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MODELES DYNAMIQUES EN BIOLOGIE, R. ARDITI (DIR.)
DYNAMICAL MODELS IN BIOLOGY, R. ARDITI (ED.)

Reproduction des vers parasites:
le gonochorisme parfait pour la loi binomiale

PAR

ANDREA PELLEGRINELLI!

Abstract -PELLEGRINELLI A., 1990. Reproduction of some parasitic worms: the
dioecious case for the binomial distribution. /n: Dynamical Models in Biology,
R. Arditi (ed.). Mém. Soc. vaud. Sc. nat. 18.3: 241-263.

This work is concerned with the transmission dynamics of some parasitic worms.
Several authors proposed to include an immune reaction in the definitive host in
models of the Ndsell-Hirsch type. The hermaphroditic case was treated by Aeschli-
mann and we discuss here the corresponding situation for a dioecious worm. More
precisely we study the properties of its oviposition function which is the key no-
tion relating the reproductive strategy of the parasite to the course of the infection
induced by its presence.

Résumé —PELLEGRINELLI A., 1990. Reproduction des vers parasites: le gonocho-
risme parfait pour la loi binomiale. /n: Modeles dynamiques en biologie, R. Arditi
(dir.). Mém. Soc. vaud. Sc. nat. 18.3: 241-263.

Ce travail concerne la dynamique de la transmission de certains vers parasites.
Plusieurs auteurs ont proposé d’inclure une réaction immunitaire de 1’hdte définitif
dans des modeles du genre Nésell-Hirsch. Aeschlimann a traité le cas de I’herma-
phrodisme et nous discutons ici le probleme analogue pour un parasite gonochorique
(sexes séparés). Plus précisément nous étudions les propriétés de sa fonction de
ponte, grandeur qui, dans le modele, traduit la stratégie de reproduction du parasite
et permet de prédire 1’évolution de I’infestation résultant de sa présence.

I'Section de mathématiques, Université de Genéve, rue du Liévre 2-4, CH-1211
Geneve 24, Suisse.,
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1. INTRODUCTION

Dans les années soixante apparurent les premiers modeles mathématiques
de la schistosomiase. Ces modeles, dus & MACDONALD (1965) et NASELL
et HIRSCH (1972, 1973), mirent en évidence le r6le essentiel joué par la
sexualité¢ du parasite dans la dynamique de transmission de la maladie.
On ne considérait que deux types de reproduction: I’hermaphrodisme pur,
comme on le trouve chez les Douves (Fasciola hepatica, Fasciolopsis buski)
ou chaque parasite pond, et le gonochorisme (sexes séparés) comme on
le trouve par exemple chez les Schistosomes (Schistosoma haematobium,
S. mansoni, S. japonicum). Les modeles précédents sont de nature semi-
stochastique. Une interprétation déterministe de ceux-ci a permis, via I’in-
troduction de «fonctions de ponte», d’intégrer le comportement sexuel des
vers parasites qui est, dans la nature, d’une variété surprenante. Ce pas fut
effectué dans les années soixante par GABRIEL (1983); HIRSCH et al. (1985),
BRADLEY et MAY (1978).

Les parasites concernés par ces modeles ob€issent a4 un cycle incluant
deux populations d’hotes: 1’hote définitif (généralement une population de
vertébrés) dans lequel le parasite vit son stade adulte et produit des ceufs,
et ’hdte intermédiaire (généralement une population de mollusques aqua-
tiques) dans lequel le parasite transite tout en subissant une transformation
larvaire accompagnée d’un processus de multiplication.

En dehors de son hote définitif, le parasite se présente sous forme larvaire
et la dynamique de sa transmission consiste en son passage de 1"h6te définitif
a I’héte intermédiaire suivi du chemin inverse. La larve infestante assurant
la transmission des vertébrés aux mollusques est appelée miracidium et celle
qui permet le retour aux vertébrés a la suite du passage dans un mollusque
porte le nom de cercaire. Les miracidies sont le produit de la ponte du
parasite dans I’hote définitif. Le lecteur intéressé trouvera de plus amples
informations dans 1’ouvrage de GOLVAN (1978).

En faisant certaines hypothéses phénoménologiques et techniques, la dy-
namique de la transmission est réduite a la discussion du systéme d’équations
différentielles suivant

{w(t) = —pw(t) + mTiy(b), w(0) > 0,
9(t) = —p2y(t) + poTo®(w(?))(1 - y(?)), 0<y(0) <1,
ol w(t)= espérance de la charge parasitaire par hote définitif a 1’épo-
que t;
y(t) = espérance de la proportion de mollusques infestés a 1’épo-
que i;

®(w(t))= espérance du nombre de parasites pondeurs a 1’époque ¢;
en fonction de I’espérance de la charge parasitaire;
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& est appelée fonction de ponte;

1 = taux instantané de mortalité des parasites;

2 = taux instantané de mortalit¢ des mollusques (un mollusque
mort est supposé €tre immédiatement remplacé€ par un autre
sain, susceptible d’étre infesté, afin de garder constante la
taille de la population);

T,,T, = facteur de transmissions NASELL et HIRSCH 1972, 1973).
® dépend de la stratégie de reproduction des parasites. En effet, on a

w hermaphrodisme pur,
®(w) = v (1 — 2= [T ercos?(1 4 cos ) dq?) gonochorisme parfait.

La fonction de ponte pour le gonochorisme parfait a ét€ calculée par
MACDONALD (1965), sous forme de série, puis par NASELL et HIRSCH
(1972).

Sous les seules hypothéses que ® est non négative et de classe C! sur
[0,00), HIRSCH et al. (1985) ont démontré 1’existence et 1’unicité d’une
solution biologique du systeme, ou «biologique» signifie que V¢ > 0 on a
w(t) >0 et 0 < y(t) < 1. lls démontrent également que la solution tend
toujours vers un point d’équilibre. La fonction ¢ n’a donc pas une grande
influence sur 1’existence et le comportement qualitatif des solutions. Par
contre elle joue un role essentiel dans la détermination des points d’équilibre
du systeme. Ce fait nous suggere une classification des fonctions de ponte
a I’aide de la structure des points critiques qu’elles engendrent.

Dans le cas de I’hermaphrodisme pur on a un ou deux points d’équilibre,
suivant la valeur de T; et T5. Ainsi, toute fonction ® donnant lieu a un ou
deux points critiques va €tre dénommée fonction de ponte hermaphrodite.
Dans le cas du gonochorisme parfait on a un, deux ou trois points d’équilibre,
suivant la valeur des parametres biologiques 77 et 75. Une telle fonction
est dite fonction de ponte de type U. 1l s’aveére que toute fonction de ponte
ayant une justification phénoménologique, étudiée jusqu’a cette date, est soit
hermaphrodite, soit de type U. La classification est donnée par GABRIEL
(1983) et HIRSCH et al. (1985).

Au début des années quatre-vingt on a aussi commencé a travailler sur
une modification du modele de Néasell et Hirsch qui permet de tenir compte
d’une certaine réaction immunitaire dans 1’hote définitif. On considere une
immunité progressive affectant séparément les méles et les femelles schis-
tosomes; on suppose de plus une charge parasitaire maximale finie. En
introduisant cette hypothese supplémentaire, le systeme précédent devient

{u'f(t) = —pw(t) + mTiy®)(1 —w(t), 0<w(0)<1
Y(t) = —p2y(t) + peTe®(w(t))(1 - y(t)) 0<y(0)<1.
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La signification des paramétres et des variables qui apparaissent ici est la
méme que précédemment, a ’exeption de w qui désigne le rapport entre
I’espérance de la charge parasitaire totale par hote définitif et la charge
parasitaire maximale par héte définitif (0 < w < 1),

Le cas ®(w) = w, correspondant dans ce deuxiéme modeéle a I’herma-
phrodisme pur, a été résolu par AESCHLIMANN (1982). Ce cas fournit
également (pour des valeurs arbitraires de 7% et 7%) une structure com-
prenant un ou deux points critiques. Il est facile de démontrer que ceci a
lieu si et seulement si
4 (%) <0, pour tout w €]0,1].
dw w
Les fonctions de ponte remplissant cette condition seront appelées herma-
phrodites.

Pour traiter le gonochorisme, il faut en premier lieu calculer la fonc-
tion de ponte. Pour cela il faut revenir a 'origine stochastique du mode¢le
et déterminer ® comme E[min(M (t), F'(¢t))], ou E désigne 1’espérance
mathématique, M (t) et F'(t) les variables aléatoires qui donnent, au temps
t, le nombre de parasites males et femelles dans un hote définitif. Mais
rien ne nous assure en général que E[min(M(¢t), F'(¢))] est une fonction
de E[M(t) + F(t)]. C’est le cas, par exemple, si on admet que M (t) et
F'(t) sont indépendantes, identiquement distribuées, de loi de Poisson ou
binomiale (GABRIEL 1983).

L’analyse du modele montre que la loi «naturelle» de M (t) et F(t) est
la loi binomiale. «Naturelle» signifie que si les variables aléatoires F'(0)
et M(0) sont binomiales, F(t) et M(t) le seront également pour tout
t positif, et si F(0) et M(0) sont quelconques, asymptotiquement c’est
la loi binomiale qui prévaut. C’est la raison pour laquelle on désigne ce
cas par gonochorisme parfait pour la loi binomiale. La fonction de ponte
correspondante a été déterminée par J.-P. GABRIEL (comm. pers.). Elle se
présente sous la forme

1—w

@(w):%{l— /Oﬁ [1 - 2w(1 — cos )

+2uw?(1 — cos 9)]“ (1 + cos ) di} |

™

ot C' € IN est le nombre maximal de parasites mailes, respectivement
femelles qu’un hdte définitif peut abriter. La charge parasitaire maximale
par hote definitif est donc 2C'.

A chaque fonction de ponte @ on associe le rapport de ponte p défini
par

p(w) =——=, we (0,1].
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Dans notre cas on aura

p(w) = %{1— 1;10/; [1—2w(1 - cos )

+ 2w?(1 — cos ¥)] c‘_1(1 + cos?) d} .

Le présent travail se propose de démontrer que cette fonction de ponte est
de type U.

2. LE RAPPORT DE PONTE p DU GONOCHORISME PARFAIT
POUR LA LOI BINOMIALE EST CROISSANT

A T’aide de transformations trigonométriques bien connues on a

1—w

™

p(w) = —%{1— /OW [1— 2w(1 — cosd)+

+ 2w?(1 — cos 19)]0_1(1 + cos ) v}

_1 _1—'w = ,22
—2{1 f0[81n 2—|—

™

W g $0-1 s
+ cos? 5 = (4w — 4w?) sin? 5] 2 cos? = di}

1 1- m v By o= 0

= 5 Wwfo [c052§+(1~—2w)zsin2 5}0 10032—2—(119
1 1-w<~ (C=1\ [T . 50 v

= - — (1—2w)2’( : )/ sin® — cos?¢ =2 — qy .
2 s 1 0 2 2

I
=)

]

Posons

(* I;:= (C—l)/ sinz’;gcoszc_%galﬁl t=sissl —1s
0

7

Il est clairque I; >0, Vi=0,...,C —1.

LEMME 1. Pour tout 5 =0,...,C—2,0na I; > I;j,.
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Preuve. En appliquant la formule

sin™ ! acos™ 1 o

b
/ sin™ accos” ada =
a

m-+n a

m—1

b
sin™ 2acos™ ada ,
m+n/J,

ainsi que le changement de variable u := %,

20C-1)! 20-2—1 (% 5 o0 9ia
Ij:j!(C—j—l)! 50 fo sin“? u cos T4 ud

on obtient d’une part

U,

et d’autre part

. — J i
1_7—}-1 = (J 1)'(0 j 2)' 20 " sSin— U CoSs ud

U .

On en déduit que

L _(G+1)(€C-i-3)
Lyt (j+3) (C—j—1)

>1 VYj=0,...,0-2. O

Remarques. (1) En calculant explicitement les I; on trouve

I 24 2C -2\ (C—j) ™
T\ g C—-j C 2C°

(2) De plus, on a

= T
IJ = E y
0

LY

et donc

LEMME 2. La fonction pp(x) := in est strictement croissante sur R

i=0
pour n impair.
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Preuve. En dérivant par rapport 2 = la représentation suivante

o | 1
pulz) = { =1 TFL (pn(z) est continue sur R)
n—+1, =i 1,

on trouve

(x—1)2 ’
n(n+1)
2

(py,(z) est continue sur R)

’ nz" ! —(nt1)z"+1 ” % 1,
Pp(z) =

== ],

11 suffit d’étudier le signe de g, (z) := nz"*! — (n+1)z™ + 1. Pour cela on
s’intéresse aux extrema de ¢, (z); la dérivée de cette fonction est donnée
par

dy(@) =n(n +1)(z - 1)z .

On constate que ¢/,(z) s’annule seulement pour z = 0 et pour z = 1. De
plus il est facile de voir que si n est impair, alors

q. () <0 Vze€]—o00,0[U]0,1] et g,(x) >0 Vz €]l,+o0].

Ceci signifie que g,(z), pour n impair, admet un minimum global strict
en £ = 1. De ¢,(1) = 0, on déduit que ¢,(x) > 0 Vz # 1, pour n
impair. Et, vu que (z — 1)2 > 0Vz, on obtient finalement p/ (z) > 0
Vx € R, n impair. On conclut donc que, pour n impair, p,(x) est
strictement croissante Vx € R. [J

Par (x) le rapport de ponte s’écrit de la fagon suivante

1 1-w'&
_ _ 2
p(w) = 5 o ;_0 (1-—2w)=I; .

PROPOSITION 1. La fonction p(w) est strictement croissante sur R.

Preuve. 11 suffit de démontrer que 1 — p(w) est strictement décroissante.

Considérons la transformation de coordonnées suivante
z=g(w):=1-2w.

1—2 1+ 2z
ors w 7 w 5

et g(w) est une fonction strictement décroissante. Posons maintenant
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On a immédiatement 3 — p(w) = h(g(w)).

Rappelons que si f et g sont deux fonctions de IR dans R telles que
f est strictement décroissante et g est strictement croissante sur tout IR,
alors leur composition g o f est strictement décroissante. Pour démontrer
que h(g(w)) est strictement décroissante, il suffit donc de démontrer que
h(z) est strictement croissante. On a

h'(z) = —;-{IO + 2Lz 4 302° +41,2° + 520 + ...+
+(2C = DIc_12%¢73 + (2C — I _12%¢72}
= %{Io + 1224 32)+ L2244+ 52)+ ...+
+ I 12297320 = 2+ (2C — 1)2)} .
D’autre part
Pho 1 (x) = 142(2432) + 23 (44 52) +...+ 226 3(2C -2+ (2C - 1)z) ,

et le lemme 2 nous assure que ph~_(z) > 0 pour tout z € R. Par ailleurs,
on constate que, pour ¢ =0,...,C — 1, on obtient

2
2i+1

fz(x) _ 3:21'—1(22- G (2?: 4 1)33) > 0, pour ¢ [— 21-241._1 y 0]

< 0, pour:ce]—%,()[.

=0, pourx=0,2=

Ainsi
1 o-1
h'(z) = 5 (ID + Z Iifi(z))
=1
et

c-1
Pho_1(z) =1+ Z fi(2) .
i=1

Par conséquent

R'(z) >0 pour ze]—oo,—gg:ﬂulo,oo{,

2 = L 2
of I—h'(z) =1+ Z I—’fi(z) >poo_1(2) >0 pour ze€ [—— 0[,
0 — {o

puisque, pour ¢ =0,...,C —1,0na

f_(){zo pour z € | — o0, —26=2] 1 [0, 00
i\2 <0 pourze|[—20]
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et ‘}% <1l pour ¢ =1,...,0 —1 (lemme 1). De plus, pour i =

1,...,C—2,ona

IAOR S »
V<0, j=i+1,...,C-1 pourze |- 2 2 [,

d’ou
o J - I
Zh( +Z fj’ z) + fi(z) + z z.fg
j=i+1
0-1
> 1+Zf;, )+ fi(2)+ D fil2)
J j=i+1
:P2C—1(Z) >0
car, par le lemme 1,

Li [>1, §=0,...,i-1
I | <1, j=i+1,...,C—-1.

Ainsi, en remplacant % par 1, on ne fait qu’augmenter la valeur absolue
de la partie négative et diminuer celle de la partie positive. Ceci implique

que h'(z) >0, pour i=1,...,C—2 etpour z € [— $42, — 72 [. Mais
Cc—2 . .
2C — 2 2142 21 2
R=]-00,—5—l sz pb i Gl S S CLE
On a donc

R(z) >0, VzeR,

ce qui démontre la croissance stricte de la fonction h(z), et donc la crois-
sance du rapport de ponte p(w). O

3. UN CRITERE POUR LE TYPE U

Nous allons tout d’abord donner 1’analogue des définitions données dans
GABRIEL (1983) pour les notions de fonction de ponte, rapport de ponte et
rapport de ponte de type U, pour le cas incluant I’immunité.

DEFINITION. ®(w) est une fonction de ponte» si
(i)  ® est définie sur [0,1];

(i) ®(0) =0;

(iii) si 0 < wy < wa, alors ®(wy) < P(wa),



250 A. PELLEGRINELLI

(iv) ®(w) <w Ywel[0,1];
(v) ®(w) est deux fois continuement dérivable sur [0,1].

DEFINITION. A foute fonction de ponte ®(w) on associe le «rapport de
ponte» p(w) défini par

DEFINITION. Soit fr la fonction définie par

1
w)(T — w)

fr(w) = o Yw €]0,T[,VT €]0,1] .

Elle est bien définie puisque, en vertu de (iii), p(w) > 0 sur ]0,T].
La fonction ®(w) est dite «fonction de ponte de type U » si

(i)  fr(w) n’a que des zéros isolé sur 10,T[, VT €]0,1];

(ii) Jwg €]0,T[ (éventuellement dépendant de T ) tel que

fr(we) =0, fr(w) <0 Vw €]0,wo| ef f7(w) >0 Vw €|wp, T .

(iii) limy, o fr(w) = +00 (<= p(0) =0).
La définition du «type U » provient du fait que pour chercher les points
d’équilibre du systeéme il faut déterminer tous les w € [0,7] tels que

T

=T5(T1 +1 U I =
frw) =To(Ti+1) , o it

(Ty et Ty sont les facteurs de transmission),

Les trois conditions sur fr(w) signifient que la forme de cette fonction
correspond a celle de la lettre U. En effet, les conditions (i) et (ii) nous
assurent que la fonction fr(w) admet un unique minimum strict en wy, et
qu’elle est strictement décroissante a gauche de wq et strictement croissante
a droite de ce point.

De plus, la condition (iii) et le fait que le dénominateur de fr(w)
s’annule en w = T nous indiquent que pour toute valeur réelle r > fr(wg)
cette fonction admet exactement deux préimages. Donc, pour toute fonction
de ponte ®(w) de type U, on aura

zéro
fr(w) =T5(T1 + 1), admet ¢ une » solutions,
deux

Ty(T1 + 1) < fr(wo) ,
selon que § T5(T7 + 1) = fr(wo) ,
T2(Th + 1) > fr(wo) .
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PROPOSITION 2. Soit C € IN et w € [0,1]. La fonction

¢(w) = % {1 _1 ;w /0'” [1—2w(1 — cosd)+
+2w?(1 — cos 19)]071(1 + cos 9) dﬁ}

est une fonction de ponte au sens de la définition ci-dessus.

Preuve. Vérifions les cinq propriétés.

(1) et (ii) sont évidentes.

(iii) Soit p(w) le rapport de ponte associé & ®(w). Dans le chapitre 2 nous
avons démontré que p'(w) > 0 Vw € [0,1]. De plus, p(w) > 0
Yw €]0,1]. Donc

®'(w) = p(w) + wp'(w) >0 Vw €]0,1],

c’est-a-dire, ®(w) est strictement croissante sur [0, 1].
(iv) Nous savons que p(w) € [0,3] Vw € [0,1].
Ceci implique que ®(w) = wp(w) < ¥ <w VYw € [0,1].
(v) Clair, car ®(w) est un polynome. [
Les résultats étudi€s dans le cadre du modele original (GABRIEL 1983) ne
sont pas valables en général si I’on introduit 1’hypothése immunitaire. Nous
donnons donc un critere pour le type U adapté a cette nouvelle situation.

LEMME 1. Soit ®(w) une fonction de ponte. Posons
hr(w) = —p(w) + (T —w)p'(w)  Yw €]0,T[, VT €]0,1].

La fonction de ponte ®(w) est de type U si et seulement si elle remplit les
trois conditions suivantes

(i) VT €]0,1], hr(w) n’'a que des zéros isolés sur 10,T|;
(ii) Jwg €]0,T[ (éventuellement dépendant de T') tel que

hr(wg) =0, hr(w) >0 Yw €]0,wo| et hr(w) <0 Vw €wy, T,
(iii) p(0) = 0.

Preuve. La dérivabilité de p(w), permet d’écrire

r) = L@ -wp " 0Tl

et donc

{w | frw)=0}={w [ hr(w)=0}
et signe (fr(w)) = — signe (hr(w)) . ]
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Notations. Soit hp(w) définie comme dans le lemme 1. Posons

Ef :={we€l0,T[ | hr(w)=0, 36>0 telque Vte€0,§[
hT(w—t) >0 et hr(w+t) <0}
E¢ :={w€)0,T] | hp(w)= 36 >0 telque Vt€|0,8]

hr(w —t)<0 et hr(w+t)>0}.

On dira qu’en un point w € EJ la fonction hp traverse le niveau 0 en
passant des positifs aux négatifs. Respectivement en un point w € Eg
on dira que hr traverse le niveau 0 en passant des négatifs aux positifs.
Posons

Er :=E}UE% et wy:=min Er, wr = max Er .
E7 est donc I’ensemble des points ot hp(w) traverse le niveau 0.

LEMME 2. Soit ®(w) une fonction de ponte telle que p(0) = 0, p(w)

continuement dérivable en 0 (au sens de la dérivée a droite) et p'(0) > 0.

Soit hr(w) définie comme dans le lemme 1. Supposons que, pour tout T €

10,1], hr(w) n'ait que des zéros isolés sur I'intervalle [0,1]. Considérons

les propriétés suivantes

(a) ®(w) est de type U,

(b) Er contient un unique élément NT €]0,1],

(¢c) ®(w) n’est pas de type U,

(d) 3T €]0,1] tel que Er contienne aux moins 3 éléments,

(e) 3T €]0,1], 3w €lwy,T[, tel que hi(

(f) VT €]0,1], 2w €lwy,T[, tel que hip(
On a les équivalences suivantes

(@ <= b <=

et (c) <= Wd) < (o).

Preuve. Les conditions (i) et (iii) de I’énoncé du lemme 1 ci-dessus sont
toujours satisfaites par hypothese. De plus

hr(0) = —p(0) + TP’ (0) > 0, VT €]0,1]
car p(0) =0, p'(0) >0, et
hr(T) = —p(T) <0, VT €]0,1]

car, par la croissance stricte de ®(w), p(T) >0, VT €]0,1].
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La continuité de hr(w) nous assure que EJ. est non vide, et que Er
contient un nombre impair de points.

Démontrons maintenant les quatre équivalences.

(a) <= (b):

La condition (ii) de 1’énoncé du lemme 1 signifie exactement que, pour
tout 7" €]0, 1], il existe un unique point ou la fonction hr traverse le niveau
0 en passant des positifs aux négatifs, ce qui équivaut a la condition: Ep
contient exactement un point, pour tout 7" €]0, 1].

(¢) = (d):

Comme FE7 contient un nombre impair de points, cette équivalence
découle immédiatement de 1’équivalence (a) < (b) par négation des deux
membres.

(d)<=(e):
Démontrons « =— »:
Par hypothése, 3T €]0, 1] tel que Er contienne au moins trois éléments,

d’ol wp # Wy
et donc Jw, €lwy,Wr| tel que w; € ES,

puisque wp,Wr € EF et hy(w) est continue. La fonction p(w) étant de
classe C? sur I'intervalle ]0,1], hr(w) est de classe C* sur ]0,1]. L’égalité
hr(wi) = hr(wr) = 0, et le théoreme de Rolle entrainent que

I €|wy,wr| tel que AL(w) =0, hr(d)>0.
En effet hr(w) n’a que des zéros isolés par hypothése, et w; € E%,
wr € E%
Démontrons « <= »:

Si un tel @ existe, la continuité de hr(w) et la négativité de hr(w) dans
un voisinage a droite de w,, impliquent que

Jw; €|lwp, W] tel que w; € ES et 3wy €]w, T tel que  ws € ES

cela car hp(T) < 0. Er contient donc au moins trois points.
(a) <= ()
Cette équivalence est la contraposée de 1’équivalence (¢) & (e). [

LEMME 3. Soit p(w) un rapport de ponte. Si

(T - w)z "

Yr(w) := plw) — 5P (w) >0, Yw €]0,T], VT €]0,1]

alors YT €]0,1] 2w €)0,T|[ tel que hir(@) =0et hy(w) > 0.
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Preuve. Supposons que 37 €]0,1] et 3@ €]0,1] tel que h% (@) =
0 et hr(w) > 0. Alors

(W) =0 = 20'(&) = (T —w)p" (D),

hp(w) = =2p'(w) + (T — w)p" (w) .
De plus
hr(w) >0 = —p(w)+ (T —w)p'(w)>0.
D'oi S
o) - T2 ) <0,

ce qui est en contradiction avec Yr(w) >0 Vw €]0,T], VT €]0,1].0

PROPOSITION 3. Soit ®(w) une fonction de ponte telle que son rapport de
ponte p(w) vérifie les 4 propriétés suivantes

(a) p(0)=0,

(8) p(w) est continuement dérivable a droite en 0 et p'(0) >0,

(v) hr(w) n’a que des zéros isolés sur [0,T)], pour tout T dans ]0,1],

(6) Yr(w):=pw)— T2 " (w) >0,  Vw€)0,T], VT €]0,1].
Alors ®(w) est une fonction de ponte de type U.

Preuve. On utilise le lemme 1. Les conditions (i) et (iii) sont trivialement
satisfaites. Il nous reste a vérifier la condition (ii).

Yr(w) > 0Vw €]0,T], VT €]0,1]

= VT €]0,1] 2w €]0, T tel que h7r(w) = 0 et Ar(w) > 0 [lemme 3]
= VT €]0,1] 2w €]wy, T tel que h:(10) = 0 et hr (@) > 0

= ®(w) estde type U [lemme 2]. [

Le criteére de cette proposition n’est pas nécessaire pour le type U. On peut
facilement produire des contre-exemples.

4. LA FONCTION DE PONTE ® DU GONORISME PARFAIT
POUR LA LOI BINOMIALE EST DE TYPE U .

. 2n+1 . .
LEMME 1. La suite (725) " est strictement croissante. De plus on a

. n 2n+1 -2
A, ) -
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Preuve. Calculons tout d’abord la valeur de la limite. On sait que

1 n
lim (1—|——) =e,
n— oo n

et donc
- n 2n+l_ . 1 ni2 . n _
menl —dslia)l e am)-
=6_2'1=6_2

Démontrons maintenant la croissance de cette suite. Pour z € R, on a

y() : 1og(1f_ )2$+1=(2x+1)10g(1+%)

2z + 1
'(z) = 21 =
-1
n .

Donc, y”(z) < 0. Ainsi y'(z) est strictement décroissante sur 1’intervalle
]0,00[. De plus, ’(1) =0.114 >0 et lim, .o ¥ (z) =0. Donc

y'(z) >0 V>0,

ce qui signifie que la fonction y(x) est strictement croissante sur 1’intervalle
]0, 00|[. Alors, la monotonie de log(z), entraine la croissance stricte de

- 2z+1
( ) sur 'intervalle 0, oo . O
LA

LEMME 2. Considérons la fonction

T,(2) = = HZZ Skl 2[21(22 2B (2i41)2i2%7)

pour 7 =1,2,...,n, pour tout n > 1. On a

Y;(z) >0, z€[-1,0, j=1,2,....n ¥n>1.

Preuve. Posons

n
=E Zzi.

i=0
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Remarquons que

n . d2
YO H 2i—2
;21(2@ — 17" = 58 (2) = 57(2)
et

D 2i(2i+1)2% 7" =

=%gz%+1=%§{25n(z)}:%{ (z)—}-zi (z)}

2
=20 5,(5) + 2-55,(2) = 285,() + 251(c)

Calculons S,,(2), S;,(z) et S}/(z) al’aide des sommes partielles de la série
géométrique.

S22 _ g
Sal2) = 22 -1
S (2) = (2n + 2)22+1 (22 — 1) — 22(2%7+2 - 1)
" (22 — 1)
Dm0 — (O | DYeEnFl o T
] (2 ~ 12
5 2n(2n + 3)22" T2 — (2n + 2)(2n + 1)22" + 2](22 — 1)?
Si(z) = e +
[2n22"+3 — (2n + 2)227 1! 4 22]42(22 — 1)
(22— 1)4
2[n(2n — 1)22"+* — (4n? + 2n — 3)2 2"+2]
N (£ —1)F
N 2[(n+1)(2n + 1)2%" — 322 — 1]
@17 '
En z =1 et z= —1 on étend par continuité. D’autre part
2
Ti(2) = % _a Z ?) Sn(z) + u _;Z) [S7(z) + 28}(2) + 257 (2))
_ % _ “Zz)sn(z) + (lzz)zs;( )+ L2 0y done



VERS PARASITES 257

. 1 1+2) (2*t2-1

Ti(2) =5 - ( 1 : (7E+1)(z—)1)+

(1+2)2 [252%13 — (25 + 2)2%7+! + 2]
4 (z4+1)2(z—1)2

2(1 +2)3 [j(2j — 1)2%+ — (452 + 25 — 3)22j+2]+
8 (z+1)3(z—1)3

21+ 2)3 [( +1)(2j + 1)2% — 322 — 1]
8 (z+1)3(z—1)3 ’

ce qui, en ordonnant les termes en fonction des puissance de j, nous fournit

+

Az —1)°0j(2) =
=222 (z = 1)*(z + 1)* 4+ j2¥ (2 — 1)(z + 1)’ (2 — 3)+ (1)

-2 + (2)
_ 22n+4 ap 2z2’n+3 . z2n+2 e 2Z2j+1 3 22:3 . 622+ (3)
+ {2452 L 221y (4)

11 faut démontrer que (1) + (2) + (3) + (4) < 0, Vz € [-1,0] j =
lorsmsBe T la
(i) Considérons 1’expression (4)
vz € [-1,0], 2T 4 27 e [-2,0)0 Vie{1,2,...},
d’ou
Vz € [-1,0], 2429t 4 271 >0 vie{1,2,...}.
On a donc
(4) =22+ 227 42277 1) <0 Vze[-1,0], Vje{l,2,...}.
(i1) Considérons I’expression (3)
(3) <0Vze[-1,0] car

226 >0et 22 <OVk e NVz € [-1,0].

(iii) Considérons 1’expression (1)+(2)

(1) = 25222 (2 = 1)?(2 + 1)® + j2¥ (2 — 1)(2 + 1)*( — 3)
=j2 (z+1)?(1 - 2)[2§ +3 - (2 + 1)7] .
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Comme y(z) = (1—2)[254+3—(2j+1)z] est ’équation d’une parabole
qui a son unique minimum en zg positif, y(z) est décroissante a gauche
de zp et croissante a droite. D’ou

max y(z) = y(-1) =8( +1),

et
(1) <jz%(z+1)%8(G+1)  ze€[-1,0].

Déterminons maintenant le maximum de 2%/ (z 4+ 1) sur [—1,0].

dizzj(z +1)2 =22z + D[+ G+ 1)2] .

z
La dérivée s’annule en z = —1, 2 = ——J—i—l, z=10,etona
_ _ __J_
4 el <0 2€ Imee=ll U =50
dz >0 2€ ]—ly—zfz] U ]0yen.

Ainsi le maximum de notre fonction sur I'intervalle [-1,0] est atteint en

_—d
z= PR ] eton a

max (=7 (2 + 1)°} = (——d _ypig— I _y2

oh j+1 j+1
g L
j+17° (j+1)2

Donc, pour j € {1,...,n}, n=>1

1) S I B0+ D =84, zel-10)

(G +1)?
et, par le lemme 1,

(1) <8 2<2, z€[-1,0]
d'ou (1)+(2) <0, =ze€[-1,0]. (i), (ii) et (iii) nous donnent donc
O+2)+(3)+(4) <0, =ze[-1,0] je€{1,...,n} pourn>1.
Et comme (z — 1)® < 0 pour z € [—1,0]

Y(z) >0, Vze[-1,0] et Vje{l,...,n}, n>1. O
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Considérons maintenant le rapport de ponte du gonochorisme parfait
pour la loi binomiale. Nous savons que

1 1-w&
_ - ) _ 2%
pw) =5 - —— > L(1-2w)
=0
ou
— & . 19
Ii::(c.l)/ sin? — cos?¢ % — dy t=0,...,0-1,
1 0 2
et
=1 -
Ij=5 et I, >0 Vi.
j=0

En posant Iizz%,ona 0<I;<1, Vi=0,...,.C—1, et

c-1
;=1 et
Jj=0
g
_ ]. 1 = o 24
p(’w) - 5 - 9 It(l 2’!1))
1=0
Un calcul direct conduit a
= c-1
pl(w) =3 Z (1-2w) + (1—w) Y [2i(1 - 2w)* ",
G-
et p’'( Z —2w)* 22 — (20 + Dw] .
Ainsi
T — w)? \
Trw) = o) - T2 (w) =
c-1
1 1- ~
=2- Tw I,(1 — 2w)%+
i=0
=1

+ (T —w)* Y L2i(1 — 2w)*72[20 — (2 + 1)w] .
i=1
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En effectuant le changement de variable z := 1 — 2w, on obtient

2T — 1
T—wz—-—Qi—z,

et donc

TT(Z) =

N =

c-1
142 = o
1 § I»,;Zzz
=0

T 1
4 + Z 2272242 — 14 (20 +1)2] .

LEMME 3. Soient X ;(z) les fonctions introduites dans le lemme 2, pour
n = C — 1. Considérons les intervalles JJT définis comme suit

2j+3° " 2j+1

[-1,-2=8|n[1-2T,1], j=C-1

JT =

J

{]_%.ﬂ ~Zn[1-21,1, j=1,...,C -2

C>2, TE¢€Jo,1]. Alors

Y;(z) <Yrp(z) VzeJ], j=1,...,C -1 ¥C >2, VT €0,1].

Preuve. Soit (;(z) :=2i—1+(2i+1)z. Ona

Cc-1 Cc-1
1 1+ . 2T — 1+ 2)? =
Tr() = 3 - 1323 G4 L LE AN S poipniay)
1=0 i=1
et o
—~1
. 1 14 . (14 2)? i
TJ(Z)=§_ 4ZZZ2Z+( 3 ) Zszz 2¢(2)
1=0 i=1

C-1 Cc-1
L Y <o Y EF Ve -1
2 1 =7 Sa2T 1 & g z

2T -1+2%<(1+2)?* VzeJl, vTe0,1], i=1,...,C-1,
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<0 pourz=1,...,7

- T
8 Cz(z){>0 pouri=j+1,...,.Cc—1 % Js
car JI C [-1,-%%] pour ¢ = 1,...,j, respectivement
Jfﬂ[—l, g:j&]—@pourz:j—l—l,...,C—l.Donc

9 C—
(1+Z ZQ’LZZZ 2( ) (2T—1+Z Z 2z 2<-

Vz € JJ-T , T €]0,1], car on supprime les termes positifs, et puisque 0 <

I; < 1, la valeur absolue de la partie négative augmente. Par conséquent,
on a

Yi(z) <Yr(2) VzeJ],j=1,...,C—1 VC>2 VT €)0,1].0
Nous pouvons maintenant démontrer le résultat annoncé dans 1’introduction.

THEOREME. La fonction de ponte du gonochorisme parfait pour la loi bino-
miale donnée par

Cc-1
@(w):w( — PN )

_ T .
oil Iizz(cz.l /sinzz—jcoszc_zzidﬁ i=0,..,C—1 est,

0
pour chaque C > 1, de type U .

Preuve. Considérons tout d’abord le cas C = 1.

( )_1 1—w w
A= ™" Ta
et donc
frlw) = —2
= w(T —w)’
ce qui nous donne
22w —T)

fr(w) = (T —w)?

Les trois conditions de la définition de fonction de ponte de type U sont
donc satisfaites, pour wy = %

Considérons maintenant le cas C' > 2. On applique la proposition 3.
Vérifions que les 4 propriétés sont satisfaites.



262 A. PELLEGRINELLI

Dans le chapitre 2 on a montré que p'(w) > 0 Vw € R et que
p(0) = 0. De plus, hr(w) := —p(w) + (T — w)p'(w) n’a que des zéros
isolés car p(w) est un polyndme. Les trois premieres propriétés sont donc
satisfaites. Pour démontrer le théoréeme il reste donc a vérifier que

Tr(w) = o) - L2 /) >0, vweln,T), VT o1,
On a
Cc -1 C'
Tl z Zfizzi (2T—1+Z Z 2272 (z) =
1=0 1=1

2T—1 )2 &=
:p(z)+( ) X:Isz:21 2¢(2)

L'image de [0,T] par z = 1 — 2w est I’intervalle [1— 2T, 1]. On doit donc
démontrer que

Yr(z)>0 Vze[l-2T,1[, VT €]0,1].

2t—1 [
00
21+ 1’ ’

Mais CGi(z) >0 Vz€|[—
ce qui implique
1 :
Gi(z) =0 VzE[—g,l] Vi=1,3,....

De plus,
p(z) >0 Vz<1,

car p(w) >0 VYw > 0. Donc
Yr(z)>0 Vze [—%, 1, VT €o,1].
Des lemmes 2 et 3, on déduit que
Yr(z) > Y;(2) >0,VzeJl, j=1,...,C—1VC >2, VT €]0,1] .

Mais,

[1-2T,1] = ]—%,1[ ulJJr,

d’ou Yr(z) >0 Vze[l-2T,1], VT €]0,1]. O
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