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Information et entropie

PAR

BERNARD VITTOZ *

INTRODUCTION

Un des problémes fondamentaux des sciences naturelles est de compren-
dre et si possible de prédire I’évolution des systémes matériels, que ceux-ci
soient inanimés ou animés. Par systéme matériel, nous entendons tout en-
semble d’un grand nombre de particules (atomes, molécules). Dans leur
évolution, ces systéemes doivent obéir a des lois de conservation: masse,
énergie, quantit¢ de mouvement, moment cinétique. Remarquons qu’une
loi de conservation ne prétend pas que la grandeur considérée soit stricte-
ment constante, mais que si elle varie c’est par un échange entre le systeme
et son entourage (I’extérieur au systéme). Dans le cas simple ou le systéme
est isolé de I’extérieur, une loi de conservation implique que la grandeur
correspondante est constante, le systéme évoluant ou non. Aussi, I’évolution
ne peut pas étre régie par des grandeurs qui doivent (dans certains cas)
rester constantes. I1 faut donc faire appel a une grandeur physique qui varie
lorsque le systéme évolue. Cette grandeur est I’entropie, étroitement liée aux
concepts de probabilité et d’information.

Utilisant le modéle atomique de la matiére, dont la nécessité lui paraissait
évidente, BOLTZMANN (1877) fut le premier a donner une interprétation pro-
babiliste de I’entropie. Une excellente analyse de I’ceuvre de Boltzmann a
été faite par R. DUGAS (1959). La liaison entre I’entropie et I'information a
¢té reconnue plus tard (SZILARD, 1929), (SHANNON et WEAVER, 1949), (BRIL-
LOUIN, 1959).

CONFIGURATIONS

Considérons le systéme matériel le plus simple possible. Il est formé de N
particules identiques (atomes, molécules) contenues dans un récipient de

* Laboratoire de Génie Atomique de I’Ecole Polytechnique Fédérale de Lausanne



4 BERNARD VITTOZ

volume V. Nous supposons de plus que ces particules n’exercent entre elles
aucune interaction a distance. Seuls les chocs interviennent: entre particules
elles-mémes, entre particules et la paroi du récipient.

Intéressons-nous d’abord aux différentes positions que peuvent prendre
les particules. Pour cela, divisons le volume V en un nombre de cases iden-
tiques, et de telle fagon que dans une case il ne puisse y avoir que 0 ou 1 par-
ticule. Soit b le volume d’une case (il s’identifie au volume moléculaire).
Le nombre de cases C est alors égal a:

C = % = nombre de cases = N )

N = nombre de particules

Comme nous avons supposé qu’il n’y avait pas d’interaction a distance
entre les particules, chaque particule peut se placer indifféremment dans
I'une ou I'autre des cases vides. On appelle configuration (ou complexion)
une réalisation possible de I’état du systéme, ici dans la position de ses par-
ticules. Une configuration est ici définie par la seule connaissance pour
I’ensemble des cases de I’occupation (chiffre 1) ou de non-occupation (chif-
fre 0) par une particule. Une configuration est donc donnée par un ensemble
de C chiffres (0 ou 1) écrits dans I’ordre de numérotation des cases:

0,0,1,0,0,0,1,1,...1 = une configuration (2)

C chiffres

Avec, naturellement, la condition que la somme de ces chiffres, c’est-a-dire
des 1, est égale au nombre N de particules.

Calculons le nombre W de configurations différentes que peut réaliser le
systéme, une configuration (2) n’apparaissant qu’une seule fois. Par la suite,
nous entendrons par configurations des configurations différentes. A partir
d’une configuration donnée, on peut en créer d’autres en permutant les
numéros des C cases, ce qui donne C! permutations. Mais pour chaque
configuration ainsi obtenue, les permutations des N cases occupées ne don-
nent en fait qu’une configuration significative, les particules étant identiques,
donc indiscernables. On a donc compté N! fois trop de permutations. De
meéme, les permutations des (C—N) cases non-occupées donnent (C—N)! fois
trop de permutations. D’ou:

C!

W= N!(C-N)!

= nombre de configurations (3)

Comme C = N, il s’ensuit naturellement que W = 1.

Exemple. N = 7 (particules), C = 100 (cases): W = 168 500 640
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Comme chaque particule peut se placer dans n’importe quelle case non-
occupée, qu’il y ait présence ou non d’une particule dans une case voisine
(interaction nulle), toutes les configurations ont la méme probabilité d’étre
réalisées par un systéme. On dit que les configurations sont équiprobables.
Ce qui ne veut pas dire qu’une configuration prescrite ou de caractére par-
ticulier ait la méme probabilité de réalisation qu’une configuration de carac-
tére quelconque. Par exemple, les configurations ou toutes les particules
occupent des cases adjacentes au sens de la description (2) sont au nombre
de (C—N); la probabilité de réalisation de telles configurations vaut donc
(C-N)/W, ce qui donne dans I’exemple numérique ci-dessus, une probabilité
de 6-1077. La loterie présente le méme aspect: le numéro 111111 a autant
de chance de sortir que le numéro 237453, mais les numéros formés de
chiffres identiques (comme le 111 111) ont beaucoup moins de chance de
sortir que les numéros formés de chiffres quelconques.

MESSAGES ET INFORMATION

Toute configuration réalisée par le systéme physique constitue un mes-
sage, si I’on suppose que ’on puisse mesurer cette configuration. Autant de
configurations possibles, autant de messages que peut nous délivrer le sys-
téme, autant I'information que nous pouvons recevoir du systeme est quan-
titativement riche. Le systéme est ainsi une source d’information. On définit
la quantité d’information I comme étant une mesure du nombre de messages
différents, ou de configurations différentes, que peut donner le systéme,
sans juger de la qualité de tel ou tel message. C’est aussi la mesure de I'in-
certitude ou de I'ignorance dans laquelle on se trouve avant de recevoir le
message. Ici, nous généralisons la notion de systéme a toute source d’infor-
mation: gaz dans un récipient, morceau de cristal de cuivre, communlcauon
télephonique, livre, etc.

Configurations équiprobables. Pour tout systéme a configurations équi-
probables, nous soumettons la définition de la mesure de I'information a
deux critéres:

A. La quantité d’information I est une fonction monotone croissante du
nombre W de configurations équiprobables, c’est-a- dlre que I croit si
W augmente:

dl
I=f(W) et —>0 4
FW) et o | (4)
La fonction f (W) étant indépendante du systéme considéré (a configu-
rations équiprobables).
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B. La quantité d’information contenue dans deux syst¢émes indépendants
(1 et 2), est égale a la somme des quantités d’information de chaque
systéme:

I=1L+1L (5)

Au sens de la thermodynamique, I est ainsi une variable extensive.

Considérons alors deux systémes indépendants, caractérisés chacun par
W, et W, configurations équiprobables. Les quantités d’information I, et I,
correspondantes valent:

L =fW) L =f(W) (6)

Comme les deux systémes sont indépendants, a toute configuration du
1°* systéme peuvent correspondre W, configurations équiprobables du 2° sys-
téme, car la configuration qu’a prise le 1* systéme n’a pas d’influence sur
le choix de configuration que peut prendre le 2¢ systéme. Le nombre total W
de configurations que peut donner I’ensemble des deux systémes vaut donc:

W=WW, ™
On a donc:
[ =/f(W)=/7F(WW) ®)
ce qui donne avec (5) et (6):
FWi W) = f(Wh) + (W) ©)

En dérivant chaque membre de ’équation (9), partiellement par rapport

a W, on trouve:
sz' W Wz) = f (Wl)

[ signifiant la dérivée de f (x) par rapport a x.
La dérivation partielle par rapport a W, donne:

Wi f" (Wi Wy) = f(W,)
d’ou:
W ff (W) = W, f" (W,) (10)

L’égalité (10) doit étre satisfaite quelles que soient les valeurs de W, et W,
donc:
xf'(x) =cste =C ; f(x)= %
Alors:
f(x) = Clog x + cste
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Par le choix du zéro de la quantité d’information I = f (W), on peut
prendre la constante additive égale a zéro:

I = ClogW

ce qui donne une information nulle pour W = 1, c¢’est-a-dire pour le cas ou
le systéme ne peut donner qu’une seule configuration. Le choix du zéro de
I est alors naturel, puisque dans ce dernier cas (W = 1) on n’attend aucune
information du systéme, celui-ci délivrant toujours le méme message.

Avec la condition de croissance monotone (4), la constante multiplicative
C doit étre positive, car le logarithme est une fonction croissante: C > 0.

La quantité d’information I que peut donner un syst¢me & W configu-
rations équiprobables est donc donnée par la formule:

I=ClogW C>0 (1)

Choix de la constante C et de la base du logarithme

En théorie des communications (voir I’article de F. de Coulon), on prend:

C =1 et log=1log, (log,2=1)
I se mesure en bits (binary digit)

Un des systémes simples en communication est le relais. Il peut étre
dans 2 états (configurations) différents (ouvert ou fermé) et délivrer ainsi
2 messages. S’ils sont équiprobables, 'information I, contenue dans un
relais vaut I, = 1 bit. Et dans »n relais indépendants: I, = n, la quantité
d’information s’additionnant, selon (5).

Nous verrons plus loin qu’en thermodynamique un autre choix est fait.
Jusque-14, nous laissons ce choix ouvert.

Probabilité

Avec W configurations équiprobables, on peut exprimer la probabilité p
de réalisation de 'une des configurations:

1

p=<1 12)

La formule (11) devient alors:

I=—Clogp 120 (13)
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Configurations non-équiprobables

Soit un systéme pouvant donner » configurations non-équiprobables (on
remplace le symbole W par #, W étant réservé pour des configurations équi-
probables). Numérotons chaque configuration par 'indicea (a =1, 2, . .. n)
et soit p, la probabilité que la configuration a apparaisse. On a la condition
(ou contrainte) usuelle sur le champ de probabilités p, :

2r=1 p, 20 (14)
a

On peut considérer que la configuration a est un sous-systéme a 1/p,
sous-configurations équiprobables. La quantité d’information I de ce sous-
systéme est donnée par la formule (13):

I = —Clogp,

Le systéme peut ainsi étre considéré comme formé de n sous-systémes a
indépendants, a condition de leur attribuer les «poids» relatifs p,. Le sous-
systéme a apparait avec la probabilité p,, sa contribution I, & I'information
totale vaut donc:

Ia = palg == _Cpa logpa

Comme les sous-systémes sont indépendants, I'information est additive:

I=—-C)Yplogp, 120 (15)

Cette formule exprime la quantité d’information I que peut donner un
systéme dont on connait le champ de probabilité p,. Dans le cas d’un champ
continu de probabilités, les formules ci-dessus se généralisent, les sommes
devenant des intégrales (ce que nous ne ferons pas ici).

Conséquences

1. Configurations équiprobables (n = W)

Dans ce cas, les probabilités p, sont égales: p, = p. La formule (14)
donne: |

. =1l=1
Lh = 2p=m =2p= =y

Et la formule (15):
L= —C i plogp = —Cnplogp = —Clogp = ClogW
a=1

On retrouve bien les formules (11) et (13) du cas des configurations équi-
probables.
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2. Additivité de I'information

La quantité d’information totale I de deux systémes S” et S indépen-
dants est la somme des quantités d’information I’ et I, méme si les
configurations ne sont pas équiprobables. En effet, soit:

p.etp’s = champs de probabilités des systémes S” et S”
=1 Ypp=1
a B

Les deux systémes étant indépendants, la probabilité p,z pour que les
configurations a et f§ soient réalisées par S’ et S’ respectivement, vaut:

Pap = PaD'3 (16)
D’ou 'information totale I:

I = —C ) pylogpuy = —C Y p.p'pllogp,+ logp'pl =
af af

= —CYpsypdogp, — CYp,Ypylogpy =
g a < B

1 1
= —C ) pslogp, — C Y p'slogp’y = I’ + I”’. On a bien:
a ﬁ . .

[ =1 +17

3. Information maximale

Pour un nombre de configurations donné », I'information sera maximale
si les configurations sont équiprobables, c’est-a-dire si le champ de probabi-
lités est uniforme:

La démonstration se fait par la méthode des multiplicateurs de Lagrange
(annexe A), car le champ de probabilités p, est soumis a la condition:

Yo =1
a

Si I'information est maximale, cela signifie que nous sommes dans la
situation la plus incertaine vis-a-vis de la connaissance a priori du systéme.
Rappelons en effet que la quantité d’information est la mesure du nombre
de messages différents que le systéme pourra nous donner, ce qui est bien
une mesure de I'incertitude dans laquelle nous sommes avant que le systéme
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ne délivre un message. Or, si le champ de probabilités est uniforme, le
systéme aura le maximum de choix entre les différents messages possibles,
ce qui correspond bien a I'incertitude maximale, donc a I'information maxi-
male.

En revanche, si le champ de probabilités n’est pas uniforme, le choix du
systéme sera moins-libre (2 méme nombre de messages possibles): tel mes-
sage a plus de chance d’apparaitre qu'un autre. Donc, plus le champ de
probabilités est non-uniforme, plus nous avons une certaine connaissance
a priori du systéme. A la limite, tous les p, sont nuls sauf un qui doit étre
alors égal a I'unité: I'information est alors nulle, le systéme ne peut donner
qu’'un seul message, notre incertitude a priori est bien nulle et nous n’atten-
dons aucune information du systéme.

L’information regue I,

Dans le langage courant, ’'information est la mesure du nombre de mes-
sages regus. Cette information regue I, est directement reliée a I'information
I définie plus haut. En effet, ’acquisition du message fait passer I'informa-
tion, que peut donner le syst¢tme, de la valeur initiale I; a la valeur finale
Iy=0. Il est alors naturel de poser que l'information regue est égale a la
diminution de I'information I que peut donner le systéme:

Ir = Iinitiale - Iﬁnale - AIr = —4l (19)

Les deux significations que ’on peut donner au terme information prétent
souvent a confusion.

L’ENTROPIE S EN PHYSIQUE _

Considérons un systéme matériel dont I’état macroscopique est décrit par
I’énergie interne U, le volume V, le nombre N de particules supposees
identiques (on peut aussi recourir au nombre de moles). Au sens de la
thermodynamique, ce systéme matériel dont 1’état macroscopique est défini
par trois variables (U, V, N) est un systeme simple, tandis qu’un systéme
composite est constitué de particules différentes. Un systéme simple peut
réaliser ’état considéré selon un ensemble de configurations définies par
exemple par la position et la vitesse des particules. Comme précédemment,
pour simplifier, nous considérons un nombre fini de configurations possibles
auxquelles est associé le champ de probabilités p,. Boltzmann a donné une
définition de I’entropie S du systéme tout a fait semblable a la définition
donnée, 50 ans plus tard, a la quantité d’information 1. Seules, la constante
C et la base du logarithme sont différentes dans les formules (11) et (15):
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pour W configurations équiprobables: S = klogW (20)
pour n configurations, probabilités p,: S = —k ) p,logp, (21)
a=1
avec:
k = constante de Boltzmann (1,38 1072 JK™")
log = logarithme naturel (base ¢)

L’entropie S est ainsi proportionnelle a la quantité d’information I. Les
propriétés vues pour I sont donc valables pour S.

La connaissance de I’état macroscopique (U, V, N) constitue des con-
traintes (ou conditions) sur le champ de probabilités p,, en plus de la
contrainte Y p, = 1.

a

Grace au 2° principe (de la thermodynamique), il est possible d’étudier
les systétmes a l’équilibre (ils n’évoluent pas) et les systémes dans leur
évolution. Le 2° principe peut s’énoncer de la fagon suivante:

1° a T’équilibre, ’entropie est maximale sous réserve que les contraintes
imposées soient satisfaites.

U,V,N = cstes et » p, =1 = S = Sy, al’équilibre (22)
a

En termes de la théorie de I'information, on peut donner un autre énoncé
(JAYNES, 1967):

la description la plus honnéte de ce que I’on sait est de reconnaitre qu’en
dehors des contraintes imposées, notre ignorance est maximale vis-a-vis
des configurations que peut prendre le systéme.

On dit aussi que I’état d’équilibre du systéme est celui du désordre maxi-
mal, compte tenu des contraintes imposées.

2° si le systeme est hors de I’équilibre, il tendra a évoluer dans le sens de

I’augmentation de son entropie, sous réserve que les contraintes impo-

sées soient satisfaites.

‘ dS _—
U, V,N =cstes et Y p,=1 > ar > 0 hors équilibre (23)
a

Ainsi, I’état le plus probable du systéme est celui d’information ou d’en-
tropie maximales, de plus grand désordre, avec la condition que les con-
traintes imposées soient satisfaites.

Dans I’annexe B, ’augmentation de I’entropie est établie dans le cas ou
I’évolution du systéme se fait par processus de Markov.

Les énoncés ci-dessus se généralisent sans autres & des systémes com-
posites.
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Application: gaz parfait

Le modéle du gaz parfait est un systéme constitué de particules iden-
tiques libres (sans interaction a distance). L’énergie interne U est alors
simplement égale a I’énergie cinétique totale des particules. Intéressons-nous
uniquement a la distribution d’énergie (cinétique) des particules du gaz a
I’équilibre. Soit:

p (E) = probabilité pour qu’une particule quelconque du gaz ait une éner-
gie comprise entre E et E + dE

|
Il

U/N = énergie cinétique moyenne des particules

|
Il

S/N = entropie moyenne par particule, due au champ de proba-
bilités p (E).

On a les contraintes:
Yp(E)=1 et YEp(E)=E (24)
-et ’entropie moyenne S par particule:
S = —kXYp(Elogp(E) (25)

qu’il faut rendre maximum compte tenu des contraintes (24). Avec la mé-
thode des multiplicateurs de Lagrange, on trouve:

p(E) = Ae bEk (26)

ou A est proportionnel au nombre de particules qui & priori peuvent avoir
une vitesse telle que leur énergie cinétique (mv?/2) soit comprise entre E et
E + dE. Il est donné dans ’espace des vitesses v par le volume d’une coquille
sphérique de rayon v, v 4 dv:

A = Bd4nv*dv (27)
Si I’on introduit les formules (26) et (27) dans les contraintes (24), on

obtient deux équations aux inconnues b et B. Les sommations devenant des
intégrales, on trouve:

_ 1 . m g3,

B=7G? 8)
_ 3k

b = 7 E (29)

Par définition, la température T d’un gaz de particules libres est propor-
tionnelle a I’énergie cinétique moyenne E des particules:
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E=2kT (30)
. 2
D’ou: )
= — 31
b= (D)
p(E) = Ae ™ (32)
A est le nombre d’états d’énergie (E, E + dE), tandis que e =/*Test la

probabilité d’occupation de ces états. C’est la statistique de Boltzmann.
Avec (27) et (28):

1 m g —mv2 kT
PO = =) Ve dv

qui est la distribution de Maxwell pour les vitesses des particules.

ENTROPIE ET THERMODYNAMIQUE

L’entropie moyenne S par particule devient d’aprés (25) et (32):

= E
S =1 +/(D

Multipliant par le nombre N de particules, on trouve ’entropie S du
systetme, avec N E = U = ¢énergie interne:

S =%+f(T,N,V)

ou le terme additif / (T, N, V) provient de la contribution du volume V a
I’entropie (configurations spatiales). Si I’on fait varier ’énergie interne U de
dU, a volume et nombre de particules constants, on trouve:

_du _ Q
s = & = 3 (34)

ou 6Q est la quantité de chaleur fournie au systéme.

En effet, d’aprés le 1 principe, dU = 0Q si V, N = cstes. Ainsi, pour le
gaz parfait, on a retrouvé la définition usuelle de I’entropie, pour une trans-
formation réversible, c’est-a-dire ou le systéme est 4 1’équilibre. C’est bien
ce que nous avons suppose dans les calculs ci-dessus.

L’entropie (21) au sens de Boltzmann, la méme en théorie de I'informa-
tion, s’identifie donc a I’entropie thermodynamique dans le cas de la trans-
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formation réversible d’un gaz parfait. On considére alors que la définition
(21) de Boltzmann, beaucoup plus générale que la définition usuelle (6Q/T),
donne I’expression de I’entropie des systémes physiques.

ANNEXE A - Information maximale

L’information due a un champ de probabilités p, (a=1,2...n) est
donnée par (15):
I=-C) plogp, (A1)

qu’il s’agit de rendre maximum, avec la condition (14):
d2r—1=0 (A2)
a

Avec la méthode des multiplicateurs de Lagrange, on construit la fonc-
tion F:

F=-C Zpa 1ogpa <+ )"(Zpa - 1) (A3)

Le probléme revient a rendre F stationnaire selon les variables p, et A:

%:0: _Clogp, — C +
oF » y
= 0 = Y p, — l:Cestla condition (A2)
D’ou: _“C
logp, = —G = p:tous les p, sont égaux.
Avec (A2): )
Pe=p=— (Ad)
et
Ip,=p) = —Clogp = Clogn (AS)

Le champ de probabilités uniforme (p, = p) correspond a une informa-
tion I optimale. Montrons que c’est un maximum. Pour cela, considérons
un champ de probabilités voisin du champ uniforme:

Pp=pl+e) |eal 1 (A6)
La condition (A2) implique:

Y& =0 (A7)
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L’information I devient, avec I’approximation log (1 + &,) = &,:
I=-CYp(+e)llogp+el =
a

= —Clogp —Cp Y e —Cplogp Y e —Cp ) &

0 0
[=—-Clogp—CpY & <I1(p=p)
a

I’égalité n’ayant lieu que si ), % = 0, c’est-a-dire si tous les &, sont nuls.
. . . a . . age ., g
L’information sera maximale si et seulement si le champ de probabilités

est uniforme.

ANNEXE B - Inégalité de Jensen et entropie croissante

La définition de la quantité d’information et de I’entropie fait apparaitre
la fonction f (x) pour x compris dans |’intervalle [0, 1]:

f(x) = —xlogx x €[0,1] (B1)

f(x) = —xlogx
)

0,5k

" X
O A A A A e il A A ’
_ 0,5 1
Fig. 1.

C’est une fonction concave (fig. 1). Or, toute fonction concave, dans un
intervalle [a, b], obéit a I'inégalité de Jensen:

Z Mif (xi) Sf(Z Nix) x; €la, b] (B2)
avec: g ! ;
i_=1,2...n;OS7L,-S1;Z7u,-=1 (B3)
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L’égalité ne pouvant avoir lieu que si tous les coefficients A; sont nuls
sauf un (disons A,), égal a I'unité a cause de (B3), ou si tous les x; sont égaux

(ce qui revient au méme):

égalité < A; = 0 sauf A, = 1 ou x; égaux (B4)

A y = f(x) concave

p . %,
ha L, G As
"
y ()| y (G)
X
a X(G) = x G -
Fig.2.

L’inégalité de Jensen peut se démontrer par I’analyse ou par la géo-
métrie des masses (fig. 2). En effet, on peut considérer que les coefficients
A; sont des masses ponctuelles disposées sur la courbe y = f(x) aux abs-
cisses respectives x; ; la masse totale valant I'unité d’aprés (B3). Alors:

Y Xix; = x(G) = X = abscisse du centre de masse (bary-
! centre) ou abscisse moyenne

Z Mif(x) = Y hiyi = y(G) = ordonnée du centre de masse

Or, nous savons que le centre de masse d’'un ensemble de masses ponc-
tuelles est a lintérieur de cette distribution, ici a l'intérieur de la ligne
fermée définie par la courbe y = f(x) et la droite joignant les masses ex-
trémes. Donc:

y(G) = y(x)

I’égalité ne pouvant avoir lieu que si les masses sont concentrées en un
seul point. Ce qui implique A; = 0 sauf I'un d’eux, disons A, = 1, ou (ce qui
revient au méme), tous les x; sont égaux. L’inégalité de Jensen est ainsi
démontrée.
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Applications

1. Deux champs de probabilité

Soit:
Po» 4. = deux champs de probabilités; a = 1,2...n

Poda€10,1]  Ypo= 2 =1
a a
Posons dans I'inégalité de Jensen (a remplagant i):

S (x) = log x, qui est une fonction concave pour tout x > 0

Dq

A, =¢q, et x;, = o

d’ou: ‘
" Y g.logp, < Y gq,logq, (BS)
a a

I’égalité ne pouvant avoir lieu que si g, = p,.

2. Entropie maximale sous la seule condition ) p, = 1

a
On a I’entropie:

S=-C)Yplogp, ; C>0
Posons dans (B5): =

|

Pa = - = p champ de probabilités uniforme

Alors:
logp < Y gq,loggq,, ou: —S(p,=p) < —S(q,),donc:

S(@.=p) =5(q) (B6)

I’égalité n’ayant lieu que si tous les g, sont égaux a p. Ainsi, I’entropie est
bien maximale pour des configurations équiprobables.
3. Processus de Markov et entropie croissante

On considére un systéme qui évolue selon des processus de Markov, c’est-
a-dire que nous supposons que la seule connaissance du champ de probabi-
lités p, a I'instant ¢ permet de prévoir le champ de probabilités g, & I’ins-
tant ultérieur ¢t” > ¢:

Go = ). Qg Pg a,f=1,2...n (B7)
B
La matrice a,z est appelée la matrice de transfert. Elle obéit aux relations:

0<a,=<1 Y ap =1 (B8)
B
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En prenant C = 1, les entropies S et S” aux instants z et t” > ¢, s’écrivent:
S = - aZpa log p,
§ = —analogqa = —ﬂZpﬁ 2 aup log 4,
D’aprés I'inégalité de Jensen (B2):

Z Ap log qq X IOg (Z Aap qa) = lOg bﬂ

avec:
by = Y aupe; 0=<0byg<1; Yby=1
D’ou: « A
S" = —) pglog by = — ) pslog ps, d’aprés (BS).
B B
On a bien:

S'=8

’égalité ne pouvant avoir lieu que si by = pg, ce qui correspond a I’état
d’équilibre, le champ de probabilités restant le méme, a des permutations
internes arbitraires prés.
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