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L'information vue par un ingénieur

PAR

Frédéric de COULON *

Résumé - Pour l'ingénieur, l'information se présente sous deux aspects: celui,

formel, du signal physique qui convoie l'information de sa source au destinataire -
homme ou machine - et celui plus abstrait, parce que de nature statistique, de

l'information effective transportée par ce signal. Comme mesure de cette information

effective, on retrouve ici la notion d'entropie déjà rencontrée - mais dans un
autre contexte - en thermodynamique.

Le débit effectif d'information est souvent plus faible que le débit apparent
associé au signal, ce qui caractérise la présence de redondances. Celles-ci peuvent
être réduites par des procédures de codage appropriées.

Lors d'une transmission, les perturbations éventuelles (bruit) provoquent une
modification du signal entraînant des erreurs d'interprétation. Ceci introduit une
certaine ambiguïté sur la nature de l'information transmise qui en réduit le débit

effectif. On appelle capacité d'une voie de transmission le débit effectif maximum
qu'elle autorise pour un régime de perturbations donné. Sous réserve d'utiliser un
débit d'information inférieur à cette capacité, l'introduction, par codage, d'une
redondance structurée permet d'obtenir une diminution importante du taux
d'erreurs sans réduction excessive du débit d'information.

1. Introduction

Le concept d'information peut être envisagé à différents niveaux:

1) formel,
2) technico-mathématique,
3) sémantique,
4) psychologique,
5) philosophique.

Ecole Polytechnique Fédérale de Lausanne
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Le point de vue de l'ingénieur n'intervient qu'aux deux premiers
niveaux. Le niveau sémantique, qui touche à la signification d'un message, le
niveau psychologique, qui concerne l'effet émotionnel (donc subjectif) de

l'information, et le niveau philosophique, qui a trait à la connaissance et à

l'origine de l'intelligence, ne sont pas interprétables en termes techniques.
Le niveau formel ne prend en compte que la nature du support de

l'information, donc son apparence. Pour l'ingénieur, cette apparence est
celle d'un signal physique transportant un flux continu ou discret de

messages. Pour pouvoir aisément traiter (transmettre, transformer, interpréter)

ce flux d'informations brutes, ce signal est avantageusement traduit
sous forme électrique et représenté par des combinaisons de deux symboles
élémentaires (0 et 1: signal numérique binaire). Le débit apparent d'une
source d'information est ainsi exprimé en terme de symboles binaires (bits)
par seconde.

Le niveau technico-mathématique est celui où l'on s'intéresse à la

mesure du débit effectif de l'information convoyée par le signal et aux
moyens possibles d'améliorer l'efficacité (recherche d'une plus grande
concision) et la sécurité (lutte contre les erreurs) d'un transfert ou d'un
stockage d'informations. Ceci nécessite le développement d'un modèle
statistique de l'information effective (objective).

Ce sont de solides motivations techniques qui ont, à l'origine, conduit au
développement de la théorie du signal et de l'information, appelée aussi
théorie de la (ou des) communication(s). Les premières recherches ont été,

en effet, motivées par le désir d'augmenter les cadences de transmission sur
les lignes télégraphiques.

On s'est intéressé très tôt à la recherche d'une définition objective de

l'information, capable d'en fournir une mesure quantitative. Les premières
études sont dues à Nyquist et surtout à Hartley qui, en 1927, a montré dans

un congrès international de téléphonie et de télégraphie comment il était
possible de comparer les performances des divers systèmes de télécommunications.

Il faudra toutefois attendre la publication des travaux de Claude
Shannon (1948), pour que les fondements de la théorie moderne de

l'information soient fermement établis. Ces travaux, de même que l'ouvrage
de Norbert Wiener (1948) «Cybernetics», qui aborde de manière parallèle
les problèmes de la communication et du réglage automatique, ont eu
une influence déterminante sur l'art de l'ingénieur des transmissions et du
traitement de l'information.

2. Signal et information

Les flux d'informations sur lesquels l'ingénieur désire pouvoir agir
proviennent de nombreuses sources et concernent principalement l'observation

(mesure) de phénomènes physiques ou le dialogue (communication)
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entre hommes, entre l'homme et la machine, ou entre les machines elles-mêmes.

Pour pouvoir aborder le processus de transfert de l'information en
termes généraux, il est utile de se référer au modèle présenté sur la figure 1.

PERTURBATIONS

SOURCE-j-EMETTEUR CANAL

messages signal
e'mis

RECEPTEUR

signal
reçu

DESTINATAIRE

messages
reconstruits

Figure 1. - Système de transfert d'informations.

La source d'information sélectionne les messages. Ceux-ci peuvent
consister en mots écrits ou parlés, en chiffres, en images, en musique, etc.

L'émetteur transforme le message en un signal, généralement électrique,
qui est alors envoyé par une voie de communication (canal) de l'émetteur
au récepteur. Celui-ci retraduit le signal reçu en un message qui est fourni
au destinataire. Le signal, lors de sa transmission, est toujours plus ou moins
altéré par la présence inévitable de phénomènes perturbateurs (bruit de

fond, distorsions, etc.).
Le signal est donc le support physique de l'information, son apparence

en quelque sorte. Il représente ce que nous conviendrons d'appeler
l'information brute. Il peut être de nature diverse: optique, acoustique, électrique,
magnétique, mécanique, thermique, etc. Grâce à des capteurs, ou transducteurs,

appropriés (par exemple: cellule photo-électrique, microphone,
élément piézo-électrique, thermocouple, etc.) ce signal est généralement
traduit sous forme électrique afin de tirer parti des immenses possibilités
offertes par les systèmes électroniques de transmission et de traitement de
l'information. Une conversion inverse est souvent réalisée au niveau du
récepteur de manière à restituer l'information au destinataire sous sa forme
originale.

3. Mesure de l'information apparente

La source produit soit un flux d'informations discret, soit un flux
d'informations continu. Le signal qui lui sert de support est donc, par
nature, lui aussi discret ou continu.
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Le premier cas correspond à la génération d'une séquence de signes
conventionnels distincts, tels que lettres, chiffres, symboles graphiques,
impulsions lumineuses, etc. C'est la situation rencontrée dans les transmissions

télégraphiques, le télex, ou la transmission de données entre machines

(ordinateurs et équipements périphériques).
Dans le second cas, le message est représenté par une fonction continue

du temps traduisant l'évolution chronologique d'une grandeur physique.
Un exemple en sont les fluctuations de la pression acoustique due à la voix
ou à un instrument de musique.

Comment mesurer le flux d'information brute, c'est-à-dire le débit

apparent d'information?
Pour un flux discret, il suffit de compter le nombre de signes - lettres ou

chiffres par exemple - apparaissant dans un intervalle de temps prescrit.
Toutefois, pour pouvoir comparer des flux d'informations provenant de

sources de nature différente, il est nécessaire de pouvoir se baser sur une
unité de comptage commune.

Lorsqu'une personne parle à une autre, le langage est le véhicule et le
code par lequel l'information est transmise. Les mots en sont les constituants
de base. Or le nombre de mots d'un grand dictionnaire est considérable

(plusieurs centaines de milliers), même si nous ne les utilisons pas tous dans
la langue courante. Pour les communications écrites, nous utilisons les 26

lettres de l'alphabet, plus un 27e qui est l'espace, comme constituants de

base. Remarquons que, dans ce cas, le nombre de constituants est déjà
relativement petit.

Ceci nous conduit tout naturellement à la question: y a-t-il une forme de

représentation de l'information basée sur un dictionnaire minimum? Ou, en
d'autres termes, peut-on définir une unité - quantum élémentaire -
d'information?

La response est évidemment oui. Car il suffit, en effet, d'un «alphabet»
élémentaire de deux symboles pour que, par combinaison de L d'entre eux,
il soit possible de représenter (coder) n 2L états distincts d'un alphabet
plus riche. Ceci correspond à une transcription du message initial en une
combinaison de deux déclarations élémentaires, s'excluant mutuellement,
telles que oui/non, ouvert/fermé, blanc/noir, pile/face, etc. Il est devenu
usuel de représenter les deux choix offerts par les chiffres 0 et 1.

On observera ici que, d'une manière générale, le nombre de signes
différents pouvant être exprimés à l'aide d'une séquence de symboles
élémentaires de longueur L croît exponentiellement avec L. Inversement, L
croît comme le logarithme du nombre de signes n de l'alphabet (on utilisera
ici pour indiquer le logarithme de base 2 la notation conventionnelle:
lb x log2 x)

L=lbn (1)
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Ainsi, la longueur L de la séquence binaire d'encodage fournit une
mesure de la quantité d'information apparente (appelée parfois «quantité
de décision») associée à chaque signe du message. Nous nous conformerons,
dans ce qui suit, aux recommandations de l'Union internationale des

télécommunications (UIT) en appelant «bit» l'élément binaire, 0 ou 1,

employé pour le codage de l'information. Ce terme, d'origine américaine, fut
initialement proposé pour caractériser l'unité binaire d'information effective

(voir § 4). Toutefois, l'usage l'a aujourd'hui consacré comme unité
binaire d'information apparente. Chaque signe d'un alphabet donné
contient donc L bits.

Par exemple, les 26 lettres de l'alphabet ordinaire peuvent être représentées

par des blocs de cinq bits (25 32). C'est la solution exploitée par le
code Baudot utilisé pour les transmissions télégraphiques internationales:

A <—¦» 001 1 1

B <—> 0 110 0

C <—> 10001
D <—> 0 1 1 0 1

etc.

Afin de permettre la transmission non seulement de lettres, mais aussi

des chiffres 0 à 9, ainsi que de certains signes spéciaux, chaque groupe de
5 bits est en fait utilisé dans deux acceptions différentes, ce qui nécessite une
double table de codage. Le choix de la table utilisée est alors indiqué en

intercalant dans le flot d'informations un signe particulier. Si la source

produit une séquence de signes à la cadence de 10 signes par seconde, on
obtient un débit apparent (aussi appelé «débit littéral»)

D 10 X 5 50 bits/s.

Un autre exemple est le codage alphanumérique utilisé pour la transmission

de données et d'ordres dans les systèmes informatiques (code ISO ou
USASCII) qui évite la double signification attribuée à chaque mot dans le
code Baudot. L'emploi de mots de 7 bits b7, b6,..., b, permet de représenter
théoriquement 2' 128 lettres, chiffres, signes spéciaux ou ordres différents.
La figure 2 présente le code ISO (International Standardization Organization)

à 7 bits. Les différents messages y sont regroupés dans une matrice de
16 lignes et 8 colonnes (8 X 16 128). Chaque ligne et chaque colonne est

identifiée par un groupe de 4, respectivement 3, symboles binaires.
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O 0 O o 1 1 1 1-"
_ O O 1 1 0 O 1 1

O I O 1 o 1 O 1

1 "
"7|bJb5 b4 b3 b2 ", 0 1 2 3 4 5 6 7

O o o o 0 NUL DLE Space 0 P ® P

o o o 1 1 SOH DC1 1 A Q a q

o o 1 o 2 STX DC2 " 2 B R b r

o o 1 1 3 ETX DC3 # 3 C S c s

o 1 o o 4 EOT DC4 S 4 0 T d t
o 1 o 1 5 ENQ NAK % 5 E U e u

o 1 1 o 6 ACK SYN b 6 F V f v

o 1 1 1 7 Bell ETB • 7 G W g w
1 o o o 8 BS Cancel 8 H X h x
1 o o 1 9 HT EM 9 1 Y i V

1 o 1 o 10 LF SS * J Z j z

1 o 1 1 11 VT Escape + K [ k
1 1 o o 12 FF FS < L \ 1

1 1 0 1 13 CR GS — M : m
1 1 1 o 14 SO RS > N y\ n

1 1 1 1 15 SI US / 7 O 0 Delete

Figure 2. - Code ISO à 7 bits.

Ainsi la lettre A ou l'ordre CR (carriage return), qui permet de commander
le retour du chariot d'un télétype, correspondent aux mots binaires

respectifs:

A
CR

1000001
000 110 1

Une représentation sous forme binaire de l'information est évidemment
très favorable du point de vue technique. Les symboles de codage 0 et 1

peuvent en effet facilement correspondre à deux états stables d'un dispositif
électrique simple tels que l'ouverture et la fermeture d'un contact (interrupteur

électronique ou mécanique) entraînant le passage ou l'absence de
courant. Cette succession de présences ou d'absences de courant est
aisément transmise et détectée par le système destinataire. La figure 3 illustre le
codage binaire d'un message primaire, traduit à son tour en un signal
représentatif où le symbole 1 correspond à la présence d'une impulsion de

courant dans un intervalle de temps prescrit T, et le symbole 0 à l'absence
d'une telle impulsion. On qualifie un tel signal de «numérique» (ou digital).
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MESSAGE
PRIMAIRE

B

CODAGE

BINAIRE

SIGNAL
NUMERIQUE

Figure 3. - Traduction d'un message codé en un signal représentatif.
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Puisque les nombres décimaux sont également représentables sous cette
forme, un traitement de l'information est possible à la condition de transposer

les opérations mathématiques et logiques usuelles (addition, multiplication,

plus grand que, plus petit que, etc.) dans un système binaire. C'est le
mode de fonctionnement des calculatrices électroniques dont on connaît
l'essor prodigieux.

Peut-on également appliquer cette unité d'information apparente, de

nature fondamentalement discrète, pour mesurer un flux d'information
continu? Bien que cela puisse paraître étrange, la réponse est encore oui!
Pour le montrer, il faut disposer d'un principe de quantification qui nécessite

l'introduction d'un concept nouveau: celui d'échantillonnage.
On sait qu'un flux continu d'informations est représenté par une fonction

continue du temps. Celle-ci se traduit sous la forme d'un signal, dit
«analogique», dont l'amplitude peut théoriquement prendre une infinité de
valeurs différentes les unes des autres. C'est le cas du courant microphonique

traduisant, sous forme électrique, les ondes acoustiques de la parole,
par exemple. Toutefois, il est expérimentalement impossible de mesurer
(observer) avec exactitude chacune de ces valeurs d'amplitude. C'est pourquoi

on peut faire correspondre à cet ensemble continu de valeurs, connues
avec une précision limitée, un nouvel ensemble discret (dénombrable) de

valeurs distinctes garantissant la même précision. C'est une procédure de

quantification en n niveaux distincts, dont les amplitudes sont souvent un
multiple d'un quantum q qui correspond au plus petit écart mesurable.

Shannon a, par ailleurs, démontré qu'il n'est nullement besoin de

connaître en tout instant t la valeur prise par un signal analogique. Si l'on
analyse la façon dont un tel signal varie avec le temps, on constate qu'il
comprend des composantes de beaucoup de fréquences différentes. Celles-
ci occupent un certain domaine de fréquence que l'on appelle la largeur de

bande B du signal. Par exemple, on sait que les sons produits par des
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instruments de musique ont des composantes de fréquence allant de quelques

dizaines de hertz (le hertz est une unité de mesure de fréquence égale
à un cycle par seconde) à plusieurs milliers de hertz. Une largeur de bande
de l'ordre de 15 à 20 kHz est exigée des installations d'amplification et de

reproduction électro-acoustiques dites «à haute fidélité». Or, on constate

qu'il est théoriquement possible de reconstruire entièrement un signal
analogique à partir de prélèvements ponctuels - appelés échantillons - de

sa valeur instantanée effectués à intervalles de temps réguliers Tc, à la
condition que

T, * ^ (2)

Autrement dit, l'échantillonnage doit être effectué à une cadence
supérieure ou égale au double de la plus haute fréquence contenue dans le

«spectre» (distribution de l'énergie en fonction de la fréquence) du signal.
La reconstruction est obtenue en multipliant chaque échantillon par une
fonction d'interpolation du type sin xix, avec x 2trBt, et en effectuant la
somme.

Ce résultat est le théorème d'échantillonnage qui joue un rôle fondamental

en théorie du signal. Soit n le nombre de niveaux de quantification
utilisables, ordonnés de zéro à n — 1 : chaque niveau est alors identifiable par
son numéro d'ordre. Celui-ci peut être exprimé à son tour sous la forme d'un
nombre binaire de L bits (avec L le plus petit entier supérieur ou égal à

lb n). Le principe de l'échantillonnage, de la quantification et du codage
binaire d'un signal analogique est illustré sur la figure 4. —»?

Il en découle qu'un segment de signal analogique de durée T peut être

représenté par un nombre d'échantillons

N 2BT (3)

ou un nombre de symboles binaires

NL 2BTL bits (4)

En d'autres termes, le flux d'information brute associé à un tel signal
possède un débit apparent

D 2BL bit/s (5)

Par exemple, dans le cas d'un signal téléphonique, la largeur de bande
B est de l'ordre de 4000 Hz et une quantification (non linéaire) avec n 28

256 niveaux est nécessaire pour garantir une qualité suffisante de repro-
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duction. La transmission d'un tel signal sous forme numérique (système dit
à modulation par impulsions codées ou PCM) entraîne un débit apparent
d'information

D=2B- lbn 64000 bit/s.

4. Mesure de l'information effective

Considérons une source d'information qui émet des prévisions météorologiques.

Parmi les messages possibles figurent les indications «pluie» et

«neige». Ces deux messages contiennent le même nombre de lettres (cinq),
dont chacune peut être codée par une séquence binaire distincte de 5 bits,
de sorte qu'ils représentent la même quantité d'information apparente (25
bits).

Sous nos climats, au mois d'août par exemple, la pluie est un phénomène
relativement fréquent, alors que l'apparition de neige à basse altitude est

tout à fait exceptionnelle, voire rarissime. On réalise donc que chacun de ces
deux messages ne transporte pas la même quantité d'information effective.
Celle-ci dépend en quelque sorte du caractère imprévisible, incertain, de
l'événement. Un message annonçant un événement certain n'apporte
aucune information effective, puisqu'il n'est même pas nécessaire de le
recevoir pour avoir connaissance de l'événement. Inversement, la réalisation

d'un événement très improbable est accompagnée d'un effet de surprise
considérable, et l'information effective acquise est très grande. On peut
donc dire qu'un message fournit d'autant plus d'information qu'il est

original.
Il convient de souligner que le sens que nous donnons ici à «information

effective» est dénué de tout aspect sémantique ou psychologique. Il correspond

simplement à une mesure objective de la liberté de choix dont on
dispose lorsque l'on sélectionne un message, et non à l'interprétation
subjective de celui-ci.

La théorie de l'information, développée par Shannon, est une théorie
stochastique des messages. Elle introduit une mesure statistique de la
quantité d'information effective associée à chaque symbole produit par une
source d'information donnée. Par extension, elle permet de déterminer la
capacité - ou cadence maximale de transmission de l'information - d'un
système, qu'il soit ou non soumis à un régime de perturbations aléatoires.
Elle fournit avant tout une méthode d'estimation des limites de performance

d'un «système informationnel» et des critères permettant la comparaison

de différents systèmes.

Puisque la quantité d'information effective U associée à la réalisation
d'un événement (ou symbole) A est une mesure de l'incertitude que l'on a
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a priori à son sujet, il est naturel de l'exprimer mathématiquement comme
une fonction de l'inverse de sa probabilité d'apparition p^. Cette fonction
doit être telle qu'à pp, 1 (événement certain) correspond Ia 0. Il est de

plus raisonnable de supposer que la quantité d'information totale associée
à une séquence de symboles indépendants soit égale à la somme de leurs
quantités d'information individuelles. La relation fonctionnelle satisfaisant
simultanément ces conditions est le logarithme, puisque log 1 0 et

log (A • B) log A + log B.

Ainsi, la quantité d'information effective associée au symbole A, de

probabilité pA, est définie par

IA log 1 lpA - log/>A (6)

Il est commode d'utiliser dans cette définition un logarithme de base 2,

de telle sorte que l'unité d'information effective corresponde à la quantité
d'information associée à la réalisation d'un événement binaire à deux états

équiprobables.
C'est cette unité d'information effective qui, à l'origine, a été appelée

«bit». Toutefois, comme nous l'avons signalé plus haut, ce terme dénote

aujourd'hui l'élément binaire (0 ou 1) servant d'unité de mesure de
l'information apparente. Aussi, pour éviter toute confusion, nous nous conformerons

ici aux recommandations de l'UIT en appelant l'unité d'information
effective un «shannon», en hommage au père de la théorie de l'information.

Un shannon (en abrégé: sh) est donc la quantité d'information effective
transportée par un bit pour autant que les symboles binaires soient équiprobables.

Par contre, si la probabilité du symbole 0 vaut p0 0,2 et celle du
symbole 1 vaut^, l—p„ 0,8, on obtient: I0 -lb 0,2 2,322 sh et I,
—lb 0,8 0,322 sh. La quantité d'information effective par symbole fournie
en moyenne par la source est alors simplement calculée, si les symboles sont
indépendants, en effectuant la somme des termes I0 et I, pondérés par la

fréquence relative (probabilité) d'apparition des symboles correspondants:
H /?0I0+/?.I, 0,722 shannon par bit (espérance mathématique, ou

moyenne statistique, de la quantité d'information associée à chaque
symbole).

D'une manière générale, pour une source générant des messages
construits à partir d'un alphabet de n signes différents et indépendants ayant
les probabilités d'apparition respectives p,, p2, pt, p„, la quantité
d'information effective moyenne fournie par chaque signe est donnée par
la formule (l'indice 0 dénote ici une source sans mémoire, c'est-à-dire sans

relations conditionnelles entre signes):

H, - £ Pt'lb pt (sh/signe) (7)
i i
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Cette quantité est appelée l'entropie de la source, terme choisi en raison
de la similitude de la formule (7) avec celle de l'entropie thermodynamique.
A titre d'exemple, la figure 5 représente la variation de l'entropie d'une
source binaire sans mémoire en fonction de la probabilité d'un des
symboles.

H[sh]

0.5

0 0.5

Figure 5. - Entropie d'une source binaire.

P=1-P

On démontre facilement que l'entropie atteint une valeur maximum
lorsque tous les signes sont équiprobables:

Hmax lb n pour;?, lin (8)

L'entropie maximum s'identifie donc avec la quantité d'information
apparente - ou quantité de décision - exprimée en (1).

Des relations conditionnelles de signe à signe existent fréquemment.
C'est, par exemple, le cas de la langue écrite où certaines lettres apparaissent
plus fréquemment à la suite d'autres lettres. Ainsi la lettre q est toujours
suivie d'un u en français, sauf quand elle est en position terminale.
L'entropie de telles sources d'information peut être estimée en recourant à un
modèle statistique plus élaboré (processus de Markov) faisant intervenir
toutes les probabilités conditionnelles, dénotées p, pour qu'un signe i soit
précédé par une séquence k donnée composée de m signes (mémoire d'ordre
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m). Si la source dispose de n signes différents, on peut construire nm

séquences k différentes apparaissant avec la probabilité pk. On obtient alors

k=\
-IaP^Pü (9)

Pour une source donnée, les entropies calculées sont d'autant plus
faibles que le degré de mémoire pris en compte dans le modèle est élevé. La
valeur asymptotique obtenue en faisant tendre m vers l'infini est l'entropie
limite Hoo qui mesure la quantité d'information effective moyenne produite
par la source.

tì„ < < Hm < < H„ < Hmax (10)

Pour la langue française écrite, utilisant 27 signes différents (26 lettres 4-

l'espace), Hmax lb 27 4,755 sh/signe. Une source sans mémoire générant
les signes de cet alphabet en respectant les probabilités d'apparition de ces

signes possède une entropie H0^3,9 sh/signe. Si l'on considère un texte
élaboré par une telle source, il n'a apparemment que peu de rapport avec
la langue française. Une meilleure approximation est obtenue en introduisant

un certain degré de mémoire. On a reproduit sur la figure 6, à titre
d'illustration, deux exemples de simulation de la langue française réalisés
dans le cadre d'un travail de diplôme (P.A. Rumley, diplôme d'ingénieur-
électricien, EPFL 1971). Ils correspondent à la simulation d'une source
ayant pour le premier une mémoire d'ordre 1 et pour le second une
mémoire d'ordre 2. Seules des contraintes statistiques sont ici respectées, il
n'y a bien entendu aucune contrainte grammaticale.

Pour une mémoire d'ordre 1, l'entropie H, tombe à environ 3,1 sh/signe.
Elle continue à décroître lorsque le degré de mémoire augmente en se

rapprochant asymptotiquement de l'entropie limite Hoo. Celle-ci a été
estimée pour la langue écrite anglaise à une valeur voisine de 1 sh/signe. On

peut présumer qu'il doit en être à peu près de même pour la langue
française.

Si H est l'entropie d'une source et t est la durée moyenne d'émission
d'un signe, on peut déterminer un débit effectif d'information

H' H/r(sh/s) (11)
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a) Source avec mémoire d'ordre 1 :

R DE D CLE A E CQTRINT ETE D BLU VDITRE S DE I A HE QUTAVEL AR CHE

MAILILGES T VE JES DEI LUGE JE QUER JETEMEMEN GESURE A E ASERE DE

DET ER MMBOUX DRESSERIN HEITIBTONTE S OMAGN NS VAR LUIT RMIS DEREURE

ENAUSTEURMA PE SAIR PL A NA IN MI N OITRE LELE BJEMOU CORE JEQU

NCUNTE QUIFA CEMES E PRIREUF TE PAMEN BES DUN DIT E DESAUI AITE

CEURILETQNESUR PA CAVIS I MENDRADIRER S ASS LLOMEUEMAVE TRENEREAIOUN

JA JE IERTCISTE S E BREANT QUI LIS SET APLEN PITA E CE EUVUT HAIT

EPAND DENN C QUTR JA E ATQUS JE SUS Q URINASE SI S AVRE LUR AQUEPAISSULE

D DETE DUREMM D DERIT AIVRRET LL HER QULHIS INE VE S NON SUAIN QUTRISER

LLENLUERE LE CE PAMIRE SAM OUROUGRANN PAS HE ABOTE PERE LEN DENT JANTRES

UDEIE J DE HE S DENAN IT ENIR TARE MA DIEN DE LSENT LET PULU JE MERE

CE S E POUFUR AT HOR ANS FELAVULE LA S IAMARI J F PU IENN FRAISER RUE

HOMA LLARI MESDUN AIN NS NTAQUX ILOCEU E SS S NE L DE JELANGNS IT
QU JE PLI L UILU L LAOUTU A ANSE SUS CRINTA E NE HEASE LLE L A

DEUTEMANCEM MAFIQUCOIOUIRE CE QUILELE JERNN VIR N DAMOD

b) Source avec mémoire d'ordre 2 :

AIMME ET PEUX DESCACUGLEUX PLUS UN LA SOUTE DON TOMMENT IL RE AMIERMIS

Y ALMEN MONS PETENTS PASSE PR EAUR ILLOIRE RACIENTREVER SITES IMPARMA

ISSE CET IL ASSINUTOUT ENT RE COUT DU ILS MOI PAS DEUREZ FRANC HE UNE

TCU ONT CHEVRE ENT QU IL A SORTE ET UNE VEUX LA TOUSE VOIRANG IL TEMEM

A MOIS SEPASSENCE PUI ME ET A BRATICN RE LAIS VCIRESTEMPS UN TOUT CON

T MAIEN ETTE ETAIN ORS QUE BRE GRIFRME N CEVERS FEUS PAS DITU ON PAS A

POUVEC CRES REAU PERTAIS L HE COMMELLE AERRE IL HARRIRME TAIS OUPAS U

NE MA T QUE N JE TAGE QUI FINSA TQUE CHAQUISPCIR MATAIT L SUADMIT DERA

NCDUR DE DE COURES GRANTRES PIEN LONT ABLAIS DE ALE PET LA D A LOUT PR

CI ES ALLE MES ETAI LE JOUR SE MOITE JE SUIVINEABLET LES ACE DES DES L

UILAMARIS TCUVRE IDES IGIQUANDES QUE L SE SIL NOUS POURNANT MAIR ESCES

BUCHIPQNS AVAIERSA VOUST JE DE LEMINEE VEN N Y PRE DE FAIT QUE DOURS I
L ENTEMONNE VAIR TONCE UN REPENTRE ACI DEUROYA A MOND UNE ILIT L OUDES

PARAIST DEVROIR CONS LE CLES PEUX DUNE PLA FONDS CET MEME BUS LILLES C

ES AUTEMPS SUCULANT D

Figure 6. - Simulation élémentaire de la langue française.
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5. REDONDANCE DE L'INFORMATION

La différence entre l'entropie maximum (égale à la quantité d'information

apparente) et l'entropie limite (correspondant â la quantité d'information

effective) constitue la redondance de l'information

T4H=Hmax—Hoc (12)

que l'on exprime généralement en valeur relative

r £L 1 - £=- (13)
rlmax r^max

En paraphrasant Shannon, on peut définir la redondance comme cette
fraction du message qui n'est pas nécessaire, en ce sens que, si elle manquait,
le message resterait complet ou du moins pourrait être complété.

Dans le cas de la langue écrite, cette redondance paraît être de l'ordre de
70 à 80%. Pour la langue parlée, on l'estime à environ 60%. Les images de
télévision ont une redondance variant généralement entre 60 et 90%, selon
leur richesse en détails. La redondance de la plupart des documents
fac-similé tels que lettres commerciales, cartes météorologiques, dessins

techniques, etc., se situe au-dessus de 80%.

La suppression, même partielle, de cette redondance avant transmission
ou stockage améliore l'efficacité de la source d'information. Dans le cas d'un
stockage, cela permet de diminuer la dimension de la mémoire nécessaire.
Mais comment opérer cette réduction?

Une solution évidente, déjà exploitée dans son principe voilà plus d'un
siècle par Morse pour son code télégraphique, consiste à encoder les signes
fournis par la source à l'aide de mots binaires dont la longueur /, (nombre
de bits) varie en raison inverse de leur probabilité p-, d'apparition. La
longueur moyenne de ces mots vaut alors

n

L Y Pi h (bits/signe) (14)
i i

Une efficacité de 100% serait atteinte, pour une source sans mémoire, si

la longueur de chaque mot était égale à la quantité d'information effective
associée au signe correspondant, c'est-à-dire si /, — lb pt. Dans ce cas, la

longueur moyenne L s'identifierait à l'entropie H„ donnée par la formule
(7), de telle sorte que chaque bit d'encodage transporte un shannon
d'information.

Ce résultat ne peut généralement être qu'approché car /, est nécessairement

un nombre entier. Shannon a montré qu'en encodant non les signes,
pris individuellement, mais des blocs de m signes, il est toujours possible de

s'approcher aussi près qu'on le veut d'une efficacité de 100%, même pour
des sources avec mémoire, à la condition de choisir m assez grand. Ainsi,
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l'information fournie par une source avec un débit effectif de H' sh/s est

théoriquement représentable (après codage) par un signal numérique ayant
un débit apparent de H' bit/s. Ceci constitue le premier théorème fondamental

de la théorie de l'information. S'il indique l'existence de techniques
permettant d'améliorer l'efficacité d'une source, il ne fournit pas de règles

pour la construction du code.
Une méthode optimale a été proposée par Huffman (v. Cullmann,

1968). Elle consiste à coder les deux signes de plus faibles probabilités X„_i
et X„ à l'aide de mots binaires de longueurs identiques ne différant que par
le dernier bit (voir figure 7). La procédure se répète ensuite après avoir
remplacé dans la Uste ces deux signes par un signe artificiel Xa_i,n de

probabilité cumulée p„-\ + p„. On construit ainsi progressivement, en

partant de la fin, un arbre d'encodage où à chaque branche est assigné un
symbole d'encodage 0 ou 1 choisi de manière à assurer un décodage sans

ambiguïté. Cette structure en arbre, impliquant qu'aucun mot du code ne
puisse être le préfixe d'un autre mot du code, garantit un décodage instantané

en ce sens que chaque signe peut être identifié instantanément dès

Xi Pi CODE li Pi li

*l 0,4 0 1 0,40

x? 0,15 1 1 0 3 0,45

*3 0.15 100 3 0,45

\ 0,1 1 01 3 0,30

h 0,1 1110 4 0,40

X6 0,06 11110 5 0,30

*7 0,02 111110 6 0,12

*8 0,02 111111 6 0,12

L 2,54

MESSAGE INITIAL

X2 X5 X1 X6 X8

MESSAGE CODE

110 1110 0 11110111111
Figure 7. - Codage optimum de Huffman.
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réception du dernier bit du mot-code correspondant. Dans l'exemple de la
figure 7, on obtient une longueur moyenne d'encodage L 2,54 bits/signe,
alors que l'entropie de la source vaut H0 2,485 sh/signe. La redondance
de l'information, initialement de 17,2%, est ramenée par codage à 2,2%.

Une telle approche conduit dans les cas pratiques à des solutions
généralement très compliquées, si bien que des techniques sous-optimales
lui sont préférées.

Pour certains signaux analogiques (parole, télévision) une technique
prometteuse est celle du codage différentiel. Elle consiste, pour l'essentiel,
à établir une prédiction de la valeur présente du signal, basée sur l'acquis
antérieur, et à n'encoder plus grossièrement et transmettre que la différence
entre la valeur réelle et cette prédiction. Le récepteur reconstitue l'information

de manière inverse. Lorsque l'erreur de prédiction est suffisamment
faible, on peut même se contenter de ne transmettre que les paramètres,
adaptés périodiquement, du système prédicteur. C'est ainsi que la parole,
qui nécessite sans réduction de redondance un débit apparent de 64000 bits

par seconde, peut être représentée après codage différentiel par un flux
beaucoup plus faible de l'ordre de quelques milliers de bits par seconde (au
prix toutefois d'une certaine dégradation de la qualité).

6. TRANSMISSION DE L'INFORMATION

Lors d'une transmission, les perturbations éventuelles (bruit) provoquent

une modification du signal entraînant des erreurs d'interprétation
(figure 8). Ceci introduit une certaine ambiguïté sur la nature de l'information

transmise qui en réduit le débit effectif.
Avant transmission, la quantité d'information effective fournie en

moyenne par une source X est l'entropie H(X) que l'on peut interpréter
comme la mesure de l'incertitude initiale d'un observateur. L'ambiguïté de
la transmission, due au bruit, correspond à l'incertitude finale que l'observateur

a sur la nature de l'information après avoir pris connaissance du

message reconstitué, avec de possibles erreurs, au récepteur Y. Cette ambiguïté

moyenne - appelée «équivoque» par Shannon - s'exprime mathématiquement

sous la forme d'une entropie de X conditionnelle à l'observation
deY:H(X|Y)< H(X).

La quantité d'information effective I transmise en moyenne est alors

simplement la différence entre l'incertitude initiale et l'incertitude finale

I H(X) - H(X|Y) (15)

Sans bruit, l'ambiguïté H(X|Y) est nulle et la quantité d'information
transmise correspond à l'entropie de la source. Dans le cas limite d'une voie
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interrompue, l'observation de Y ne nous apprend rien sur X et l'incertitude
finale est égale à l'incertitude initiale. La quantité d'information transmise
est donc nulle.

On appelle capacité C d'une voie de transmission le débit effectif
maximum qu'elle autorise pour un régime de perturbation donné:

C=In (16)

Dans le cas d'une voie transmettant des symboles binaires, dans laquelle
la probabilité d'interprétation incorrecte d'un symbole est p, cette capacité
vaut

C 1 + p Ibp + (l-p)lb(l-p) (sh/bit)

et est comprise entre zéro et un.

(17)

SIGNAL A LEM! SSION

001100010 11100100

SIGNAL* BRUIT A LA RECEPTION

SEUILx^

t t t 1 1 t I t 1 t t t t t I

INSTANTS DE DECISION

SIGNAL RECONSTITUE

001 100 00.011 1 01101
ERREURS

Figure 8. - Influence du bruit sur un système de transmission d'informations.
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Pour une voie analogique, perturbée par du bruit gaussien, on obtient

C= Blb(l + Ps/Pb) (sh/s) (18)

où B est la largeur de bande de la voie, Ps et Pb les puissances du signal et

du bruit, respectivement. Cette formule célèbre établit une liaison entre les

concepts d'énergie et d'information.
La capacité est une caractéristique très importante de la voie de

transmission. On démontre en effet que tant que la transmission de l'information
se fait sur une telle voie avec un débit inférieur ou égal à C, il est possible
d'améliorer la sécurité de la liaison en réduisant la fréquence des erreurs
d'interprétation à une valeur aussi faible que désirée moyennant l'emploi
d'un codage redondant approprié. Une telle réduction ne peut pas être
envisagée pour tout débit supérieur à C. Ce résultat est connu sous le nom
de deuxième théorème fondamental de la théorie de l'information.

On peut comprendre intuitivement pourquoi la présence d'une redondance

favorise la sécurité. Supposons la réception d'un télégramme contenant

les mots THEORIX DE l'INFZRMATION. Il est certain que chaque
lecteur rectifiera de lui-même en utilisant le contexte pour reconstruire le

message correct.

7. Lutte contre les erreurs

Le deuxième théorème fondamental, proposé par Shannon, n'indique
pas davantage que le premier comment il faut construire un code efficace

(ici pour lutter contre les erreurs). La recherche de tels codes est en
elle-même un domaine immense où se sont illustrés de nombreux
chercheurs depuis 1948. Mentionnons, en particulier, la contribution importante
du dernier conférencier de ce cours, le Professeur Marcel J. E. Golay, qui
découvrit en 1949 déjà le seul code binaire parfait, capable de corriger
toutes les erreurs simples, doubles ou triples dans un bloc de 23 bits.

Nous nous contenterons de présenter ici quelques exemples élémentaires

de technique de codage permettant soit la détection, soit la correction
d'erreurs.

La méthode la plus simple d'introduction d'une redondance limitée

pour permettre la détection de certaines erreurs est l'adjonction, à chaque
mot binaire représentant un signe de la source, d'un bit supplémentaire, dit
de parité, choisi par exemple de telle manière que le nombre de symboles
0 dans le mot ainsi augmenté soit toujours pair. Un contrôle de parité est

alors effectué à la réception qui décèle la présence de n'importe quelle
combinaison impaire d'erreurs. Par exemple, si le message initial est représenté

par le mot de 5 bits 10010, qui comprend trois symboles 0, on
transmettra le mot 100100 dont le sixième bit est le symbole de parité.
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Pour augmenter la probabilité de détection des erreurs, il faut augmenter
la redondance. Un exemple classique est le code télégraphique à 7 bits

qui est conçu de telle manière que chaque mot comprenne toujours quatre
1 et trois 0. Sur les T 128 combinaisons différentes de 7 bits, il en existe
35 qui ont la propriété ci-dessus. L'une de ces combinaisons est utilisée pour
signaler en retour la détection d'une erreur à la réception et demander à

l'émetteur la répétition du dernier message émis.

Lorsque le taux d'erreurs est trop élevé, exigeant une répétition trop
fréquente des messages, et surtout lorsque le système de transmission ne
fournit pas une voie de retour permettant de signaler la détection d'erreurs,

MESSAGE INITIAL:
1101 001 1 01 01 1000

FORMATION DU CODE GEOMETRIQUE

PARITE
HORIZONTALE

110 1

0 0 11
0 10 1

10 0 0

0
1

1

0

I

110 0 1 m PARITE VERTICALE

MESSAGE EMIS:
11010 00111 01011 10000 11001

MESSAGE REÇU AVEC UNE ERREUR

11010 00011 01011 10000 11001

CONTROLE ET CORRECTION

110 1

0 0 0 1

0 10 1

10 0 0

0
1

1

0

0

0
1

0

CONTROLE
DE PARITE

110 0 1

1110 1

t

PARITES
INCORRECTES
IDENTIFIANT LA
POSITION DE

L'ERREUR A

CORRIGER

Figure 9. - Code géométrique corrigeant une erreur isolée.
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la détection avec correction automatique de certaines erreurs devient le seul

moyen d'améliorer la sécurité de la liaison.
Nous ne pouvons développer ici ce sujet. Afin d'illustrer toutefois le

principe d'une correction d'erreur, on a représenté sur la figure 9 un
exemple de code simple, corrigeant une erreur isolée, appelé code géométrique.

Les symboles du message initial sont regroupés dans une matrice à

laquelle on ajoute une ligne et une colonne contenant des symboles
supplémentaires, assurant la parité horizontale et verticale (ici parité du nombre
de zéro). La présence d'une erreur isolée dans le message fait échouer les

deux contrôles de parité de la ligne et de la colonne auxquelles appartient
l'erreur. Elle est donc détectée, localisée, et par conséquent corrigible. De
plus, un tel code permet de détecter un grand nombre de configurations
d'erreurs multiples.

8. Conclusion

Pour l'ingénieur, la théorie de l'information constitue une tentative en
vue d'établir une base unique permettant de comparer les diverses méthodes

de communication de l'information et de définir des critères permettant
de mesurer leurs performances.

Les deux enseignements fondamentaux de la théorie développée par
Shannon sont:
a) la preuve de l'existence de possibilités d'améliorer l'efficacité d'une

source d'information redondante. Des solutions techniques ont été
envisagées à cet égard pour des sources telles que texte, signal vocal, signal
de télévision, documents facsimile, etc.;

b) la preuve de l'existence de possibilités d'améliorer la sécurité d'une
transmission d'information en présence de perturbations - sans réduire
excessivement le débit effectif d'information - grâce à l'introduction
d'une redondance structurée qui permet de déceler, voire même de

corriger, les erreurs.
La première décennie qui a suivi la publication des travaux de Shannon

fut. une période de recherche fondamentale très active en théorie de
l'information. Les années soixante ont surtout permis à cette théorie de mûrir et
de s'imposer. Mais c'est surtout au cours de la décennie actuelle que le

développement d'applications concrètes s'intensifie. L'un des principaux
facteurs de cette évolution réside dans l'étonnante croissance des moyens
mis à disposition de l'ingénieur par la technologie micro-électronique
(circuits intégrés, mémoires à grande capacité, microprocesseurs, etc.).
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