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MODÈLES DYNAMIQUES EN BIOLOGIE, R. ARDITI (DIR.)
DYNAMICAL MODELS IN BIOLOGY, R. ARDITI (ED.)

Reproduction des vers parasites:
le gonochorisme parfait pour la loi binomiale

PAR

Andrea PELLEGRINELLI '

Aiwrract-PELLEGRINELLI A., 1990. Reproduction of some parasitic worms: the
dioecious case for the binomial distribution. In: Dynamical Models in Biology,
R. Arditi (ed.). Mém. Soc. vaud. Sc. nat. 18.3: 241-263.
This work is concerned with the transmission dynamics of some parasitic worms.
Several authors proposed to include an immune reaction in the definitive host in
models of the Nâselî-Hirsch type. The hermaphroditic case was treated by Aeschli-
mann and we discuss here the corresponding situation for a dioecious worm. More
precisely we study the properties of its oviposition function which is the key
notion relating the reproductive strategy of the parasite to the course of the infection
induced by its presence.

/iésMmé.-PELLEGRINELLI A., 1990. Reproduction des vers parasites: le gonochorisme

parfait pour la loi binomiale. In: Modèles dynamiques en biologie, R. Arditi
(dir.). Mém. Soc. vaud. Se. nat. 18.3: 241-263.
Ce travail concerne la dynamique de la transmission de certains vers parasites.
Plusieurs auteurs ont proposé d'inclure une réaction immunitaire de l'hôte définitif
dans des modèles du genre Nâsell-Hirsch. Aeschlimann a traité le cas de
l'hermaphrodisme et nous discutons ici le problème analogue pour un parasite gonochorique
(sexes séparés). Plus précisément nous étudions les propriétés de sa fonction de

ponte, grandeur qui, dans le modèle, traduit la stratégie de reproduction du parasite
et permet de prédire l'évolution de l'infestation résultant de sa présence.

'Section de mathématiques, Université de Genève, rue du Lièvre 2-4, CH-1211
Genève 24, Suisse.
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1. Introduction

Dans les années soixante apparurent les premiers modèles mathématiques
de la schistosomiase. Ces modèles, dus à MacDonald (1965) et Nasell
et Hirsch (1972, 1973), mirent en évidence le rôle essentiel joué par la
sexualité du parasite dans la dynamique de transmission de la maladie.
On ne considérait que deux types de reproduction: l'hermaphrodisme pur,
comme on le trouve chez les Douves (Fasciola hepática, Fasciolopsis buski)
où chaque parasite pond, et le gonochorisme (sexes séparés) comme on
le trouve par exemple chez les Schistosomes (Schistosoma hœmatobium,
S. mansoni, S. japonicum). Les modèles précédents sont de nature semi-

stochastique. Une interprétation déterministe de ceux-ci a permis, via
l'introduction de «fonctions de ponte», d'intégrer le comportement sexuel des

vers parasites qui est, dans la nature, d'une variété surprenante. Ce pas fut
effectué dans les années soixante par Gabriel (1983); Hirsch et al. (1985),
Bradley et May (1978).

Les parasites concernés par ces modèles obéissent à un cycle incluant
deux populations d'hôtes: l'hôte définitif (généralement une population de

vertébrés) dans lequel le parasite vit son stade adulte et produit des œufs,

et l'hôte intermédiaire (généralement une population de mollusques
aquatiques) dans lequel le parasite transite tout en subissant une transformation
larvaire accompagnée d'un processus de multiplication.

En dehors de son hôte définitif, le parasite se présente sous forme larvaire
et la dynamique de sa transmission consiste en son passage de l'hôte définitif
à l'hôte intermédiaire suivi du chemin inverse. La larve infestante assurant
la transmission des vertébrés aux mollusques est appelée miracidium et celle

qui permet le retour aux vertébrés à la suite du passage dans un mollusque
porte le nom de cercaire. Les miracidies sont le produit de la ponte du

parasite dans l'hôte définitif. Le lecteur intéressé trouvera de plus amples
informations dans l'ouvrage de Golvan (1978).

En faisant certaines hypothèses phénoménologiques et techniques, la
dynamique de la transmission est réduite à la discussion du système d'équations
différentielles suivant

f w(t) -piw(t) + niTiy{t), w(0) > 0,

\ y(t) -p2y(t) + /i2T2*(tü(í))(l - yit)), 0 < y(0) < 1

où w(t)= espérance de la charge parasitaire par hôte définitif à l'épo¬

que t;
y(t) espérance de la proportion de mollusques infestés à l'épo¬

que t;
$(w(t))= espérance du nombre de parasites pondeurs à l'époque t;

en fonction de l'espérance de la charge parasitaire;
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$ est appelée fonction de ponte;

pi taux instantané de mortalité des parasites;

P2 taux instantané de mortalité des mollusques (un mollusque
mort est supposé être immédiatement remplacé par un autre
sain, susceptible d'être infesté, afin de garder constante la
taille de la population);

T\,T2 facteur de transmissions NÂsell et Hirsch 1972, 1973).
«î» dépend de la stratégie de reproduction des parasites. En effet, on a

{w
hermaphrodisme pur,

f (l - ^L fj* ewcos#(! + cos#} M\ gonochorisme parfait.

La fonction de ponte pour le gonochorisme parfait a été calculée par
MacDonald (1965), sous forme de série, puis par Nasell et Hirsch
(1972).

Sous les seules hypothèses que $ est non négative et de classe C1 sur
[0, oo), HIRSCH et al. (1985) ont démontré l'existence et l'unicité d'une
solution biologique du système, où «biologique» signifie que Vi > 0 on a

w (t) > 0 et 0 < y(t) < 1. Ils démontrent également que la solution tend

toujours vers un point d'équilibre. La fonction $ n'a donc pas une grande
influence sur l'existence et le comportement qualitatif des solutions. Par

contre elle joue un rôle essentiel dans la détermination des points d'équilibre
du système. Ce fait nous suggère une classification des fonctions de ponte
à l'aide de la structure des points critiques qu'elles engendrent.

Dans le cas de l'hermaphrodisme pur on a un ou deux points d'équilibre,
suivant la valeur de T- et T2. Ainsi, toute fonction $ donnant lieu à un ou
deux points critiques va être dénommée fonction de ponte hermaphrodite.
Dans le cas du gonochorisme parfait on a un, deux ou trois points d'équilibre,
suivant la valeur des paramètres biologiques T- et T2. Une telle fonction
est dite fonction de ponte de type U. Il s'avère que toute fonction de ponte
ayant une justification phénoménologique, étudiée jusqu'à cette date, est soit

hermaphrodite, soit de type U. La classification est donnée par Gabriel
(1983) et Hirsch et al. (1985).

Au début des années quatre-vingt on a aussi commencé à travailler sur
une modification du modèle de Nâsell et Hirsch qui permet de tenir compte
d'une certaine réaction immunitaire dans l'hôte définitif. On considère une
immunité progressive affectant séparément les mâles et les femelles
schistosomes; on suppose de plus une charge parasitaire maximale finie. En
introduisant cette hypothèse supplémentaire, le système précédent devient

f w(t) -inw(t) + piTiy(t)(l - wit)) 0 < w(0) < 1

1 y(t) -H2y(t) + p2T2$(w(t))(l - y(t)) 0 < 2/(0) < 1
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La signification des paramètres et des variables qui apparaissent ici est la
même que précédemment, à l'exeption de w qui désigne le rapport entre
l'espérance de la charge parasitaire totale par hôte définitif et la charge
parasitaire maximale par hôte définitif (0 < w < 1).

Le cas $(w) w, correspondant dans ce deuxième modèle à

l'hermaphrodisme pur, a été résolu par Aeschlimann (1982). Ce cas fournit
également (pour des valeurs arbitraires de Ti et T2) une structure
comprenant un ou deux points critiques. Il est facile de démontrer que ceci a

lieu si et seulement si

d f&(w)\
-— —7-L < Q, pour tout w elO, 1]
dw \ w J

Les fonctions de ponte remplissant cette condition seront appelées
hermaphrodites.

Pour traiter le gonochorisme, il faut en premier lieu calculer la fonction

de ponte. Pour cela il faut revenir à l'origine stochastique du modèle
et déterminer $ comme E[mm(M(t), F(t))], où E désigne l'espérance
mathématique, M(t) et F(t) les variables aléatoires qui donnent, au temps
t, le nombre de parasites mâles et femelles dans un hôte définitif. Mais
rien ne nous assure en général que E[min(M(t), F(t))] est une fonction
de E[M(t) + Fit)]. C'est le cas, par exemple, si on admet que M(t) et

F(t) sont indépendantes, identiquement distribuées, de loi de Poisson ou
binomiale (Gabriel 1983).

L'analyse du modèle montre que la loi «naturelle» de M(t) et F(t) est
la loi binomiale. «Naturelle» signifie que si les variables aléatoires F(0)
et M(0) sont binomiales, F(t) et M(t) le seront également pour tout
t positif, et si F(0) et M(0) sont quelconques, asymptotiquement c'est
la loi binomiale qui prévaut. C'est la raison pour laquelle on désigne ce

cas par gonochorisme parfait pour la loi binomiale. La fonction de ponte
correspondante a été déterminée par J.-P. GABRIEL (comm. pers.). Elle se

présente sous la forme

$(-**•) _{i / [1 - 2w(l - costf)

+ 2w2(1 - cosê)]C~1(l +costi) de}

où C G IN est le nombre maximal de parasites mâles, respectivement
femelles qu'un hôte définitif peut abriter. La charge parasitaire maximale

par hôte définitif est donc 2C.
A chaque fonction de ponte <ï> on associe le rapport de ponte p défini

par

pM —, «7€(0,1].
w
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Dans notre cas on aura

p'w) \{l- 1—^ / [1 - 2w(l - cost?)
2 -r Jo

+ 2w2(l-cosi?)]C'"1(l + cosi?)dt?}

Le présent travail se propose de démontrer que cette fonction de ponte est
de type U.

2. LE RAPPORT DE PONTE p DU GONOCHORISME PARFAIT

POUR LA LOI BINOMIALE EST CROISSANT

A l'aide de transformations trigonométriques bien connues on a

p{w) -{1 — / [1 - 2w(l - cost?) +
2 71" Jo

+ 2w2(l - cosi?)]0"^! + cost?) dû)

i, i-«; r, 2t?

+ cos2 - - (4it) - 4«r sin2 -J 2 cos2 - dt?}

i i-w r r 2ê 2 20,c-i 2ti
2 ^—y Lcos ^ + i1-2«;) sin -J cos -di?

1 1-u,^1 /C-l\ f* 2iti 2C-2i$ .o2-^r-g(1-2w) Í J/oSm 2C0S 2^-

Posons

(*) A ^l^.1)/ sin2¿ £ cos2C-2¿ - dì? ¿-0,...,C-1)lSm 2

Il est clair que 7/¿ > 0, Vi 0,..., C - 1.

Lemme 1. Pour tout j 0,..., C — 2, on a Ij > J*+i.
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Preuve. En appliquant la formule

fJa
sin"1 a cos™ a da

sinm+1acos™~1a b

m + n
+

1 f— / sinm a cos71-2 a da
nja

sinm 1

a cos™-1 a b

+
771—1

m -

I /
n Ja

sin"1 a cos™ a da

ainsi que le changement de variable u := t, on obtient d'une part

h
2(C-1)! 2C-2J-1

j\(C-j-l)\ 2C

et d'autre part

r sin 3 u cos 3 u du

Ij+i - 2(C - 1)! 2j + 1

(j + l)!(C-j-2)! 2C7

On en déduit que

Jo

¦ 2i 2C-2-) —2 jsin J u cos J udu

-O+i 0 + è) (c-^-1)

Remarques. (1) En calculant explicitement les J, on trouve

'2A f2C-2j\ iC-j) w
Ij

(2) De plus, on a

et donc

C-j J C 22C '

c-i

p(0) 0 p(l)

Lemme 2. La fonction pnix) :— /_]•£* est strictement croissante sur R

pour n impair.
i=0
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Preuve. En dérivant par rapport à ce la représentation suivante

f xn+1-l I -1

Pn(x) S x_1 ' ' ' (Pn(x) est continue sur R)
in + 1, x 1,

on trouve

r nx" + 1-(n+l)x" + l jK*» S „(n+i)x"1)2
'

_
' (PnO-O est continue sur R)

l 2 ; a; — 1,

Il suffit d'étudier le signe de qn(x) := nxn+1 — (n + l)xn +1. Pour cela on
s'intéresse aux extrema de qn(x); la dérivée de cette fonction est donnée

par
q'n(x)=nin+l)ix-l)xn-1

On constate que q'nix) s'annule seulement pour x 0 et pour x 1. De

plus il est facile de voir que si n est impair, alors

q'n(x)<° Vr e]-oo,0[U]0,1[ et q'n(x) > 0 Vx6]l,-foo[.

Ceci signifie que g«(a:), pour n impair, admet un minimum global strict
en x 1. De ^„(l) 0, on déduit que gn(x) > 0 Vx -^ 1, pour n
impair. Et, vu que (x — l)2 > OVx, on obtient finalement p'nix) > 0

Vx G R, n impair. On conclut donc que, pour n impair, p„(x) est
strictement croissante Vx G R. D

Par (*) le rapport de ponte s'écrit de la façon suivante

p(w)^1--1-^Cf/il-2w)2%.

Proposition 1. La fonction piw) est strictement croissante sur R.

Preuve. Il suffit de démontrer que | — piw) est strictement décroissante.
Considérons la transformation de coordonnées suivante

z giw) := 1 — 2w

m 1~z i 1+zAlors w ——, l-w ——

et g(w) est une fonction strictement décroissante. Posons maintenant

Hz) ¦¦= ^ E ^21 •

¿=0
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On a immédiatement \ — piw) h{g(w)).
Rappelons que si / et g sont deux fonctions de R dans R telles que

/ est strictement décroissante et g est strictement croissante sur tout R,
alors leur composition g o f est strictement décroissante. Pour démontrer

que higiw)) est strictement décroissante, il suffit donc de démontrer que
hiz) est strictement croissante. On a

h'iz) hl0 + 2J-.Z + 3hz2 + 4I2z3 + 572z4 + +

+ (2C - 2)IC-iz2G^ + (2C - l)IC-iz2C-2}

¦3z)-|

2C-3(2C-2 + (2C-l)z)}

-{/0 + hz(2 + Sz) + I2z3(A + 5z) + ...+
+ Ic-iz¿

D'autre part

P2C-i(x) l+x(2 + 3x) + x3(4 + 5x)- „2C-3 (2C-2+(2C-l)x)
et le lemme 2 nous assure que p2C_-(x) > 0 pour tout x e R. Par ailleurs,
on constate que, pour i — 0,..., C — 1, on obtient

' 0, pour x 0, x — 2Í+1

/ï(x)=x2î-1(2i + (2i + l)x) < > 0, pour x ^

< 0, pour x e

2i
2Î+1

2, 0
2¿+l

2i+l ' u

Ainsi

et

C-\
h'(z) Ui0 + j2ijl(z)

C-l

1=1

Par conséquent

h'iz) > 0 pour z G
2C-2
2C-1

U 0, 00

c-i
et —h'(z) l+ Vyl/.W>P2C-i('-)>0 pour ze

puisque, pour i 0,..., C — 1, on a

fMJ>0 PourzG]-oo,-fg5f]u[0,oo[
M ; \<0 pour z G [-|,0[
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et y < 1, pour i 1,..., C — 1 (lemme 1). De plus, pour i
1,... ,C — 2, on a

J>0, j l,...,i
/M>j<0, 7=i + l,...,C-l pourzG[-i±|,--^[,

d'où

f*'(*) - t+E £/*(*)+AM + E t/jW
2 * ¿=1 • i=i+l l

i-1 C-l
>i+E/j(«)+/<(«)+ E m*)

j=i j=¿+i

P2C-lW>0
car, par le lemme 1,

!¿(>i, j o,...,i-i
/i\<l, j i + l,...,C-l.

Ainsi, en remplaçant — par 1, on ne fait qu'augmenter la valeur absolue
de la partie négative et diminuer celle de la partie positive. Ceci implique
que h'(z) > 0, pour i l,...,C-2 et pour z G [- §f+§*-¿í+rt* Mais

C —2

_ - 2C — 2-, il 2i + 2 2ir r 2„rr rR ]-OO'-2C3l]uU[-^T3'-2^T[Ut-3'0fU[°'OOf-
¿=o

On a donc

ft'(z) > 0, Vz G R

ce qui démontre la croissance stricte de la fonction h(z), et donc la croissance

du rapport de ponte p(w). D

3. Un critère pour le type U

Nous allons tout d'abord donner l'analogue des définitions données dans

Gabriel (1983) pour les notions de fonction de ponte, rapport de ponte et

rapport de ponte de type U, pour le cas incluant l'immunité.

Définition. $(w) est une {fonction de ponte)) si

(i) «J? est définie sur [0,1] ;

(U) $(0) 0;
(iii) si 0 < wi <w2, alors $(wi) < $(w2) ;
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(iv) $(«¦) < w VtB6 [0,1] ;

(v) $(w) est deux fois continuement derivable sur [0,1].

DÉFINITION. A toute fonction de ponte $(w) on associe le {(rapport de

ponte p(w) défini par

p'w)

DÉFINITION. Soit ¡t la fonction définie par

/rW:%W(T-M)Vm£l°-nVr£lMl-
Elle est bien définie puisque, en vertu de (iii), p(w) > 0 sur ]0, T[.

La fonction ^(w) est dite ({fonction de ponte de type U » si

(i) Ît{w) na que des zéros isolé sur ]0, T[, VT g]0, 1] ;

(U) 3tüo g]0,T[ (éventuellement dépendant de T) tel que

fT(wo) 0, f!r(w) < 0 Vio G]0,t«o[ et f'T{w) > 0 Vw e]w0,T[

(iii) lim^o Ît(w) -fco {<=$¦ p(0) 0).
La définition du «type U » provient du fait que pour chercher les points

d'équilibre du système il faut déterminer tous les w G [0, T] tels que

fr(w) T2(Ti +1) où T:=
^1

Ti '

(Ti et T2 sont les facteurs de transmission).
Les trois conditions sur /t(w) signifient que la forme de cette fonction
correspond à celle de la lettre U. En effet, les conditions (i) et (ii) nous
assurent que la fonction /r(w) admet un unique minimum strict en wq, et

qu'elle est strictement décroissante à gauche de wç, et strictement croissante
à droite de ce point.

De plus, la condition (iii) et le fait que le dénominateur de /t(w)
s'annule en w T nous indiquent que pour toute valeur réelle r > friwo)
cette fonction admet exactement deux préimages. Donc, pour toute fonction
de ponte $(it;) de type U, on aura

zéro Ì
friw) T2(Ti + 1), admet <J une > solutions,

deux J

T2(TX + 1) < /tOo)
selon que { T^T* + 1) fT(w0)

T2(7i + 1) > friwo)
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PROPOSITION 2. Soit C G IN et w € [0,1]. La fonction

$(«¦) - (l - —™ / fl - 2w(l - cost?)+
2 1 TT Jo

+2iu2(l-cost?)]C 1(1 + cost?) dt?|

esi wne fonction de ponte au sens de la définition ci-dessus.

Preuve. Vérifions les cinq propriétés.
(i) et (ii) sont évidentes.

(iii) Soit piw) le rapport de ponte associé à $(w). Dans le chapitre 2 nous
avons démontré que p'(w) > 0 V«; G [0,1]. De plus, p(w) > 0

Viu e]0,1]. Donc

$'(w) p'w) + wp'(w) >0 Vu G]0,1]

c'est-à-dire, Q(w) est strictement croissante sur [0,1].
(iv) Nous savons que p(w) G [0, \] Vw G [0,1].

Ceci implique que $(u*) — wp(w) < -f < w Mw G [0,1].
(v) Clair, car $(w) est un polynôme. D

Les résultats étudiés dans le cadre du modèle original (Gabriel 1983) ne

sont pas valables en général si l'on introduit l'hypothèse immunitaire. Nous
donnons donc un critère pour le type U adapté à cette nouvelle situation.

LEMME 1. Soit ^(w) une fonction de ponte. Posons

hT(w) := -p(w) + (T- w)p'(w) Vw G]0, T[, VT g]0, 1]

La fonction de ponte $(w) est de type U si et seulement si elle remplit les

trois conditions suivantes

(i) VT g]0, 1], Iit(w) n'a que des zéros isolés sur ]0,T[;
(ii) 3wq g]0,T[ (éventuellement dépendant de T) tel que

hT(w0) 0, hriw) > 0 Vw G]0, w0[ et hT(w) < 0 Vw g]w0,T[;
(iii) p(0) =0.

Preuve. La dérivabilité de p(w), permet d'écrire

et donc

{w | f/r(w) 0} {w | hT(w) 0}
et signe (/-(w)) —signe (/ir(u;)) D
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Notations. Soit hriw) définie comme dans le lemme 1. Posons

E9T := {w€]0,T[ | hT(w)=0, 36 > 0 tel que Vîg]0,<5[

hT(w-t)>0 et hTiw + t) < 0}

ËÎ:={«)é]0,T[ I hT(w)=0, 36 >0 tel que Vîg]0,-5[

hT(w-t)<0 et hT(w + t)>0}.
On dira qu'en un point w G i?f, la fonction /i-j- traverse le niveau 0 en

passant des positifs aux négatifs. Respectivement en un point w G ET
on dira que /iy traverse le niveau 0 en passant des négatifs aux positifs.
Posons

Et •= ET U ET et wT :— min Et wt •= max Et ¦

Et est donc l'ensemble des points où Ht(w) traverse le niveau 0.

Lemme 2. Soit $(w) une fonction de ponte telle que p(0) 0, piw)
continuement derivable en 0 (au sens de la dérivée à droite) et p'(0) > 0.
Soit Iit(w) définie comme dans le lemme 1. Supposons que, pour tout T G

]0,1], Ht(w) n'ait que des zéros isolés sur l'intervalle [0,1]. Considérons
les propriétés suivantes

(a) <&(«/) est de type U,
(b) Et contient un unique élément VT G]0,1],
(c) ^(w) n'est pas de type U,
(d) 3T g]0, 1] tel que Et contienne aux moins 3 éléments,

(e) 3Tg]0, 1], 3w g]wt,T[, tel que h'Tiw) — 0 et /iT(ù)) > 0,

(f) VTg]0, 1], %w€]wT7T[, tel que h'T(w) 0 et hT(w) > 0.

On a les équivalences suivantes

(a) -^ (b) <=> (f)

et (c) ^^ (d) <=> (e).

Preuve. Les conditions (i) et (iii) de l'énoncé du lemme 1 ci-dessus sont

toujours satisfaites par hypothèse. De plus

/-vr(o) -p(0) + Tp'(0) > 0, VT g]0, 1]

car p(0) =0, p'(0) > 0, et

hT(T) -p'T) < 0, VT G]0,1]

car, par la croissance stricte de <J>(w), p(T) > 0, VT g]0, 1].
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La continuité de ìitÌw) nous assure que ET est non vide, et que Et
contient un nombre impair de points.

Démontrons maintenant les quatre équivalences.

(a)*4=»(b):
La condition (ii) de l'énoncé du lemme 1 signifie exactement que, pour

tout T g]0, 1], il existe un unique point où la fonction Ht traverse le niveau
O en passant des positifs aux négatifs, ce qui équivaut à la condition: Et
contient exactement un point, pour tout T g]0, 1].

(c)-^(d):
Comme Et contient un nombre impair de points, cette équivalence

découle immédiatement de l'équivalence (a) o (b) par négation des deux
membres.

(d)-<=Xe):
Démontrons « => » :

Par hypothèse, 3T g]0, 1] tel que Et contienne au moins trois éléments,

d'OÙ Wjt ^ Wt

et donc 3wi €.]wt,wt[ tel que wi G ET

puisque wt,wt G ET et Iit(w) est continue. La fonction p(w) étant de

classe C2 sur l'intervalle ]0,1], 1it(w) est de classe C1 sur ]0,1]. L'égalité
Ht(wi) IitÌwt) — 0, et le théorème de Rolle entraînent que

3w &]wi,wt[ tel que h'Tiw) — 0, /it(î7j) > 0

En effet /ir(w) n'a que des zéros isolés par hypothèse, et wi G ET,
wT G ET.

Démontrons « <= :

Si un tel w existe, la continuité de /ix» et la négativité de IitÌw) dans

un voisinage à droite de wT - impliquent que

3wi €]wT,w[ tel que w\ G ET et 3w2 €]w,T[ tel que w2 G ETT '

cela car IitÌT) < 0. Et contient donc au moins trois points.

(a)-^=^(f):
Cette équivalence est la contraposée de l'équivalence (c) <i=> (e). D

LEMME 3. Soit p(w) un rapport de ponte. Si

(T - w)2
TTi» := /M» -K

2
' p"(w) > 0, VwG]0,T], VT G]0,1]

alors VT g]0, 1] $w G]0,T[ tel que h'T(w) 0 et hT(w) > 0.
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Preuve. Supposons que 3T g]0, 1] et 3w g]0, 1] tel que h'T(w)
O et hT(w) > 0. Alors

h'T(w) 0 =--=> 2p\w) (T - w)p"iw)

h'T(w) -2p\w) + (T - w)p"(w)
car

De plus

D'où

hT(w) > 0 =-> -piw) + (T - w)p'(w) > 0

/>» - ^^V» < 0

ce qui est en contradiction avec YT(u;) >0 Vw G]0,T], VT g]0, 1].

PROPOSITION 3. Soit <&(«;) une fonction de ponte telle que son rapport de

ponte piw) vérifie les 4 propriétés suivantes

(a) /0(0)= 0,

(ß) piw) est continuement derivable à droite en 0 et p'(0) > 0,

(7) Ht(w) n'a que des zéros isolés sur [0,T], pour tout T dans ]0,1],
(S) TT(w) := p(w) - l~£p"(w) > 0, VwG]0,T], VTg]0,1].
Alors $(w) est une fonction de ponte de type U.

Preuve. On utilise le lemme 1. Les conditions (i) et (iii) sont trivialement
satisfaites. Il nous reste à vérifier la condition (ii).

YT» > 0 Vw G]0, T], VT g]0, l]
-=-> VT G]0, l] TJw G]0,T[ tel que h'T(w) 0 et hT(w) > 0 [lemme 3]

-==> VT G]0, l] $w G]u;T,T[ tel que h'T(w) 0 et /iT(t7j) > 0

=4* «E» est de type Í7 [lemme 2] D

Le critère de cette proposition n'est pas nécessaire pour le type U. On peut
facilement produire des contre-exemples.

4. LA FONCTION DE PONTE $ DU GONORISME PARFAIT

POUR LA LOI BINOMIALE EST DE TYPE U.

LEMME L La suite (^™-j) est strictement croissante. De plus on a

lim (^-)2"+1=e-2.
n->oo xn-\- 1
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Preuve. Calculons tout d'abord la valeur de la limite. On sait que

lim 1 + - e
n—>oo \ ni

et donc

lim (J^)^ iim [(--I---)"]2. lim (-Ar)
-2 i -2e * 1 -= e

Démontrons maintenant la croissance de cette suite. Pour x G R+, on a

/ \ 2*r+1 // x \ txy{x) : log —— -= (2x + 1) log
,1+x/ v ' \l + x

n
Z' a* \ 2x + li/(x) 21og(—j+5irT^

y"(a:)
x2(l+x)2

•

Donc, j/"(x) < 0. Ainsi y'(x) est strictement décroissante sur l'intervalle
]0, oo[. De plus, y'(\) 0.114 > 0 et lim^oo y'(x) 0. Donc

y'(x) > 0 Vx > 0

ce qui signifie que la fonction y(x) est strictement croissante sur l'intervalle
]0, oo[. Alors, la monotonie de log(x), entraîne la croissance stricte de

/ x \2x+1
sur l'intervalle 10, oof. D

Lemme 2. Considérons la fonction

*iW := ^-^E^+íi^E[2¿(2¿-1)^"2+(2¿+1)2-2i"1]
¿=0 i=l

pour j — 1, 2,..., n, pour tout n > 1. On a

rj(z)>0, zg[-1,0], j l,2,...,n Vn>l.

Preuve. Posons
n

~2i5n(z):=E^2
í=o
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Remarquons que

E2i(2i-l)z2-2 ¿5n(z) 5;'(z),
2—1

et

E2i(2i + l)z2î"1
î=i

j2 ™ildz2
%—O v '

- 2-£s„(z) + z¿S„0) 2S;(z) + zS'l[(z)

Calculons Sn(z), S'n{z) et S"iz) à l'aide des sommes partielles de la série

géométrique.

2n+2 _ i
Sniz): '

z2-l
j2n + 2)z2"+1(z2 - 1) - 2z(z2"+2 - 1)

(z2 - l)2

_
2nz2"+3 - (2n + 2)z2"+1 + 2z

~
(z2 - l)2

[2n(2n + 3)z2"+2 - (2n + 2)(2n + l)z2" + 2](z2 - l)2

02-l)4
[2nz2™+3 - (2ra + 2)z2™+1 + 2z]4z(z2 - 1)

(^2-l)4
2[n(2n - l)z2"+4 - (4n2 + 2n - 3)z2™+2]

S'niz)

+

(z2 - l)3
2[(n + l)(2n + l)z2™ - 3z2 - 1]

(z2 - l)3

En z 1 et z — 1 on étend par continuité. D'autre part

rj(z) \ - {-^Sniz) + il±^î [S'J(z) + 2S'j{z) + zS'f(z)]

1 (*- + *)<¦, jl + z)2 (1 + z)3
—Sn(z) + 5-(z) + -5* (z) ,donc
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1 (1 + z) (z2n+2 - 1)
Tj(2)~2 4 (z + l)(z-l) +

(1 + z)2 [2jz23+3 - (2j + 2)z^+1 + 2z]

4 (z + l)2(z-l)2
2(1 + z)3 [jj2j - l)z2--+4 - (4J2 + 2j - 3)z2^+2]

8 (z + l)3(z-l)3
2(1 + z)3 [(j + l)(2j + \)z23 - 3z2 - 1]

+

,2j+2]
+

8 (z + l)3(z-l)3
ce qui, en ordonnant les termes en fonction des puissance de j, nous fournit

4(z - l)8Tj(z)
2j2z2j(z - l)2(z + l)2 + jz23\z - l)(z + l)2(z - 3)+(l)

-2 + (2)

- z2™+4 + 2z2"+3 - z2"+2 + 2z2-î+1 + 2z3 - 6z2+ (3)

+ z(2 + z2-,'+1+z2-'-1) (4)

Il faut démontrer que (1) + (2) + (3) + (4) < 0, Vz G [-1,0] j
1,... ,n, Vn > 1

(i) Considérons l'expression (4)

VzG[-l,0], z^+i+z^Gl-^O] VjG{l,2,...},

d'où

VzG[-l,0], 2 + z2j+1+z2j-1>0 VjG{l,2,...}.

On a donc

(4) z(2 + z2-?+1+z2-7-1) <0 V« G [-1,0], VjG{l,2,...}.

(ii) Considérons l'expression (3)

(3) <0VzG [-1,0] car

z2k > 0 et z2k+1 < 0 Vfc G IN Vz G [-1,0]

(iii) Considérons l'expression (l)+(2)

(1) 2j2z2-'(z - l)2(z + l)2 + jz2j(z - l)(z + l)2(z - 3)

jz23\z + 1)2(1 - z)[2j + 3 - (2j + l)z]
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Comme y(z) (l — z)[2j + 3—(2j + l)z] est l'équation d'une parabole
qui a son unique minimum en zo positif, y(z) est décroissante à gauche
de z0 et croissante à droite. D'où

maxy(z)=y(-l) 8(J + l),

et

(l)<Jz2i(z+l)28(J + l) z G [-1,0].
Déterminons maintenant le maximum de z2j\z + l)2 sur [—1,0].

j-zz23\z + l)2 2z2^-1(z + l)[j + ij + l)z]

La dérivée s'annule en z —1, z — -Ar, z 0, et on a

-^z2nz + i)2i<0 ze l"00'-^ u 3-A'0!
dz

K ' \>0 z€ ]-l,--j-î[ u ]0,oo[.

Ainsi le maximum de notre fonction sur l'intervalle [-1,0] est atteint en

z — -7L-T et on a
J7 + 1

max-iz^z + l)2} i-^--)23(l - -r^—)2
[-ho] 3 + 1 J + l

Kj + 1> (j + l)2

Donc, pour j G {1,..., n}, n > 1

*^JTI)2J (7TîF8(j +1} 8(7TÎ)2J+1' z e hl'0]'

et, par le lemme 1,

(l)<8e"2<2, zg[-1,0]

d'où (1) + (2) < 0, z G [-1,0]. (i), (ii) et (iii) nous donnent donc

(l) + (2) + (3) + (4)<0, zG[-l,0] je {!,...,n} pour n > 1

Et comme (z - l)3 < 0 pour z G [-1,0]

Yi(z)>0, VzG[-l,0] et Vj G {l,...,n}, n>l. D
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Considérons maintenant le rapport de ponte du gonochorisme parfait
pour la loi binomiale. Nous savons que

p(w) 1--1^cf/iz(i-2wr
2 7T .—'i=0

ou

a r * 2i#)ism T
C 1 \ / „,u cos2C-2i » M i 0,...,C-l./, w -i-

2

et
c-i
E I} 1 et /*>0 Vi.

En posant î% := -^ on a 0 < /• < 1, Vi 0,..., C - 1, et

c-i
E^ 1 et

j=o

1 1-w,» ¿-^£/,(1-2«,)».
i=0

Un calcul direct conduit à

- c-\ c-\
p'M ô E ^1 - 2w)2i + u - «o E J-2»-**1 - ^)2"1 >

2
i=0 ¿=1

C-l
et p"(w) -4 E -*".¦*(-- - 2w)2¿_2[2i - (2i + l)iu]

i=l
Ainsi

Tf(.)-K.)-S 2°,)V'w--

¿=o

c-i
+ (T - u*)2 E •*?¿2i(l - 2u;)2¿-2[2i - (2i + 1)iü]

i=i
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En effectuant le changement de variable z := 1 — 2w, on obtient

2T - 1 + z
1 — w

2

et donc

w=2--^eV
i=0

G-\
+ (2r 1 + Z) Ë /,z2l-22i[2i - 1 + (2i + l)z]

Lemme 3. Soient Tj(z) les fonctions introduites dans le lemme 2, pour
n C — 1. Considérons les intervalles Jj définis comme suit

tt j ]-|±|,-|^]n[l-2T,l], j l,...,C-2
3 '

1 [-i,-f§5f]n[i-2Ti], j C-\
C>2, T G]0,1]. Alors

?j(z) < TT(z) Vz G Jj, j 1,..., C - 1 VC > 2, VT g]0, 1]

Preuve. Soit £¿(z) := 2i - 1 + (2i + l)z. On a

w.) - è -H* eV+e^^ e /<-*¦"«-)
i=0 1=1

et

*iw | -^ E *2i +^E 2-2î-2c(-) •

¿=0 i=l
De 0 < Ii < 1, on déduit que

-^E-^i-^i:-'.* v,>-i.
i=0 i=0

De plus

(2T-1 + Z)2 < (1 + z)2 VzGjf, vTg]0,1], * 1,...,C-1,
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a i \ Í < 0 pour i 1,.... j tTet &(--) S ~a • ¦ i /-r * sur J;sn;\>0 pour i j + 1,...,C- 1 •¦

car jj C [— 1, — ffr-j] pour i 1,...,J, respectivement

Jj n [-1, -||=1] 0 pour i J + 1,... ,C - 1. Done

ii±^E2-2î-2cw <(2r"81 + z)2E^2t-2cw
i=i ¿=i

Vz G J?", T g]0, 1], car on supprime les termes positifs, et puisque 0 <
Je < 1, la valeur absolue de la partie négative augmente. Par conséquent,
on a

tj(z) < TT(z) Vz G Jj, j 1,...,C - 1 VC > 2, VT g]0, 1] D

Nous pouvons maintenant démontrer le résultat annoncé dans l'introduction.

THÉORÈME. La fonction de ponte du gonochorisme parfait pour la loi
binomiale donnée par

^w)=w(\-^J2W-2w)A

où Ii :=
C 7 M i sin2* t cos2C-2i %dd i 0,.., C - 1 «i,

/70Hr chaque C > 1, de type U.

Preuve. Considérons tout d'abord le cas C 1.

1 1 — w w

et donc

ce qui nous donne

p(w)

/t»

fT(w) -

2 2 2

2

w(T-w)

2(2w - T)
w2(T-w) 2 '

Les trois conditions de la définition de fonction de ponte de type U sont
donc satisfaites, pour wq Ç.

Considérons maintenant le cas C > 2. On applique la proposition 3.

Vérifions que les 4 propriétés sont satisfaites.
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Dans le chapitre 2 on a montré que p'(w) > 0 Vid G R et que
p(0) — 0. De plus, IitÍw) :— —piw) -f (T — w)p\w) n'a que des zéros

isolés car p(w) est un polynôme. Les trois premières propriétés sont donc
satisfaites. Pour démontrer le théorème il reste donc à vérifier que

(T - w)2
rT(w) p(w) - K

2
' p"(w) > 0, Vu>G]0,T], VTG]0,1].

On a

rT(z) \ -^ E ^21 + {2T-¡ + z)2 E wz*-\iz)
i=0 i=l

P(z) + (2T~1 + Z)2 E h^-2Ciz)

L'image de [0, T] par z 1 — 2w est l'intervalle [1 — 2T, 1]. On doit donc
démontrer que

YT(z)>0 VzG[l-2T,l[, VTg]0,1].

Mais C<(2,)>0 VzG[-^4,oo[,
ce qui implique

Q(z)>0 VzG[-i,l] Vi 1,2,....

De plus,
p(z) > 0 Vz < 1

car p(w) > 0 Vw > 0. Donc

Tr(z)>0 VzG[-|,l[, VTG]0,1].

Des lemmes 2 et 3, on déduit que

Yt(z) > -fj(z) > 0, Vz G Jj, j 1,... ,C - 1 VC > 2, VT e]0,1]

Mais,

[1-2T1[ ]-\,l[ U\jjj,
d'oùYT(z)>0 VzG[l-2T,l[, VTg]0,1]. D
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