
Zeitschrift: Mémoires de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 17 (1978-1987)

Heft: 1

Artikel: Information et entropie

Autor: Vittoz, Bernard

DOI: https://doi.org/10.5169/seals-259563

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-259563
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


MEM. SOC. VAUD. SC. NAT. N° 97, VOL. 17, FASC. 1 (1978)

Information et entropie

PAR

Bernard VITTOZ*

Introduction

Un des problèmes fondamentaux des sciences naturelles est de comprendre

et si possible de prédire l'évolution des systèmes matériels, que ceux-ci
soient inanimés ou animés. Par système matériel, nous entendons tout
ensemble d'un grand nombre de particules (atomes, molécules). Dans leur
évolution, ces systèmes doivent obéir à des lois de conservation: masse,
énergie, quantité de mouvement, moment cinétique. Remarquons qu'une
loi de conservation ne prétend pas que la grandeur considérée soit strictement

constante, mais que si elle varie c'est par un échange entre le système
et son entourage (l'extérieur au système). Dans le cas simple où le système
est isolé de l'extérieur, une loi de conservation implique que la grandeur
correspondante est constante, le système évoluant ou non. Aussi, l'évolution
ne peut pas être régie par des grandeurs qui doivent (dans certains cas)
rester constantes. Il faut donc faire appel à une grandeur physique qui varie
lorsque le système évolue. Cette grandeur est l'entropie, étroitement liée aux
concepts de probabilité et d'information.

Utilisant le modèle atomique de la matière, dont la nécessité lui paraissait
évidente, Boltzmann (1877) fut le premier à donner une interprétation pro-
babiliste de l'entropie. Une excellente analyse de l'œuvre de Boltzmann a
été faite par R. Dugas (1959). La liaison entre l'entropie et l'information a
été reconnue plus tard (Szilard, 1929), (Shannon et Weaver, 1949), (Bril-
louin, 1959).

Configurations

Considérons le système matériel le plus simple possible. Il est formé de N
particules identiques (atomes, molécules) contenues dans un récipient de
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4 BERNARD VITTOZ

volume V. Nous supposons de plus que ces particules n'exercent entre elles

aucune interaction à distance. Seuls les chocs interviennent: entre particules
elles-mêmes, entre particules et la paroi du récipient.

Intéressons-nous d'abord aux différentes positions que peuvent prendre
les particules. Pour cela, divisons le volume V en un nombre de cases
identiques, et de telle façon que dans une case il ne puisse y avoir que 0 ou 1

particule. Soit b le volume d'une case (il s'identifie au volume moléculaire).
Le nombre de cases C est alors égal à :

VC — nombre de cases > N (1)

N nombre de particules

Comme nous avons supposé qu'il n'y avait pas d'interaction à distance
entre les particules, chaque particule peut se placer indifféremment dans
l'une ou l'autre des cases vides. On appelle configuration (ou complexion)
une réalisation possible de l'état du système, ici dans la position de ses
particules. Une configuration est ici définie par la seule connaissance pour
l'ensemble des cases de l'occupation (chiffre 1) ou de non-occupation (chiffre

0) par une particule. Une configuration est donc donnée par un ensemble
de C chiffres (0 ou 1) écrits dans l'ordre de numérotation des cases:

0, 0, 1, 0, 0, 0, 1, 1, 1 une configuration (2)

C chiffres

Avec, naturellement, la condition que la somme de ces chiffres, c'est-à-dire
des 1, est égale au nombre N de particules.

Calculons le nombre W de configurations différentes que peut réaliser le

système, une configuration (2) n'apparaissant qu'une seule fois. Par la suite,

nous entendrons par configurations des configurations différentes. A partir
d'une configuration donnée, on peut en créer d'autres en permutant les

numéros des C cases, ce qui donne C! permutations. Mais pour chaque
configuration ainsi obtenue, les permutations des N cases occupées ne donnent

en fait qu'une configuration significative, les particules étant identiques,
donc indiscernables. On a donc compté N fois trop de permutations. De
même, les permutations des (C-N) cases non-occupées donnent (C-N) fois
trop de permutations. D'où:

CW '
„T,. nombre de configurations (3)

N! (C-N)!

Comme C > N, il s'ensuit naturellement que W > 1.

Exemple. N 7 (particules), C 100 (cases): W 168 500640
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Comme chaque particule peut se placer dans n'importe quelle case non-
occupée, qu'il y ait présence ou non d'une particule dans une case voisine

(interaction nulle), toutes les configurations ont la même probabilité d'être
réalisées par un système. On dit que les configurations sont équiprobables.
Ce qui ne veut pas dire qu'une configuration prescrite ou de caractère
particulier ait la même probabilité de réalisation qu'une configuration de caractère

quelconque. Par exemple, les configurations où toutes les particules
occupent des cases adjacentes au sens de la description (2) sont au nombre
de (C-N); la probabilité de réalisation de telles configurations vaut donc

(C-N)/W, ce qui donne dans l'exemple numérique ci-dessus, une probabilité
de 6' IO""7. La loterie présente le même aspect: le numéro 111 111 a autant
de chance de sortir que le numéro 237453, mais les numéros formés de

chiffres identiques (comme le 111111) ont beaucoup moins de chance de

sortir que les numéros formés de chiffres quelconques.

Messages et information

Toute configuration réalisée par le système physique constitue un
message, si l'on suppose que l'on puisse mesurer cette configuration. Autant de

configurations possibles, autant de messages que peut nous délivrer le

système, autant l'information que nous pouvons recevoir du système est
quantitativement riche. Le système est ainsi une source d'information. On définit
la quantité d'information I comme étant une mesure du nombre de messages
différents, ou de configurations différentes, que peut donner le système,

sans juger de la qualité de tel ou tel message. C'est aussi la mesure de
l'incertitude ou de l'ignorance dans laquelle on se trouve avant de recevoir le

message. Ici, nous généralisons la notion de système à toute source d'information

: gaz dans un récipient, morceau de cristal de cuivre, communication
téléphonique, livre, etc.

Configurations équiprobables. Pour tout système à configurations
équiprobables, nous soumettons la définition de la mesure de l'information à

deux critères :

A. La quantité d'information I est une fonction monotone croissante du
nombre W de configurations équiprobables, c'est-à-dire que I croît si

W augmente :

I /(W) et JL > 0 (4)

La fonction/(W) étant indépendante du système considéré (à configurations

équiprobables).
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B. La quantité d'information contenue dans deux systèmes indépendants
(1 et 2), est égale à la somme des quantités d'information de chaque
système :

I I, + L (5)

Au sens de la thermodynamique, I est ainsi une variable extensive.
Considérons alors deux systèmes indépendants, caractérisés chacun par

Wi et W2 configurations équiprobables. Les quantités d'information I, et I2

correspondantes valent:

I. /(W,) I2 /(W2) (6)

Comme les deux systèmes sont indépendants, à toute configuration du
1er système peuvent correspondre W2 configurations équiprobables du 2e

système, car la configuration qu'a prise le 1er système n'a pas d'influence sur
le choix de configuration que peut prendre le 2e système. Le nombre total W
de configurations que peut donner l'ensemble des deux systèmes vaut donc:

W W, W2 (7)

On a donc :

I /(W) /(W, W2) (8)

ce qui donne avec (5) et (6) :

/CW,W2)=/(W,)+/(W2) (9)

En dérivant chaque membre de l'équation (9), partiellement par rapport
à W,, on trouve:

W2/' (W, W2) f (W,)

/' signifiant la dérivée def(x) par rapport à x.
La dérivation partielle par rapport à W2 donne :

W/'tW.W,) =/'(W2)
d'où:

W,/'(W0 W2/'(W2) (10)

L'égalité (10) doit être satisfaite quelles que soient les valeurs de W, et W2,

donc:

xf (x) este C ; f'(x) —

Alors :

f(x) C log x + este
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Par le choix du zéro de la quantité d'information I=/(W), on peut
prendre la constante additive égale à zéro :

I C log W

ce qui donne une information nulle pour W 1, c'est-à-dire pour le cas où
le système ne peut donner qu'une seule configuration. Le choix du zéro de

I est alors naturel, puisque dans ce dernier cas (W 1) on n'attend aucune
information du système, celui-ci délivrant toujours le même message.

Avec la condition de croissance monotone (4), la constante multiplicative
C doit être positive, car le logarithme est une fonction croissante: C > 0.

La quantité d'information I que peut donner un système à W configurations

équiprobables est donc donnée par la formule :

I ClogW C>0 (11)

Choix de la constante C et de la base du logarithme

En théorie des communications (voir l'article de F. de Coulon), on prend :

C 1 et log log2 (log2 2 1)

I se mesure en bits (binary digit)

Un des systèmes simples en communication est le relais. Il peut être
dans 2 états (configurations) différents (ouvert ou fermé) et délivrer ainsi
2 messages. S'ils sont équiprobables, l'information I, contenue dans un
relais vaut I, 1 bit. Et dans n relais indépendants: I„ n, la quantité
d'information s'additionnant, selon (5).

Nous verrons plus loin qu'en thermodynamique un autre choix est fait.
Jusque-là, nous laissons ce choix ouvert.

Probabilité

Avec W configurations équiprobables, on peut exprimer la probabilité p
de réalisation de l'une des configurations:

^w-1 (12)

La formule (11) devient alors :

I -Clog/? I > 0 (13)
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Configurations non-équiprobables

Soit un système pouvant donner n configurations non-équiprobables (on
remplace le symbole W par n, W étant réservé pour des configurations
équiprobables). Numérotons chaque configuration par l'indice a(a= 1, 2,... n)
et soit/>„ la probabilité que la configuration a apparaisse. On a la condition
(ou contrainte) usuelle sur le champ de probabilités/>„:

Ia=1 ft^O (14)
a

On peut considérer que la configuration a est un sous-système à \jpa
sous-configurations équiprobables. La quantité d'information l°a de ce sous-
système est donnée par la formule (13) :

IS -Clog a
Le système peut ainsi être considéré comme formé de n sous-systèmes a

indépendants, à condition de leur attribuer les «poids» relatifs pa. Le sous-
système a apparaît avec la probabilité pa, sa contribution Ia à l'information
totale vaut donc :

I« PaK -Cpa\ogpa

Comme les sous-systèmes sont indépendants, l'information est additive :

I -C2>alogA I >0 (15)
a

Cette formule exprime la quantité d'information I que peut donner un
système dont on connaît le champ de probabilité pa. Dans le cas d'un champ
continu de probabilités, les formules ci-dessus se généralisent, les sommes
devenant des intégrales (ce que nous ne ferons pas ici).

Conséquences

1. Configurations équiprobables (« W)

Dans ce cas, les probabilités pa sont égales: pa=p. La formule (14)
donne :

Ia Ìp np *p -J-- W
a a=l TT

Et la formule (15):

I -C Y. pl°ëP — -Cnplogp -C\ogp ClogW

On retrouve bien les formules (11) et (13) du cas des configurations
équiprobables.
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2. Additivité de l'information

La quantité d'information totale I de deux systèmes S' et S" indépendants

est la somme des quantités d'information I' et I", même si les

configurations ne sont pas équiprobables. En effet, soit :

Pa^P"ß — champs de probabilités des systèmes S'et S"

YaP'h IaP'p 1

ß

Les deux systèmes étant indépendants, la probabilité paß pour que les

configurations a et ß soient réalisées par S' et S" respectivement, vaut:

Paß PaP'ß (16)

D'où l'information totale I :

I "C ZA/jlog/V "C Y.PaP"ßV0gPa+ log/>'/(]
aß aß

"C I.P"ß 2>al0g/>a - C YyP'a Y,p"ß\0%p"ß
ß a a ß

-C E^logX - C Y.p"ßlogp"ß V + l". On a bien:

I F + I"

3. Information maximale

Pour un nombre de configurations donné n, l'information sera maximale
si les configurations sont équiprobables, c'est-à-dire si le champ de probabilités

est uniforme :

n donné Imax opa =/>(=—) (17)

La démonstration se fait par la méthode des multiplicateurs de Lagrange
(annexe A), car le champ de probabilités pa est soumis à la condition :

Ia= i
a

Si l'information est maximale, cela signifie que nous sommes dans la
situation la plus incertaine vis-à-vis de la connaissance à priori du système.

Rappelons en effet que la quantité d'information est la mesure du nombre
de messages différents que le système pourra nous donner, ce qui est bien
une mesure de l'incertitude dans laquelle nous sommes avant que le système



10 BERNARD VITTOZ

ne délivre un message. Or, si le champ de probabilités est uniforme, le

système aura le maximum de choix entre les différents messages possibles,
ce qui correspond bien à l'incertitude maximale, donc à l'information maximale.

En revanche, si le champ de probabilités n'est pas uniforme, le choix du
système sera moins libre (à même nombre de messages possibles) : tel message

a plus de chance d'apparaître qu'un autre. Donc, plus le champ de

probabilités est non-uniforme, plus nous avons une certaine connaissance
à priori du système. A la limite, tous les pa sont nuls sauf un qui doit être
alors égal à l'unité : l'information est alors nulle, le système ne peut donner
qu'un seul message, notre incertitude à priori est bien nulle et nous n'attendons

aucune information du système.

L'information reçue Ir

Dans le langage courant, l'information est la mesure du nombre de

messages reçus. Cette information reçue Ir est directement reliée à l'information
I définie plus haut. En effet, l'acquisition du message fait passer l'information,

que peut donner le système, de la valeur initiale I, à la valeur finale
L 0. Il est alors naturel de poser que l'information reçue est égale à la
diminution de l'information I que peut donner le système :

L Lnitiale — Ifinale "**• ^L — à\ (19)

Les deux significations que l'on peut donner au terme information prêtent
souvent à confusion.

L'entropie s en physique

Considérons un système matériel dont l'état macroscopique est décrit par
l'énergie interne U, le volume V, le nombre N de particules supposées

identiques (on peut aussi recourir au nombre de moles). Au sens de la

thermodynamique, ce système matériel dont l'état macroscopique est défini

par trois variables (U, V, N) est un système simple, tandis qu'un système
composite est constitué de particules différentes. Un système simple peut
réaliser l'état considéré selon un ensemble de configurations définies par
exemple par la position et la vitesse des particules. Comme précédemment,

pour simplifier, nous considérons un nombre fini de configurations possibles
auxquelles est associé le champ de probabilités pa. Boltzmann a donné une
définition de l'entropie S du système tout à fait semblable à la définition
donnée, 50 ans plus tard, à la quantité d'information I. Seules, la constante
C et la base du logarithme sont différentes dans les formules (11) et (15):
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pour W configurations équiprobables : S k log W (20)

n

pour n configurations, probabilités pa : S — k Z/>alog/>a (21)
a=l

k constante de Boltzmann (1,38 ' 10"" J K"1)

log logarithme naturel (base e)

L'entropie S est ainsi proportionnelle à la quantité d'information I. Les

propriétés vues pour I sont donc valables pour S.

La connaissance de l'état macroscopique (U, V, N) constitue des
contraintes (ou conditions) sur le champ de probabilités pa, en plus de la
contrainte £ pa 1.

a

Grâce au 2e principe (de la thermodynamique), il est possible d'étudier
les systèmes à l'équilibre (ils n'évoluent pas) et les systèmes dans leur
évolution. Le 2e principe peut s'énoncer de la façon suivante :

1° à l'équilibre, l'entropie est maximale sous réserve que les contraintes
imposées soient satisfaites.

U, V, N estes et £ pa 1 => S Smax à l'équilibre (22)
a

En termes de la théorie de l'information, on peut donner un autre énoncé

(Jaynes, 1967):

la description la plus honnête de ce que l'on sait est de reconnaître qu'en
dehors des contraintes imposées, notre ignorance est maximale vis-à-vis
des configurations que peut prendre le système.

On dit aussi que l'état d'équilibre du système est celui du désordre maximal,

compte tenu des contraintes imposées.

2° si le système est hors de l'équilibre, il tendra à évoluer dans le sens de

l'augmentation de son entropie, sous réserve que les contraintes imposées

soient satisfaites.

JÇJ

U, V, N estes et ]£ pa — 1 => — > 0 hors équilibre (23)
a U?

Ainsi, l'état le plus probable du système est celui d'information ou
d'entropie maximales, de plus grand désordre, avec la condition que les
contraintes imposées soient satisfaites.

Dans l'annexe B, l'augmentation de l'entropie est établie dans le cas où
l'évolution du système se fait par processus de Markov.

Les énoncés ci-dessus se généralisent sans autres à des systèmes
composites.
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Application : gaz parfait

Le modèle du gaz parfait est un système constitué de particules
identiques libres (sans interaction à distance). L'énergie interne U est alors

simplement égale à l'énergie cinétique totale des particules. Intéressons-nous

uniquement à la distribution d'énergie (cinétique) des particules du gaz à

l'équilibre. Soit:

p (E) probabilité pour qu'une particule quelconque du gaz ait une éner¬

gie comprise entre E et E + dE

E U/N énergie cinétique moyenne des particules

S S/N entropie moyenne par particule, due au champ de proba¬
bilités/? (E).

On a les contraintes :

5>(E) =1 et IE/KE) Ë (24)

et l'entropie moyenne S par particule:

S -*5>(E)log/>(E) (25)

qu'il faut rendre maximum compte tenu des contraintes (24). Avec la
méthode des multiplicateurs de Lagrange, on trouve :

p (E) A e~bm (26)

où A est proportionnel au nombre de particules qui à priori peuvent avoir
une vitesse telle que leur énergie cinétique (mv2/!) soit comprise entre E et
E + dE. Il est donné dans l'espace des vitesses v par le volume d'une coquille
sphérique de rayon v, v + dv:

A B4?rv2dv (27)

Si l'on introduit les formules (26) et (27) dans les contraintes (24), on
obtient deux équations aux inconnues b et B. Les sommations devenant des

intégrales, on trouve :

B j(^ (28)

3 le
b 4= (29)

2 E

Par définition, la température T d'un_gaz de particules libres est
proportionnelle à l'énergie cinétique moyenne E des particules :
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Ë -y k T (30)
D'où:

b y (31)

/7(E) A^E,lT (32)

A est le nombre d'états d'énergie (E, E + dE), tandis que e~EllcT est la

probabilité d'occupation de ces états. C'est la statistique de Boltzmann.
Avec (27) et (28):

p(v) -L(^-)iv*e-""'"T dv

qui est la distribution de Maxwell pour les vitesses des particules.

Entropie et thermodynamique

L'entropie moyenne S par particule devient d'après (25) et (32) :

S |r+/(T)
Multipliant par le nombre N de particules, on trouve l'entropie S du

système, avec N E U énergie interne :

S IjL+/(T,N,V)

où le terme additif/ (T, N, V) provient de la contribution du volume V à

l'entropie (configurations spatiales). Si l'on fait varier l'énergie interne U de

dU, à volume et nombre de particules constants, on trouve :

dS f- i£ (34)

où ôQ est la quantité de chaleur fournie au système.

En effet, d'après le 1er principe, dU <5Q si V, N estes. Ainsi, pour le

gaz parfait, on a retrouvé la définition usuelle de l'entropie, pour une
transformation réversible, c'est-à-dire où le système est à l'équilibre. C'est bien
ce que nous avons supposé dans les calculs ci-dessus.

L'entropie (21) au sens de Boltzmann, la même en théorie de l'information,

s'identifie donc à l'entropie thermodynamique dans le cas de la trans-
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formation réversible d'un gaz parfait. On considère alors que la définition
(21) de Boltzmann, beaucoup plus générale que la définition usuelle (<5Q/T),
donne l'expression de l'entropie des systèmes physiques.

ANNEXE A - Information maximale

L'information due à un champ de probabilités pa (a 1, 2 n) est
donnée par (15):

I -CI Pa log Pa (Al)
a

qu'il s'agit de rendre maximum, avec la condition (14):

Za - i o (A2)
a

Avec la méthode des multiplicateurs de Lagrange, on construit la fonction

F :

F -C ÏPa log A + MLA - 1) (A3)
a a

Le problème revient à rendre F stationnaire selon les variables pa et X :

fr o -ciog/7a-c + A.

3F
-rr- 0 Z pa — 1 : c'est la condition (A2)

T-\> ' OlK
nD'où: <X

l°g A —p;— P '¦ tous les pa sont égaux.

Avec (A2) :

A P — (A4)
et

I (Pa P) -C log/) C log n (A5)

Le champ de probabilités uniforme (pa p) correspond à une information

I optimale. Montrons que c'est un maximum. Pour cela, considérons
un champ de probabilités voisin du champ uniforme :

A P(l + sa) I £a| « 1 (A6)

La condition (A2) implique :

X sa 0 (A 7)
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L'information I devient, avec l'approximation log (1 + ea) ea :

I -C I>(l + e„)[log/> + ea]
a

-Clog/? - Cp £ea - Cplogp Y.sa - Cp Y. s2a

a a a

o o

i - c log/>-c/>2>2a<i (/> A)
a

l'égalité n'ayant lieu que si £ t\ 0, c'est-à-dire si tous les e„ sont nuls.
a

L'information sera maximale si et seulement si le champ de probabilités

est uniforme.

ANNEXE B- Inégalité de Jensen et entropie croissante

La définition de la quantité d'information et de l'entropie fait apparaître
la fonction/(x) pour x compris dans l'intervalle [0, 1] :

/(x) — x log x : [0, 1] (Bl)

f(x) -x logx

0.5

0.5
Fig.l.
C'est une fonction concave (fig. 1). Or, toute fonction concave, dans un

intervalle [a, b], obéit à l'inégalité de Jensen :

avec:
Y,hf(xi) <f(Y.XiXi) xi G [a, b]
i i

i= 1,2...«; 0 < Xi < 1; £ A.,- 1

(B2)

(B3)
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L'égalité ne pouvant avoir lieu que si tous les coefficients A,- sont nuls
sauf un (disons X,), égal à l'unité à cause de (B3), ou si tous les x,- sont égaux
(ce qui revient au même) :

égalité o X/ 0 sauf X, 1 ou x,- égaux (B4)

i, y /(x) concave

y(x) y (G)

x (G) x

Fig.2.

L'inégalité de Jensen peut se démontrer par l'analyse ou par la
géométrie des masses (fig. 2). En effet, on peut considérer que les coefficients

Xi sont des masses ponctuelles disposées sur la courbe y=f{x) aux
abscisses respectives x,-; la masse totale valant l'unité d'après (B3). Alors:

I X-, Xi x (G) x abscisse du centre de masse (bary-
' centre) ou abscisse moyenne

£ Xtf{xì) YyX/yi y (G) ordonnée du centre de masse

Or, nous savons que le centre de masse d'un ensemble de masses
ponctuelles est à l'intérieur de cette distribution, ici à l'intérieur de la ligne
fermée définie par la courbe y =f(x) et la droite joignant les masses
extrêmes. Donc:

y (G) < y (x)

l'égalité ne pouvant avoir lieu que si les masses sont concentrées en un
seul point. Ce qui implique Xt 0 sauf l'un d'eux, disons X, 1, ou (ce qui
revient au même), tous les x, sont égaux. L'inégalité de Jensen est ainsi
démontrée.
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Applications

1. Deux champs de probabilité

Soit:

ft, qa deux champs de probabilités ; a 1,2 n

pa,qa e [0, 1] YiPa Z?« 1

a a

Posons dans l'inégalité de Jensen (a remplaçant 0 :

f(x) log x, qui est une fonction concave pour tout x > 0

Xa qa et xa -^-

Z ?« lo8 A ^ Z la log -7a (B5)
a a

l'égalité ne pouvant avoir lieu que si qa pa.

2. Entropie maximale sous la seule condition Za 1

a

On a l'entropie :

S -CZAlogft ; C>0
Posons dans (B 5): "

pa — p champ de probabilités uniforme

Alors :

log p < Z 9a log qa, ou: -S (pa p) < -S (qa), donc:
a

S(pa=p)>S (qa) (B6)

l'égalité n'ayant lieu que si tous les qa sont égaux à p. Ainsi, l'entropie est
bien maximale pour des configurations équiprobables.

3. Processus de Markov et entropie croissante

On considère un système qui évolue selon des processus de Markov, c'est-
à-dire que nous supposons que la seule connaissance du champ de probabilités

pa à l'instant t permet de prévoir le champ de probabilités qa à l'instant

ultérieur/' > t:

¦3a=ZVA a, A =1,2...« (B7)
ß

La matrice aaß est appelée la matrice de transfert. Elle obéit aux relations :

0<<v<l Z^=i (B8>
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En prenant C 1, les entropies S et S' aux instants te.it' > t, s'écrivent:

s -Za l°g A
a

S' - Z <la lOg 9a - Z A Z V '°g 9a
a ß a

D'après l'inégalité de Jensen (B2) :

Z aaß lOg 9a ^ lOg (Z °aß 9a) log bß

avec : " a

bß Y,aaß9a\ 0 < bß < 1 ; Z bß l
D'où: a ß

S' > - YyPß log fy ^ - Z/ty log^, d'après (B5).
ß ß

On a bien :

S' > S

l'égalité ne pouvant avoir lieu que si bß Pß, ce qui correspond à l'état
d'équilibre, le champ de probabilités restant le même, à des permutations
internes arbitraires près.
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