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MODELES DYNAMIQUES EN BIOLOGIE, R. ARDITI (DIR.)
DYNAMICAL MODELS IN BIOLOGY, R. ARDITI (ED.)

Global Asymptotic Behaviour of Solutions
to Differential System Models of the Transmission
of Helminthic Infections

BY

CHRISTIAN KHANMY !

Abstract— KHANMY C., 1990. Global Asymptotic Behaviour of Solutions to Dif-
ferential System Models of the Transmission of Helminthic Infections. /n: Dynam-
ical Models in Biology, R. Arditi (ed.). Mém. Soc. vaud. Sc. nat. 18.3: 265-284.
A system of ordinary differential equations is derived from models of the trans-
mission of helminthic infections. We establish in this study the global asymptotic
behaviour of the solutions which describe the course of the infestation.

Résumé — KHANMY C., 1990. Comportement asymptotique global des solutions
d’un systeme différentiel li€ a la transmission de certaines helminthiases. /n: Mode-
les dynamiques en biologie, R. Arditi (éd.). Mém. Soc. vaud. Sc. nat. 18.3: 265-284.
Un systeme d’équations différentielles ordinaires est dérivé de modeles de trans-
mission de certaines helminthiases. On établit dans cette étude le comportement
asymptotique global des solutions qui décrivent I’évolution de I’infestation.

INTRODUCTION

Stimulated by the influential work of MACDONALD (1965) on schistosomi-
asis, various investigators have proposed mathematical approaches to the
study of the transmission of helminthic infections. We cite in the biblio-
graphy only the works relevant to this paper (GABRIEL 1983, GABRIEL et
al. 1981, HIRSCH et al. 1985, NASELL, NASELL et al. 1972, 1973).

1Department of Mathematics, University of California, Berkeley, CA 94720, USA
and Laboratoire d’enseignement assisté par ordinateur, Ecole polytechnique fédérale,
CH-1015 Lausanne, Suisse (present address).
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The parasites concerned in these models obey a cycle involving two host
populations: the definitve host (vertebrates) in which the parasite lives its
adult stage in the guise of worms and produces eggs, and the intermediate
host (fresh-water snails) in which the parasite is in transit while undergoing
a larval transformation accompanied by an asexual reproduction process.
During this developmental stage called prepatent period and which consti-
tutes a significant fraction of the average life of the intermediate host, snails
are infected but not infectious. Outside its definitive host, the parasite is
found in larval form and the dynamics of its transmission consists of its
flow from the vertebrate to the snail population and back again. The in-
fective larva ensuring the transmission from vertebrates to snails is called
«miracidium» and the one allowing the return to vertebrates after passing
through snails 1s called «cercaria».

In this paper we present a model, proposed by Gabriel in a personal
communication, which incorporates the prepatent period of the snails into
the models previously studies by NASELL and HIRSCH (1972, 1973).

There are at least two ways of representing this phenomenon: by intro-
ducing a delay in the models (GABRIEL 1983, GABRIEL et al. 1981) or by
recognizing a prepatent state in the snail population, which is the approach
considered here, see also NASELL (1976).

Although the original Nasell-Hirsch models derive from probabilistic as-
sumptions, they can also be made plausible from a purely deterministic
point of view; for a discussion of this apsect, see GABRIEL et al. (1983,
1981). In the sequel we describe a deterministic model for the transmission
of helminthic infections leading to a system of ordinary differential equa-
tions and concentrate on the course of the infection over time. Accordingly
we study the asymptotic behaviour of its trajectories by exploiting their in-
trinsic properties in conjunction with some results from the general theory
of monotone systems developed by HIRSCH (1982, 1985, 1988).

Besides the papers mentioned above, we have also been inspired by useful
tools and results proposed by HIRSCH et al. (1983, 1985) and SMITH (1986).

A general conclusion to this study is that under reasonable hypotheses,
either the infection ultimately dies out, or else it is driven to a positive level
of endemicity.

MODEL FORMULATION

The assumptions underlying the following model are essentially identical to
those presented by GABRIEL et al. (1983, 1981, 1985).

Consider a community constituted of a vertebrate population and a snail
population whose individuals are treated homogeneously and which is sub-
mitted to infestation.
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We idealize the vertebrate population by assuming that its size remains
constant and denote the number of vertebrates by Ny. While adult worms
reproduce sexually in the definitive host, exhibiting diverse patterns of sex-
ual behaviour, we identify two types of sexuality: hermaphroditism (single
sex) and dioeciousness (two sexes).

In order to represent the number of ovipositing worms per vertebrate host,
GABRIEL et al. (1983, 1981, 1985) introduced the concept of an oviposition
function. Any such function denoted by % is required to be continuously
differentiable on the set of non-negative numbers IR, , to be strictly increas-
ing and to satisfy 9(0) = 0.

From a mathematical viewpoint, dioecious worms are distinguished from
hermaphroditic worms by the classification of oviposition functions accord-
ing to the following definition (HIRSCH et al. 1985): An oviposition function
Y is called «hermaphroditic» if

(T’b(z)) <0, for £>0.

X

An oviposition function ) is called «dioecian» if it is not hermaphroditic
and if

#'(0) =0.

The unit of infection in the vertebrate population is taken to be the worm
pair in the dioecious case and the worm in the hermaphroditic case.

Let W(t) denote the worm burden per vertebrate host at time ¢. Fol-
lowing the work of Hirsch, Hanisch and Gabriel, the number of ovipositing
worms per vertebrate host at time ¢ is represented by (W (t)).

In the snail population, we recognize three different states: susceptible,
prepatent and infective snails. We denote the number of snails in each of
these states at time t by S(t), E(t) and I(¢) respectively.

We allow births and deaths of snails, but under the simplifying assumption
that each death, whether of a susceptible or prepatent or infective snail, is
accompanied by the birth of an uninfected snail; accordingly, the size of
the snail population is constant, we denote it by N. We assume that the
cercarial shed rate resulting from a miracidial infection is so large that a
possible increase due to mutliple infections is unimportant. Therefore a unit
of infection in the snail population is an infective snail, not a miracidial
infection.

We postulate that infected snails are increasing at a rate proportional to
the product of the number of infective units and the number of susceptible
units in, respectively, the vertebrate and snail populations. This reflects the
law of mass action of epidemiology.
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The dynamics of the infestation is described by the following system of
differential equations

W = —puoW+al

E = —(y+up)E+ BNop(W)S

I = —pl+nE

S = —mS—BNoyp(W)S + p1S + po B+ psl .

In the first equation, the first term expresses death among worms at a
constant rate and the second term means that worm burden per vertebrate
is increasing at a rate proportional to the number of infective units in the
snail population.

In the second equation, the first term indicates disappearance of prepatent
snails by death and because they become infective at a constant rate v and
the second term describes the snail infection rate resulting from the law of
mass action.

In the third equation, the first term indicates death of infective snails
at the constant rate u3 and the second term corresponds to the fact that
prepatent snails become infective at the rate .

In the fourth equation, the first two terms indicate disappearance of sus-
ceptible snails by death and because they become prepatent and the re-
maining terms express the replacement rule stated above. The transmission
parameters « and 3 are respectively interpreted as the potential of the
snail (respectively vertebrate) population to deliver cercariae (respectively
miracidia) to vertebrates (respectively snails).

Since §+ E+ I = N at any time, we content ourselves with discussing
the following reduced system

W = —uoW +al
(S) E = —(v+p2)E+BNoyp(W)(N - E—1I)
I = —usl+~FE

with initial conditions W (0) > 0, E(0) > 0, 1(0) > 0 and E(0)+1(0) <
N . The parameters po, p2, 43, &, 3, v, N and Ny are positive constants.

BASIC RESULTS FOR SYSTEM (S)

In this section we establish some basic properties of the solutions of the
initial value problem for (S) .

The phase space of system (S) consists of the biological domain B =
{(X1, X2, X3) € R} : X5 + X3 < N}. The boundary 8B of B is defined

by
OB = {(X1,X2,X3) € B: X; =0, or X5=0,
or X3=0, or Xo+ X3=N}
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and the interior B® of B is defined by B = B — 0B.

For each initial condition belonging to B°, the Picard-Lindelsf theo-
rem ensures the existence of a right maximal interval J C R, on which
the initial value problem for (S) possesses a unique solution denoted by
(W (t), E(t),I(t)). Moreover, either J =R, or J = [0,€) with € < oo
and lim; . (|W(t)| + |E(t)| + |I(t)]) = oo, or J = [0,€] with € < o0
and (W(e), E(e),I(¢e)) € OB. The last two possibilities are ruled out as a
consequence of the following proposition.

PROPOSITION 1. If (W (0)), E(0), I(0)) € B, then
(i) (W(t),E(®),I(t)) € B, forallteJ;
(i) W(t) < max(W(0), &) and E(t) + I(t) < N, forall teJ.

Proof. (i) Assume that the solution leaves B after finite time. Then there
is a first epoch s € J, s > 0 such that (W(t), E(t),I(t)) € B°, for all
t€[0,s) and (W(s), E(s),I(s)) € 0B.
Thus suppose that W(s) = 0. From the definition of s it follows that
W (s) < 0 and the first equation of system (s) provides W (s) > 0. There-
fore W (s) = 0 and consequently I(s) = 0. Applying the same argument
to I(s), we get E(s) = 0. Accordingly, the solution reaches a singularity
of the vectorfield defined by (S) at time s, which is impossible. It remains
to show that the other possibilities also lead to contradictions.
Assume that E(s) = 0. From the definition of s, it follows that E(s) <
0 and the second equation of system (s) implies that E(s) > 0. Thus
YW (s))(N—=1I(s)) =0. If »(W(s)) =0 , then monotonicity of 1 gives
W (s) = 0, which has already been ruled out. Therefore I(s) = N, and
using the second and third equations, we obtain F(s) + I(s) < 0. Hence,
by continuity, £ + I > N, in a left neighborhood of s, contradicting the
definition of s.
Assume that 7(s) = 0. Once more by the argument above, we get E(s) =
0, E(s) = BNgN(W(s)) < 0 and therefore W (s) = 0, an impossibility.
Finally, suppose that E(s) + I(s) = N. From the definition of s, it fol-
lows that E(s) + I(s) > 0, which contradicts the fact that E(s) + I(s) =
~uoE(8) — u3l(s) < —min(ue, p3) N < 0.

(ii) Tt follows from (i) that for all ¢ € J, E(¢t) + I(t) < N, thus
W < —poW + aN . Integrating this differential inequality, we find that

aN

W(t) < W(0) e Hot 4 o (1—e "), forall teJ.
0

Thus if W(0) > %Y then W (t) < W(0), forall te€ J andif W(0) <

i—f then W(t) < %, for all t € J. Hence W(t) < max(W(0), (Z_f;’)
forall t e J.
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In order to consider initial conditions belonging to 0B, we extend v ar-
bitrarily as a continuously differentiable function to (—o0,0). By Picard-
Lindelof theorem again, for any initial condition belonging to B, there is a
unique solution to the initial value problem for (S), which exists on a right
maximal interval J* C R;.

PROPOSITION 2. If (W (0), E(0),I(0)) € B, then

(i) (W(t),E(@),I(t)) € B, forall te J*;

(i) (W(t) < max (W(0), 2¥) and E(t)+I(t) < N, forall t € J*;

(iii) J* =R, ;

(iv) If (W(0), E(0),I(0)) # (0,0,0), then W (t) > 0, E(t) > 0 and
I(t) > 0, for all t € (0,00).

Proof. Assertions (i), (i1) and (iii) follow from Proposition 1 using continuity
of solutions in initial conditions. To establish statement (iv), we use the
variation of constants formula. For any ¢ > 0 it follows that

t

(*) W(t) =W(0) e + ae_“otf eto?I(s) ds;
0

(¥%) E(t) — E(O) e_fo 0(s) ds te fu 0(s) ds

t 8
/0 eli 70 BN (W (8))(N — 1(s)) ds,
where 6(s) = v+ p2 + ﬂNolb(I/V(S));
(55) I(t) = 1(0) e Hot + oy et [ ehs E(s) ds.
0

Thus assume that W (0) > 0. Since I(s) > 0, for s > 0, it follows
from (*) that W(t) > 0, for all ¢ > 0. We now show that E(t) > 0,
for all ¢ > 0. Assume per contra that there exists 7 > 0 such that
E(r) = 0. It follows then from (**) that I(s) = N for all s € [0,7],
thus 7(7) = 0 which contradicts the fact that, by the third equation of
system (S), I(r) = —u3N. Accordingly E(t) > 0, for all ¢ > 0 and,
using (***¥), we get I(t) > 0, for all ¢ > 0, which proves assertion iv).
The cases E(0) > 0 or I(0) > 0 are treated similarly.

Remark. By differentiating each question of (S) and using the facts that 1)
is continuously differentiable and that W, E and I are uniformly bounded,
we obtain the uniform boundedness of W, E and I. This property will be
used in later arguments.

We show next that (S) can be converted into systems which are coop-
erative (HIRSCH 1982), in the sense that the resulting vector fields are such
that the off-diagonal entries of their Jacobian matrix are nonnegative.

The transformation X; = W, Xo = E + I and X3 = I converts the bio-
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logical domain B into B* = {(X1, X2, X3) € RS : X3 < X5, X5 < N},
and (S) into the following system

X1 = —poX1 +aXs
(8*)  Xo=—paXa+ (2 — ps) X3+ BNop(X1)(N — X3)
X3 = —(y+ ps) X3 +7X2

whereas system (S*) is converted by the change of variables Y; = X,
Yo = Xp+ L (us — p2) X1, and Y3 = X3+ 5= (v + p3 — po) X1 into

Vi = —1(v+po+ps)Yi +aY;
Ya = —paYa + (s — p2) (2 — o) Va+
(5*) + BNy (Y1)(N — Yz + = (u3 — p2)Y1)
Ya = =5 (7 + 3 + po)Ys +7Ya+
+ & (v + po — p3)® — 4y(po — p2))Y1

while B* is transformed into a domain B**.

Since % is increasing, we notice that the off-diagonal elements of the Ja-
cobian matrix of the vector field appearing in (S*) are nonnegative for all
(X1, X2, X3) € B*, provided that us > us. The vector field appearing in
(§**) enjoys likewise that property for all (Y1,Y3,Y3) € B**, provided
that po < p3 and ps > po.

In brief, (S) can be imbedded into the class of cooperative systems when
Ha2 > pg. Since ﬁ and ﬁ may be interpreted respectively as the expected
lifetimes of the adult worms and the prepatent snails, the restriction on the
epidemiological parameters po and po is mild from a biological viewpoint,
because - is a few weeks and -L is several years.

The rest of this paper is devoted to the study of the limiting behaviour
of every solution of system (S*), under the assumption ps > pus3; the argu-
ments apply in the same way to system (S**), if us < 3z and 2 > o,
yielding similar conclusions.

Let F* denote the vetor field appearing in (S*). Since ¢ is strictly
increasing, it follows that the Jacobian matrix F*' of F* is irreducible in the
interior of B*, that is for any proper subset E of {1, 2,3}, there exist i € E
and j € {1,2,3} —FE such that (F*");; # 0, for all (X1, X2, X3) € (B*)°.
Thus, S*is cooperative and irreducible in the interior (B*)° of B*.

From now on, we consider initial conditions belonging to (B*)°, which
is not a restriction according to Proposition 2.

We turn now to a review of some standard notions from dynamical sys-
tems theory and some general results on monotone systems.
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BACKGROUND AND GENERAL RESULTS

Let X(t) = F*(X(t)), X(0) = Z., Z € (B*)° denote systems (S*)
in vector form. A solution is alternatively denoted by Z(t) or ¢:+(Z). A
subset S of B* is called positively invariant if for each Z € S, ¢:(Z) € S
for t € R..

It is well known that the long term behaviour of a solution often reduces
to the study of its omega-limit set

w(Z) = {Y € B* : there exists a sequence (t5) with lim ¢, = oo

k—oo
and kli_}rg() Zltr) =¥},
This set is positively invariant and consists of a single element P, namely
an equilibrium point, that is F*(P) = 0, if and only if lim; ., Z(t) = P.
An equilibrium point P is called a «trap» (HIRSCH 1985) if there is some
open set M C (B*)°, not necessarily containing P, such that

tlim Z(t)=P, forall Ze M .

If P is a trap, then ReX < 0 for all eigenvalue A of the Jacobian matrix
F*(P).
We use the following notation. For X,Y € IR?, we write

X>Y ifX-YeR3 and X>Y if X -Y eRE |

where ]lol‘:z is the interior of ]Ri’L . Replacing X,Y by —X,—-Y, we get
the corresponding notions < and <. If X <Y we set

(X,)Y]={ZecR*: X <Z<Y}.

Kamke’s comparison principle expresses that solutions of cooperative sys-
tems enjoy a monotonicity property (KAMKE 1932). A stronger result can
be proved in case irreducibility occurs (KRASNOSEL’SKII 1968 and HIRSCH
1985). Thus the solutions of our system satisfy the following property: for
Z,Y e (B*)°,Z>Y and Z #Y imply Z(t) > Y(t) for t > 0. The
following result is a well known convergence criterion (SELGRADE 1979,
1980).

PROPOSITION 3. Suppose that Z € B* is such that F*(Z) > 0 (or
F*(Z) <0). Then all coordinates of the solution Z(t) are nondecreasing
(or nonincreasing) for t > 0. In either case, since w(Z) is not empty, Z(t)
converges to an equilibrium point at t — 0.
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The following result is an immediate consequence of an important theo-
rem due to HIRSCH (1985, Theorem 4.1.).

PROPOSITION 4. Suppose that the set of equilibrium points of (S*) in B*
is discrete. Then the set of initial conditions Z € B* for which Z(t) does
not converge to an equilibrium point at t — 0o has Lebesgue measure zero.

We end the section with two very useful results proved by GABRIEL
(1983) and HIRSCH et al. (1985) concerning the asymptotic behaviour of
functions of a real variable.

PROPOSITION 5. Let f: IR, — R be a function such that

(i) f(t) exists and is bounded for t €e Ry ;

(ii) fo ) dt € R, then lim; o f(t) = 0.

PROPOSITION 6. Suppose that a function f: R, — R is differentiable and
uniformly bounded. Then

(i) There are sequences ty and sy such that

lim ¢t = lim s; = oo,

k—oo k—oo
Jim f(tx) = lim sup f(2),
Jm flte) =
Jim f(sg) = lim inf f(2),
Jim f(sg) =

(ii) Moreover, if f is twice differentiable and its second derivative f is
uniformly bounded, then for any sequence (ry) such that

klim Pl = 00
and klim flre) = tlim sup f(t),
or klim Ffw) = tlim inf f(t) ,

then klim flry) =0.
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EQUILIBRIUM POINTS OF (S*)

To make writing simpler, we first put

ayN 7, _ BNo(y + pa)

h=—, 2
po(y + pa) pa(y + pa)

and following HIRSCH et al. (1985), we introduce the function

9r, (T) = q'b(w)(?;l ~a) , O<z<Ty.

It results from (S*) that a point P, is an equilibrium point of (S*) if and
only if
B o= (17 #0(’Y+IJJ3)’ @)
ay o

where either z = 0 or z is a solution of the following equation

1

9z, (¥) = 7 - (E)

For a hermaphroditic oviposition function, the following general statement
can be made about the possible number of equilibrium points.

PROPOSITION 7. By HIRSCH et al. (1985), let 1 be a hermaphroditic ovipo-
sition function.

(i) If .
T < (0)
then the origin 0 is the only equilibrium of (S™*).
(ii) If .
Ty > (0

then (S*) has two equilibria, the origin 0 and Py, where x is
the root of equation (E).

When v is dioecian, the question of its influence on the statics and the
dynamics of the transmission model becomes more difficult to tackle. How-
ever, an important special case was distinguished by HIRSCH et al. (1985),
wich motivates the following definition: a dioecious oviposition function
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is called «triadic» if to each Ty > 0 there corresponds a positive number
z(T1) such that

g. () >0 if 0<z<z(Ty)

1

g. (2)=0 if z==z(T1)

1

g, (2) <0 if 2(T)) <z <Ty.

It results from the definition that the equilibrium points of (S*) for such a
function are determined in the following way
i If

1
7, > 9n (@(T1))

then the origin 0 is the only equilibrium.
() If
1
T, — 9n (@)

then (S*) has two equilibria: 0 and Py(r,).
(i) If

1
7 <9 (@(1)

then (S*) has three equilibria: 0, P,, and P,,, where
0<x;y <.’L’(T1) <xo <Ti.
Consider the half line

L:{P :x(1,w,@) :$>0}.

ay o
An easy computation gives for any P, € L,
Fy(P) = F§(P:) =0

and FX(P,) = oy Z;ia)ﬂNo (ng i — _1%) ’

where F7, F5, F35 are the coordinates of the vector field F™.

In particular, when v is a triadic oviposition function, we get F*(FP;)
< 0if 0 < x < T3 and equation (E) has only the root z(T1), F*(P,) < 0 if
0<z <z, F*(P;) > 0 if 1 < z < x5 and equation (E) has the roots z;
and zo. Thus, using monotonicity of the solutions of (S*) and proposition
3, we obtain the following proposition.
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PROPOSITION 8. Let 2 be a triadic oviposition function.
(i) If (S*) has two equilibria,
then thm Z(t) =0, for all Z € [O, Pa:(Tl)]a VA 7é Pm(T]) ;
—00
(ii) If (S*) has three equilibria,
then tlim Z(t)=0, forall Z€|0,P,,], Z+# Py,
— 00
and ltlim Z(t)=P,,, forall Z € [P,,,P.], Z+# P, .

GLOBAL ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF (S5*)

In this section, we establish the convergence of all solutions of (S*) to
equilibrium points as ¢ — oo, by exploiting their monotonicity properties
in conjunction with ad hoc arguments stemming from the particular form
of (5%).

In the same spirit (HIRSCH er al. 1985), we next associate to (S*) some
inequalities which we call «fundamental inequalities ».

PROPOSITION 9. Let Z;(t), i = 1,2,3, be the coordinates of a solution of
(S*) and denote,

1Elim sup Z;(t), tlim inf Z;(t) .

respectively by Z; and Z;. The following inequalities occur

(i) poZy < aZs
(ii) (u2 + BNoY(Z21)) Z2 < (p2 — ps) Zs + BNoNv(Z1)
(iii) (Y + p3)Zs < vZy
1 _ _
(iv) 7 <95, () i Z1>0
2

(v) The above inequalities are reversed if Z;, i = 1,2,3, are replaced
by Z,,1=1,2,3.

Proof. (i) If (t) is a sequence such that
lim ¢, =oco0 and lim Zl(tk) = Zl p
k—oo k—o0

then Proposition 6 implies

Jim Zi(ty) =0.
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By boundedness of the solution, we can choose a convergent subsequence
of Zs(tx), say
lim Zs(ty) = Z3 .

k—oo
Evaluating the first equation of (S*) at t; and letting k go to infinity, we
get ~ ~ ~
0=—poZ1 +azZ; < —poZi+azs.
Inequalities (i1) and (ii1) are obtained in the same way and using the fact
that 1) is increasing. (iv) It follows from inequalities (ii) and (iii) that

(2 — ps)

(2 + BNoW(Z1)) 22 < 1 Z3 + BNoN$(Zy) , thus
v+ 3

(%ﬁl s ﬁNOw(Zl)) Zy < BNoNY(Zy) .

Since by inequalities (1) and (ii1), we have

Zy > po(y + p3)

, we get
ary
pa(y + pa2) . ) N
(ﬁNo(”Y+/i3) Tl ) B < m S

which is inequality (iv) in a disguised form. (v) is proved in the same way.
The behaviour of solutions of (S*) as ¢t — oo can now be derived, in
the hermaphroditic case, from the last proposition.

PROPOSITION 10. Let 1y be a hermaphroditic oviposition function and let
Z(t) = (Z1(t), Z2(t), Z3(t)) be a solution of (S*) corresponding to an
initial condition Z € (B*)°.

: 1 .
(l) [f T1T2S W,then tEIEOZ(t):O
1
(ii) If Th'Te > ————, then lim Z(t) = P, .

¥'(0) t=00

Proof. (1) We first prove that Z1 = 0. To see this suppose per contra that
Z31 > 0. Then by part (iv) of Proposition 9 and assumption (i) we get

_ 1 )
9, (1) 2 7 2 T ¢'(0) = lim g, (z) .

Since 1 is hermaphroditic, it is easily seen that the function g,. is strictly
decreasing. Thus Z; = 0, a contradiction. Therefore
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and, using Proposition 6 and the first and third equations of (S*),
lim Zg(t) =0 and lim Zg(t) = .
t—oo t—oo

(ii) We first prove that since Z # 0, Z; > 0. Assuming per contra that
Z1 = 0 and therefore that lim;_, ., Z (t) = 0, it follows from monotonicity
that for all X € [0, Z] — {0, P.,}, the solution ¢;(X) converges to 0, as
t — 00. Thus the equilibrium point 0 is a trap and consequently Re A < 0
for all eigenvalue A of F*/(0). Itresults from a straightforward computation
that the product of these eigenvalue is equal to

vV (w0) - 7o)

which is positive by assumption (ii).
Hence one eigenvalue, at least, is positive: a contradiction. Therefore
Z1 > 0 and by parts iv) and v) of Proposition 9,

1
9r, (Zl) > E > 9r, (gl) .

Since the function g, is decreasing we get

Zy =4, =1zp, thatis tlim Zl(t) = .
—00

Finally, the convergence of Z(t) to P,, as t — oo follows from Proposition
6, using the first and third equations of (S5*).

Remark. 1t is also possible to establish Proposition 10 by using a general
result for monotone systems, stipulating that for any compact omega limit
set, there exist equilibrium points P, (), such that this omega-limit set is
contained in [P, Q] (HIRSCH 1982, 1988).

We now turn to the dioecious case and divide the proof into two parts
because the case where (S*) has three equilibrium points requires more
analysis.

PROPOSITION 11. Let i be a triadic oviposition function and suppose that
(S*) has at most two equilibrium points. Let Z(t) denote a solution of
(S§*) corresponding to an initial condition Z € (B*)°.

(i) If % > gr (z(T1)), then tliirgo Z(1) = 0.
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1
(ii) If T, 9r, (x(T1)), then Z(t) converges to an equilibrium point as

t — 00. In particular,

Jim Z(t) =0, if Z € [0, Pory] = {Pary }
and tlim Z(t) = Pyry), if Z = Pyry -

Proof. (i) Denote the coordinates of Z(t) by Z;(t), i = 1,2,3. We first
prove that Z; = 0. Assuming per contra that Z; > 0, then by part (iv) of
Proposition 9, we get

i 1
o
ng( 1) — T2
which contradicts the fact that by assumption (i)
@) < =
max T) < = .
z€[0,T] Iy TS
Therefore Z; = 0, that is

t—o00

and the convergence of Z(t) to 0 as ¢ — oo follows from Proposition 6.
(ii) Arguing as in (i) we obtain the following alternative: either Z; = 0,
thus B
lim Z(t) = 0, or Zl = Z‘(Tl) s
t—oo
In the latter case, considering a sequence () such that
lim ty = oo and lim Z; () = Z ,
k—oo

t—o00

we get, by using the fundamental inequalities and Proposition 6,
Jim Z(tx) = Py(1y)
that is
Py €w(Z) and X < Py forall X e w(Z) .

The last part of the assertion follows from Proposition 8.
Since w(Z) C [0, Py(r,)], we conclude

w(Z) = Pn:(Tl) that is tll)l’l;l(D Z(t) = P:r:(T1) "
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Finally, we consider the case where (S*) possesses three equilibria. Using
the fundamental inequalities of Proposition 9, it is easy to prove that any
solution of (S*) either converges to the equilibrium point P, as ¢t — oo,
or ultimately lies in [0, P,,]. Therefore, we concentrate on initial conditions
belonging to [0, P,,].

Let B(0) and B(P,,) denote respectively the domains of attraction of 0
and P, in [0, Py,], that is

B0)={Z e [0,Py,]: Jlim Z(t) = 0}
B(P.,))={Z€0,P,,): Jlim Z(t) = Pog, | -

Since by Proposition 8, we have
[O,PLEJ — {Pﬂ,l} C B(0) and [Pml,sz] — {le} C B(P,.,) ,

we notice that B(0) and P,, are open sets relatively to [0, Py,].
The next result shows that the boundaries of B(0) and B(FP,,) decom-
pose [0, P,,].

PROPOSITION 12. Let ) be a triadic oviposition function and suppose that
(S*) has three equilibrium points. Then

[Oapwz} = B(O) UB(PSCz) )
where the bar denotes relative closure in [0, Py,].

Proof. Let

A=[0,P,] - (B(O) U B(sz))

and assume per contra that A is not empty. Notice that A is open relatively
to [0, P,,]. Let [0,P,,]° denote the interior of [0, P,,]. By Proposition
4, for P € AN [0, P,,]°, there exist @, R € A such that @ < P < R
and ¢:(Q), ¢+(R) converge to equilibria, as ¢ — oc. It follows from the
definition of A that

t—oo t—o00
thus, by monotonicity,
Jlim $t(Z) = Py, , forall Z € [Q,R].

Hence P, is a trap and consequently, Re A < 0, for all eigenvalue A of
F*'(P,,). A straightforward computation shows that the product of these
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eigenvalues is equal to po(7y + u3)3Noxy g, ' (1), which is positive by
definition of z;. Therefore, at least one eigenvalue must be positive: a
contradiction. Thus A is empty which completes the proof.

Remarks. (1) The result above is true for any cooperative and irreducible sys-
tem which has three hyperbolic equilibria, provided that its phase space {2 is
a lattice, that is, forany P = (P,..., P,) and Q = (@1, - - ., @») belong-
ing to {2, the points whose ¢th coordinate is max{F;, Q;} or min{P;, };}
belong to 2.

(i1) The result above also partakes of the fact that for cooperative and
irreducible systems, it is possible to operate a partition of the phase space
into invariant open sets in which solutions converge to equilibrium points
(HIRSCH 1988 and SMITH 1986).

Proposition 12 implies that it remains to study the dynamics of (5*)
for initial conditions belonging to the boundaries of B(0) and B(F,,). A
moments reflection will convince the reader that these boundaries coincide
and are positively invariant.

In this situation, we exploite a useful result of SMITH (1986, Prop. 2.4.)
which states that the boundary of B(0) for instance can be continuously
parametrized by points of the set obtained by projecting this boundary or-
thogonally onto the X; X3 plane. More precisely, there exists a continuous
function H(X;, X3) defined on a subset of the X; X3 plane, strictly de-
creasing in the sense that P < Q, P # @ implies H(P) > H(Q), such
that the boundary of B(0) is the graph of H.

Therefore any solution of (5*) with an initial condition belonging to this
boundary obeys the following reduced differential system

Xl = _}'J'OXI i CEX3 (R)
X3 = —(v+pus)Xs+vH(X1,Xs5) .

To our knowledge, the question of the smoothness of such a function H is
still opened. Therefore we cannot apply Bendixson’s negative criterion to
rule out periodic solutions of (R). Nevertheless it is possible to establish
the asymptotic behaviour of solutions of (R) under the assumption that
H is merely continuous and decreasing, using the method of the energy
integral described by HIRSCH et al. (1985).

PROPOSITION 13. Suppose that the function H is continuous and decreasing
in the sense defined above and assume that (R) has a solution, denoted by
X1(t), X3(t), which exists for t > 0 and is bounded. Then

(i) lim Xi(t) = 0;
(ii) tlim X1(t) and tlim X3(t) exist.
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Proof. By differentiating the first equation of (R) and using the second
equation of (R) we obtain

X1 + X1
=]

X1+ (v + po + p3) X1 + po(y + p3) X1 = ayH (Xl,

Multiplying the preceding equation by X, and integrating from 0 to ¢, we
get

> (320 -X20) +

+ 5200+ ) (K20 — XE0) + (v + o+ ) [ XE(o) ds =

= ay /tH (XI(S): e+ MOXI(S)) X1(s) ds. (*)
0

(87

Since H is decreasing, we obtain

X X X
H (Xl,l—ﬂj’_‘l_l,) —H(Xl,'uoa 1) >0

(a4

(respectively < 0) if Xl < 0 (respectively X 1 > 0). Therefore

X X\ . X\ .
H(Xl,w)xlgﬂ(xl,“"al)xl, forall ¢>0.

(07

Accordingly, the right-hand side of (*) is bounded above by

¢ X1(8)
Mo . Ho

HX —X X ds = H —u ) du .

a'yfo ( 1(8), - 1(3)) 1(8) ds = avy le(O) (u, - u) U

Since X;(t) is uniformly bounded, this last integral is uniformly bounded.
Observe also that since X; and X3 are bounded, it follows from (R) that
X1, X3 and X, are bounded. Considering equation (*), we conclude
w - t .
/ X3(s)ds < 0o, thus ltlim X2(s)ds € R .
0 — Jo

Applying Proposition 5 to the function X2, we obtain

lim X2(t) = lim X;(t) =0 which proves (i) .
t—o00 t—oo
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(i) Applying part (1) of Proposition 6 to the function X3, we get the exis-
tence of sequences (¢5) and (s) such that

lim Xs(tg) = X3, lim X3(t;) =0, lim Xs(sp) = X,
k—oo k—oo k—oo
and lim X5(s;) =0,
k—oo
where X3 = Jim sup X(t) and Xg(t) = lim inf X(t) .

_ . aXs;— X
Since X3 = —(’7 = Mg)Xs + ’YH (%, XS) ’
; 0

then evaluating each member of this equation at ¢ and si, letting £k — oo
and using part (1), we obtain

. ¥ & = ¥ «
S (uoX3’X3) A= (ﬂo&”g{“‘s) '
Since H is decreasing, we deduce X5 > X3, therefore X, = X3, that is
lims o, X3(t) exists. The existence of lim; .., X;(¢) follows from (R)
and part (i). As an immediate consequence of Proposition 13, we conclude
the convergence of solutions of (S*) with initial conditions belonging to
the boundary of B(0) and B(F,,) to the equilibrium point P,, as t — co.

Remarks. (i) The case where (S*) has three equilibrium points can also
be treated by methods initiated by SELGRADE (1979, 1980).
(11) Another approach consists of applying a powerful result due to HIRSCH
(1982, Thm. C.) which states that a compact omega-limit set of three dimen-
sional cooperative system which contains no equilibrium must be a periodic
orbit. It is then possible to preclude the existence of periodic orbits using
the fact that the vector field has negative divergence. We give only an out-
line of the proof of this assertion. Assuming the existence of a nontrivial
periodic orbit, it is possible to construct a set V' such that the interior of V'
is nonempty, V' has finite volume and V is negatively invariant (HIRSCH
1982 and SMITH 1986). Since the divergence of the vector field is nega-
tive, Liouville’s theorem implies that ¢:(V) has smaller volume than V'
which contradicts the fact that, by negative invariance of V', ¢:(V) DV
for t > 0. Accordingly the omega-limit set of any solution of (S*) contains
at least one equilibrium point. This fact makes the study of the asymptotic
behaviour of solutions of (S*) easier and can be used in case (S*) has
more than three equilibrium points. In case the oviposition function 1 is
triadic, it yields the convergence result immediately.
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