraisonnable d'imaginer que K dépende de f à travers
les différentes variations que subit le rein artificiel (variations thermiques,
de débit, de qualité de la membrane,...). Il nous apparaît toutefois naturel
d'admettre que K est une fonction bornée sur [0,tg).

Hypothèse de la clairance

(F) Il existe une fonction K(t) définie, bornée et non-négative sur [0, tg)
telle que

ß(t) K(t)C(t), te[o,tg).
Un fait important est contenu dans l'hypothèse (F). Dans tous les travaux
de Sargent et Gotch, les clairances sont implicitement supposées
constantes sur chacun des intervalles [0,td) et [td,t$) Nous autorisons ici
les clairances à dépendre explicitement du temps mais nous excluons toute
dépendance à travers C(t) et V(f).

Le jeu d'hypothèses (A), (B*), (C), (D), (E), (F) nous permet maintenant
d'écrire le bilan instantané sous la forme

K(t)C(t) =G- jt(V(t)C(t)), t e [0,fe)
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Nous n'avons exigé aucune régularité sur la fonction K(t) à l'exception
toutefois de sa «bornitude». La relation ci-dessus entraînera cependant
d'autres propriétés a posteriori pour cette dernière. Pour les faire apparaître
nous utiliserons le lemme suivant.

Lemme 2. Soit G > 0 et V(t),C(t),K(t) trois fonctions vérifiant les

hypothèses (E) et (F) ainsi que

K(t)C(t) G-jt(V(t)C(t)), t€[0,tg).

Si C(0) > 0 alors C(t) ne s'annule jamais sur [0,fo).

Démonstration. Supposons que le lemme soit faux. Il existe donc s dans

[0, te) tel que C(s) 0. Posons

/o:=inf(se[0,fe)|G(s)=0).

La continuité de C(t) nous garantit que C(fo) 0 et on a de plus fo €

(0,tg). Ces deux faits, avec la «bornitude» de K(t), entraînent que

KmK(t)C(t)=0.
11 to

L'équation figurant dans l'énoncé s'écrit aussi de la manière suivante

(*) K(t)C(t) G-d^C(t)-V(t)d^, te[0,tg).

De (E) on déduit que S ' est une fonction bornée et donc on a

lim-^C(f)=0.
f[ta dt

En faisant tendre f î fo dans l'équation (*) on obtient

0 G-V(fo)C-(fo),

où C~(to) est la dérivée à gauche de C(t) au point fo Puisque G > 0,
V(fo) > 0 et C(0) > 0 on a

0 < -g-, é-(fo) lim Cfa - *)- C^ - lim C<y V < 0
V(f0) MO -h Mo h

La contradiction achève la démonstration du lemme.
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Corollaire 3. La fonction K(t), dans le contexte du lemme précédent, est
continue sur [0,td) et \td,tg) avec limite à gauche en td et tg

Démonstration. Sous l'hypothèse C(0) > 0 on peut écrire

K(t) -= -¿^(G- jt(V(t)C(t))), t G [0,tg)

comme conséquence de la positivité stricte de C(t).
Nous n'envisageons pas le cas où G 0 qui rejetterait toute problématique.

La conclusion est alors évidente. (La dérivabilité de K(t) découlerait
de l'existence d'une seconde dérivée pour V(f), ce qui n'a pas été

postulé). On peut donc ajouter à (F) la propriété contenue dans le corollaire
précédent. Si l'on désigne par (F*) cette nouvelle formulation, les résultats

qui précèdent nous assurent l'équivalence des deux familles {(A), (B*),
(C), (D), (E), (F) } et { (A), (B*), (C), (D), (E), (F*) }
Nous noterons Kd(t), respectivement Kg(t), la restriction de K(t) à

[0, td), respectivement à [td,te).
Plus précisément nous décidons de faire débuter la phase interdialytique

en td La continuité à droite de la clairance reflète en particulier ce choix
et l'existence d'un saut en td le changement brutal de régime.

-*--* fc

Figure 6.- La clairance.

A propos des volumes, nous écrirons V(f) V(0) + a(t). Comme pour
7-v(f) nous introduisons les fonctions ad(t) et ceg(t) comme restrictions
de a(t) à [0, f,-) et [td, tg] Dans ce dernier cas, tg est inclus dans

le domaine de définition (voir (E)) et par continuité a(*(fd) ag(td).
Remarquons que nous aurions pu traiter ces notions sur [0,te) sans passer
aux intervalles [0,fd) et [td,te). C'est dans le but de mieux traduire
la situation phénoménologique et de rester fidèle à (qdd) que nous avons
structuré le problème de cette manière.
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Ainsi le modèle (cu) (généralisé) consiste en les deux équations
différentielles

ft((V0 + ad(t))C(t)) G- Kd(t)C(t), t G [0,td),

^((Vo + ae(t))C(t)) G- Ke(t)C(t), t G [td,tg)

qui elles-mêmes découlent du jeu d'hypothèses
{ (A), (B*), (C), (D), (E), (F*) }

Les intervalles de validité des équations ci-dessus sont ouverts à droite car
les clairances font un saut aux points td et tg

Dans le but de clarifier notre problème nous introduisons, comme pour
(qdd), la notion de donnée. Il s'agit de la famille des grandeurs à mesurer

pour reconstituer le couple inconnu (Vo,G) à l'aide du modèle. La structure
de (eu) fait intervenir, dans le cas général, des fonctions du temps. Il nous
faudra contrôler les clairances et les variations de volume à chaque époque.
La question de l'estimation de (Vo, G) devient plus difficile que dans (qdd).
La notion même de solution devra être dégagée, car elle n'est pas aussi

explicite que pour le modèle précédent.
Les conditions de régularité que nous imposons aux fonctions intervenant

dans (eu) participent d'un choix a priori. Elles constituent un point de vue
qui nous semble raisonnable mais évidemment discutable. Nous aurions pu
décider de travailler avec des fonctions discontinues également à l'intérieur
des intervalles et développer les équations à l'aide du calcul différentiel à

droite. Bien que ceci soit réalisable, la difficulté en est grandement
augmentée.

Il nous est possible d'introduire des conditions supplémentaires sur les

clairances. Dans la phase dialytique, l'extraction de l'urée se fait par diffusion

ou par ultrafiltration. L'extraction de l'eau, dans ces systèmes, se fait
principalement par ultrafiltration. Dans cette dernière situation, le solvant
(eau) et le soluté (urée) sont extraits simultanément à l'aide d'un gradient
de pression hydrostatique. Il se trouve que la membrane est parfaitement
perméable à l'eau et à l'urée (coefficient de tamisage égal à 1 si bien que
le volume de plasma virtuellement épuré coincide avec le volume d'eau
extrait. Si l'on désigne par Ku la clairance par ultrafiltration et par àu le

débit d'eau instantané extrait par ce processus, on a Ku + àu 0 Cette
méthode permet d'extraire eau et urée simultanément en maintenant constante

la concentration de l'urée dans le réservoir. Mais si à l'ultrafiltration
vient s'ajouter l'extraction de l'urée par diffusion, alors le volume virtuellement

épuré par unité de temps est strictement plus grand que àu. S'il
n'y a pas de perte d'eau autre que celle due à l'ultrafiltration, les seules

variations possibles du volume proviennent des apports qui sont alors des
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accroissements à dérivées positives. Toutes ces considérations nous amènent
naturellement à l'inégalité

Kd(t) + àd(t) > 0, f G [0,td).

La discussion ci-dessus reste bien sûr inchangée pour la phase interdialytique.

Nous admettons donc

Kg + àg(t) >0, f G \td,tg)

Remarquons que si Kg 0, alors àg(t) > 0 signifie que le patient
s'alimente en eau.

Nous disposons des ingrédients nécessaires à la mise en place de la notion
de donnée, c'est-à-dire l'ensemble des grandeurs à mesurer pour procéder
à l'estimation de (Vq,G) à l'aide de (eu).

Définition. Nous appellerons ((donnée pour (eu) » toute famille

Mcu := Mcu(td,tg,Co,Cd,Cg,ad(t),ag(t),Kd(t),Ke(t))

vérifiant les propriétés suivantes
0 < td < tg, C0 > 0, Cd > 0, Cg > 0, C0 > Cd < Cg, (dialyse itérative),

a¿d(t) est définie et continûment derivable sur [0, f^]
ag(t) est définie et continûment derivable sur [td,tg],
Kd(t) est définie et continue sur [0, td), non-négative avec limite à

gauche en td,
Kg(t) est définie et continue sur \td,tg), non-négative avec limite à

gauche en tg

Kd(t) + àd(t) >0 sur [0,fd),
Kg(t)+àg(t) >0 sur [td,tg),
<*d(0) 0,ad(td) ag(td).
Si nous désirons entreprendre une discussion de l'existence d'une

solution pour (eu), il nous faut commencer par dégager la notion même
de solution. Notre problème consiste en une identification de paramètres
en ce sens que l'on mesure la valeur de la solution d'équations différentielles

en certains points (époques) et on tente d'en déduire les valeurs des

paramètres inconnus intervenant dans les équations. La définition donnée
ci-dessous nous semble naturelle et traduit fidèlement, dans le cas général,
la méthode proposée par SARGENT et GOTCH dans leur travail. Nous nous
intéresserons d'emblée aux couples solutions (Vo,G) qui ont un sens

physiologique, c'est-à-dire

G > 0 et V0 + a(t) > 0 sur [0, te]
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DÉFINITION. Un couple (Vo,G) sera dit d-admissible)) pour une donnée

M7U si G > 0, Vo + ad(t) > 0 sur [0,td], et s'il existe une fonction
Cd(t) définie et continûment derivable sur [0, td] telle que

¿((V) + ad(t))Cd(t)) G- Kd(t)Cd(t), t G [0,td) et
at

Cd(0) Co,Cd(td) Cd.
Si (Vo,G) est d-admissible pour une donnée M.cu alors la fonction

Cd(t) ci-dessus sera appelée «fonction associée à (Vo,G) sur [0,td] pour
la donnée Mcu ». De la même manière, on définit la notion de couple
« 0-admissible » et de fonction associée pour une donnée M°u Il suffit de

remplacer 0 par td td par tg et d par 6 dans la définition qui précède.
Finalement un couple (Vo, G) sera dit «solution de (eu) pour une donnée

Mcu » s'il est à la fois d- et ö-admissible pour Mcu

Remarque. Un couple (¿-admissible est donc un couple qui permet
d'appuyer une solution de l'équation différentielle sur les conditions aux bords
données par Go en 0 et Cd en td La continuité de Cd(t) sur [0, td]
est essentielle dans notre contexte car elle empêche de prendre une solution
sur [0, td) et de la modifier de manière discontinue en td Le même
raisonnement est reproductible pour les couples ö-admissibles.

Les modèles de SARGENT et GOTCH comme cas particuliers
de l'approche générale

Nous avons maintenant la possibilité de comprendre les modèles de

SARGENT et GOTCH dans le contexte élargi par les considérations qui précèdent.
Nous partons du jeu d'hypothèses

{ (A),(B*),(C),(D),(E),( F*) }
que nous renforçons dans le but d'obtenir les deux situations traitées par
Sargent et Gotch. Nous commençons par la question qui concerne la

clairance totale du système d'épuration. Les deux auteurs précités postulent,
sans autre justification, que la clairance totale du système formé par les reins
artificiel et naturel est donnée par la somme des clairances de chacun de

ceux-ci. Cette assertion nous paraît fondée dans le cas où les deux systèmes
travaillent en parallèle. Le problème est différent pour le groupement en
série.

Admettons, pour simplifier, que le débit de plasma D soit le même dans
les deux systèmes. Il est alors facile de calculer la clairance totale

Ktot ^D(C? - Cf)

D D CD
~rfS(Ge ~ Gs + -^ïï((Ge — Gs )~PfD
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KD + KRy%. Or KD D(l - ^), donc ^
nalement on trouve

Kd
D

Fi-

Ktot KD + KR(1 -^-)=KD+KR- -^p < KD + KR

Groupement en panitele

f.

•¦

Groupement en serte

mT-rn,
Figure 7'.- Groupement des reins en parallèle et en série.

Remarquons que la formule est symétrique et ne change pas si l'on inverse
l'ordre des systèmes. La situation habituelle rencontrée en hémodialyse peut
raisonnablement être assimilée au groupement parallèle. Le rein naturel
effectue son travail sur l'artère rénale et le dialyseur sur l'artère radiale. Leurs
sorties se rejoignent dans la veine cave et sont énergiquement mélangées

par la circulation sanguine. Dans le cas d'une insuffisance rénale aiguë,
le sang est prélevé et réinjecté dans le système veineux, le groupement en
série semble plus approprié. Nous proposons donc l'hypothèse suivante

(G) Dans la situation rencontrée en hémodialyse chronique, la clairance
totale du système formé par les deux reins est donnée par la somme des

clairances de chacun de ceux-ci.

Nous introduisons encore

(H i La clairance totale est constante sur chacun des intervalles [0, td) et
[td, tg) et le volume hydrique du patient est constant.
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(H 2 La clairance totale ainsi que la dérivée du volume sont constantes

sur chacun des intervalles [0,td) et \pd,tg)
Ainsi le cas SG(1), traité par Sargent et Gotch, se déduit de

{ (A),(B*),(C),(D),(E),(F*),(G),(H 1 }
et le cas SG(2), de

{ (A),(B*),(C),(D),(E),(F*),(G),(H 2 }
Les données correspondantes sont respectivement

Mcu(td,tg,Co,Cd,Ce,Kd,Kg) et

Mcu(td,tg, Co,Cd, Cg,ed,£r,Kd, Kg)

où Kd Kd + KR,Kg Kr. Remarquons que la première famille est

plus pauvre que la seconde puisque les accroissements des volumes sont

identiquement nuls. Ce gain de simplicité ne participe pas forcément d'un
gain en réalisme et, dans le cas général, est une simplification inacceptable.

Quelques résultats sur l'existence et l'unicité d'une solution pour (eu)

Nous avons vu, dans la présentation des modèles, que les situations
particulières étudiées par Sargent et Gotch nous procurent des représentations

simples des fonctions Gd(Vo) et Ge(Vo), i 1,2. Il nous semble
donc raisonnable de considérer en premier lieu les cas SG(1) et SG(2). Le
lecteur vérifiera aisément que les points d'intersection des courbes ci-dessus

sont des solutions de (eu) au sens de la définition donnée précédemment.
La question revient donc à savoir si de tels points existent et, si oui, combien

il y en a. La vérification des propriétés suivantes est une conséquence
immédiate des relations données dans la présentation de (eu).

Proposition 4. Posons Kd KD + KR et Ke Kr
a) Pour SG(1):

Gd(Vo) est strictement croissante sur (0, oo),
Gjj(Vó) est strictement décroissante sur (0, oo),

Les fonctions Gd(Vo) et G\(Vo) sont continues sur (0, oo),
lim Gd(Vo) TGjCd,
Vo|U

lim G¡(Vo) KgCe,
VolO

lim Gd(Vo) -co lim G¡(V0) +oo.
VoJoo Voîoo

b) Pour SG(2):

Gd(Vo) est strictement croissante sur (Edtd, oo),
Gg(Vo) est strictement décroissante sur (£dtd,oo),

Les fonctions Gd(Vo) et G^(Vo) sont continues sur (£dtd,oo),
lim G2(Vo) (Kd - £d)Cd

Voledtd
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lim G2g(Vo) (Ke+Ee)Ce,
Voledtd

lim G2d(Vo) -oo lim G¡(V0) +00.
V0T00 VoToo

De ces propriétés découle immédiatement la proposition suivante.

Propositions. Soit Mcu (td,tg,Co,Cd,Cg,Kd,Kg) une donnée pour
SG(1). Le modèle admet une solution et une seule si et seulement si

KdCd > KgCg Dans ce cas V0 > 0 et 0 < KgCg < G < KdCd
Soit Mcu(td,tg,Co,Cd,Cg,Kd,Kg,£d,£e) une donnée pour SG(2). Le

modèle admet une solution et une seule si et seulement si (Kd — £d)Cd >
(Ke + £e)Ce Dans ce cas V0 > 0 et 0 < (Kg + £g)Cg < G < (Kd -
£d)Cd ¦

Ces résultats appellent quelques commentaires. On peut naturellement se

demander si la question de l'existence et de l'unicité d'une solution, dans

ce contexte, est vraiment pertinente. Ne serait-il pas légitime d'attendre
de nos modèles qu'ils fournissent automatiquement une solution unique à

notre problème d'estimation? Répondre à cette question n'est pas tâche
facile. Quels sont les facteurs qui pourraient compromettre l'existence ou
l'unicité des solutions?

Tout modèle est une caricature de la réalité, obtenue à la suite d'une
démarche de modélisation. Un objet conceptuel a été créé, le modèle, qui
obéit à la logique découlant des hypothèses choisies. Il peut arriver que
ces dernières, comme conséquence d'une modélisation incorrecte, forment
un jeu contradictoire. Dans ce cas le modèle lui-même n'a pas d'existence
et il est problématique de lui demander de fournir une solution. De plus,
dans notre problème d'estimation, nous avons une interaction entre deux
entités: le modèle et la donnée. Il faut veiller à ce que les deux soient

compatibles en ce sens que l'on n'exige ni trop ni trop peu d'informations
dans la donnée pour permettre l'estimation à l'aide du modèle. On peut
concevoir le sentiment que, pour (eu), si les clairances ou les variations
de volume sont des fonctions «sauvages», alors la donnée adéquate pour
estimer (V0,G) devra probablement contenir des mesures intermédiaires
de la concentration pour éviter la présence de solutions étrangères (cette
question sera abordée ultérieurement). Un théorème qui assure l'existence
et l'unicité d'une solution pour certaines valeurs des paramètres constitue un
bon point en faveur du travail de modélisation. Il ne nous garantit cependant
aucunement la qualité de l'estimation. En effet, la solution obtenue est celle

qui correspond à la situation idéalisée dans nos hypothèses. Si une de celles-
ci s'écarte du phénomène, il faut s'attendre à voir la solution s'éloigner de

la vraie valeur. Il serait intéressant, à ce propos, de faire une étude de la
sensibilité de la solution aux différentes variations des hypothèses.

Rappelons également que l'un des buts de notre approche réside dans
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la comparaison de (cu) avec (qdd). Il faut à tout prix s'assurer que les

déviations observées par les cliniciens entre les solutions fournies par ces

deux modèles ne proviennent pas de la présence de solutions multiples.
Seule une garantie d'unicité de la solution pourra satisfaire notre exigence.

Il nous faut également envisager le problème des erreurs de mesure.
Dans les cas traités par Sargent et Gotch, nous avons trouvé des conditions

nécessaires et suffisantes pour l'existence et l'unicité d'une solution.
Si, en raison d'erreurs de mesures, celles-ci étaient violées, alors la donnée

introduite dans l'algorithme de résolution ne nous conduirait à aucune solution.

Il nous semble important de pouvoir comprendre les causes de l'échec
si une telle situation se présentait.

Nous constatons donc que (Vo, G) peut être obtenu sans ambiguïté par la
méthode (eu) dans les deux cas particuliers proposés par SARGENT et GOTCH.

Remarquons que la discussion de l'existence et de l'unicité de la solution
a été grandement simplifiée par les propriétés de monotonie de Gd(Vo)
et Ge(Vo) sur leur domaine de définition. En fait on vérifie aisément

que la même monotonie se retrouve dans les fonctions associées Cd(t)
et Ce(t). Dans SG(1) et SG(2) on peut obtenir directement la monotonie
des concentrations. En effet, dans ces deux derniers modèles, la dérivée
de la concentration s'annule si et seulement si le système se trouve en un
point d'équilibre. L'unicité de la solution assure qu'il n'est pas possible
d'atteindre un tel point en un temps fini. Ces propriétés sont-elles liées et

se retrouvent-elles dans un contexte plus général? Avant de proposer une

réponse partielle à cette double question, il nous faut discuter une carac-
térisation analytique des couples admissibles, dans la situation générale.

Pour chacun des intervalles [0,td] et [td,fe] nous définissons

Dd := (Vo > 0 | Vo + ad(t) > 0, Í G [0,td])

De := (Vo > 0 | Vo + ae(t) > 0, t G [td,te])

puisque nous nous restreignons à la discussion des volumes V) pourvus
d'une signification physiologique. Signalons que l'on a

Dd (0, oo) n -inf ad(t), oo) et De (0, oo) n -inf ae(t), oo)
te[o,td] te[td,te]

et que les deux ensembles sont donc des intervalles. Dans le contexte
d'une dialyse itérative on aura Dd De car le système extrait de l'eau
durant la dialyse et il en reçoit dans la phase qui suit. Ce point sera repris
ultérieurement.

Lemme 6. Soit Mcu une donnée pour (eu). Le couple (Vo, G) est d-
admissible si et seulement si

(a) Vo G Dd



MODÈLES MATHÉMATIQUES EN HÉMODIALYSE 317

td Kd(s) + ád(s)rd Kd(.

Cd-CoC Jo V0 + ad(s)
(b) G d—^ -r- := Gd(Vo)

f** Kd(u) + àd(u)
[td i / —— ------—du

\ Jr Me Js V0 + ad(u) ds
Jo Vo + ad(s)

-ds

(c) G > 0

Le couple (Vo,G) est 9-admissible si et seulement si

(a') Vo G D9

h,

t*
Kg(s)+àg(s)ds

Cn-C^e Jtd Vo + a0(s)
(b') G= Ce °de

-:=Gg(Vo)
fe Ke{u) + àe{u)J

r-tg i - / —— ——du
/ T, .e Js Vo + ag(u) ds
JU V0 + O!e(s)

Remarques. Il est clair que Gg(Vo) > 0 puisque Cg > Cd
Pour un couple admissible, le volume Vo + a(t) est toujours > 0 sur

[0, tg]. On peut donc écrire l'équation de base sous la forme

l(V(t)C(t)) + ~^(V(t)C(t)) G,

et la résoudre pour V(t)C(t). Ceci équivaut à remarquer que dans l'intégrant,

à(t)
Vo + a(t)

possède une primitive qui est /n(Vo + ct(t)). On obtient alors une représentation

pour G qui semble à première vue plus simple, mais qui, à l'usage,
présente tour à tour des avantages ou des inconvénients.

Démonstration. Supposons que (V*,G) soit ci-admissible pour une donnée
A4CU. Ceci implique l'existence d'une fonction Cd(t) définie et continûment

derivable sur [0, td] telle que

jt((V0 + ad(t))Cd(t)) G-Kd(t)Cd(t), te [0,td),

et Gd(0)=Go, Cd(td) Cd.
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Puisque Vo + ad(t) est continue et strictement positive sur [0,fd], elle
n'admet jamais la valeur 0 sur cet intervalle fermé. On peut donc écrire

l'équation sous la forme

Gd(t) + Kf + à^Gd(t)- G

V0 + ad(t) aw " V0 + ad(t) '

On interprète alors l'égalité Gd(0) Go comme condition initiale. La
théorie générale des équations différentielles linéaires du premier ordre

s'applique sans difficulté puisque chaque coefficient est continu et borné sur
[0, td]. On conclut que Cd(t) coïncide avec l'unique solution du problème
donnée par

/»t pt
- / 77d(s)cis r* 1 - Hd(u)du

Cd(t) Go e Jo +G — — e Js ds
Jo Vo + a '"'

t€ [0,td) où 77d(f)

ad(s)

Kd(t) + àd(t)
Vo + ad(t)

Il suffit maintenant d'examiner ce qui se passe au point td ¦ Par hypothèse
on a

- / 77d(s)ds
Cd=limGd(t) lim(G0 e Jo +

t\td t\td

ft i - / Hd(u)du
+ G / e Js ds),

io Vo + ad(s)

puisque la fonction Cd(t) est continue sur [0,td]. Par ailleurs, 77d(t)
est continue sur [0, td) donc presque partout continue sur [0, td]. Elle
est bornée par hypothèse (voir (F*)) et donc integrable (Riemann). Par

conséquent chacune des intégrales est continue, comme fonction de t, sur
[0, td] et on a

rtd çtd
- / Hd(s)ds rtd i - / Hd(u)du

cd Co e Jo +G e Js ds
Jo Vo + coid(s)

qui est une forme équivalente de la relation cherchée.

Inversement, supposons la validité de cette dernière relation. On définit
alors la fonction suivante sur [0, td]

pu rt
- / Hd(s)ds ft -, - / Hd(u)du

C(t) := Co e Jo + G / e Js ds
JQ Vo + ad(s)
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(Hd(t) siiG[0,td),
où 77d(t) :-= < \im Hd(t) si t td

La limite en question existe par hypothèse (voir (F*)) et la fonction 77d(t)
est continue sur [0, td]. On en déduit facilement que C(t) est continûment
derivable sur [0, td], que G(0) Go et, en vertu de notre hypothèse,

que C(td) Cd. La fonction C(t) a donc toutes les propriétés exigées de

Cd(t) et la démonstration est achevée. Signalons que la deuxième partie
de la preuve nous confirme les propriétés de régularité de la solution de

l'équation différentielle au point td
La même démarche fournit l'assertion équivalente sur [fd,fe] •

Remarquons

encore l'importance de l'exigence de la continuité (à gauche) de

Cd(t) au point td Elle empêche une modification arbitraire de la valeur
de la fonction en ce point.

Lemme 7. Soit A4CU une donnée pour (eu). Le graphe des points d-ad-
missibles induit une fonction

Vo G Dd — Gd(V0)

Le graphe des points 6-admissibles induit une fonction

Vo G D9 .-» Gg(V0)

Chacune de ces fonctions est continue sur son domaine de définition et on a

lim Gd(Vo) -oo, lim Ge(V0) +oo
Vofoo Vbîoo

Démonstration. Il suffit d'appliquer le théorème de la convergence dominée

dans les représentations analytiques obtenues précédemment. Les

comportements asymptotiques découlent des mêmes considérations ainsi que des

inégalités Co > Cd < Cg

Nous commençons par discuter la question de l'unicité d'une solution de

(eu) pour une donnée Mcu Nous ferons usage de la notion de changement
de signe d'une fonction, notion qui est précisée dans la définition suivante.

DÉFINITION. Soit f une fonction réelle définie sur un intervalle I C R.
Nous dirons que / change de signe sur I s'il existe fi < t2 dans I tels

que f(t\)f(t2) < 0 ; dans le cas contraire nous dirons que f ne change

pas de signe sur I.
Nous dirons que / change au moins deux fois de signe sur I s'il existe

ti < Í2 < tz dans I tels que f(ti)f(t2) < 0 et f(t2)f(t^) < 0; dans le

cas contraire nous dirons que / change au plus une fois de signe sur I.
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Le lemme qui suit nous fournit une première conséquence de la monotonie

d'une solution de (eu) sur une des deux phases.

Lemme 8. Soient (V0',G') et (V0",G"), V0' ^ V0" deux couples d-
admissibles pour une donnée Mcu et C'd(t), Cd(t) leurs fonctions
associées. Si une de ces deux fonctions est monotone, alors G' 7-- G" La
même propriété vaut pour les couples d-admissibles.

Démonstration. Il suffit de montrer que si G' — Gd(V¿) Gd(V¿') G"
alors V¿ V0" Supposons que G' — G" et que Cd(t) soit une fonction
monotone sur [0, td] Par définition de la d-admissibilité on a

(V¿ + ad(t))C'd(t) + (Kd(t) + àd(t))C'd(t) =G',te [0, td)

(V0" + ad(t))C'd'(t) + (Kd(t) + ad(t))C'¡(t) G',te [0,td)

et bien sûr C'd(0) C'J(0) G0 C'd(td) Cd'(td) Cd Posons

V0" V0' + S, 6 ± 0 et u(t) C'¡(t) - C'd(t)

En effectuant la différence membre à membre des deux équations ci-dessus,

on obtient

(V-,' + ad(t))ù(t) + (Kd(t) + àd(t))u(t) - -oC'd\t) t G [0,fd)

et u(0) u(td) 0 Par conséquent, on trouve

rtd Kd(s) + àd(s)/Jo
-ds

u(td)=u(0)e Jo V¿ + ad(s)

td _
(td Kd(r) + àd(r) dr

- 6 [ d

C'd\s) e
Js V¿ + ad(r) Tds

Jo

La fonction Cd(t) étant monotone, sa dérivée ne change pas de signe et,
de plus, il existe £ G (0, td) tel que

(j"/t\ G'd (td) - Cd(0) _ Cd-Co
< 0

td td

on obtient ainsi la contradiction

u _
(td Kd(r) + àd(r) dr

-6 [d e Js V¿ + ad(r)
f'
C'¡(s)ds > 0

Jo



MODELES MATHEMATIQUES EN HEMODIALYSE 321

On répétera la même démarche pour les couples (/-admissibles.

Voici une considération qui nous mènera à un critère simple pour contrôler

le changement de signe de la dérivée de la fonction concentration.

Supposons que l'on puisse dériver l'équation

jt:V(t)C(t) + (K(t) + V(t))C(t)=G.

On obtient

V(t)C(t) + (K(t) + 2V(t))C(t) -(K(t) + V(t))C(t)

dont on déduit facilement la relation

7l
dì

I fm + rtVj. \
eJt« v('> C(t)

\ I
fdt,

tK(s) + 2V(s)ds

=-*%v('W*> v{s)

t K(s) + 2V(s)f
et donc eJto V^ C(t)

f8 K(r) + 2V(r)

=C(to)-rt^±^lic(s)Jto V(r) V
Jt0 V(s)Ho

Posons

(sK(r) + 2V(r)

P(t):=f K{s)jyC(s)eJto V(r) ^ito V(s)

On constate que si P(t) est une fonction monotone, alors C(t) change
au plus une fois de signe. Puisque les solutions C(t) de (eu) qui nous
intéressent sont toujours positives, la propriété précédente est vraie si K+V
est une fonction monotone. Cette condition est suffisante mais, comme on
peut le constater aisément, loin d'être nécessaire. Cette démarche repose
sur des conditions de régularité plus fortes que celles énoncées dans nos
données pour (eu). La propriété reste cependant vraie dans le cas qui nous
intéresse. Ceci est l'objet du lemme suivant.
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Lemme 9. Soit J\4CU une donnée pour (eu) telle que Kd(f) + àd(t)
est non-décroissante sur [0,id). Soit (Vq,G) un couple d-admissible

pour cette donnée et Cd(t) la fonction qui lui est associée. La situation
0 < f' < t" <td, Cd(t') <0 et Cd(t") > 0 est impossible. Il en découle

en particulier que Cd(f) change au plus une fois de signe sur [0, td] ¦

Démonstration. Supposons le contraire. Alors il existe

t0 := sup(f | t' <t< t", Cd(t) 0) < t")
Par continuité, Gd(io) 0 et de plus Cd(t) > 0 sur (to,t"), assurant la
croissance stricte de Cd(t) sur cet intervalle. Posons a(t) :— Kd(t) +
àd(t). Puisque Gd(to) 0, on a a(to)Gd(io) G, et pour e > 0,
to + e < t"

/oJt,

t0 + £ a(s)
ds

cd(to + £) ----- cd(to)eJto y(fi) +
/•fo +£

V(r)
"'"' Jto V(s) -

Í "
oJh

to + £
fto+£ a(r)

+ a(to)Cd(t0) [ ° Jr^e Js V(r) (]s
JtnIto V(s)

rt°i£a^-ds
< Cd(to)(eJto y(fi) +

fto + £ a(r)

Cd(to) *

Ceci est une contradiction puisque Gd(to + e) > Gd(to) • On peut adapter

de façon évidente le lemme 9 à la situation où Kd(t) + àd(t) est non-
croissante sur [0, td] ; il suffit alors d'inverser les inégalités. Le lemme
fonctionne de la même façon sur [td, tg).

LEMME 10. Soient (V0',G) et (V0",G), V0' -^ V0" deux couples d-admissi-
bles pour une donnée J\ACU et C'd(t), Cd(t) leurs fonctions associées sur
[0, i-*]. Si C'd(t) et Cd(t) changent chacune au plus une fois de signe sur
[0,td], alors les courbes définies par C'd(t) et Cd(t) sur [0, td] n'ont pas
de points communs autres que les extrémités. La même propriété vaut pour
les couples 6-admissibles.

Démonstration. Supposons que les deux courbes en question se

coupent en un point d'abeisse f i G (0, td). Puisque V0' -^ V0" on a

*

_ G-(7fd(0) + àd(0))G0 G-(^d(0) + àd(0))Go _
*

0d(uJ — 77, T TTTi — °d(uJ i
v0 v0
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et pour les mêmes raisons C'd(ti) ^ Cd(t\). Ainsi au moins une des deux
fonctions est non-constante sur [0, ti] et il en va de même sur [fi, td].

Si Go 7-= C'd(ti) Cd(ti), alors aucune des deux fonctions n'est
constante sur [0,ti] et en vertu de l'argument donné dans la démonstration
du lemme 8, aucune ne peut être monotone sur [0,ti]. Notre hypothèse
assure alors que le changement de signe de leurs dérivées a lieu sur (0, ti).
Par conséquent nos deux fonctions sont monotones sur [f i, td] et puisque
l'une des deux n'est pas constante, une nouvelle application de l'argument
précédent exclut cette possibilité.

Si Go C'd(ti) — Cd(t\), alors la fonction non-constante sur [0,ii]
ne peut être monotone, entraînant qu'elle l'est sur [fi, td]- L'inégalité
Go > Cd assure qu'elle est non-constante sur [ti, td] et le même argument
rejette à nouveau cette éventualité. Le lemme est ainsi démontré.

PROPOSITION 11. Soit A4CU une donnée telle que Kd-\-àd soit monotone

non-décroissante sur [0,td] • L'ensemble des couples d-admissibles

(V),G) pour Mcu définit, sur Dd une fonction continue strictement
décroissante.

Démonstration. Nous avons déjà démontré que l'ensemble des couples
ci-admissibles définit le graphe d'une fonction Gd(Vo) continue sur Dd
Vérifions d'abord que notre hypothèse entraîne l'injectivité de cette fonction,
d'où découlera sa monotonie stricte puisque Dd est un intervalle.

Rappelons tout d'abord que l'hypothèse ci-dessus implique que les fonctions

Cd(t) associées aux couples ci-admissibles ont une dérivée qui change
au plus une fois de signe sur [0,td], Soient (V¿,Gd(V¿)) et (V0", Gd(V¿'))
deux couples d-admissibles pour Mcu avec V¿ < V0" et C'd(t), Cd(t)
leurs fonctions associées. Si un des deux nombres C'd(0) ou Cd(0) est

négatif ou nul, alors le lemme 9 nous assure que la fonction correspondante
est non-décroissante sur [0, td] et le lemme 8 permet alors de conclure que
Gd(V¿) / Gd(V¿'). Il reste à considérer le cas C'd(0) > 0 et Cd'(0) > 0

Supposons que Gd(V¿) Gd(V0") G. On a alors

Vo'Gd(0) (Kd(0) + àd(0))Co - G V0"Gd'(0)

De Vq' > V0' on déduit C'd(0) < Cd(0). Par ailleurs, nous nous trouvons
dans la situation exposée dans le lemme 10, ce qui nous permet d'affirmer
que C'd(t) > Cd(t), t G (0, td), puisque les courbes définies par ces deux
fonctions ne peuvent pas se couper sur (0, td) ¦ Or, par intégration des

équations de base (cette question sera traitée en détail dans l'argumentation
précédant la proposition 16), on obtient

(V0' + ad(td))Cd - V0'Go -Gtd - f "'(Kd(t) + àd(f))C'd(t)dt,
Jo
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(V0" + ad(td))Cd - V0"Go -Gtd - I (Kd(t) + ád(t))C'¡(t)dt,
Jo

et la différence membre à membre de ces deux équations nous fournit

0 > (V0'-V0")(Gd-Go)= [ d(Kd(t) + àd(t))(Cd(t)-C'd\t))dt > 0,
Jo

donc une contradiction car, par hypothèse, Kd(t) + àd(t) > 0 sur [0,td)
(voir la notion de donnée pour Mcu Il en résulte que

Gd(Vo') ¿ Gd(V¿')

et donc l'injectivité souhaitée. La monotonie stricte de la fonction Gd(Vo)
est donc établie. De Go > Cd et de la caractérisation analytique de Gd(Vo)
dans le lemme 6, on déduit facilement que Gd(Vo) tend vers —oo lorsque
Vo —? oo Notre fonction est donc strictement décroissante.

Le lemme dual lorsque l'on remplace d par 8 est évident.

LEMME 12. Soit Mcu une donnée telle que Kg + àg soit monotone non-
croissante sur [td,tg). L'ensemble des couples 9-admissibles (V>,G) pour
fAcu définit, sur De une fonction continue strictement croissante.

La conclusion de ce développement peut être résumée dans la proposition
suivante.

PROPOSITON 13. Soit (V),G) une solution de (eu) pour une donnée M.cu
telle que Kd + àd est non-décroissante sur [0, td) et Kg + àg non-
croissante sur [td, tg) Alors (Vo, G) est l'unique solution de (eu) pour la
donnée en question.

La démonstration est une simple application des lemmes qui précèdent.

On utilise le fait que l'intersection d'une courbe strictement décroissante

et d'une autre strictement croissante consiste en un point au plus.

Remarque. La proposition ci-dessus est certainement très éloignée de la

proposition la plus générale qui amènerait à la même conclusion. Elle
présente cependant l'avantage de contenir les cas étudiés par Sargent et
Gotch puisque Kd + àd et Kg + àe sont alors supposés constants. De

plus cette condition autorise des variations de chacun des termes et généralise

donc la situation classique.

L'existence d'une solution pour (eu)

De même que pour la question de l'unicité nous n'apporterons qu'une
réponse partielle. De plus nous renforçons certaines propriétés en
commençant par celles qui concernent l'accroissement de volume. Dans un
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contexte de dialyse itérative, le volume du patient diminue durant la phase

dialytique puisque le système d'épuration prélève une partie de son eau par
ultrafiltration. Dans la phase qui suit, le volume aura tendance à croître par
suite de l'alimentation en eau et de l'insuffisance rénale de ce même patient.
Il nous semble donc réaliste de supposer que le volume en question atteint

sa valeur minimale à l'époque td ¦ Ainsi nous postulons que

min a(t) ad(td) ag(td) < 0,
te[o,td]

et, de plus, que celui-ci est strict

a(t) > ad(td) ag(td), Vf G [td,tg] \ {td}

Cette contrainte exclut le cas SG(1) du volume constant proposé par S

argent et GOTCH mais contient SG(2); nous traiterons cette situation séparément.

La limitation introduite ci-dessus entraîne que

Dd D9 {Vo > 0 | Vo > -ad(td)}

qui, à son tour, nous assure que toute solution de (eu), s'il y en a, est

automatiquement physiologique (rappelons que Gg(Vo) > 0).
La discussion de l'existence d'une solution équivaut à celle de

l'intersection des courbes données par Gd(Vo) et Ge(Vo). Il est facile de voir
que

lim Gd(Vo) —oo, et lim Ge(Vo) -f-oo
Vq—>oo Vô—>oo

Il est donc logique d'étudier la valeur limite, si elle existe, de chacune de

ces fonctions lorsque Vo J. —ad(td). Le lemme suivant nous sera utile

pour cette discussion. Il s'agit d'une légère modification du résultat donné

par Flett (1966).

Lemme de comparaison 14. Soient f et g deux fonctions définies sur
[a, b) Riemann-intégrables sur [a, x), Va: G (a, b) et telles que f > 0 et

g > 0 sur [a, b).
fb f(x\

(a) Si / g(x)dx < +oo et si lim sup < oo alors
Ja *Î6 9(x)

rb
f(x)dx < +00

ta
fb f(x)

(b) Si I g(x)dx -foc et si lirninf —--—-- > 0 alors
Ja

fJa

fJa

xtb g(x)
b

f(x)dx +00
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/*Ò r-X

où les j sont à comprendre comme limites de I lorsque x ] b
Ja Ja

Démonstration.

(a) Si

fix)L := lim sup -, < oo
xîb g(x)

alors

fix) -Ve > 0,3xe G (a, b) tel que ---y-f < L + e, Vie (x£,b)
9(x)

Par conséquent

,6
f(x) < (L + e)g(a;) sur (x£, fc), et donc / f(x)dx < +oo

Ja

(b)Si

L:= lim inf-^-7-4 >0,
a:T6 c7(-r)

alors il existe xo G (a, b) tel que /(x) > 0 sur (xo,b). Ainsi jA est
bien défini sur (xo,b) et on a

ff(-c) 1

limsup -—— 77—r- < +00
*1» Î{X) lim inf M

xT6 g(x)

En vertu de (a), si

,6 ,6
/ f(x)dx < +00, alors / g(x)d.

Ja Ja
,x < +00

Puisque, par hypothèse, cette dernière intégrale diverge, on conclut que

rb

[ f(x)d-
Ja

X +00

(Cette démarche évite de devoir distinguer les cas L fini et L oo Le
résultat vaut aussi dans le cas (a, b]((x, b], x { a).

Dans les prochains développements nous ferons usage de la grandeur
suivante

lim(7Gj(f) + àd(t)) K~(td) + àd(td)
t\td
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Nos hypothèses de régularité garantissent l'identité de àd(td) et de la
dérivée à gauche de ad(t) au point td ¦

Proposition 15. Soit Mcu une donnée telle que la fonction a(t) admet

un unique minimum global sur [0,tg] au point td et Kd (td) + àd (td) >
0 Alors on a

rtd Kd(s) + àd(s)
(a) lim / —— 7——«is +00, pour tout t e [0,td)

Vol-ad(td) Jt Vo + ad(s)

(b) lim Gd(Vo) (Kd(td) + àd(td))Cd
Vol-ad(td)

r /-< nr\ (MU) - ag(td))Cg
(c) hm Ge(VQ)-

Voi-ad(td) ¦ ' "' rte Kg(rj
te - [ """¦' dr

¡6 e
Jtd Mr) - <*e(td) ds

Jtd

(d) Le modèle (eu) admet au moins une solution si

(ir-f* \ .L. a.-(+ \\r> -. (ag(tg) - ag(td))Cg
(Kd (td) + ad [td))Cd > r- —

_
e Kg(r) dr

[e e Jtd Mr)-MU) ds
Jtd

Démonstration, (a) Par le lemme de Fatou on a, pour tout t G [0, td).

liminf
(tdKd(s) + àd(s)ds>(UKd{s) + àd(s)

Vol-ad(td) Jt V0 + ad(s) Jt ad(s) - ad(td)

Posons

ci \ 7G*(s) + àd(s) 1

Qd(*S) - MU) td- S

rtd
Il est clair que / g(s)ds +00 et

•7ft

f(s) Kd(s) + Qd(s)
i Kf (td) + ¿d (U)

g (s) _MS) - MU) sita -àd(td)
s-td

G [0, 00
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puisque le minimum de ad(t) sur [0,td] est réalisé en td entraînant que
àd (td) < 0 Dans le cas où ce nombre est zéro, le quotient ci-dessus prend
la valeur +00 Dans tous les cas nous avons

f(s)
liminf-9-T > 0,

sttd g(s)

si Kd(td) + àd(td) est positif, et le lemme de comparaison nous garantit
que

rtd
f(s)ds — +00

It
Ainsi la démonstration du point (a) est achevée. Passons à celle de (b).
La seconde condition de l'énoncé, avec la continuité des fonctions en

présence, nous assure l'existence de to G [0,fd), tel que 7\"d(f) + àd(t)
> 0 sur [to,td) • Par conséquent le résultat précédent s'applique à notre
situation. De plus, la fonction

(U Kd(r)+àd(r)
s G t0,td 1—> / 7} 7-^7-«G pour td fixe

Js V0 + ad(r)

est continue, strictement décroissante sur [fo, td], et admet la valeur 0 en

td ¦ Ce fait entraîne que

r

L
U Kd(r) + àd(r)

dr
s G [to, id] —? iV„:=e Js Vo + ad(r)

est strictement croissante et définit une bijection de [to, id] sur l'intervalle
suivant

rU Kd(r) + àd(r)
IJtn

-dr
[g Jt0 Vo + ad(r)

^
1*

En vertu du résultat (a) qui précède, on a

lim YVo |0
si s td

Vol-ad(td)
* "° 1 0 SÌ f0 < S < td

La fonction Yy0(s) est évidemment inversible et l'égalité précédente
implique la propriété suivante de sa fonction inverse

lim SVo(y) li° sir°Vt
Voi-ad(td)

Voyyj \td SI 0 < 1/ < 1



MODÈLES MATHÉMATIQUES EN HÉMODIALYSE

Rappelons que nous nous intéressons au comportement de

_
rtd Kd(s) + àd(S)

r.,-r„p J\

Gd(Vo)

329

Cd — Co 6 V0 + ad(s)
-eis

rtd

Jo

1

V0 + atd(s)

L
U Kd(r) + àd(r)

s V0 + ad(r) "'
ds

dr

lorsque Vo J, —ad(td). En vertu de (a) et du théorème de la convergence
dominée, le numérateur tend vers Cd et

lim
v0[-ad(td)

(U i
io Vo + a

ftd Kd(r
Js Vo-

+ àd(r) dr

Ms)
Ainsi il nous suffira d'étudier l'expression

Cd

+ Mr) ds 0.

rtd

Jtn

1

t0 V0+ad(s)

rtd

Js
Kd(r) + àd(r) dr

Vo + Mr) ds

lorsque Vo J. —oid(td) ¦ Nous effectuons le changement de variable S —

S SVo(y).

rtd

Jtnt0 V0 + ad(s)

'U Kd(r) + àd(r)
^

C Js V0 + Qd(r) u'dsfJs
-dr

L

L

i:

Vq + ad(SVo(y))

Vvb(io) Vo + ad(SVo(y)) Kd(SVo(y)) + àd(SVo(y))

dy

dy

YVo(to) Kd(Sva(y)) + MSvo(y))

[Vv0(to),l]
dy

Kd(SVo(y)) + àd(SVo(y))

où Ia est l'indicatrice de l'ensemble A. Il est clair que l'intégrant est

majoré par une constante sur [0,1], donc une fonction integrable, et que

I [*V0(to),l]

Kd(SVo(y)) + àd(SVo(y)) Voi-ad(td)

1

Kd(to) + àd(io)
1

{ Kd(td) + àd(td)

si y 0,

si 0 < y < 1
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La convergence a donc bien lieu presque partout vers

1

Kd(td) + àd(td)
'

Le théorème de la convergence dominée et la caractérisation analytique de

Gd(Vo) achèvent la démonstration de (b).

Remarque. La technique exposée ici fournit le même résultat dans le cas
où le volume est supposé constant et égal à Vo. Il faut alors faire tendre
Vo vers 0 la seconde hypothèse étant remplacée par Kd(td) > 0

Nous passons au point (c), c'est-à-dire au comportement de Gg(Vo)
lorsque Vó j —ag(td). Il se trouve que notre travail est cette fois simplifié
si l'on fait appel à l'autre représentation de Gg(Vo). Nous avons

¿((V. + ag(t))Cg(t) + vK°{t) ,A(Vo + ag(t)))Cg(t)) G
dt V0 + ag(t)

sur [td,tg) et on impose Cg(td) — Cd,Cg(tg) Cg On obtient alors la
relation

rtg

Jtd
K^ -dr

(Vo + ag(tg))Ce (Vo+ae(td))Cde JU V0 + ae(r) +
rtg

te _ f ggfrj dr
f6 e Js V0 + ae(r) rdSj

Jtd
G

et ainsi

rU

c=(Vo + Mte))Ce - (Vo + MU))Cde JU V0 + ae(r)Jtd
K^ dr

jte Kg(r)
Js/rtg

- I ——; r^dr
td
f e Js V0 + ag(r) ds

Jtd

Lorsque Vo J. —ag(td), on voit immédiatement que le numérateur de la
fonction ci-dessus converge vers (ag(tg) — ag(td))Cg ¦ De plus l'intégrant
du dénominateur est non-négatif et borné supérieurement par 1 sur [td, te].
Il est donc dominé par une fonction integrable. Par ailleurs, on a

gii!) _> { ag(r)K-ag(tdy ú^(td,tg]
Vo + ag(r) Vol-ae{td)\

K +00, si r td
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On a donc une convergence p.p. en croissant vers

Kg(r)
Mr) - Mu)

puisque, par hypothèse, ag(r) — ag(td)0, Vr G (td,tg]. Le théorème de

la convergence monotone nous assure que

lim **.(-) J* K.jr)
l-<*e{td)Js V0 + ag(r) Js acg(r) - ag(td)

pour tout s G (td, tg], donc presque partout sur [td, tg]. Le théorème de la

convergence dominée nous permet finalement de conclure que

te _ [U Ko(r) dr
lim / e

JS V0 + ag(r) ds
VoL-ae(td)Jtd

(U Kg(r)
Js

rU - I —— TT^dr

ltd
f e Js Mr)-Mu) ds

Jtd

Ainsi

lim Ge{Vo)=
(Mtg) - ag(td))Cg

-aa(U) rUVol-a»(U) rze Kgrr)

Í>u

f i "c v,' / j[ 6

e Js Mr) - MU) ds
Jtd

Remarque. Ce dernier résultat vaut aussi pour Kg — 0. Si par contre le

volume est constant, la technique utilisée ici ne s'applique plus. Il faut
traiter le problème de la même façon que le cas précédent sur la phase

dialytique. On obtient alors

limGe(V0)=7Â7(fd)Ge,
VoJ.0

en supposant bien sûr que K7(td) > 0.
La démonstration de (d) découle immédiatement de la continuité de Gd(Vo)
et Gg(Vo) ainsi que de

lim Gd(V0) -oo, lim Gg(V0) +oo
Vbîoo Vbîoo

On pourrait évidemment étudier les limites dans tous les cas possibles,
à commencer par Kd(td) + àd(td) 0. On peut également supposer



332 J.-P. GABRIEL ET G. FELLAY

que a(t) admet un ou plusieurs minima globaux ailleurs qu'au point td.
L'exercice, sans aucun doute intéressant d'un point de vue analytique, ne

nous semble pas apporter une contribution suffisante à la compréhension du
modèle pour justifier un traitement détaillé.

Une dernière remarque s'impose: la condition suffisante d'existence
d'une solution donnée dans (d) devient nécessaire si Gd(Vo) est croissante

et Ge(Vo) décroissante sur (—ad(td), oo). En vertu de l'analyse
qui précède, ceci est le cas si Kd + àd est non-décroissante sur [0, td) et

Ke + àg est non-croissante sur [td, tg).

Remarques sur la ((robustesse » des méthodes proposées

Nous voulons insister sur un aspect important de (qdd). Ce modèle se

moque de la complexité de la trajectoire suivie par le système entre 0, td
et tg Sa structure n'est absolument pas altérée par les variations que l'on
fait subir au réservoir et les formules pour estimer (Vo, G) sont les mêmes.

Malheureusement il n'en va pas de même pour (eu), car ce modèle est
extrêmement sensible à la façon dont on agit sur le système. Les formules
simples dans les cas SG(1) et SG(2) se compliquent tout de suite si les

variations de volume et des clairances deviennent arbitraires. Il se trouve que
la méthode d'estimation elle-même doit être modifiée suivant la complexité
des variations. Nous n'avons pas l'intention d'entrer dans le détail de cette

question. Nous nous contentons de décrire une situation dans laquelle ce

phénomène devient apparent.
Nous nous plaçons dans le cas SG(1) que nous perturbons sur la phase

de dialyse de la façon suivante. Posons Kr + Ku Kd et pour chaque

n > 1, construisons la fonction Kd,n(t) qui correspond à une chute de la
clairance vers la fin de la dialyse.

Kct)
«A

K

Ü *
Figure 8- La fonction Kd,n(t) ¦
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Ainsi on voit facilement que

lim Kd,n(t)=Kd ,V ÍG [0,id).
n—>oo

La limite ponctuelle est dominée dans Li, a même lieu dans Li, mais n'est

pas uniforme. Ce dernier aspect joue un rôle décisif dans notre argument.
En supposant Kg > 0, nous savons que dans la situation SG(1),

Gd (Vo) décroît strictement de TGiGd à —oo tandis que Ge (Vo) croît
strictement de KgCg à +00 Dans le cas perturbé, pour chaque n > 1,
nous pouvons écrire

1 (U
(jT / Kd,n(s)ds)

^..3 vo Jo
Gd,„(Vo)

CdeVoJo -Go
1 fU (— / Kd,„(r)dr

e yo Jo dsL

Remarquons que nous pourrions être tentés d'intégrer explicitement ces

expressions dans le cas d'une chute linéaire de la clairance. Nous n'en ferons
rien afin de bien mettre en évidence le fait que notre phénomène n'est pas
lié à une telle chute, mais que celle-ci peut prendre une forme arbitraire. La
convergence de 7<d,n(i) vers Kd étant dominée, nous avons pour Vo > 0

Gd,„(Vo) —> Gd1}(Vo), Vo>0.
n—»oo

Par ailleurs, on sait que pour chaque n > 1

Gd,n(Vo)^QKln(td)Cd=l-Cd.

Il est clair que nous admettons la condition d'existence d'une solution
KdCd > KgCg pour SG(1). De ceci découle la possibilité de choisir
0 < Vq < Vo et no suffisamment grand pour obtenir la configuration
puisque Gd,no(Vo) —> —oo lorsque Vq —* +00 nous concluons que

Gd,„0(V0) et G^(Vo)

possèdent au moins deux points en commun. L'approche (eu) dans ce cas
fournit plusieurs solutions ce qui indique l'insuffisance de la donnée pour
aboutir à l'unicité.
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*A-

Kc>

d.h. '

G V.
d.n

m *

\/J I/
Vo

Figure 9.— Configuration souhaitée.

On pourra certainement séparer les solutions en procédant à des mesures de

la concentration en de nouveaux points intermédiaires. On constate ainsi

que l'estimation par (eu) n'est pas robuste pour la généralisation de SG(1)
et SG(2) aux cas de clairances et volumes arbitrairement variables.

L'équivalence des modèles (qdd) et (eu)

On trouvera dans l'étude de Alberts et al. (1985) une comparaison
expérimentale des solutions (Vo,G) fournies par les modèles (qdd) et (eu) pour
un même patient. Dans une première étape les auteurs montrent que ces

solutions divergent considérablement. Une étude quantitative simple montre

que ce fait peut difficilement être expliqué par les erreurs de mesure. Les

auteurs proposent ensuite de modifier les clairances mesurées ponctuellement

et de les remplacer par des valeurs corrigées sur la base des sorties

qd et qe mesurées dans le contexte de (qdd). On voit alors les solutions
se rapprocher considérablement. Nous allons traiter ici cette question dans

un contexte théorique et montrer que cette constatation est très pertinente.
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Supposons qu'une prise de données soit effectuée sur le même patient

pour (qdd) et (eu). On obtiendra

Mqdd(td, tg, Co, Cd, Cg, AdV AeV, qd, qe)

Mcu(td,tg,Co, Cd,Cg, ad(t),ae(t), Kd(t),Ke(t))

avec les conditions suivantes de compatibilité

AdV ad(td) - ad(o) ad(td)

A0V ae(tg) -ae(td)

puisque les mesures de variations de volume sont effectuées de la même
manière.

Définition. Les deux familles Mqdd et Mcu seront appelées ((compatibles))

si les deux égalités ci-dessus sont vérifiées.
Nous insistons sur le fait que dans (qdd) les sorties qd et qe sont

mesurées tandis que dans (eu) elles sont obtenues à partir des clairances,
c'est-à-dire des sorties instantanées. On retrouve l'opposition globale-locale
attachée à ces deux approches. Ainsi les sorties globales dans (eu) ne sont
accessibles que par le calcul basé sur les clairances. Si celles-ci sont
supposées constantes (Sargent et Gotch) et estimées ponctuellement, toute
variation même minime de ces clairances induira une divergence des sorties
calculées par rapport aux sorties mesurées. Les études numériques que nous
avons effectuées montrent une grande sensibilité des solutions de (eu) à la
variation des clairances (celles-ci interviennent dans un exposant!).

La première question que l'on peut formuler est celle de savoir dans

quelles conditions les deux approches fournissent la même solution.

Supposons que deux données compatibles Mqdd et Mcu fournissent les
solutions respectives (V0qdd, Gqdd) et (V0CU,GCU). Par définition il existe

Cd(t) et Cg(t) continûment dérivables sur [0,fd] telles que

Kd(t)Cd(t) Gc" - jt((V0cu + ad(t))Cd(t)) t G [0,td)

Kg(t)Cg(t) Gcu - ^-((V0CU + ag(t))Cg(t)), t G [td,tg)
at

et Gd(0)-= Gd Gd(fd) Cg(td) Cd Ce(te) Cg L'interprétation
des clairances nous suggère que les sorties globales dans (eu) sont fournies

par

qcdu / Kd(t)Cd(t) dt et qceu f Kg(t)Cg(t) dt
J[0,td) J[td,tg)
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Montrons que ceci est correct. Tout d'abord ces intégrales existent car les

intégrants sont continus et bornés sur les intervalles en question. On peut
donc écrire

f Kd(t)Cd(t) dt= f (G™ - ¿((Vo™ + ad(t))Cd(t))dt,
J[0,td) J[0,td] dt

la deuxième égalité provenant de la continuité de l'intégrant sur [0, td] •

Rappelons que F est une primitive de / sur [a, b] si F est continue sur
[a,b] et F'(x)f(x) sur (a, b) sauf éventuellement pour un ensemble fini
de points. Dans ce cas on a

f f(x)dx F(b)-F(a)
J\a,b\i,b]

Ainsi Gcut - (V0CU + ad(t))Cd(t) est une primitive de

ci

dt(Gcut - (V0CU + ad(t))Cd(t)), sur [0,id]

et l'on a

f Kd(t)Cd(t) Gcutd - (V0CU + ad(td))Cd + V0c"Go
J[o,u)

On reconnaît dans le membre de droite le bilan de l'urée et par conséquent

le membre de gauche peut-être identifié à la sortie globale d'urée sur
[0, id]. Le même raisonnement effectué sur [td,tg) fournit

fJ[u,
KgCgdt Gcu(te-td)-(V0cu + ag(te))Ce + (V0cu+ ae(td))Cd

tg)

En utilisant les notations

<r=(g:) «*-=($:).
les deux équations ci-dessus peuvent être écrites sous la forme matricielle

A Xcu B + Qcu

où A et B sont les matrices introduites dans la discussion de (qdd). En

posant

Qçdd=iqd\ et Xçdd=fV0^
qdd"

Qqdd I ¦¦
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le système associé à (qdd) prend la forme

A Xqdd B + Qqdd

si bien qu'en faisant la différence membre à membre des deux dernières

équations, on obtient

A (Xcu - Xqdd) Qcu - Qqdd

Une première conclusion s'impose: si

Xcu Xqdd alors QCU Qqdd

Inversement, la condition Cq> Cd < Cg figurant dans les données Mqdd
et Mcu nous assure l'existence de l'inverse de A et ainsi

Xcu _ Xqdd A-l'QCU _ Qqddj
^

d'où l'on conclut que

/~)cu r^qdd ._ vcu -y-qdd

Donc les solutions coïncident si et seulement si les sorties sont identiques.
De plus A-1 définissant une application linéaire sur R2 on conclut que
Xcu _ Xqdd est une fonction continue de Qcu - Qqdd En utilisant une
norme de matrice compatible avec une norme sur R2 on peut écrire

\\XCU - Xqdd || < p"1!! \\QCU - Qqdd\\

Tout ceci signifie que plus les sorties sont proches, plus les solutions le sont.
Nous avons le sentiment que cette assertion traduit fidèlement l'intuition
d'AEBisCHER et al. (1965); dans leur tentative de correction des clairances
ils ne font pas autre chose que de rapprocher les sorties des deux modèles.
Nous résumons les résultats ci-dessus dans la proposition suivante.

Proposition 16. Soient Xcu et Xqdd deux solutions associées respectivement

aux deux données compatibles A4qdd et Aicu Les deux assertions
(a) et (b) sont équivalentes
(a) Qcu Qqdd

(b) Xcu Xqdd

De plus Xcu - Xqdd est une fonction continue de Qcu - Qqdd

Il existe en fait un lien d'une autre nature entre les modèles (eu) et (qdd),
qui donne un sens plus précis au travail (AEBISCHER et al. 1965) sur la
correction des clairances. La proposition qui suit montre que si l'on dispose
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d'une solution pour (qdd), tout modèle (cu) compatible peut être converti
en modèle à clairances constantes qui admet la même solution. Autrement
dit, on peut toujours choisir des clairances corrigées constantes. Ceci est

implicite dans le travail de AEBISCHER et al. (1985) et si l'on fait un bon

choix, les points viennent se loger sur les bissectrices dans les graphes de

comparaison (V0qdd,V0cu) et (Gqdd,Gcu).

(yqdd\°dd J une solution physiologique de

(qdd) pour la donnée

Mqdd(td,tg, Co, Cd, Ce, AdV, AgV, qd, qe)

Soient ad(t) et ag(t) deux fonctions définies respectivement sur [0,td] et

[td,tg] continûment dérivables et telles que

ad(0) 0, ad(td) ag(td), Vqdd + ad(t) > 0 sur [0,td]

ad(td) AdV MU) - otg(td) AeV, V0qdd + ag(t) > 0 sur [td,tg]

// existe alors deux nombres Kd et Kg non-négatifs, tels que Xqdd est
solution de (eu) pour la donnée (compatible)

Mcu (td,tg,Co,Cd,Cg,ad(t),ae(t),Kd,Ke)

Démonstration. Il faut fabriquer une solution de (eu) à partir de Xqdd.
Considérons l'équation de (eu) pour la phase de dialyse, où nous notons K
(constante > 0 la clairance qu'il faudra déterminer

jt(V0qdd + Mt))C(t)) + KC(t) Gqdd, t G [O.td)

Nous imposons bien sûr la condition initiale G(0) -= Go Puisque par
hypothèse V0? + ad(t) > 0 sur [0,id] on peut écrire

±-(Vqdd + ad(t))C(t)) +
K

(Vqdd + ad(t))C(t) Gqdd
dt (V0q + ad(i))

d'où l'on déduit que

- / —-^ ds

(Vqdd + ad(t))C(t) VqddC0 e Jo voq +Ms) +

- f - dr
+ gqdd j g

Js Vqdd + Mr) ds
Jo
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rU Kd

lddn_ i dd —ds
Jo V0qet donc C(td)= 5 C° e7° Vodd + aä(s)

Vqdd + ad(td)
rtd

L
V0qdd + ad(td)

G (U - I T^dd-, —dr
L+ „„u e J" vr + Mr) ds

Pour montrer que (V0q Gqdd) est ci-admissible, il suffit de prouver que
l'on peut choisir K de telle façon que C(td) Cd Une première propriété
est évidente

(a) C(td) est une fonction strictement décroissante de K>0.
Montrons que

(b) C(td) est une fonction continue de K.
Il suffit de constater que

rtd i
Is Vqaa^Mr)
f -K / ¦

X
cir

Js vqdd

est borné par la constante 1 sur [0, td] Une simple application du théorème
de la convergence dominée fournit le résultat souhaité de même que
(c) lim G(fd) 0,

k—¡-oo

n(. VoqddCo + Gqddtd
(d) lim G (td) ——t, ¦

fc^o Vqdd + ad(td)
Ainsi lorsque K varie de 0 à oo, C(td) parcourt de façon continue en
décroissant strictement l'intervalle

(0.
Vo^Go + G^td,

V09Oa + c*d(td)

Il suffira d'appliquer le théorème des valeurs intermédiaires pour une fonction

continue, si l'on peut montrer au préalable que

r _ ,n
VcfddG0 + G^fd1

Gd 6 (0, dd ——- J ¦

V0q + ad(td)

Ceci est une conséquence de la première équation de (qdd) qui nous donne

c
VqddC0 + Gqddtd - gd

d ' Vqdd + ad(td)
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Par hypothèse Cd > 0 et qd > 0 donc on a bien

VqddCo + Gqddtd
0 < Gd <

Vqdd + ad(td)

La valeur TGi de K qui fournit Cd(td) Cd est donc uniquement
déterminée. En répétant l'argument pour l'intervalle [td,te], on trouve
une unique valeur Kg > 0 que garantit la (/-admissibilité de

(V0qdd, Gqdd)

Ce dernier est donc une solution de (eu) et la démonstration est achevée.

¦ Conclusions générales concernant l'estimation de (V0,G)
PAR (eu) ET PAR (qdd)

Nous avons déjà signalé que les cliniciens, à l'usage, ont constaté que les

deux méthodes fournissent des estimations très différentes de (V),G) pour
des situations identiques. De façon générale, le modèle (cu) a la préférence
des praticiens. Le fait que (eu) ait précédé (qdd) n'est certainement pas

étranger à ce choix. Une raison souvent évoquée est que (eu) évite la
récolte du dialysat total, ce qui à notre avis reste un problème mineur,
même pour un petit centre. Le travail théorique qui précède nous conduira
à la conclusion que (qdd) est préférable à (eu) pour l'estimation de (Vo, G).
Qu'il soit bien entendu que cette assertion n'enlève aucune qualité au travail
de pionnier que l'on doit à Sargent et Gotch et que leur approche permet
de discuter des situations que (qdd) ne peut, par essence, pas envisager.

Revenons aux hypothèses qui gouvernent chacun des modèles. A cette
occasion nous introduisons les notations suivantes

tf(»> {(A),(B*),(C),(D),(E),(F*)},
H[cu) {(A),(B*),(C)(D),(E),(F*),(G),(H1)}

Ht] {(A),(B*),(C),(D),(E),(F*),(G),(H2)}
H(qdd) {{A)j(B),(C),(D)}.

Le modèle (eu) généralisé repose sur H^cu\ famille de base qui, complété

avec ((G), (77i)) ou ((G), (772)), fournit les supports de SG(1) ou
SG(2). Le modèle (qdd) repose sur H^qdd\ On vérifie immédiatement que

h[cu) => H^cu) => 77<™) => 77^dd>

Il faut cependant noter que les flèches ne peuvent pas être inversées en

général. Nous sommes donc amenés à la conclusion suivante.
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Le modèle (eu), et bien sûr les situations SG(1) et SG(2) considérées par
Sargent et Gotch, sont des cas particuliers du modèle (qdd).

Ce fait peut être compris intuitivement de la façon suivante: on passe de

(qdd) à (eu) en passant d'un bilan global à un bilan instantané. Le prix à

payer pour connaître la trajectoire suivie par le système entre deux époques
réside dans l'augmentation du nombre d'hypothèses. Cela ne va pas bien
sûr sans augmenter le risque de voir le modèle s'éloigner de la réalité.

Remarquons aussi que le passage de (qdd) à (eu) entraîne le remplacement
de (B) par (B*). Ce point nous paraît important car nos mesures indiquent
que le réservoir n'est vraisemblablement pas en équilibre durant la dialyse.
L'hypothèse (B) permet d'éviter partiellement cet inconvénient en autorisant

un arrêt temporaire du processus pour s'approcher de l'équilibre et améliorer
ainsi la qualité de la mesure des concentrations. Il faut bien sûr négliger
l'apport dû à G durant ce bref intervalle ou l'incorporer au modèle. Sous

l'hypothèse (B*), nécessaire à (eu), ceci ne peut pas être réalisé. Nous avons
le sentiment que ces problèmes proviennent principalement des déséquilibres
osmotiques dûs en particulier au mouvement du sodium dans les différents
compartiments physiologiques du corps humain. Nous prévoyons de traiter
ces questions dans un autre travail. Remarquons cependant que l'hypothèse
(B*) est difficilement compatible avec un mode d'extraction qui implique
localement des gradients de concentration. On peut bien sûr chercher des

arguments pour se convaincre de la possibilité de négliger cet aspect. Il
n'en reste pas moins que cette problématique peut être partiellement évitée

avec (B) et donc (qdd).
Il faut aussi noter que (qdd) ne se préoccupe pas du mode d'extraction

de l'urée et nous libère ainsi de la distinction entre transfert par diffusion
et par convection, le modèle restant valable aussi bien pour l'hémodialyse
que pour l'hémofiltration. La question de la mesure des clairances ainsi que
celle de savoir comment fabriquer la clairance totale à partir des clairances

partielles tombent toutes deux. Précisons que la mesure d'une clairance est

toujours délicate. De plus cette grandeur intervient à des endroits
numériquement sensibles dans SG(1) et SG(2). Une petite erreur de mesure peut
avoir de fâcheuses répercussions sur l'estimation.,

Si l'on compare les données nécessaires à l'estimation dans les deux

approches, on remarquera aussi un grand avantage en faveur de (qdd). Dans

SG(1) et SG(2) les clairances apparaissent comme des constantes et ceci

peut-être trompeur. Nous pensons que leur nature est celle d'une fonction
qui peut dépendre du temps. Durant une dialyse de 180 minutes, il est difficile

d'imaginer que la clairance reste rigoureusement constante et si ce n'est

pas le cas, alors nos simulations numériques montrent une grande sensibilité
de (Vo,G) aux valeurs numériques des clairances. On peut reproduire la
même analyse pour les variations de volume. Dans SG(1) elles sont iden-
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tiquement nulles donc il n'y a rien à mesurer. Dans SG(2), ces fonctions sont
ramenées à la connaissance de leurs dérivées ed et Eg c'est-à-dire à deux
nombres. Cette apparente simplicité qui cache la nature fonctionnelle des

grandeurs en question, ne peut être obtenue qu'au prix d'un jeu d'hypothèses
très astreignant et par conséquent avec une garantie de réalisme affaiblie.
On voit bien comment la situation se présente dans (eu) généralisé. Il
faut suivre constamment les fonctions Kd(t) et Kg(t) ainsi que ad(t) et

ag(t), pour procéder à l'estimation. On peut imaginer que dans des situations

à variations lentes, on puisse remplacer la connaissance de ces fonctions

par celles de leurs valeurs sur un ensemble fini. Cette question
mériterait d'être étudiée dans un contexte d'analyse numérique.

Finalement les remarques qui précèdent laissent entrevoir que la
coïncidence des estimations par (qdd) et (eu) serait pour le moins surprenante.
La proposition 16 nous montre qu'il y a coïncidence des estimations si et
seulement si les sorties sont identiques. Ainsi un moindre écart de ces
dernières induit une séparation des solutions. De ce point de vue, préférer
(qdd) à (eu) revient à investir sa confiance dans les mesures des sorties

plutôt que dans leur calcul effectué sous des hypothèses supplémentaires
discutables.

Conclusions finales

Nous aimerions ajouter quelques observations. Avant de nous lancer dans la

comparaison théorique des modèles (eu) et (qdd), nous avons tenté d'utiliser
d'autres voies qui méritent peut-être un bref commentaire.

Une démarche naturelle pour comparer deux estimateurs consisterait à

recourir à une troisième méthode de mesure plus précise que les précédentes.
Nous n'avons malheureusement rien trouvé dans la littérature; les méthodes
utilisant par exemple les techniques de marquage ne semblent pas concluantes

à ce propos.
Dans une première étape, nous avons augmenté le nombre de mesures de

la concentration d'urée en choisissant plusieurs époques distinctes durant la

dialyse d'un patient. Puis nous avons tenté d'obtenir (Vo, G) à l'aide d'un
ajustement des solutions de (eu). Les résultats furent si désastreux qu'ils
nous condamnèrent à renoncer à cette méthode. Cette constatation posait un
problème de principe qui nous amena à faire une simulation in-vitro d'une
hémodialyse contrôlée pour estimer (Vo,G) avec (eu) et (qdd). Les deux
méthodes se montrèrent satisfaisantes eu égard aux limitations imposées par
le contexte clinique. Les deux approches étaient donc acceptables dans une
situation de laboratoire idéalisée. (FELLAY et Ducrest, en prép.).

Le problème de la comparaison de deux estimateurs est en fait le problème

de la définition d'un étalon. Comment peut-on affirmer qu'une méthode
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de mesure est supérieure à une autre si l'on ne dispose pas d'une troisième
méthode plus précise. On se convainc facilement que la seule approche
possible réside dans une argumentation théorique et ceci nous a motivés

pour entreprendre la comparaison de (eu) et (qdd) dans cette optique. Cette
démarche présente le double avantage de fournir une réponse à la question

posée et d'accroître notre compréhension de la situation. Un autre
problème a également retenu notre attention. Pour des raisons évidentes,
il serait agréable de pouvoir estimer (Vo, G) durant la phase de dialyse
uniquement. Nous avons essayé de le faire en utilisant (qdd) ce qui
implique le choix d'une époque fi, 0 < ti < td, à laquelle on mesure la
concentration d'urée et l'accroissement de volume. Il est intuitivement
clair que si f i est trop proche de 0 ou de td, il en ira de même des

équations du bilan et la qualité du système d'équations (qdd) sera
mauvaise. On peut mesurer l'imperfection d'un tel système à l'aide du nombre
«condition» C(A) (Atkinson 1978). Celui-ci dépend de h et il s'agit de

choisir cette époque de façon à rendre ce nombre aussi petit que possible.
Nous avons résolu le problème en supposant que la concentration évoluait
selon le modèle (eu). Une généralisation aux fonctions convexes est possible

et montre que C(A) admet un unique minimum global. Pour un patient
standard dialyse durant 180 minutes, l'époque optimale se situe autour de
60 minutes. Malheureusement, l'imprécision des mesures imposée par un
contexte clinique nous a contraint à abandonner ce chemin. Le taux G
est petit et la longueur de la phase interdialytique semble, pour l'instant,
indispensable à l'obtention d'une précision convenable.
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