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Abstract- KHANMY C, 1990. Global Asymptotic Behaviour of Solutions to
Differential System Models of the Transmission of Helminthic Infections. In: Dynamical

Models in Biology, R. Arditi (ed.). Mém. Soc. vaud. Se. nat. 18.3: 265-284.
A system of ordinary differential equations is derived from models of the
transmission of helminthic infections. We establish in this study the global asymptotic
behaviour of the solutions which describe the course of the infestation.

Résumé- KHANMY C, 1990. Comportement asymptotique global des solutions
d'un système différentiel lié à la transmission de certaines helminthiases. In: Modèles

dynamiques en biologie, R. Arditi (éd.). Mém. Soc. vaud. Se. nat. 18.3: 265-284.
Un système d'équations différentielles ordinaires est dérivé de modèles de
transmission de certaines helminthiases. On établit dans cette étude le comportement
asymptotique global des solutions qui décrivent l'évolution de 1'infestation.

Introduction

Stimulated by the influential work of MacDonald (1965) on schistosomiasis,

various investigators have proposed mathematical approaches to the

study of the transmission of helminthic infections. We cite in the
bibliography only the works relevant to this paper (Gabriel 1983, Gabriel et
al. 1981, Hirsch et al. 1985, Nasell, Nasell et al. 1972, 1973).

Department of Mathematics, University of California, Berkeley, CA 94720, USA
and Laboratoire d'enseignement assisté par ordinateur, Ecole polytechnique fédérale,
CH-1015 Lausanne, Suisse (present address).
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The parasites concerned in these models obey a cycle involving two host

populations: the definitve host (vertebrates) in which the parasite lives its
adult stage in the guise of worms and produces eggs, and the intermediate
host (fresh-water snails) in which the parasite is in transit while undergoing
a larval transformation accompanied by an asexual reproduction process.
During this developmental stage called prepatent period and which constitutes

a significant fraction of the average life of the intermediate host, snails

are infected but not infectious. Outside its definitive host, the parasite is

found in larval form and the dynamics of its transmission consists of its
flow from the vertebrate to the snail population and back again. The
infective larva ensuring the transmission from vertebrates to snails is called
«miracidium » and the one allowing the return to vertebrates after passing
through snails is called «cercaria».

In this paper we present a model, proposed by Gabriel in a personal
communication, which incorporates the prepatent period of the snails into
the models previously studies by NASELL and Hirsch (1972, 1973).

There are at least two ways of representing this phenomenon: by
introducing a delay in the models (Gabriel 1983, Gabriel et al. 1981) or by
recognizing a prepatent state in the snail population, which is the approach
considered here, see also NÂsell (1976).

Although the original Nâsell-Hirsch models derive from probabilistic
assumptions, they can also be made plausible from a purely deterministic
point of view; for a discussion of this apsect, see Gabriel et al. (1983,
1981). In the sequel we describe a deterministic model for the transmission
of helminthic infections leading to a system of ordinary differential equations

and concentrate on the course of the infection over time. Accordingly
we study the asymptotic behaviour of its trajectories by exploiting their
intrinsic properties in conjunction with some results from the general theory
of monotone systems developed by HIRSCH (1982, 1985, 1988).

Besides the papers mentioned above, we have also been inspired by useful
tools and results proposed by Hirsch et al. (1983, 1985) and Smith (1986).

A general conclusion to this study is that under reasonable hypotheses,
either the infection ultimately dies out, or else it is driven to a positive level
of endemicity.

Model Formulation

The assumptions underlying the following model are essentially identical to
those presented by Gabriel et al. (1983, 1981, 1985).

Consider a community constituted of a vertebrate population and a snail

population whose individuals are treated homogeneously and which is
submitted to infestation.
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We idealize the vertebrate population by assuming that its size remains
constant and denote the number of vertebrates by N0. While adult worms
reproduce sexually in the definitive host, exhibiting diverse patterns of sexual

behaviour, we identify two types of sexuality: hermaphroditism (single
sex) and dioeciousness (two sexes).

In order to represent the number of ovipositing worms per vertebrate host,
Gabriel et al. (1983, 1981, 1985) introduced the concept of an oviposition
function. Any such function denoted by if is required to be continuously
differentiable on the set of non-negative numbers R+, to be strictly increasing

and to satisfy -¡/-(O) 0.

From a mathematical viewpoint, dioecious worms are distinguished from
hermaphroditic worms by the classification of oviposition functions according

to the following definition (Hirsch et al. 1985): An oviposition function
ip is called ((hermaphroditic)) if

ib(x)\1 < 0, for x > 0

An oviposition function ip is called ((dioecian if it is not hermaphroditic
and if

V>'(0) 0

The unit of infection in the vertebrate population is taken to be the worm
pair in the dioecious case and the worm in the hermaphroditic case.

Let W(t) denote the worm burden per vertebrate host at time t.
Following the work of Hirsch, Hanisch and Gabriel, the number of ovipositing
worms per vertebrate host at time t is represented by i/j(W(t)).

In the snail population, we recognize three different states: susceptible,
prepatent and infective snails. We denote the number of snails in each of
these states at time t by S(t), E(t) and I(t) respectively.

We allow births and deaths of snails, but under the simplifying assumption
that each death, whether of a susceptible or prepatent or infective snail, is

accompanied by the birth of an uninfected snail; accordingly, the size of
the snail population is constant, we denote it by N. We assume that the
cercarial shed rate resulting from a miracidial infection is so large that a

possible increase due to mutliple infections is unimportant. Therefore a unit
of infection in the snail population is an infective snail, not a miracidial
infection.

We postulate that infected snails are increasing at a rate proportional to
the product of the number of infective units and the number of susceptible
units in, respectively, the vertebrate and snail populations. This reflects the

law of mass action of epidemiology.
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The dynamics of the infestation is described by the following system of
differential equations

W -poW + al
È -(~f + p2)E + ßN0ip(W)S
i -p3I + -iE
S -piS - ßN0ip(W)S + piS + p2E + p3I ¦

In the first equation, the first term expresses death among worms at a

constant rate and the second term means that worm burden per vertebrate
is increasing at a rate proportional to the number of infective units in the

snail population.
In the second equation, the first term indicates disappearance of prepatent

snails by death and because they become infective at a constant rate 7 and

the second term describes the snail infection rate resulting from the law of
mass action.

In the third equation, the first term indicates death of infective snails

at the constant rate ¿¿3 and the second term corresponds to the fact that

prepatent snails become infective at the rate 7.
In the fourth equation, the first two terms indicate disappearance of

susceptible snails by death and because they become prepatent and the

remaining terms express the replacement rule stated above. The transmission

parameters a and ß are respectively interpreted as the potential of the
snail (respectively vertebrate) population to deliver cercariae (respectively
miracidia) to vertebrates (respectively snails).

Since S + E +1 N at any time, we content ourselves with discussing
the following reduced system

W -poW + al
(S) È -i^ + p2)E + ßN0ipiW)iN - E - I)

i -p3I + -/E

with initial conditions W(0) > 0, E(0) > 0, 7(0) > 0 and £(0) +7/(0) <
N. The parameters /x0, p2, p3, a, ß, 7, N and No are positive constants.

Basic Results for System (S)

In this section we establish some basic properties of the solutions of the
initial value problem for (5)

The phase space of system (S) consists of the biological domain B
{(Xi, X2, X3) eJR.%: X2 + X3<N}. The boundary dB of B is defined

by

dB {(Xi,X2,X3) £B:Xi=0, or X2 0,

or X3 =- 0, or X2 + X3 N}



DIFFERENTIAL MODELS OF HELMINTHIC INFECTIONS 269

and the interior B° of B is defined by B° B — dB.
For each initial condition belonging to B°, the Picard-Lindelöf theorem

ensures the existence of a right maximal interval J C R+ on which
the initial value problem for (S) possesses a unique solution denoted by
iW it), E it), I it)). Moreover, either J R+ or J [0,e) with e < oo
and \imt^ti\Wit)\ + \E{t)\ + \I(t)\) oo, or J [0,e] with e < oo
and (W(e), E(c), 1(e)) G dB. The last two possibilities are ruled out as a

consequence of the following proposition.

PROPOSITION 1. If (W(0)),E(0),I(0)) G B°, then

(i) (W(t),E(t),I(t)) G B°, for all t G J;
(ii) W(t) < max(W(0), -^-) and E(t) + I(t) < N, for all t G J.

Proof, (i) Assume that the solution leaves B° after finite time. Then there
is a first epoch s G J, s > 0 such that (VF(i), £(/), 7(i)) G 73°, for all

ie[0,«) and (W(s),E(s),I(s))£dB.
Thus suppose that W(s) 0. From the definition of s it follows that

W(s) < 0 and the first equation of system (s) provides W(s) > 0. Therefore

W(s) 0 and consequently 7(s) 0. Applying the same argument
to I(s), we get E(s) 0. Accordingly, the solution reaches a singularity
of the vectorfield defined by (S) at time s, which is impossible. It remains
to show that the other possibilities also lead to contradictions.
Assume that E(s) 0. From the definition of s, it follows that E(s) <
0 and the second equation of system (s) implies that E(s) > 0. Thus

ipiWis))iN - lis)) 0. If ipiWis)) 0 then monotonicity of ip gives

Wis) 0, which has already been ruled out. Therefore 7(s) N, and

using the second and third equations, we obtain Eis) + 7(s) < 0. Hence,

by continuity, E + I > N, in a left neighborhood of s, contradicting the

definition of s.
Assume that 7(s) 0. Once more by the argument above, we get Eis)
0, Èis) ßN0Nt/jiWis)) < 0 and therefore W(s) 0, an impossibility.
Finally, suppose that E(s) + 7(s) N. From the definition of s, it
follows that Èis) + i is) > 0, which contradicts the fact that Èis) + /(s)
-p2Eis) - p3I(s) < - min(/í2, ^3)-^ < 0.

(ii) It follows from (i) that for all t G J, E(t) + I(t) < N, thus

W < —poW + aN. Integrating this differential inequality, we find that

it AT

W(t) < W(0) e'»0* + (1 - e^0*) for all t G J
Po

Thus if WiO) > -^ then W(i) < W(0), forali t G J and if W(0) <

-^ then Wit) < z£, for all t G J. Hence W(t) < max(VF(0), -^),
for all ieJ.
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In order to consider initial conditions belonging to dB, we extend V
arbitrarily as a continuously differentiable function to (—oo,0). By Picard-
Lindelöf theorem again, for any initial condition belonging to B, there is a

unique solution to the initial value problem for (5), which exists on a right
maximal interval J* C R+.

PROPOSITION 2. If (W(0),E(0),I(0)) G B, then

(i) (W(t), E(t), I(t)) eBJor all t G J* ;

(ii) (Wit) < max (W(0), -^-) and E(t) + 1(f) <N,for all t G J* ;

(iii) J* R+ ;

(iv) If (WiQ),E(0),I(Q)) ¿ (0,0,0), then W(t) > 0, E(t) > 0 and

I(t) >0, for all te (0,oo).

Proof. Assertions (i), (ii) and (iii) follow from Proposition 1 using continuity
of solutions in initial conditions. To establish statement (iv), we use the

variation of constants formula. For any t > 0 it follows that

(*) Wit) W(0) e-W + ae-»ot [ eMoS7(s) ds;
Jo

(**) E(t) E(0) e~ /o e^ ds
+ e~ SO e(s) ds

r
eSô e(r) drßN0Tp(Wis))(N - I(s)) ds,IJo/0

where 6>(s) 7 + p2 + ßN0ip(W(s));

(***) I(t) 7(0) e'^ + 7 e""3* / eß3S E(s) ds.
Jo

Thus assume that W(0) > 0. Since 7(s) > 0, for s > 0, it follows
from (*) that Wit) > 0, for all t > 0. We now show that £(i) > 0,
for all t > 0. Assume per contra that there exists r > 0 such that

£J(r) 0. It follows then from (**) that 7(s) N for all s G [0,t],
thus 7(t) 0 which contradicts the fact that, by the third equation of
system (#), 7(r) -p3N. Accordingly £(/) > 0, for all t > 0 and,

using (***), we get I(t) > 0, for all t > 0, which proves assertion iv).
The cases E(0) > 0 or 7(0) > 0 are treated similarly.

Remark. By differentiating each question of (5) and using the facts that ip

is continuously differentiable and that W, E and 7 are uniformly bounded,
we obtain the uniform boundedness of W, È and 7. This property will be

used in later arguments.
We show next that (5) can be converted into systems which are

cooperative (Hirsch 1982), in the sense that the resulting vector fields are such

that the off-diagonal entries of their Jacobian matrix are nonnegative.
The transformation Xi — W, X2 E + I and X3 I converts the bio-
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logical domain B into B* {(X1,X2,X3) ER3+:X3< X2,X2 < N},
and iS) into the following system

Xi -p0Xi + aX3

(S*) X2 -p2X2 + (M2 - p3)X3 + ßN0i>iXi)iN - X2)

x3 -i'ï + p3)x3 + 7x2

whereas system (5*) is converted by the change of variables V- X\,
Y2=X2 + ±ip3 - p2)Xi, and Y3 X3 + 7-(7 + p3 _ p0)Xi into

Yi -\ii + P0 + Ps)Yi + aY3

Y2 -p2Y2 + ±(p3 - p2)ip2 - ßo)Yi +
iS**) +ßN0iP(Yi)(N-Y2 + ±(ß3-p2)Yi)

Y3 -^h + p3 + Po)Y3 + 7Y2+

+ ¿((7 + Po - Ms)2 - 47(mo - P2W1

while B* is transformed into a domain B**.
Since if is increasing, we notice that the off-diagonal elements of the Ja-

cobian matrix of the vector field appearing in (S*) are nonnegative for all

iXi,X2,X3) e B*, provided that p2> p3. The vector field appearing in
iS**) enjoys likewise that property for all (Yi,Y2,Y3) e B**, provided
that p2 < p3 and p2 > p0 ¦

In brief, (5) can be imbedded into the class of cooperative systems when

P2 > Mo • Since — and — may be interpreted respectively as the expected
lifetimes of the adult worms and the prepatent snails, the restriction on the

epidemiological parameters po and p2 is mild from a biological viewpoint,
because — is a few weeks and — is several years.

M2 Mo J

The rest of this paper is devoted to the study of the limiting behaviour
of every solution of system (S"*), under the assumption p2> p3; the
arguments apply in the same way to system (S**), if p2 < p3 and p2 > /x0,
yielding similar conclusions.

Let F* denote the vetor field appearing in (S*). Since ip is strictly
increasing, it follows that the Jacobian matrix F*' of F* is irreducible in the

interior of B*, that is for any proper subset 75 of {1,2,3}, there exist i e E
and j e {1,2,3} -E such that (F*% -¿ 0, for all (X-.,X2,X3) G (B*)°.
Thus, 5*is cooperative and irreducible in the interior (73*)° of B*.

From now on, we consider initial conditions belonging to (73*)°, which
is not a restriction according to Proposition 2.

We turn now to a review of some standard notions from dynamical
systems theory and some general results on monotone systems.
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Background and General Results

Let X(t) F*(X(t)), X(0) Z, Z e (73*)° denote systems (S*)
in vector form. A solution is alternatively denoted by Z(t) or <pt(Z). A
subset S of 73* is called positively invariant if for each Z e S, <pt{Z) G S
for t e R+.

It is well known that the long term behaviour of a solution often reduces

to the study of its omega-limit set

üj(Z) {Y e 73* : there exists a sequence (£¦,) with lim tk oo
k—>oc

and lim Z(tk) Y}
k—>oc

This set is positively invariant and consists of a single element P, namely
an equilibrium point, that is F*iP) — 0, if and only if lim^oo Z(t) P.

An equilibrium point P is called a «trap» (Hirsch 1985) if there is some

open set M C (73*)°, not necessarily containing P, such that

lim Z(t) P, for all Z G M
t—>oo

If P is a trap, then Re A < 0 for all eigenvalue A of the Jacobian matrix
F*'(P).

We use the following notation. For X, Y e R3, we write

X >Y if X-Y elR3+ and X >Y ifX-Y e±3+

where R3^ is the interior of R^ Replacing X, Y by —X, —Y, we get
the corresponding notions < and <. If X < Y we set

[X, Y] {Z e R3 : X < Z < Y}

Kamke's comparison principle expresses that solutions of cooperative
systems enjoy a monotonicity property (KAMKE 1932). A stronger result can
be proved in case irreducibility occurs (Krasnoseuskii 1968 and Hirsch
1985). Thus the solutions of our system satisfy the following property: for
Z,Y G (73*)°, Z > Y and Z £ Y imply Z(f) > Y(t) for t > 0. The

following result is a well known convergence criterion (Selgrade 1979,
1980).

Proposition 3. Suppose that Z e 73* is such that F*(Z) > 0 (or
F*(Z) < 0). Then all coordinates of the solution Z(t) are nondecreasing
(or nonincreasing) for t > 0. In either case, since u>(Z) is not empty, Z(t)
converges to an equilibrium point at t —> oo.
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The following result is an immediate consequence of an important theorem

due to Hirsch (1985, Theorem 4.1.).

Proposition 4. Suppose that the set of equilibrium points of (S*) in 73*

is discrete. Then the set of initial conditions Z e 73* for which Z(t) does

not converge to an equilibrium point at t —> oo has Lebesgue measure zero.
We end the section with two very useful results proved by GABRIEL

(1983) and Hirsch et al. (1985) concerning the asymptotic behaviour of
functions of a real variable.

Proposition 5. Let f : R+ —> R be a function such that

(i) f(t) exists and is bounded for t G R+ ;
(ii) /0°° fit) ci/ G R, then limoso /(/) 0.

Proposition 6. Suppose that a function f : R+ —> R is differentiable and

uniformly bounded. Then

(i) There are sequences tk and sk such that

lim tk lim sk oo,
k —»oo k—»oo

lim f(tk) lim sup/(í),
k—»oo t—»oo

lim f(tk) 0,
fc—¡-co

lim f(sk) lim inf f(t),
fc—>oo t—*oo

lim f(sk) 0
k—»oo

(ii) Moreover, if f is twice differentiable and its second derivative f is

uniformly bounded, then for any sequence (rk) such that

lim rk oo
k—»oo

and lim f(rk) lim sup/(t)
k—»oo t—»oo

or lim f(rk)= lim inf f(t)
k—»oo t—»oo

then lim f(rk) 0
k—»oo
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Equilibrium Points of (S*)

To make writing simpler, we first put

T alN T _ßNp(1 + p3)

Po(l + P?,) ' PÁI + P2)

and following Hirsch et al. (1985), we introduce the function

ip(x)iTi -x) „,gTi(x) 7--J--± ¿, 0<l<Ti.

It results from (S*) that a point Px is an equilibrium point of (S*) if and

only if
P,=*(l/0(7 + ^3),-"0'

0:7 a

where either x 0 or x is a solution of the following equation

±2

For a hermaphroditic oviposition function, the following general statement
can be made about the possible number of equilibrium points.

PROPOSITION 7. By HIRSCH et al. (1985), let ip be a hermaphroditic oviposition

function.
(i) If

TiT2 - m '

then the origin 0 is the only equilibrium of (S*).
(ii) If

TlT2 > WW) '

then iS*) has two equilibria, the origin 0 and PXo, where xq is

the root of equation (E).
When ip is dioecian, the question of its influence on the statics and the

dynamics of the transmission model becomes more difficult to tackle. However,

an important special case was distinguished by Hirsch et al. (1985),
wich motivates the following definition: a dioecious oviposition function i\>
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is called Uriadic » if to each T\ > 0 there corresponds a positive number

x(T{) such that

g'Ti(x)>0 if 0<x<xiTi)
g'Tiix) 0 if x xiTi)

g'Ti(x)<0 if xiTi)<x<Ti.

It results from the definition that the equilibrium points of (5*) for such a

function are determined in the following way
(i) If

1

2
> 9t, (x(Ti))

then the origin 0 is the only equilibrium,
(ii) If

1

% 9tMTJ)

then (S*) has two equilibria: 0 and Px(tx)-
(iii) If

1. < gTi(x(Ti))

then (5*) has three equilibria: 0, PXl and PX2, where

0 <xi <x(Ti) <x2<Ti.
Consider the half line

{px=x(l,^±J^A):x>0\I \ 0-7 a J >

An easy computation gives for any Px G L,

FÌ(PX)=F3*(PX)=Q
xpoil + P3)ßN0 1

~a~l {g^{x)-T2a TP*tr>\ ^POV. 1 ^ hidjhjl'l0 / / -. J-

and F¿(PX) _ gTi (x) - —

where F^F^, F3* are the coordinates of the vector field F*.
In particular, when ip is a triadic oviposition function, we get F*(PX)
< 0 if 0 < x < T- and equation (E) has only the root x(T{), F* (Px) < 0 if
0 < x < xi, F*iPx) > 0 if Xi < x < x2 and equation (E) has the roots Xi
and x2. Thus, using monotonicity of the solutions of (S*) and proposition
3, we obtain the following proposition.
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PROPOSITION 8. Let if be a triadic oviposition function,
(i) If (S*) has two equilibria,

then Hm Z(t) 0, for all Z G [0,Pl(Tl)], Z ¿ Px(Tl)

(ii) If (S*) has three equilibria,
then lim Z(f) 0, for all Z G [0,PXl], Z -¿ PXl

i—>oo

and lim Z(t) PX2, for all Z G [PXl,Px7], Z -¿ PXl
t—»oo

Global Asymptotic Behavior of Solutions of (S*)

In this section, we establish the convergence of all solutions of (S*) to
equilibrium points as t —> oo, by exploiting their monotonicity properties
in conjunction with ad hoc arguments stemming from the particular form
of (5*).

In the same spirit (Hirsch et al. 1985), we next associate to (S*) some
inequalities which we call «fundamental inequalities».

Proposition 9. Let Z*(í), i 1,2,3, be the coordinates of a solution of
(S*) and denote,

lim sup Zi(t), lim infZ¿(í)
t—»oo t—»oo

respectively by Zi and Z •. The following inequalities occur

(i) PoZi < aZ3

(ii) (p2 + ßN0ip(Zi))Z2 < (p2 - p3) Z3 + ßNoNiß(Zi)
(iii) (ip + P3)Z3<jZ2

(iv) ^r<gTl(Zi) if Zi>0
±2

(v) The above inequalities are reversed if Zi, i 1,2,3, are replaced
by Zt, i 1,2,3.

Proof, (i) If (tk) is a sequence such that

lim tk oo and lim Zi(tk) — Z\
k—»oo k—»oo

then Proposition 6 implies

lim Zi(ife)=0
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By boundedness of the solution, we can choose a convergent subsequence
of Z3(tk), say

Hm z3itk) z;.
k—»oo

Evaluating the first equation of (S*) at tk and letting k go to infinity, we

get
0 -poZi + aZ3 < -poZi + aZ3

Inequalities (ii) and (iii) are obtained in the same way and using the fact
that if is increasing, (iv) It follows from inequalities (ii) and (iii) that

(p2 + ßN0iß(Zi))Z2 <
l(-ß2 - ß3)

Z2 + ßNoN^iZi) thus
7 + P3

M3(7,+ /i2)
+ ßNoi>iZi)) Z2 < ßN0NxpiZi)

7 + P3 J

Since by inequalities (i) and (iii), we have

^ Poil + Pd.)
Z2 > we get

aj
PÁ1 + P2) A a-yN -—— ¦ r + ìpiZi) Zi < * TlpiZi)

JNoi'J + ps) J po(l + P3)

which is inequality (iv) in a disguised form, (v) is proved in the same way.
The behaviour of solutions of (S*) as t —> oo can now be derived, in

the hermaphroditic case, from the last proposition.

Proposition 10. Let if be a hermaphroditic oviposition function and let

Z(t) iZiit),Z2it),Z3it)) be a solution of (S1*) corresponding to an
initial condition Z G (73*)°.

(i) If TiT2 < -r^r-r, then lim Z(t) 0.
1p (Ü) t—»oo

(ii) If TiT2 > ——, then lim Z(t) PXo.
1p''([)) t—»oo

Proof, (i) We first prove that Zi 0. To see this suppose per contra that

Z\ > 0. Then by part (iv) of Proposition 9 and assumption (i) we get

9Tl (Zi) >^>Ti ip'(Q) limio (x)
1 i 2 x—»0 -

Since i¡> is hermaphroditic, it is easily seen that the function gT is strictly
decreasing. Thus Z* 0, a contradiction. Therefore

lim Zi(t) 0
t—»-oo
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and, using Proposition 6 and the first and third equations of (S1*),

lim Z2(í) 0 and lim Z3(í) 0
t—»oo t—»oo

(ii) We first prove that since Z / 0, Zi > 0. Assuming per contra that

Zi 0 and therefore that lim-^oo Z(t) 0, it follows from monotonicity
that for all X G [0, Z] — {0,PXo}, the solution (j)t(X) converges to 0, as

/ —> oo. Thus the equilibrium point 0 is a trap and consequently Re A < 0

for all eigenvalue A of F*'(0). It results from a straightforward computation
that the product of these eigenvalue is equal to

aß^NoN (V(0) - jTjT

which is positive by assumption (ii).
Hence one eigenvalue, at least, is positive: a contradiction. Therefore
Zi > 0 and by parts iv) and v) of Proposition 9,

<M^i)>^ ><?•*,G=i)*

Since the function gT is decreasing we get

Zl Z_i xo that is lim Zi (/) xq
t—»oo

Finally, the convergence of Z(t) to PXo as t —> oo follows from Proposition
6, using the first and third equations of (S*).

Remark. It is also possible to establish Proposition 10 by using a general
result for monotone systems, stipulating that for any compact omega limit
set, there exist equilibrium points P, Q, such that this omega-limit set is
contained in [P, Q] (Hirsch 1982, 1988).

We now turn to the dioecious case and divide the proof into two parts
because the case where (S*) has three equilibrium points requires more
analysis.

PROPOSITION 11. Let if be a triadic oviposition function and suppose that
(S*) has at most two equilibrium points. Let Z(t) denote a solution of
(S*) corresponding to an initial condition Z G (B*)°.

Ü) If~> 9tMT^>> then lim Z(*) °-
In - t—»OO
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(ii) If — gT (xiTi)), then Z(t) converges to an equilibrium point as
T2 -

t —> oo. In particular,

Hm Z(t) 0, ifZe [0, Px(Tl)] - {Px(Tl)}

an-7 lim Z(í) P^t.), í/Z > Px(Tl)
t—»oo

Proof, (i) Denote the coordinates of Z(t) by Z¿(í), ¿ 1,2,3. We first

prove that Z- 0. Assuming per contra that Z\ > 0, then by part (iv) of
Proposition 9, we get

9Tl(Zi)>
±̂2

which contradicts the fact that by assumption (i)

1

max o_ (x) < ^

Therefore Z- 0, that is

lim Zi(t) 0
t—»oo

and the convergence of Z(t) to 0 as / —> oo follows from Proposition 6.

(ii) Arguing as in (i) we obtain the following alternative: either Zi 0,
thus

lim Z(t) 0, or Zi x(Ti)
t—»oo

In the latter case, considering a sequence (ifc) such that

lim tk oo and lim Zi(í^) Zi
t—»oo k—»oo

we get, by using the fundamental inequalities and Proposition 6,

lim Zitk) Px{Tl)
fc—»oo

that is

Px{Tl) G u(Z) and X < Px{Tx) for all X e u(Z)

The last part of the assertion follows from Proposition 8.

Since w(Z) C [0, Px(-r1)], we conclude

w(Z) Px{Tl) that is tlim Z(t) Px{Tl)
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Finally, we consider the case where (S*) possesses three equilibria. Using
the fundamental inequalities of Proposition 9, it is easy to prove that any
solution of iS*) either converges to the equilibrium point PX2 as t —? oo,
or ultimately lies in [0, Px7]. Therefore, we concentrate on initial conditions
belonging to [0, PX2].

Let P(0) and P(PX2) denote respectively the domains of attraction of 0

and PX2 in [0,PX2], that is

B(0) {Ze[0,PXa]: lim Z(t) 0}
*¦ t—»oo '

73(PXJ) {Z G [0,PX2] : lim Z(t) P0,X2} -

t—»oo

lim
t—»oo

Since by Proposition 8, we have

[0,PX1] - {PXl} C 73(0) and [PXl,PX2] - {PXl} C 73(PX2)

we notice that B(0) and PX2 are open sets relatively to [0,PX2].
The next result shows that the boundaries of P(0) and B(PX2) decompose

[0,PX2].

PROPOSITION 12. Let if be a triadic oviposition function and suppose that
(S*) has three equilibrium points. Then

[0,PX2] =P(0)U73(PX2),

where the bar denotes relative closure in [0, PX2].

Proof. Let

-4=[0,PX2]-(t3(0)U73(PX2))

and assume per contra that A is not empty. Notice that A is open relatively
to [0,PX2]. Let [0, PX2]° denote the interior of [0,PX2]. By Proposition
4, for P G A n [0, PX2]°, there exist Q, R G A such that Q < P < R
and <pt(Q), <t>t{R) converge to equilibria, as t —> oo. It follows from the
definition of A that

lim 4>t(Q) i™ <Pt(P) Px*
t—»oo t—»oo

thus, by monotonicity,

lim 4>t(Z) PX1 for all Z G [Q, R]
t—»oo

Hence PXj is a trap and consequently, Re A < 0, for all eigenvalue A of
F*'(PXl). A straightforward computation shows that the product of these
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eigenvalues is equal to poi"f + p3)ßNoX\ g'T (xi), which is positive by
definition of xi. Therefore, at least one eigenvalue must be positive: a

contradiction. Thus A is empty which completes the proof.

Remarks, (i) The result above is true for any cooperative and irreducible system

which has three hyperbolic equilibria, provided that its phase space Q, is

a lattice, that is, for any P (Pi,..., P„) and Q (Qi,..., Qn) belonging

to fì, the points whose i-th coordinate is max{P¿, Qi} or min{P¿, Q¿}
belong to Q.

(ii) The result above also partakes of the fact that for cooperative and
irreducible systems, it is possible to operate a partition of the phase space
into invariant open sets in which solutions converge to equilibrium points
(Hirsch 1988 and Smith 1986).

Proposition 12 implies that it remains to study the dynamics of (S*)
for initial conditions belonging to the boundaries of 73(0) and B(PX2). A
moments reflection will convince the reader that these boundaries coincide
and are positively invariant.

In this situation, we exploite a useful result of Smith (1986, Prop. 2.4.)
which states that the boundary of 73(0) for instance can be continuously
parametrized by points of the set obtained by projecting this boundary
orthogonally onto the XiX3 plane. More precisely, there exists a continuous
function 77(Xi,X3) defined on a subset of the XiX3 plane, strictly
decreasing in the sense that P < Q, P ^ Q implies H(P) > H(Q), such
that the boundary of 73(0) is the graph of 77.

Therefore any solution of (S*) with an initial condition belonging to this
boundary obeys the following reduced differential system

Xi -Mo^i + otX3
X3 -(1 + p3)X3+1H(Xi,X3). yn>

To our knowledge, the question of the smoothness of such a function H is

still opened. Therefore we cannot apply Bendixson's negative criterion to
rule out periodic solutions of (R). Nevertheless it is possible to establish
the asymptotic behaviour of solutions of (R) under the assumption that
H is merely continuous and decreasing, using the method of the energy
integral described by Hirsch et al. (1985).

Proposition 13. Suppose that the function H is continuous and decreasing
in the sense defined above and assume that (R) has a solution, denoted by

Xi(f), X3(t), which exists for í > 0 and is bounded. Then

(i) lim Xi(t) 0;
t—»CO

(ii) lim X\{t) and lim X3(t) exist.
Í—»oo t—»OO
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Proof. By differentiating the first equation of (R) and using the second

equation of (R) we obtain

Xi + (7 + po + li3)Xi + //0(7 + ß3)Xi a777 ¡Xi, Xl +^°Xl j

Multiplying the preceding equation by Xi and integrating from 0 to í, we
get

i(x2(/)-x2(o)) +

+ y (7 + Ma) (X2(t) - X2(0)) + (7 + Mo + 113) J X2is) ds

f* zi(Y -, Xi(s) + p0Xi(s)\ ¦

¦27/ 77 Xi(s),—---- ----- Xi(s) eis. (*)

Since 77 is decreasing, we obtain

(respectively < 0) if Xi < 0 (respectively Xi > 0). Therefore

77 (xi, *x +^oXl ]xi<h(xi, ^-\ Xi forali í>0.

Accordingly, the right-hand side of (*) is bounded above by

07/77 fXi(s), —Xi(s)) Xi(s) ds a-y f 77 (u, —u) du
Jo v al /Xl(0) Va/

Since Xi(i) is uniformly bounded, this last integral is uniformly bounded.
Observe also that since Xi and X3 are bounded, it follows from (R) that

Xi, X3 and Xi are bounded. Considering equation (*), we conclude

/»00 pt
\ X\(s)ds < 00 thus lim / X^(s)ds G R

Jo t^°0 Jo

Applying Proposition 5 to the function X2, we obtain

lim X2(í) lim Xi(í) 0 which proves (i)
t—»oo t—»00
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(ii) Applying part (i) of Proposition 6 to the function X3, we get the
existence of sequences (/¡t) and (sk) such that

lim X3(tk) X3 lim X3(ífe) 0 lim X3(sk) X3
k—»00 k—»00 fc—»oo

and lim X^(sk) 0
k—>oo

where X3 lim snpXs(t) and X^(t) lim inf X3(t)
i--*ao i—»co

Since X3 -(7 + M3)*3+7g(Q:X3~Xl**3)

then evaluating each member of this equation at tk and Sk, letting k —> oo
and using part (i), we obtain

X3 -^—77 (—X3,X3) and X3 -^—H (—X3,X3
7 + M3 VMo / 7 + M3 \Mo

Since 77 is decreasing, we deduce X3 > X3, therefore X3 X3, that is

limt^oo X3(i) exists. The existence of limt^00Xi(i) follows from (R)
and part (i). As an immediate consequence of Proposition 13, we conclude
the convergence of solutions of (S*) with initial conditions belonging to
the boundary of 73(0) and B(PX2) to the equilibrium point PXl as t —> 00.

Remarks. The case where (5*) has three equilibrium points can also
be treated by methods initiated by Selgrade (1979, 1980).

(ii) Another approach consists of applying a powerful result due to Hirsch
(1982, Thm. C.) which states that a compact omega-limit set of three dimensional

cooperative system which contains no equilibrium must be a periodic
orbit. It is then possible to preclude the existence of periodic orbits using
the fact that the vector field has negative divergence. We give only an outline

of the proof of this assertion. Assuming the existence of a nontrivial
periodic orbit, it is possible to construct a set V such that the interior of V
is nonempty, V has finite volume and V is negatively invariant (Hirsch
1982 and Smith 1986). Since the divergence of the vector field is negative,

Liouville's theorem implies that 4>tiV) has smaller volume than V
which contradicts the fact that, by negative invariance of V, 4>tiV) D V
for t > 0. Accordingly the omega-limit set of any solution of (S*) contains
at least one equilibrium point. This fact makes the study of the asymptotic
behaviour of solutions of (S*) easier and can be used in case (5*) has

more than three equilibrium points. In case the oviposition function if is

triadic, it yields the convergence result immediately.
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