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MEM. SOC. VAUD. SC. NAT. 18.3, 1990

MODÈLES DYNAMIQUES EN BIOLOGIE, R. ARDITI (DIR.)
DYNAMICAL MODELS IN BIOLOGY, R. ARDITI (ED.)

Utilisations de méthodes d'optimisation en écologie

PAR

Bernard BOTTERON '

Résumé.—BOTTERON B., 1990. Utilisations de méthodes d'optimisation en écologie.

In: Modèles dynamiques en biologie, R. Arditi (dir.). Mém. Soc. vaud. Se. nat.
18.3: 227-240.
On considère diverses utilisations en écophysiologie et en écoéthologie de l'optimisation

mathématique (théorie de la commande optimale, calcul des variations).
L'optimisation y est utilisée pour déterminer les processus qui rendent maximale la valeur
sélective. On passe en revue l'utilisation du principe du maximum de PONTRYA-
GIN dans un modèle de croissance et reproduction de SIBLY et al. (1985) et dans
des modèles d'approvisionnement optimal de SIBLY et McFARLAND (1976) et de
HELLER et MILINSKI (1979). Finalement, on traite les modèles d'approvisionnement

optimal de ARDITI et DACOROGNA (1985, 1987) et de BOTTERON et
ARDITI, généralisant l'approche de CHARNOV (1976) et utilisant des méthodes
directes du calcul des variations que l'on expose brièvement.

Abstract -BOTTERON B., 1990. Utilization of optimization methods in ecology. In:
Dynamical Models in Biology, R. Arditi (ed.). Mém. Soc. vaud. Sc. nat. 18.3: 227-
240.
Some utilizations in ecophysiology and ecoethology of mathematical optimization
(optimal control theory, calculus of variations) are considered. Optimization is used
to determine the processes which maximize fitness. The utilization of the PON-
TRYAGIN's maximum principle is reviewed in a model of growth and reproduction
by SIBLY et al (1985) and in optimal foraging models by SIBLY and McFARLAND
(1976) and by HELLER and MILINSKI (1979). Finally, optimal foraging models
by ARDITI and DACOROGNA (1985, 1987) and by BOTTERON and ARDITI,
generalizing the approach of CHARNOV (1976), are reviewed. They use direct
methods of the calculus of variations which we briefly expose.

' Département de mathématiques, Ecole polytechnique fédérale, CH-1015 Lausanne,
Suisse.
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Introduction

Récemment, l'application en écologie des méthodes de l'optimisation
mathématique est devenue courante (Krebs et McCleery 1984, Sibly et Calow
1986). L'utilisation de telles techniques se justifie en postulant que la
sélection naturelle est elle-même un processus d'optimisation dans lequel
la valeur sélective («fitness») est maximisée. En écoéthologie par exemple,
un comportement est interprété en termes de la contribution qu'il apporte
à la survie et à la reproduction de son possesseur, c'est-à-dire à sa valeur
sélective.

En élaborant des modèles d'optimisation en écologie, on définit dans un

premier temps les variables d'état du système considéré. Elles décrivent
l'état interne de l'animal ou de la population par exemple. On spécifie
ensuite la manière dont les variables de commande modifient l'état du système
au cours du temps. Par exemple, dans les modèles présentés plus bas, les

variables de commande sont la fraction d'énergie de production somatique
(en écophysiologie) ou les variables déterminant le choix d'un comportement

(en écoéthologie).
Dans un deuxième temps, on choisit un critère d'optimisation. On n'a

souvent à disposition que des quantités supposées affecter la valeur sélective
d'une manière directe. Dans beaucoup de modèles du comportement
d'approvisionnement («foraging») (Pyke 1984, Stephens et Krebs 1987) par
exemple, la quantité de nourriture acquise est supposée être une contribution

positive à la valeur sélective. Des contributions négatives (SlBLY
et McFarland 1976) peuvent être prises en considération, comme par
exemple les coûts dus aux risques encourus pendant l'approvisionnement
(Houston et McNamara 1988, Botteron et Arditi); les dépenses
énergétiques de l'animal (p. ex. Arditi et Dacorogna 1985, Botteron et

Dacorogna 1990 a).

Dans un dernier temps, on spécifie les contraintes par rapport auxquelles
l'optimisation se fait. Ces contraintes réduisent le nombre de commandes
admissibles. Dans les modèles d'approvisionnement, ces contraintes sont

par exemple le temps total disponible (Arditi et Dacorogna 1985),
appelé période d'approvisionnement, le temps de manipulation de la nourriture
(MacArthur et PIANKA 1966), les limitations physiologiques sur les
possibilités d'action de l'animal (p. ex. ARDITI et DACOROGNA 1985, HELLER

et Milinski 1979, Sibly et McFarland 1976).
On dira d'une commande qu'elle est optimale si elle maximise la valeur

sélective prise en considération conformément aux contraintes.
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DÉFINITION DE LA VALEUR SÉLECTIVE

La valeur sélective est définie de plusieurs manières suivant les auteurs.
On envisage ici la définition utilisée abondamment en écophysiologie ou
en écoéthologie (KREBS et McCleery 1984, SlBLY et CALOW 1986, Sibly
et McFarland 1976). La valeur sélective d'un individu mesure le succès

avec lequel cet individu transmet son patrimoine génétique à la génération
suivante. Ce succès dépend de ses chances de survie et de sa faculté de

reproduction.
Pour une population, SlBLY et CALOW (1986) définissent la valeur sélective

F d'un gène par sa capacité à se répandre

N(t) dt

où N(t) est la densité du gène dans la population au temps /. Ainsi, si

NT représente la densité de copies du gène à un temps r fixé, on aura,

pour t < t
N(t) NT e-F(r-*)

En désignant par S(t) la probabilité de survie d'un porteur du gène depuis
sa naissance jusqu'à l'âge t,

N(t) S(t - t) dt

représente la contribution de l'intervalle [t, t + dt] au nombre de copies du

gène dans la population au temps t par les porteurs âgés de t — t, par
rejeton. Si n(t) est le nombre de rejetons par individu d'âge t, chaque

porteur d'âge t — t transmet \ti(t — t) copies du gène au temps r En

sommant les contributions de í 0 à í r, on obtient finalement

NT= f N(t)S(r - t)\n(T -t)dt= \nt f e~FtS(t)n(t) dt.
Jo 2 2 J0

Ce raisonnement est fait pour un temps t arbitraire, ainsi la valeur sélective
d'un gène peut être définie par la constante F satisfaisant l'équation

2 7o
e-ttS(f)n(f) dt,

appelée équation d'Euler-Lotka. Si la survie S ou le nombre de rejetons

n augmentent, la valeur sélective augmente également conformément
à cette dernière équation. Dans cette approche, la sélection naturelle est

interprétée comme un processus d'optimisation dans lequel la valeur sélective
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est maximisée. TAYLOR et al. (197r4) et SlBLY et al. (1985) montrent que la
maximisation de la valeur sélective revient à maximiser d'abord

$(S,n)-=- / e~FtS(t)n(t) dt
2 Jo

c'est-à-dire à trouver des fonctions S* et n* telles que

&{S*,n*) max{§(S,n)}

pour F > 0 fixée, puis à ajuster la constante F de manière à avoir

*(S*,n') l.
Cette approche sera illustrée par le modèle écophysiologique de SlBLY et
al. (1985) pour la répartition d'énergie de production entre croissance et

reproduction.
Dans les modèles d'écologie comportementale, on s'intéresse à la contribution

d'un comportement à la valeur sélective. On désigne par le vecteur

x (xi,X2, ¦ ¦ ¦ ,xn) l'ensemble des variables d'état caractérisant l'état
interne du système—par exemple x- x\(t) est le déficit alimentaire
de l'animal au temps t,X2 — x2(t) son déficit d'eau, etc.—et par u
(ui,«2, • ¦ • ,un) l'ensemble des variables de commande, caractérisant le

comportement (par exemple m- ui(t) est le taux de capture de proies,
etc.). Les équations d'état du système

¿TXj(t) fj(t,x(t),u(t)), pour 0<t<T et j l,2,...,n,

où T est la période du comportement et où la valeur initiale de x est
prescrite, régissent la manière dont un comportement u fait évoluer l'état x
au cours du temps. Sibly et McFarland (1976) définissent la contribution
F d'un comportement à la valeur sélective par

-T
F(x,u) - / C(x(t),u(t)) dt,

Jo

où C(x, u) est la densité de coût dépendant des valeurs que prennent au

cours du temps les vecteurs d'état x et de commande u. Ils supposent
que cette densité de coût est reliée à la probabilité X(t) qu'a l'animal de

donner naissance à un rejeton au temps t et à la probabilité p(t) qu'il a

de mourir par la relation

C(x(t),u(t))=p(t)-\(t)
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L'élaboration d'un modèle en écologie comportementale par cette
approche consiste à définir les variables d'état x et de comportement u, à

construire les équations d'état, à préciser les contraintes sur le comportement

ou sur les variables d'état, à construire la densité de coût de valeur
sélective C(x, u), puis à maximiser F(x, u) par rapport aux comportements

admissibles (c'est-à-dire vérifiant les contraintes). Cette approche sera
illustrée par les modèles écoéthologiques de Sibly et McFarland (1976) ou
de Heller et Milinski (1979) étudiant le comportement d'approvisionnement

d'un animal.

Exemple de modèle de croissance et
reproduction en écophysiologie

Au cours du développement d'un animal, l'énergie obtenue à partir de la

nourriture et non utilisée pour la maintenance, est allouée à la production
de biomasse somatique d'une part et de biomasse reproductive d'autre part.
Sibly et al. (1985) proposent un modèle d'optimisation dynamique (théorie
de la commande optimale) pour déterminer la répartition optimale d'énergie
entre croissance somatique et reproduction.

Ils supposent que l'énergie totale P(m) disponible pour la production
de biomasse est donnée et ne dépend que de la masse m de l'animal.
Cette dernière est une variable d'état du système et est reliée à P par une

équation d'état régissant l'évolution de m au cours du temps

—m(t) u(t)P(m), pour 0 < t < +oo
dt

où u u(t) est la variable de commande représentant la fraction de P
attribuée à la croissance vérifiant 0 < u < 1, 1 — u est la fraction de

P attribuée à la reproduction. La valeur initiale mo m(0) est fixée.
La deuxième variable d'état S(t) est la probabilité de survie de l'animal
depuis sa naissance (5(0) — 1) jusqu'à l'âge /. Elle est reliée à la variable
de commande par l'intermédiaire du taux de mortalité p p(u,m) par
une deuxième équation d'état

—S(t) — —S(t)p(u,m) pour 0 < t < oo
dt

La valeur sélective vaut (voir plus haut)

r*+oo

2 7o
¦3>(m, S, u) ^ j e~FtS(t)n(u, m) dt

où F > 0 est une constante et où n n(u, m) est le taux de reproduction
de l'animal à l'âge t. Le problème d'optimisation consiste à déterminer une
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stratégie u u(t) satisfaisant la contrainte 0 < u(t) < 1 et maximisant
-ï>.

La résolution de ce problème de commande optimale est faite en
utilisant les conditions nécessaires données par le principe du maximum de

Pontryagin. On définit un Hamiltonien

H(t,m,S,u,\i, X2) — e~ tSn(u,m) + Xi(t)uP(m) — X2(t)Spiu,m)

où A*,À2 sont les multiplicateurs de Lagrange, calibrant les diverses
contributions. La maximisation de cet Hamiltonien par rapport à la variable
de commande u dans [0,1] est une condition nécessaire pour l'obtention
d'une solution.

Les résultats obtenus par Sibly et al. 1985) dépendent évidemment des

hypothèses que l'on fait sur les fonctions n et p. Généralement n croît
et p décroît en fonction de m. Divers cas sont envisagés quant à la

dépendance de ces fonctions par rapport à u. Si p est affine décroissante
et si n est affine décroissante ou plus généralement convexe décroissante,
la solution est de type «bang-bang», c'est-à-dire qu'au cours du temps, on

aura alternativement u — 0 ou u 1, correspondant à une focalisation de

la production sur la reproduction (u 0) ou sur la croissance somatique
(u 1) uniquement. Des solutions intermédiaires (0 < u < 1) impliquant
une répartition plus nuancée de la production interviennent si p est convexe
décroissante par rapport à u, par exemple. Dans ce modèle, la stratégie de

type «bang-bang» s'avère optimale dans plusieurs cas, bien que beaucoup de

plantes ou d'animaux utilisent plutôt des solutions intermédiaires (CALOW

1983).

MODÈLES EN ÉCOLOGIE COMPORTEMENTALE

L'approche évolutive en écologie comportementale s'est fortement répandue

(Krebs et McCleery 1984). En théorie d'approvisionnement optimal
(optimal foraging theory) par exemple, de nombreux modèles d'optimisation
mathématique ont été publiés depuis 1966. Les premiers modèles, déterminant

l'exploitation optimale d'un habitat où la nourriture est spatialement
délimitée (patches, p. ex. CHARNOV 1976) ou déterminant la diète
optimale (choix du type de proie, p. ex. MacArthur et Pianka 1966) ne
nécessitent pas de technique avancée de résolution mathématique. Cependant,

les modèles suivants ont recours à la théorie de la commande optimale
(p. ex. Sibly et McFarland 1976; Heller et Milinski 1979) ou au calcul
des variations (Arditi et Dacorogna 1985, 1987, Botteron et Arditi).
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Modèles dynamiques d'approvisionnement optimal

Sibly et McFarland (1976) établissent un modèle d'optimisation
dynamique s'appliquant à l'approvisionnement de colombes de Barbarie privées
de nourriture (KREBS et McCleery 1984). La variable d'état est le déficit
alimentaire (ou état de la faim) de l'animal s(t) dépendant du temps. Le

comportement consiste à choisir un taux d'approvisionnement u(t) (c'est-à-
dire un nombre d'essais de capture de nourriture par unité de temps) au cours
du temps, appelé variable de commande. La manière dont le comportement
modifie la variable d'état est régie par l'équation d'état

-3-L -ru(t), pourO<i<T,dt

où T est la période d'approvisionnement prescrite. La constante r > 0

peut être interprétée comme une mesure de la disponibilité de nourriture par
unité d'essai de capture. Le critère d'optimisation est la minimisation des

coûts de valeur sélective

-F(s,u) [ [s2(t)+u2(t)]dt.
Jo

Les coûts sont choisis quadratiques en s car plus l'animal est loin de

l'état de satiété (s 0), plus il est à même d'atteindre une limite mortelle
(Krebs et McCleery 1984). La dépendance en u2 vient du fait que
l'animal doit concentrer davantage son attention à l'approvisionnement à

des taux élevés et devient plus vulnérable à la prédation.
La contrainte d'optimisation est

0 < u(t) < K

où K est le taux maximal d'approvisionnement (contrainte physiologique).
Dans un type de modèle similaire, Heller et MlLlNSKi (1979)

introduisent dans les coûts une contribution due à l'effet de confusion pour
l'approvisionnement d'un épinoche dans une nuée de proies. La confusion
provient de la difficulté qu'a l'épinoche à s'occuper d'une proie uniquement
dans une nuée de proies similaires. Cet effet augmente avec la densité de

proies et à des taux d'approvisionnement élevés.

La minimisation dans ce cas porte sur

-F(s,u) [ [s2(t)+ad(t)u2)(t)} dt)
Jo

où d(t) est la densité de proies de la région que choisit l'épinoche pour son

approvisionnement, a > 0 une constante calibrant les deux contributions.
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Le taux maximal d'approvisionnement K n'est plus une constante mais

dépend de la densité d(t)

0 < 6u(t) < d(t), où 6 > 0

Après résolution par le principe du maximum de Pontryagin SlBLY et

McFarland (1976) montrent que la colombe de Barbarie devrait, pour
se comporter de manière optimale, adopter un taux d'approvisionnement
proportionnel à son déficit alimentaire, ramenant celui-ci vers la satiété

(s=0) de manière exponentielle décroissante. Dans le modèle de Heller et
MlLlNSKl (1979), le taux d'approvisionnement de l'épinoche et la densité de

proies choisie pour s'approvisionner devraient décroître exponentiellement
au fur et à mesure que l'animal s'approche de l'état de satiété.

On trouve d'autres exemples plus récents de modèles dynamiques
appliqués à l'écologie chez Cohen (1987) ou chez McFarland et Houston
(1981). Ces modèles de commande optimale sont souvent résolus en
utilisant le principe du maximum de Pontryagin. Il donne les conditions
nécessaires que doit satisfaire une commande optimale—ici le comportement

optimal. Il faut néanmoins noter qu'en général, ces conditions ne sont

pas suffisantes.

D'autres modèles d'approvisionnement optimal (Arditi et DACOROGNA

1985, 1987, Botteron et Arditi) utilisent des techniques du calcul des

variations. Celui-ci est rarement utilisé en écologie. En physiologie par
exemple, ILLERT (1983) l'utilise pour étudier la géométrie des coquillages.
Le calcul des variations apparaît dans d'autres domaines de la biologie
(Paine 1982) ou en sciences de l'environnement. Par exemple, Neuman et
O'DONOHOE (1981) l'utilisent pour la détermination optimale de la forme
d'une autoroute minimisant les effets des émissions de polluants. D'autres
applications existent en biophysique (Siddique et al. 1982) ou en biomédecine

(Swan 1984).

Quelques éléments du calcul des variations

Le calcul des variations est une branche classique de l'analyse mathématique.

On en trouve de nombreuses applications en physique, en géométrie,
etc. Il précède historiquement la théorie de la commande optimale. Il peut
cependant être interprété comme un cas particulier de celle-ci où l'équation
d'état est simplement, avec les notations précédentes (modèle de SlBLY et

McFarland)
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Le problème général unidimensionnel du calcul des variations est de

trouver une fonction admissible v minimisant une fonctionnelle intégrale
E

E(v)v) f(x,v(x),v'(x)) dx

L'intervalle d'intégration / peut être borné ou non. La fonctionnelle
E prend des valeurs réelles dépendant de toutes les valeurs de la fonction
v : I —> R Le mot «admissible » contient ici toutes les contraintes requises
des fonctions v telles leur régularité, leurs valeurs aux bords de /, etc.

L'approche classique (p. ex. Gelfand et FOMIN 1963) de ce problème
consiste à étudier premièrement l'équation d'Euler-Lagrange de la fonctionnelle

d_ (d_ ,.\ d
dx \ dv'(¿V /(x'V'V'ï) &v

/(:C'V'V>) ' XeI

avec conditions aux bords de /.
Cette équation différentielle ordinaire du deuxième ordre en v s'appelle

également la variation première de la fonctionnelle. Au sens classique,
il faut que / et v soient deux fois continûment différentiables pour que
cette équation ait un sens. Elle exprime la condition nécessaire que doit
satisfaire une solution optimale. Le problème de la suffisance de cette
condition doit être discuté en général. Dans l'approche classique, elle se

fait en étudiant la variation seconde de la fonctionnelle autour d'une solution
d'Euler-Lagrange (théorie des champs). Dans beaucoup d'applications, on
travaille plutôt avec le problème inverse du calcul des variations. Il consiste
à déterminer, à partir d'une équation différentielle donnée, la fonctionnelle
intégrale dont l'équation donnée est la variation première (équation d'Euler-
Lagrange). Dans ce cas, on ne s'intéressera pas à minimiser la fonctionnelle,
mais seulement à l'extrémaliser.

Des méthodes plus récentes (p. ex. Cesari 1983, Dacorogna 1989,

Botteron 1990), appelées méthodes directes, ont été développées pour
traiter des problèmes où la régularité requise classiquement de / ou de

v n'était pas satisfaite ou lorsque l'équation d'Euler-Lagrange ne pouvait
pas être résolue de manière classique. Ces méthodes directes utilisent
abondamment des notions de l'analyse fonctionnelle (théorie des espaces normes,
théorie des opérateurs, etc.). L'approche du problème se fait souvent alors
en étudiant directement la convergence de suites minimisantes de la
fonctionnelle, sans passer par son équation d'Euler-Lagrange.

Le problème de l'existence d'une solution optimale est souvent réglé

par un théorème central du calcul des variations (théorème de Weierstrass).
Deux des hypothèses qui doivent être faites sont les suivantes

- la fonction / est convexe par rapport à v' (assurant la semi-continuité
inférieure faible de la fonctionnelle E );
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- la fonction / a une croissance surlinéaire à l'infini par rapport à v'
(appelée condition de coercitivité, assurant la compacité des suites minimisantes

par rapport à la topologie faible dans un espace réflexif).
Ces hypothèses sont satisfaites dans les modèles de Sibly et McFarland

(1976) et Heller et Milinski (1979) présentés précédemment et qui
peuvent être reformulés dans le cadre du calcul des variations. Ainsi, la
suffisance des conditions nécessaires est immédiate dans leurs modèles.

Les modèles suivants de la théorie d'approvisionnement optimal ont été

résolus à l'aide d'outils des méthodes directes. Le problème de l'existence
de solution et celui de la suffisance des conditions nécessaires n'est pas
réglé par le théorème de Weierstrass car la condition de coercitivité n'est pas
satisfaite. Il nécessite donc une étude détaillée d'existence et de suffisance

(Botteron et Dacorogna 1990 a, 1990 b, Botteron 1990, Botteron
et Marcellini 1990).

Modèle d'exploitation optimale d'un habitat arbitraire

Les variantes du modèle de Arditi et Dacorogna (1985, 1987) et de

Botteron et Arditi étudient l'approvisionnement d'un animal dans un
habitat arbitraire où la distribution initiale de nourriture est une fonction
quelconque p(x), continue par morceaux. Ce modèle s'applique également
à la situation où les ressources de nourriture sont spatialement délimitées
(p. ex. Charnov 1976) et la généralise à des distributions arbitraires (Arditi
et Dacorogna 1988, Kacelnik et Bernstein 1988).

L'animal est décrit par sa position x(t) dépendant du temps. Il débute

l'approvisionnement au temps t 0 au point x 0 Il traverse son habitat
unidimensionnel (intervalle [0, x]) pendant sa période d'approvisionnement
T sans revenir en arrière. Dans deux des trois variantes du modèle, la fin de

l'habitat est fixée (x — 1), alors que dans une d'elles, la fin de l'habitat est
soumise à l'optimisation. De même pour la période d'approvisionnement,
fixée ou optimisée suivant les variantes. La vitesse de l'animal est bornée

supérieurement (contrainte physiologique)

0 <£'(/) </?,/€ [0,T]

Le problème du calcul des variations auquel donnent lieu les trois
variantes du modèle peut se reformuler ainsi

inf {e(v) Í [p(x)e-v'^ + h(x)G(v(x))} dx) : v e WT)

où

WT {v G W1'00^,^) : v(0) 0,v(x) T, v'(x) > 0}
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La fonctionnelle E est la contribution négative à la valeur sélective à

minimiser. La fonction v est l'horaire (temps en fonction de la position) de

l'animal et sa dérivée v' est la présence d'approvisionnement de l'animal,
à un changement de variable près. La fonction h est reliée à la densité de

risque pendant l'approvisionnement. La fonction G est croissante et
convexe G(v) v par exemple dans Botteron et Arditi), WT est l'espace
des fonctions admissibles. W1,oo(0, x) est l'espace des fonctions continues

v : (0,x) —> R admettant une dérivée première v uniformément bornée

(espace de Sobolev muni de sa norme habituelle, p. ex. DACOROGNA 1989).
La condition v'(x) > 0 est équivalente à x'(t) < ß Le terme p(x)~v (x>

est relié à l'acquisition de nourriture. Le terme h(x)G(v(x)) est relié aux

risques encourus pendant l'approvisionnement. Le critère d'optimisation
est la maximisation des contributions à la valeur sélective du comportement
(formulée ici comme minimisation des coûts). L'acquisition de nourriture
est une contribution positive, alors que les risques sont une contribution
négative. Dans les variantes où l'on ne tient pas compte des risques (c'est-
à-dire Arditi et Dacorogna 1985, 1987), l'animal est un «maximiseur

d'énergie en temps prescrit» (Schoener 1983). L'introduction des risques

(Botteron et Arditi), liés par exemple aux dangers de prédation encourus
pendant l'approvisionnement, influence considérablement le comportement
optimal, comme cela a été souvent observé (p. ex. (Houston et McNamara
1988, Dill 1983, Gilliam et Fraser 1987, Lendrem 1983, Lima 1985,

Martindale 1982, Metcalfe et al. 1987, Heller et Milinski 1979, Sih
1980, 1982, Werner et al. 1983, Ydenberg 1984, Ydenberg et Houston
1986).

La dépendance e~v' (au lieu de (v1)2 dans Heller et Milinski 1979,

Sibly et McFarland 1976, par exemple) donne lieu à la non-coercitivité.
Ceci rend les problèmes d'existence d'une solution et de suffisance des

conditions nécessaires non immédiats et sujets à discussion Botteron et

Dacorogna 1990 a, 1990 b, Botteron 1990, Botteron et Marcellini
1990).

Les conditions nécessaires que doit satisfaire une solution optimale sont

connues pour un tel problème. Ce sont les conditions de Kuhn-Tucker
(p. ex. Cesari 1983) qui généralisent l'équation d'Euler-Lagrange. Le

problème mathématique consiste alors à résoudre ces conditions, dans le

cas où cela est possible et à montrer leur suffisance. Dans une des

variantes du modèle (Arditi et Dacorogna 1987), le point final optimal
de l'habitat x doit encore être déterminé et dans une autre (Botteron et

Arditi), c'est la période d'approvisionnement optimale T.
Après résolution de ce problème, l'habitat de l'animal est divisé en deux

ensembles de régions, selon que la densité de nourriture est supérieure ou
inférieure à une valeur critique. Le comportement optimal consiste à ex-
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ploiter uniquement les régions riches jusqu'à ce que la densité de nourriture
en chaque point soit ramenée à la valeur critique et à ignorer les régions

pauvres qui seront traversées à vitesse maximale. La variante où les risques
sont introduits (Botteron et Arditi), appliquée à des situations concrètes,
rend compte du comportement hautement sélectif dans les régions éloignées
du nid, souvent observé expérimentalement (p. ex. Angerbj orn et al. 1984,
Hegner 1982, McGinley 1984, McGiNLEY and Whitham 1985, Swihart
et Johnson 1986).
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