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Réseaux tracés sur une surface fermée

bilatére
PAR

Jures CHUARD

INTRODUCTION

C’est la lecture du mémoire de O. VeBLeEn (1912) qui nous a
engagé i étudier la géométrie de situation. Nous en avons d’abord
tiré Pobjet de notre theése de doctorat: « Questions d’Analysis Si-
tus », ce qui nous a permis d’étudier les « homologies » de H. Poin-
caré et de montrer en particulier la différence qui existe entre les
« homologies par division » et les « homologies sans division ». Nous
avons alors abandonné les variétés unilatires pour ne plus nous
préoccuper que des variétés bilatéres. C’est ce qui nous a donné
Poccasion de publier plusieurs études sur les réseaux cubiques et
le probleme des quatre couleurs.

Si maintenant nous revenons sur cette question, c’est qu’elle nous
parait suffisamment importante pour justifier une mise au point.
Aussi, pour éviter toute équivoque, nous commencons par rappeler
quelques définitions et principes qui ont servi de base 4 nos tra-
vaux.

* k%

Une aréte est un segment linéaire, droit ou courbe, peu importe.
Elle est limitée a chacune de ses extrémités par un point appelé
sommet. Nous admettons que les sommets ne font pas partie de
Paréte qu’ils limitent. Si un point d’une aréte devient un sommet,
il en résulte deux arétes distinctes.
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Tout ensemble d’arétes en nombre fini, tel qu’un point de l'une
n’appartienne pas a une autre aréte de D’ensemble, constitue un
réseau. Le résean a parfois pris le nom de configuration linéaire.
Dans les réseaux que nous examinerons les deux sommets qui limi-
tent une aréte ne seront jamais confondus. Nous convenons de dési-
gner par ¢, le nombre des sommets d’'un réseau et par o; celui de
ses arétes.

On entend par degré d’un sommet le nombre des arétes du ré-
seau qui aboutissent i ce sommet. Un sommet de degré 1 est dit
sommet libre. Il est de liaison lorsque son degré est supérieur a 1.
Nous désignerons volontiers dans la suite sous le nom de bifurca-
tion un sommet de liaison de degré 3.

Si tous les sommets d’un réseau ont le méme degré, le réseau
est dit homogéne.

Un réseau homogeéne du premier degré est appelé linéaire. 11 ne
renferme que des sommets libres. Il est représenté par des arétes
isolées. Puisque chaque aréte est limitée par deux sommets, on a
I'égalité

ay = 2 ay.

Un réseau homogéne du second degré est un réseau quadratique.
Chacun de ses sommets sert de liaison & deux arétes du réseau. Ce-
lui-ci comporte donc un, ou plusieurs contours fermés isolés les
uns des autres. Dans ce cas on a:

CLO - al-

Un réseau homogéne da troisitme degré est un réseau cubique.
Chacun de ses sommets est une bifurcation. Il s’en suit que :

3ag=20.

Un réseau est dit connere si, étant donnés deux sommets quelcon-
ques de celui-ci, il existe un certain nombre d’arétes du résean tel-
les que l’on puisse en suivant ces arétes passer de l'un de ces
sommets 3 'autre. Si cette opération n’est pas toujours possible, le
réseau n’est pas connexe, Un réseau linéaire n’est jamais connexe.
Un résean quadratique composé de plus d’un contour fermé ne
Pest pas non plus.

Perersen 1 désigne sous le nom de feuille la partie d’un réseau
qui est maintenue en connexion avec l’ensemble par une aréte uni-
que a laquelle il a donné le nom d’isthme. Il a en outre démon-

1 (2) V. A. Errera (1921), p. 13.
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tré le théordme suivant auquel on a donné son nom: Un réseau
cubique irréductible posséde au moins trois feuilles.

Constatons d’emblée que si un réseau cubique est réductible il
donne naissance, cela de diverses facons, & un réseau linéaire et a
un réseau quadratique, chacun d’eux empruntant la totalité des
sommets du réseau cubique donné.

Les réseaux cubiques que nous nous proposons d’examiner seront
sans isthmes et par conséquent sans feuilles. Il s’en suit qu’ils se-
ront toujours réductibles.

Rappelons encore les notions qui suivent dont nous ferons un
usage constant. )

Un contour fermé est un réseau quadratique connexe. Il com-
prend au minimum deux arétes.

Si d’un contour fermé on supprime une, ou plusieurs arétes en
connexion les unes avec les autres, on obtient un contour ouvert.
Un contour ouvert de n — 1 arétes comprend n sommets.

Un arbre linéaire, parfois simplement désigné sous le nom d’ar-
bre, est un réseau connexe qui ne renferme aucun contour fermé.
Un arbre de n — 1 arétes comprend n sommets. Ces n — 1 aré-
tes constituent le nombre minimum d’arétes qui permettent de re-
lier entre eux les n sommets envisagés. Un contour ouvert est
ainsi un arbre d’une forme particulitre. Le théoréme suivant est
connu :

Il est possible de transformer en un arbre un réseau connere
de a, sommets et de «, arétes par la suppression de . arétes con-
venablement choisies.

H=a1_%+1-

Un contour bouclé résulte de l’association d’un contour fermé et
d’un arbre (voire de plusieurs) & la condition que cette association
ne crée pas un second contour fermé. Un contour bouclé a un nom-
bre égal d’arétes et de sommets.
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PREMIERE PARTIE

LA MaTRICE A.

Avec O. VerrLeEn (1912) nous caractérisons un réseau a laide d’une
matrice que nous dénommeons : la matrice A. A cet effet nous nu-
mérotons dans un ordre arbitraire les sommets

aol 3 002 PRI aoi s tes ’ aoqn .
puis les arétes du réseau donné
all Py 012 9 ess 9 alj g sse g alal .

Nous introduisons alors un nombre a deux indices n!;; qui est
égal 3 1 si le sommet 4% limite P’aréte a!; , qui est nul dans tous
les autres cas. Nous disposons ces nmombres nl;; en un tableau rec-
tangulaire de o, lignes et de o; colonnes. Ce tableau est la ma-
tricc A. Chacune de ses lignes se rapporte & un sommet et cha-
cune de ses colonnes 3 une aréte du réseau. Du moment qu’une.
aréte est limitée par deux sommets distincts, une colonne de la ma-
trice A ne renferme que deux nombres éganx & 1. Dans une ligne
par contre il y en a un nombre égal au degré du sommet corres-
pondant.

Un déterminant est extrait de la matrice A s’il est formé de
lignes et de colonnes, partielles ou complétes, issues de cette ma-
trice. La recherche de la valeur dun déterminant oblige souvent
i faire des combinaisons linéaires de ses lignes ou de ses colonnes.
Ces opérations sont toujours réduites selon le module 2. Il s’en suit
que pour les additions on a

1-}-1=0 1+0=0-+1=1 0-+-0=20
et pour les multiplications
11 =1 1.0 =01=20 0.0 =0

Ainsi donc nous ne travaillons qu’avec les nombres 0 et 1. Un
déterminant ne peut avoir que les valeurs 0 ou 1.

Le plus grand déterminant extrait de la matrice A qui n’est pas
nul, fixe le rang de cette matrice.

Un déterminant qui correspond 3 un contour fermé ou bouclé
est nul.

Dans le cas d’'un arbre ou d’un contour ouvert, il y a un sommet
de plus que d’arétes. On revient a I’égalité, sans supprimer la con-
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nexion de Densemble, en faisant abstraction d’un sommet libre. Le
déterminant correspondant est égal a 1.

Le rang de la matrice A d’un réseau connexe de o, sommets est
égal a4 a; — 1.

VeBLEN a imaginé d’associer & chaque ligne de la matrice A une
équation linéaire et homogéne. Rappelons que la ligne de rang i de
cette matrice comprend les nombres

iy > Nligy oons 1"l1i71

Nous envisageons «, inconnues z; et écrivons

(1) iy 2y 4 M4z 22 + oo 4 Nlig, T, = 0 (mod. 2)
(i=1,2, ..., ap).

Les o, équations ci-dessus constituent un systéme de o, équa-
tions linéaires et homogénes & o, inconnues que nous appellerons
le systéme (1). Chaque inconnue x; est liée & laréte a'j. Si z; = 1
cela signifie que l’aréte a'; est retenue., Dans le cas contraire, cette
aréte est momentanément omise. On fait donc abstraction des aré-
tes marquées d’'un 0 pour ne retenir que celles qui sont désignées
par 1.

I! va de soi que le rang du sysiéme (1) est celui de la matrice
de ses coeflicients, soit o, — 1.

Résoudre le systeme (1) c’est rechercher la valeur de a; — 1
de ses inconnues en fonction des autres ou si l'on préfere c’est re-
chercher un systéme fondamental de solutions.

A cet effet on abandonne une des lignes du systéme (1) et fait

en sorte que le déterminant des «, — 1 premiers coeflicients des
inconnues du systeme restant soit différent de zéro. On isole ainsi
les a; — 1 premitres inconnues et en donnant la valeur 1 aux au-

tres, on forme une matrice de solutions & laquelle on peut donner
lc nom de matrice fondamentale des solutions du systéme (1). Cela
signifie que cette matrice permet d’obtenir toutes les solutions du
systtme (1). Il ne faut pas oublier que toutes les opérations sont
faites selon le (mod. 2) et que par suite I'ensemble des solutions
du systtme (1) en comprend 2 — 1. Or on constate bien vite que
chacune d’elles correspond a un contour fermé (voire plusieurs)
constitué par des arétes du réseau donné. |

Ii va de soi que pour un systéme d’équations (1) déterminé, il
n’y a pas qu'une matrice fondamentale de solutions. Tout ensem-
ble de p solutions linéairement indépendantes donne lieu & une ma-
trice fondamentale de solutions. Nous aurons l’occasion d’y revenir.
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CONFIGURATIONS SUPERFICIELLES.

Jusqu’ici nous avons examiné quelques propriétés des réseaux en-
visagés comme systtmes de lignes, indépendamment des surfaces
sur lesquelles ils peuvent étre tracés. La nature de la surface qui
supporte un réseau ne saurait cependant demeurer indifférente aux
propriétés de ce dernier. En effet tel réseau que Pon rencontre sur
une surface d’un certain genre ne se retrouve pas sur une surface
d'un autre genre. Il y a donc un réel intérét a étudier les proprié-
tés d’'un réseau en rapport avec celles de la surface qui le supporte.
Nous considérerons dans la suite des surfaces fermées bilatéres tel-
les que la sphere, le tore, le tore & deux trous, .... Un réseau tracé
sur l'unc d’elles transforme la surface en un polyédre. On voit
ainsi apparaitre des faces. Peu importe si ces faces sont planes ou
gauches.

Une face est toujours, pour nous, simplement connexe. Elle est
limitée par un contour fermé unique, sa frontiére, qui comprend
au minimum deux arétes. Si 1’on considére une face isolément, nous
dirons que les arétes de sa frontitre sont de degré 1. Ce sont des
arétes libres.

Si deux faces sont en connexion le long d’une aréte commune,
celle-ci est une aréte de liaison, soit de degré 2. Les autres arétes
de 'une ou de l'autre de ces faces sont demeurées des arétes li-
bres. Dans cette étude il ne sera fait état que d’arétes de liaison
de degré 2.

Une configuration superficielle est dite connexe si, étant don-
nées deux faces quelconques de la configuration, il existe des [aces
soudées entre elles par des arétes de liaison telles que l'on puisse
en se déplacant sur ces faces et en traversant les arétes de liaison
passer de l'une i Dautre.

La connexion d’une configuration superficielle est différente de
celle d’un résean. Nous avons en effet montré qu’'un réseau peut
étre connexe sans que la configuration superficielle a laquelle il
sert de frontiére le soit (Cmuarp, 1932, p. 59).

Voici quelques définitions qui nous seront utiles.

Une chaine fermée est un ensemble de faces tel que chacune
d’elles soit contigué a deux faces de l’ensemble et & deux seule-
ment. Si une chaine fermée comprend n faces, elle comprend éga-
lement n arétes de liaison. Les autres arétes des frontitres de ces
faces sont des arétes libres; elles forment deux contours fermsés.

Un nceud superficiel est une chaine fermée dun type spécial.
Toutes ses arétes de liaison convergent en un méme sommet. La
frontitre d’'un nceeud superficiel ne comporte qu’un contour fermé.
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Si d’une chaine fermée ou d’un neeud superficiel on supprime une
ou plusieurs faces qui sont soudées entre elles, on forme une
chaine ouverte. Dans une chaine ouverte de n faces on ne compte
que n —— 1 arétes de liaison. La frontiéere d’une chaine ouverte ne
comporte qu’un seul contour fermé.

Un arbre superficiel est une configuration superficielle connexe
qui ne renferme ni nceud superficiel, ni chaine fermée. Les n fa-
ces d'un arbre superficiel sont maintenues en connexion par n—1
arétes de liaison. La frontitre d’un arbre superficiel ne comporte
qu'un seul contour fermé. Une chaine ouverte est un arbre superfi-
ciel d’'une forme particuliere.

Une chaine bouclée résulte de la soudure d’une chaine fermée
et dun ou de plusieurs arbres superficiels 4 la condition que cette
soudure n’entraine pas la formation d’une nouvelle chaine fermée.
Une chajne bouclée a le méme nombre d’arétes de liaison que de
faces.

Un nceud bouclé se définit de la méme maniere.

Lo maTricE B.

Nous sommes maintenant en présence d'un polyddre, tel qu’il a
été défini plus haut, qui comprend o, sommets, o, arétes et a,
faces. A l'aide des sommets et des arétes de ce polyédre, nous avons
dress¢ la matrice A. Nous allons dresser de la méme facon la ma-
tricc B & laide des arétes et des faces. Pour cela nous introduisons
des nombres n2;; qui seront égaux i 1 si laréte al; fait partie de
la frontiere de la face a2j, sinon ils seront nuls. Ces nombres se-
ront répartis dans un tableau rectangulaire de «, lignes et de a,
colonnes, chaque ligne se rapportant & une aréte et chaque colonne
4 une face du polyeédre. Telle est la matrice B.

Sans qu’il soit nécessaire de nous étendre sur les avantages que
présente la matrice B, on peut faire les constatations suivantes :

Du moment qu’une aréte de liaison est adjacente & deux faces du
polytdre, et a deux seulement, chaque ligne de la mairice B ren-
ferme deux termes égaux a 1, tous les auires étant nuls.

Dans chaque colonne les seuls termes qui ne sont pas nuls sont
ceux qui correspondent aux arétes faisant partie de la frontiére de
la face correspondante. Or ces arétes constituent un contour fermé.

N’oublions pas que toutes les opérations de calecul se font selon
le (mod. 2). Il s’en suit que la valeur de tout déterminant extrait
de la matrice B est égale & zéro ou a 1.

En vertu de ce qui précede (deux termes égaux a 1 dans cha-
que ligne), tout déterminant de o, lignes et de «, colonnes extrait
de la matrice B est nul. Le rang de la matrice B est donc inférieur

~

a a2.
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Une chaine fermée ou bouclée, un nceceud superficiel simple ou
bouclé¢ renferment le méme nombre de faces et d’arétes de liaison.
Tout déterminant extrait de la matrice B dont les lignes et les co-
lonnes correspondent & ces arétes de liaison et a ces faces est nul.

Dans un arbre superficiel ou une chaine ouverte, le nombre des
arétes de liaison est inférieur d’une unité & celui des faces. Pour
obtenir 1’égalité on fait abstraction de l'une des faces soudée a
I’ensemble par une seule aréte de liaison (ce qui est toujours pos-
sible) afin de ne pas détruire la connexion de la configuration
superficielle considérée, L’aréte de liaison qui devient ainsi libre
est cependant considérée comme une aréte de liaison non utilisée.
Le déterminant correspondant est alors égal a 1.

Il est possible de transformer le polyédre donné, qui comprend
o, faces, en un arbre superficiel comportant toujours ces a, faces
(sous la réserve exprimée ci-dessus) reliées les unes aux autres par
as — 1 arétes de liaison, en supprimant o, — o, -}- 1 arétes con-
venablement choisies. Le déterminant correspondant aux éléments
de cet arbre superficiel étant égal & 1, il s’en suit que le rang
de la matrice B est aussi égal 4 o, — 1.

Nous avons indiqué un moyen de résoudre le systtme d’équa-
tions (1) issu de la matrice A et avons constaté que toutes les so-
lutions de ce systtme résultent d’une matrice de solutions M & la-
quelle nous avons donné le nom de matrice fondamentale de solu-
tions du systéme (1). De plus chaque solution caractérise un on
plusieurs contours fermés constitués par des arétes du réseau donné.
Or chaque colonne de la matrice B définit la frontiere d’une face
du polyedre, autrement dit un contour fermé. Elle représente donc
une solution du systtme (1). Kt comme le rang de la matrice B
est égal & a, — 1, il s’en suit que a, — 1 colonnes de cette ma-
trice caractériseront des solutions linéairement indépendantes du sys-
téme (1). Ces colonnes pourront donc &tre utilisées dans la confec-
tion d’une matrice fondamentale de solutions. Cette derniére ma-
trice sera désignée dorénavant par le symbole M’

Imaginons maintenant que le réseau considéré soit tracé sur une
sphére. En vertu du théoréme d’Euler on pourra écrire

Qg — @ = Gy = 2

ce qui conduit &
o — oy F1=0,—1=p.

Cela montre que pour la sphére, et pour la sphére seulement, on
obtiendra une matrice fondamentale de solutions du systeéme (1) M’
en utilisant @, — 1 colonnes de la matrice B. Ainsi il ne sera plus
nécessaire de résoudre ce systtme d’équations suivant la méthode
indiquée, la connaissance de la matrice B suffira.
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RfsEAUX TRACES SUR UNE SPHERE.

Ezemplz 1. Le réseau que nous envisageons ici (fig. 1) com-
prend 8 sommets, 12 arétes et 6 faces.

Pour étudier cet exemple, nous suivons exactement la méchode
qui vient d’étre exposée. Nous dressons la matrice A qui permet
d’établir le systtme d’équations (1). Nous résolvons ce systeme d’é-
quations et obtenons une matrice fondamentale de solutions M.
Les colonnes de cette derniére sont désignées par les symboles
C;, Gy, G;, C;, C;. Nous dressons ensuite la matrice B qui ren-
ferme 6 colonnes dont les 5 premiéres constitueront la matrice M'.

Matrice A

1 1 1. 1 1 1 1 a1 1 g1 1
aly a'y al; a'y a'y d'y a; dly aly aly, aly @l

o
CcCCoCc oo o o -
OCCOOC =HO
OO O =0
OO == O
C o= OO0 oo
e B = R == = o )
OO0 Co
i e B e I < I o i o I = B
oo O R O
COO R, OO MRo
oCRrOoOoOrROOC
o, oOoOCcCoOoC
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SiysTiEme (1)

/$j+xs+$g:() ez Lo
£y + Ta + Lo — 0 E
: Tg = Ty + Ty + Ty
To + r3 + 29 = 0
To + 1, +— 34 = 0 Ty = Ty + Iy
(nH - 4 11 (2) T, = x5 + T + x4y
j 1'4 + $5 + Ty = 0
Ty, = Iy + Iy
/1‘5—}—.164—1]2:0 To = Ty - Ty + T
L T g A xy = 0 1\ ’L'C — r8 | Tn 12
\ ;t’.' + :1:8 + 112 —_— 0 T g T Lqe
Marrice M Matrice B
G G G G G a’, a®y, a’y; a*y a*; 4%
all 1 1 0 0 0 1 0 0 0 1 0
al, 1 1 1 0 0 1 1 0 0 0 0
alg 1 0 1 0 O o 1 0 0 0 1
al, 1 0 1 1 0 0 1 1 0 0 0
al, 1 0 0 1 0 00 1 0 1 0
atly, 10 0 1 1 0O 0 1 1 0 o0
aly 1 0 0 0 1 o o 0 1 0 1
alg 1 0 ¢ 0 0 o o0 0 0 1 1
aly 0O 1 0 0 0 1 0 0 0 0 1
at, 0 0 1 0 0 0 1 0 0 1 O©
ayy, 0 0 0 1 0 0 0 1 0 0 1
a,, 0 0 0 0 1 0o 0o 0 1 1 0

La matrice M’ est constituée par les 5 premitres colonnes de Ia
matrice B. C’est cette matrice M’ que nous avons utilisée pour ob-
tenir V’ensemble des 31 solutions (25 — 1) que comporte le sys-
teme (1). Nous en avons dressé le tableau D en notant au bas de
chaque colonne le nombre d’arétes que compte la solution corres-

pondante.

Exemple 2. Ce réseau (fig. 2) comprend 10 sommets, 15 arétes
et 7 faces. Nous avons dressé la matrice A de laquelle nous avons
tiré le systtme d’équations (1). Ce systtme a été résolu, ce qui
nous a conduit & la matrice M. Nous avons donné ensuite la ma-
trice B dont 6 colonnes (par exemple les six premiéres) constituent
une matrice M’ qui peut parfaitement remplacer la matrice M.

Le systteme (1) a donc 0 solutions linéairement indépendantes et
en tout 26 — 1 solutions. Pour les obtenir, il est indiqué d’utiliser



(1)

hY

ENSEMBLE DES SOLUTIONS DU SYSTEME

TABLEAU DE T

D FM N OO - COO =0 - 1O
D HON e = COO ™ =OO - ©
D N A Ol O © O v vl v vl O D
I FH N v OO v v v v v v vl © DO [
M MN™ OO OO ™SO O ™™ O
NN = e O O O e S~ SO

I H N = OO = OO O O WO
1 P O rd v v o e - O OO D 0
MM ™= O™ OO O v = [~
TN OO - 0O O = I
D H el O O O ovedv v v - OO
I M ™ O O O O v 0
) e e O o e O e © e O v v 00
NN ™ OO ™ O O™ ™ O O v O
TN~ O™ OO O~ W0
VR vl e O vl O o e OO v v e O
D H - OO O ™= O =0 O O
N M A1 OO A0 = O = O v ™ = I~
N OO ™= - OO0 ™™ 1D
W e = DO O OO ™ I
AN O e O - OO O -
NN O O ™= 0O OO O O
D ™ SO QO ™ r—O = O
Hrd =H O OO ™ =O OO O
M e A D v v DO O e O D
Clr = O = OO0 OO ™ O o D
N;:P(OOOMDOP!OHOF-ILQ
gOOOOOHHOQOO\—IO‘b

o)
%cccﬁﬁﬁcoco‘—qow
NSGHHHOOOOOV—'QO‘H

A
B Mo o000 o-HoOo0o M
Amm e p e s m e 8 A NE

T ¥ ¥Rt mE R G

(*) Nombre d’arétes que comporte chaque solution.
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MaTrice A
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FiG. 2.

la matrice M. Nous n’avons pas jugé a propos de publier le ta-
bleau D de cet ensemble de solutions. Rappelons simplement qu’il
comprend 3 solutions de 2 arétes, 3 de 4 arétes, 6 de 5 arétes,
1 de 6 arétes, 12 de 7 arétes, 12 de 8 arétes, 14 de 9 arétes et
12 de 10 arétes.

RfsEAu TRACE SUR UN TORE.

Ce réseau (fig. 3) comporte 4 sommets, 8 arétes et 4 faces.
Dans la fig. 3 nous admettons que la face a2; est située exactement
sous la face a2, et la face a2, sous a2,. Nous agissons comme pré-
cédemment en dressant la matrice A puis en résolvant le systéme
d’équations (1) qui en est issu. Ce systtme comprend 4 équations
i 8 inconnues, majs comme le rang de la matrice A est égal a 3,
il s’en suit que la matrice M comportera 5 colonnes.

La matrice B renferme 4 colonnes, mais comme son rang est
égal 3 3, 3 seulement d’entre elles caractériseront des solutions li-
néairement indépendantes du systtme (1). Elles ne suffiront pas
pour former une matrice M'. Cette derniére comprendra nécessaire-
ment 2 colonnes de la matrice M. C’est ce qui permet de conclure
que si sur la sphére tout contour fermé délimite une certaine aire
composée d’une ou de plusieurs faces du polyedre envisagé, sur le
tore il y a des contours fermés qui ne limitent pas d’aire, fait
qui est d’ailleurs parfaitement connu.
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Marrice A.

1 1 1 1
ay a'y aly a'y aly aly aly aly

@ 1 0 0 0 0 1 1 1
@ 1 1 0 0 1 1 1 0
@ 0 1 1 1 1 0 0 0
@ 0 0 1 1 0 0 1 1

SystiME (1)

x, + xg + 27 + 25 = 0 T, = Tg + 7 + Ty
) B+ 2y + x5 g =0 (2) Ty = Ty + T + Ig
Ty + 13+ 1 + 25 =0 Ty = Ty + T; 1 Tg
L T3+ ry o ag =0

Martrice M Marrice B Marrice M’
C G G C G a?, a?y, a?; a2y G, Gy a? a2, a?

al, 0o 0 1 1 1 1 1 0 0 0 0 1 1
al, 0o 1 0 1 1 1 0 1 0 0 1 1 0 1
aly 1 0 0 1 1 1 1 0 0 1 0 1 1 0
at, 1 06 0 0 0 0 0 1 1 1 0 0 0 1
aly 0 1 0 0 0O 0 1 0 1 o 1 0 1 O
alg 6 0 1 0 O 0 0 1 1 0O 0 0 0 1
aly 0 0 0 1 0 0 1 0 1 0 0 0 1 O
alg 0 0 0 0 1 1 0 1 0 0 0 1 0 O

Lo
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LE TORE A DEUX TROUS

Nous envisageons ici (fig. 4) un réseau tracé sur un tore {ou
coussin) & deux trous qui comprend: 6 sommets, 12 arétes et 4
faces. Sur le dessin la face a2; est située sous la face a2, et la face
a?, sous la face a2,. .

Les opérations a effectuer sont identiques aux précédentes. De
la matrice A on déduit le systtéme d’équations (1) que l'on résout.
Puis on dresse la matrice B. Il faut remarquer que le rang de cha-
cune des matrices A et B est égal & 3. Le systtme d'équations (1)
comporte 6 équations & 12 inconnues, mais comme 5 seulement de
ces équations sont linéairement indépendantes, la matrice M des
solutions de ce systtme comprendra 7 colonnes qui seront dési-
signées par les lettres C,, C,, ..., C;. Les colonnes de la matrice B
ne donneront que 3 solutions linéairement indépendantes. Il s’en
suit que pour former une matrice M’ & laide de ces 3 colonnes on
se verra dans l’obligation de conserver 4 colonnes de la matrice M.
Il en serait d’ailleurs de méme quelque soit le réseau qui affecte-

raii la méme surface.
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MaTrice A
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MaTrice M’

C G G C e a2 a%
aly 0O 0 0 o0 1 1 0
al, o 0 0 1 1 o0 1
al, o o0 1 0 1 1 0
al, 0O 1. 0 0 1 0 1
al, 1 0 0 0 1 1 0
alg 1 0 0 0 0 0 1
al, 0 1. 0 0 O 1 O
alg 0O 0 1 0 0 0 1
al, o 0 0 1 0 1 0
aty, 0 O O O O O 1
aty, 0 0O 0 0 O 1 O
at, 0 0 O 0 1 0 1

Les remarques que nous avons faites & propos du tore en ce qui
concerne la matrice M’ se retrouvent ici avec encore plus de perti-
nence. On ne peut pas obtenir une matrice fondamentale de solutions
du systeme (1) sans résoudre ce dernier. Une matrice M’ comprenant,
des colonnes de la matrice B contiendra nécessairement des colon-
nes de la matrice M. Cela s’explique par le fait qu’il existe sur la
sarface considérée des contours fermés qui ne limitent pas d’aire
de la surface.

Il y a ainsi une grande différence entre la sphere et les surfa-
- ces fermées d'un autre genre. Lorsqu’un réseau est tracé sur une
sphére, il n’est pas mécessaire de résoudre le systeme d’équations (1)
auquel il conduit. On a immédiatement une matrice fondamentale
de solutions M’ en utilisant o, — 1 colonnes de la matrice B.

Telle est la raison pour laquelle, dans les pages qui suivent, nous
n'allons envisager que des réseaux cubiques tracés sur une sphére.
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DEUXIEME PARTIE

Etude systématique, selon la méthode de 0. Veblen,
des réseauxr cubiques tracés sur une sphére.

Ainsi donc nous n’examinerons ici que des réseaux cubiques tra-
cés sur une sphére. Ces réseaux donnent naissance a des polyedres
homéomorphes & la sphére. Nous admettons que le polyédre consi-
déré repose sur une de ses faces (celle que I’on ne voit pas); par
suite toutes les autres sont parfaitement visibles. Et pour éviter
toute confusion nous précisons que la frontitre d’une face est cons-
tituée par un contour fermé unique composé d’un certain nombre
d’arétes du réseau donné, deux au minimum. De plus une aréte sert
toujours de frontiere & deux faces distinctes du polyedre.

La face de base du polyédre peut étre celle dont la frontitre com-
prend le plus grand nombre d’arétes (on dit aussi de cotés), ou le
plus petit ou un nombre intermédiaire. Cela n’a aucune importance.
Il faut cependant remarquer que le polyédre peut se présenter sous
des aspects différents suivant la face qui a été choisie pour base du
polyédre.

Nous partons d’un polygdre comprenant «, sommets, «, arétes et
oy faces et introduisons le nombre p égal a

p=oay —1=oa —a 41

puisqu’il s’agit de la sphére. Nous dressons les matrices A et B
ainsi que cela a été exposé plus haut. Le rang de la matrice A est
égal & oy — 1, Celui de la matrice B & n. De la matrice A nous
extrayons le systtme d’équations linéaires et homogenes (1). Les
opérations d’arithmétique s’effectuant selon le module 2, le systé-
me (1) a 2” — 1 solutions. Ces solutions s’expriment en nombres
0 et 1. Elles sont représentées sur le réseau par des contours fer-
més, les arétes marquées d’un 1 étant seules prises en considération.
Or les faces du polyédre sont limitées par des contours fermés. Cha-
que colonne de la matrice B caractérise une solution du systéme (1).
u d’enire elles sont linéairement indépendantes. Ces p colonnes for-
ment la matrice fondamentale M’ de solutions du systeéme (1). Un
tableau D comprenant ’ensemble des solutions du systéme (1) peut
parfaitement se dresser & l’aide de la matrice M. Nous allons l’exa-
miner.

Il comporte a, lignes et 2% — 1 colonnes qui résultent des addi-
tions entre elles des u colonnes de la matrice M’. Certaines lignes
de cette matrice renferment un seul nombre 1, les autres en ont
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Jeux. Regardons comme un indice le chiffre qui marque le rang de
la face correspondante du polyédre. Cet indice se répete dans le
tableau D 2“1 fois. Si donc cet indice caractérise ’'unique 1 d’une
ligne de la matrice M’ on comptera sur cette ligne du tableau D
2”~1 nombres 1.

Si une ligne de la matrice M’ renferme deux nombres 1, il faut

se rappeler que 1 4 1 = 0 et que par suite on doit envisager
séparément chacun de ces deux indices (en supprimant ’autre) ce
qui condumit & 2. 2"-2 — 2”1 autrement dit le méme nombre

que précédemment. Il en résulte que chaque ligne du tableau D
renferme 2“—! nombres 1 et que par suite le tableau D dans son
ensemble en renferme un nombre N = a«, . 2¢-1,

On constate ainsi que le nombre u joue un role essentiel. En
vertu du théoréeme d’EurLer on peut écrire les égalités suivantes :

p-~—1=a2—-2=a—1=a—°
3 2

Si par conséquent L est connu, tous les éléments du polyédre le
sont également de méme que N. C’est la raison pour laquelle doré-
navanl nous choisirons ce nombre u comme terme de référence.

Il va de soi qu’en général, u étant fixé, il peut exister plusieurs
polyédres qui différent entre eux par le nombre d’arétes qui leur
servent de frontiéres. Pour tous ces polyédres le nombre N demeure
invariable.

Les solutions du systtme (1) comporteront au minimum deux
arétes (s’il existe au moins une face limitée par deux arétes
seulement) et an maximum o;, soit le nombre des sommets du
polyedre. Dans ce dernier cas, nous serons en présence dun ré-
seau quadratique, les arétes n’intervenant pas constituant un réseau
lindaire. En obtenant de telles solutions, nous aurons opéré la ré-
duction du réseau cubique donné en un réseau quadratique et un
réseau linéaire. Le théoreme de PeTErseN nous apprend que cette
réduction est toujours possible. Ainsi de tels réseaux quadratiques
existent toujours.

Il convient maintenant de rappeler que nous avons proposé de
répartir ces réseaux quadratiques en trois types, cela de la facon
suivante (Cruarp, 1932, p. 68) :

Type I. Le réseau quadratique est d’un seul tenant. Il est au-
trement dit constitué par un contour fermé unique.

Type II. Le réseau quadratique comprend deux ou plusieurs
contours fermés, chacun d’eax renfermant un nombre pair d’arétes.

Type I1I. Le réseau quadratique comprend également deux ou
plusieurs contours fermés, certains d’entre eux ayant un nombre
impair d’arétes.
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Remarquons que, du moment que le nombre des sommets du po-
lyedre est pair, dans un réseau quadratique du type ILI, le nombre
des contours fermés comprenant un nombre impair d’arétes est lui-
méme pair.

Au surplus si une solution du systéme (1) comporte deux contours
fermés, ceux-ci sont nettement séparés l'un de lautre. Du moment
qua chaque sommet du polyedre n’aboutissent que trois arétes et
que chaque aréte n’est comptée qu’une fois, il n’y a aucune possibi-
lité de rencontre de deux contours fermés. La région du polyédre
qui est comprise entre les deux contours fermés d’une solution du
systtme (1) caractérise une chaine fermée telle que .nous I’avons
définie précédemment.

LA maTrRICE M’

Ainsi que nous l’avons constaté plus haut, les solutions du sys-
teme (1) s’obtiennent indifféremment 4 l’aide d’'une matrice M ou
d’une matrice M’. Lorsqu’il s’agit de polyédres homéomorphes & une
sphere, on ne se donne pas la peine de rechercher une matrice M,
la connaissance de la matrice M’ est immédiate. Il convient donc de
mettre en évidence ses caractéres.

On a va que Pon peut classer ses lignes en deux catégories sui-
vant qu’elles renferment un ou deux nombres 1. Lorsqu’il n’y en a
quun, ce nombre caractérise une face du polyédre. Mieux il repré-
sente l’aréte qui sépare cette face de la face de base du polyedre.
On peut le considérer comme un indice qui est compris entre 1 et
u. Il va de soi que si ces faces ont plusieurs arétes en commun, cet
indice sera répété plusieurs fois.

Les autres lignes de la matrice M’ renferment deux nombres 1.
Elles caractérisent des arétes servant de frontiere & deux faces ad-
jacentes du polyedre, la face de base étant exclue. Ces arétes pour-
raient étre qualifiées d’internes par opposition a celles qui limitent
la face de base que l'on dénommerait arétes erternes. Les arétes
internes seraient assujetties a deux indices j et k distincts, tous
deux compris entre 1 et u. Le nombre des groupes de ces deux in-
dices est bien connu puisqu’il est égal a 1/2 u (u—1). La encore
si deux faces du polyédre ont en commun plusieurs arétes internes,
le méme groupe d’indices jk se répete plusieurs fois.

Dans ces conditions, ce qui parait prendre de l'importance, c’est
la numérotation des faces du polyédre de 1 & . Les arétes limi-
tant la face de base seront notées d’un seul indice, toutes les au-
tres le seront & l'aide de deux indices.

On peut opérer une distinction analogue a I’égard des sommets
en disant que ceux d’entre eux qui appartiennent a la frontiére de
la face de base sont externes, les autres sommets étant internes. Mais
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a ces derniers on préfeére donner le nom de nceuds. Il va de soi
que ces qualifications sont toutes relatives, attendu qu’elles dépen-
dent de la présentation du réseau celle-ci résultant du choix que
on a fait pour la face de base.

Revenons maintenant au tableau D en reprenant, pour fixer les
idées, I'exemple de la fig. 1. Il <’agit d’'un réseau composé de 2
triangles, de 2 quadrilatéres et de 2 pentagones. Le polyédre qui
en résulte comprend donc 6 faces, 12 arétes et 8 sommets. Le nom-
bre u est égal & 5. Nous avons déja indiqué, page 337, le tableau D
auquel il donne lieu. C’est un tableau de 12 lignes et 31 colonnes.
Chaque ligne contient 16 nombres 1. Il s’en suit que

N=12.16 = 192.

Si l'on classe ces colonnes en catégories suivant la quantité de
nombres 1 qu’elles renferment, on obtient

2 X3 ,2x4,4x5,8x6, 10x7,5xXS8.

Une solution du systteme (1) comporte au minimum 3 arétes
(puisque la plus petite face du résean est un triangle) et au maxi-
mum 8 (soit le nombre des sommets du réseau).

On peut encore ajouter que le réseau cubique considéré renferme
5 réseaux quadratiques distincts. Nous désignerons volontiers ces
véseaux par le symbole R, ceci par souci d’abréviation. Nous les
représentons fig, 5 en constatant que les deux premiers tracés sont
du type III tandis que les trois derniers sont du type I. Les arétes
de ces réseaux quadratiques sont marquées de traits renforcés

Le nombre p étant égal & 5, il existe d’autres réseaux cubiques
pour lesquels le nombre N est égal a 192: le cube par exemple,
dont les 6 faces sont des quadrilatéres. On y rencontre 9 réseaux
quadratiques distincts.

La recherche du nombre de ces derniers nous intéressant d’une
facon toute particuliere, nous désignerons dorénavant par n le nom-
bre des réseaux R contenus dans un réseau cubique donné. Le ta-
bleau qui suit indique différentes valeurs de n correspondant a quel-
ques valeurs de p.



TABLEAU DU NOMBRE N DE RESEAUX QUADRATIQUES
CONTENUS DANS UN RESEAU CUBIQUE DONNI!

Nombre de faces du réseau limitées par

W (2134|567 8|9(10/12/1418|30|cités N n

2 |3 6 3

3 4 24 3

2 2 9

4 213 72 4

1|2 2 5

2 2 i 8

3 2 9

5} 21212 192 d

4 2 5]

6 9

1121 2 0

1(1(2{1}1 7

17211 1 8

3 1 1 1 14

4 2 17

0] 212121 480 6

3 3 1 6

2|3 2 7

312 111 7

4 2 1 8

5|2 11

1122 2 7

22 2 1 9

211111 1 10

2 212 I 13

3 3 1 12

b} 2 33

7 3112|111 1152 7

2123 1 7

212122 10

4| 4 12

22 211 1 12

2 5 1 34

6 2 65

8 2|12 4 1 2688 8

3|6 12

7 2 129

10 |9 2 13824 | 513
16 (15 21474560 | 32769
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I! va de soi que ce tableau est trés incomplet. Il n’est d’ailleurs
donné uniquement qu’a titre indicatif, ceci pour bien montrer la
grande variété du nombre de réseaux quadratiques qui sont conte-
nus dans un réseau cubique donné. Dés que le nombre p prend quel-
que importance, les nombres N et n deviennent extrémement grands.

AR

Constatons maintenant que l’exemple fourni par la fig. 2 appar-
tient au groupe W = 6. Il renferme 12 réseaux quadratiques qui
sont tous du type II. Nous l'avons choisi précisément pour cette rai-
son. Nous indiquons (fig. 6) quatre de ces réseaux, les huit autres
s’obtenant de ceux qui sont représentés par une simple rotation au-
tour du centre de chaque dessin. La encore les arétes des réseaux R
ont été marquées par des traits renforcés.

EXAMEN DE QUELQUES CAS PARTICULIERS

@) Un résean cubique d’un type spécial est celui qui comporte
2 faces de 2u — 2 arétes et w — 1 faces de 2 arétes. Si l'on
totalise le nombre des arétes on obtient 6 w — 6 = 2 a, soit le
double du nombre d’arétes du réseau, ce qui est normal attendu
que chaque aréte a été comptée deux fois. Tous les sommets sont
situés sur la frontitre de la face de base. Il n’y a donc pas de
neeuds. Le nombre des réseaux quadratiques que renferme le réseau
donné est 2“-1 |- 1. En effet la fronticre de la face de base en
est un. Puis on peut associer & cette frontiere celles des faces de
2 arétes, combinées entre elles de toutes les maniéres possibles, ce
qui donne 271

b) Un second cas est celui qui est donné par un réseau composé

de 2 faces de 2 cotés, p — 2 faces de 4 cotés et une face de
2 u — 2 cotés. Si l'on totalise le nombre des arétes on obtient éga-
lement 6 @ — 6 comme ci-dessus. On crée de tels réseaux par un

procédé élémentaire que nous tenons d exposer. On part du réseau
qui renferme un nombre minimum d’éléments. Il comprend 3 faces,
3 arétes et 2 sommets : u = 2. L’une des faces étant la face de
base, 2 faces seules sont apparentes. Ces faces sont liées entre elles
par une aréte que nous supposons verticale. Une aréte extérieure est
i gauche, l'autre & droite. Sur laréte de gauche, nous marquons
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2 points qui deviennent des sommets. Cette aréte est ainsi remplacée
par 3 arétes. Les nouveaux sommets sont reliés entre eux par une
nouvelle aréte. Un nouvean polyedre est donc créé qui comprend
4 faces, dont 2 de 2 cotés et 2 de 4 cotés. La face de gauche est
limitée par 2 arétes dont l’une est extérieure.

Sur cette aréte extérieure nous marquons 2 points qui devien-
nent des sommets lesquels sont reliés par une nouvelle aréte. Nous
créons un nouveau polyeédre qui comporte 5 faces soit 2 faces da
2 cotés, 2 de 4 cotés et une de 6 cotés. Iei w = 4. La face de
gauche est encore limitée par 2 arétes dont I'une est extérieure.

On répete la méme série d’opérations et ’on aboutit & un polyedre
de 6 faces, p = 5, comprenant 2 faces de 2 cotés, 3 de 4 cotés et
une de 8 cotés. C’est ainsi que finalement on aboutit A la disposi~
tion générale énoncée plus haut.

Il va de soi que de tels polyddres ne renferment pas de nceuds,
tous les sommets étant situés suc la frontitre de la face de base.
En ce qui concerne les réseaux quadratiques contenus dans de tels
réseaux, les constatations suivantes s’imposent :

Le premier réseau renfermait 3 réseaux quadratiques. Chacune
des arétes du réseau cubique se retrouve dans 2 réseaux quadrati-
ques. Cest le cas, par exemple, de Daréte sur laquelle nous avons
marqué 2 nouveaux sommets, L'un et lautre de ces 2 réseaux qua-
dratiques vont donner naissance dans le nouveau polyeédre & 2 ré-
seaux quadratiques et le troisitme 3 un seul. Nous voyons donc que

si

pL=2, ilya 241 3 R.
u=3, ilya 2.241=5R.

-

Quand on passera de p = 3 & p = 4, laréte sur laquelle sont
marqués les 2 nouveaux sommets se retrouvera sur 3 réseaux qua-
dratiques et non sur les deux autres. Il s'en suit que pour

p=4,ilyad.24+2=8R.

Pour les mémes raisons, si l’on continue on obtient pour

p=5, 5.2 3=13R.
p=6, 8.2 5=21R.
W=7, 13.2-1 8=34R.
p=28, 21.24 13 = 55R.
w=09, 34,21 21 = 89 R.

¢) Un autre exemple de méme nature mais qui différe cependant
des précédents est celui qui est caractérisé par 1 face de 2, 2 de
3, p —4 de 4, 1 de 5 et 1 de 2p — 3 arétes. L3 encore on
constate que le total des arétes est 6 — 6 soit 2a,.
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Le nombre de réseaux quadratiques que renferme un réseau
donné obéit & la méme loi que celle du cas b) a la seule réserve

d’un décalage dans la valear de p. En effet c’est pour u = 3 que
on rencontre 3 réseaux quadratiques. Pour u = 4, il y en
aura 5, pour p = 3, il v en aura 8, etc.

Ce qui est intéressant & relever, c’est que tous ces réseaux ren-
ferment un nceund.

d) Il convient encore d’examiner cet autre cas de réseaux qui
renferment 2 nceuds et comprennent 1 face de 2 cotés, 1 de 3,
p— 3 de 4, 1 de 5 et 1 de 2pn — 4 cotés. Si Pon totalise ces
derniers on trouve 6pu — 6 qui est effectivement égal a 2a,.

On constate immédiatement que le réseau, pour lequel p = 4,
qui renferme 2 faces de 3 cotés et 3 faces de 4 cotés contient 4
réseaux quadratiques. Par l’adjonction d’une nouvelle aréte nous
remplacons une des faces triangulaires par une face de 2 et une
face de 4 cotés. Nous obtenons ainsi un polyédre de 6 faces com-
prenant une face de 2 cotés, 1 de 3, 2 de 4, 1 de 5 et 1 de 6
cotés pour lequel p = 5. 3 des réseaux quadratiques cités plus
haut donnent naissance chacun & 2 nouveaux réseaux quadratiques et
1 a1 seul. Il s’en suit que :

w=25 conduit & 3.2 4 1 =7 R.

En suivant le méme processus que précédemment, on crée une
face de plus, ce qui donne un polyédre de 1 face de 2 cotés, 1
de 3, 3 de 4, 1 de 5 et 1 de 8 cotés. Des 7 réseaux quadratiques
que nous venons d’obtenir, 4 donnent lieu chacun a 2 réseaux qua-
dratiques nouveaux et 3 a un seul. Dol

f= & et 4.2+ 3 =11R.

Ces opérations peuvent se poursuivre, ce qui conduit a

W= 7 7.2 L 4= 18R.
w—8 12.2 - 6 = 30 R.

Cette étude quoique sommaire va nous permetire de tirer des
conclusions intéressantes. A cet effet pour fixer les idées, admettons
que p = 6. ‘

Le réseau considéré est du type :

b) Fig. 7.1 Tl comprend 2 faces de 2, 4 de 4 et 1 de 10 cotés.
Il n’a pas de nceud et renferme 21 R.

¢) Fig. 7.2 Il comprend 1 face de 2, 2 de 3, 2 de 4, 1 de 5
et 1 de 9 cotés.
I a 1 neeud et renferme 13 R.
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d) Fig. 73 Tl comprend 1 face de 2, 1 de 3, 3 de 4, 1 de 5

et 1 de 8§ cotés.
I a 2 neeuds et renferme 11 R.

Fig. 7.4 1l comprend 3 faces de 3, 2 de 4, 1 de 6 el 1 de
7 cotés.
Il a 3 neeuds et renferme 7 R.

Fig. 7.5 1l comprend 2 faces de 3, 2 de 4, 2 de 5 et 1 de
6 cotés.
I1 a 4 neuds et renferme 6 R.

VAIZANG
-

Fic. 7.

Dn moment que le réseau a dans son ensemble 10 sommets et
que 6 d’entre eux se trouvent sur la frontiere de la face de base,
il ne peut y avoir au maximum que 4 nceuds. Il s’en suit que pour
les réseaux tels que w = 6 il y a au minimum 6 réseaux quadra-
tiques.

On pourrait répéter des opérations analogues sur d'autres ré-
seaux cubiques. On serait amené & conclure que les réseaux que nous
envisageons renferment au minimum W réseaux «uadratiques.

Dans tous les cas un fait est certain : la présence d'une face
limitée par 2 arétes seulement augmente le nombre des réseaux
quadratiques que renferme un réseau cubique donné. On pourrait
poursuivre cetie étude. Nous préférons la reprendre sous une au-

tre forme.

Remarque. Lorsqu’un réseau 'quadratique est du type I, il est
formé d'un contour fermé unique qui comprend un nombre pair
d’arétes. Il est par suite décomposable en deux réseaux linéaires.
Le résean cubique donné est ainsi décomposable en trois réseaux
linéaires. Comme on peut associer entre eux, deux a deux, ces ré-
seaux lindaires de 3 manitres différentes, on aboutit ainsi & trois
réseaux quadratiques distincts. On peut dire que ces trois réseaux
forment une famille. Il arrive qu’ils soient tous trois des réseaux
du type I. 1l se peut aussi que certains d’entre eux soient du
type II. Pour effectuer cette décomposition, on aurait pu partir
d’'un réseau du type II. Mais alors il existe une plus grande va-
riété¢ d’association des réseaux linéaires entre eux, par suite des
familles de réseaux quadratiques plus étenducs.
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ARBRES LINEAIRES

On peut étudier les réseaux cubiques tracés sur une sphére en
procédant d'une toute autre fagon. Il n’y a qu’a faire apparaitre
sur le réseau donné un arbre qui relie entre eux I’ensemble de ses
sommets. Du moment que le réseau renferme o, sommets, un tel
arbre comprend o, — 1 arétes. Il présente des sommets de de-
gré 1 (sommets libres), de degré 2 (sommets de liaison), de degré 3
(bifurcations). Le nombre des sommets libres est toujours supé-
rieur de deux unités A celui des bifurcations. Si P’arbre a n’a pas
de bifurcations, il devient un contour ouvert.

Une fagon de distinguer ces arbres entre eux consiste a les clas-
ser d’aprés le nombre de leurs bifurcations. Au surplus, bien que
cela n’ait pas une grande importance, on constate qu’un tel arbre
a au plus 2, parfois 3 bifurcations. Le probleme qui se
pose naturellement est celui de la réduction du nombre des bi-
furcations d’un arbre donné, Il faut remarquer a ce propos que
si deux sommets libres de l’arbre limitent la méme aréte du ré-
seau, en adjoignant cette .aréte & larbre on forme un contour bou-
clé, lequel renferme un contour fermé. Ce dernier est relié a l'en-
semble en un sommet qui est une bifurcation. Mais si 'on supprime
une des arétes qui passent par cette bifurcation et qui fait par-
tie du contour fermé, la bilurcation disparait et l'on retrouve un
arbre. Par ce moyen le nombre des bifurcations de ’arbre considéré
a diminué d’une unité (parfois de deux).

Le cas limite est celui dans lequel l’arbre est devenu un contour
ouvert. Les bifurcations ont alors disparu. A ce propos, il y a lieu
de distinguer deux -cas.

a) Les deux sommets libres du contour ouvert limitent la méme
aréte du réseau. Nous disons que nous sommes en présence dun
contour V,

b) Dans tous les autres cas, nous disons qu’il s’agit d’un con-
tour Z.

HEUE

Kis. 8

Nous donnons (fig. 8) des types d’arbres contenus dans le ré-
seau de la fig. 1. La fig. 8.1 fait apparaitre 3 bifurcations, la
fig. 8.2 nen a plus qu’une, les deux autres n’en ont poini. La
fig. 8.3 est un contour Z et la fig. 8.4 un contour V.
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D

Fic. 9.

La fig. 9 [ait de méme avec l'exemple 2).

Si l'on revient au cas général, on doit constater que le pro-
bleme de la réduction du nombre des bilurcations d’un arbre donné
est de méme nature que celui qui consiste & passer d’un contour Z
a un contour V. Si en effet un tel passage est réalisé, ainsi que
nous venons de le voir, la diminution du nombre des bilurcations
d’un arbre est certaine. Et comme un arbre a toujours un nombre
de sommets libres égal a celui des bifurcations plus 2, les possi-
bilités de faire en sorte que deux sommets libres limitent la méme
aréte du réseau sont plus grandes que pour un contour Z.

Nous partons done d’un contour Z qui renconire tous les som-
mets d'un réseau cubique donné et nous désignons par P et Q cha-
cune de ses extrémités. Ce sont des sommets libres par lesquels
passent 2 arétes du réseau qui n’appartiennent pas au contour Z.
Nous allons exposer ce que nous entendons par une opération dou-
ble. Pour cela nous admettons que l'un de ces sommets, P par
exemple, demeure immobile. Nous utilisons une des arétes du ré-
seau qui rencontrent Q, n’importe laquelle des deux, qui n’appar-
tient pas au contour Z et l'associons i celui-ci. Nous créons de cette
maniére 4 la fois une bifurcation et un contour bouclé. Ce dernier
renferme un contour fermé, puisqu’il s’agit dun réseau tracé sur
une sphére, limite une certaine aire de cette surface. Pour [aire dis-
paraitre a4 la fois le contour fermé et la bifurcation, on ne dispose
que d'une aréte (sinon on revient en arriére). La suppression de cette
aréte conduit & un sommet du réseau que nous désignerons par Q.
Le contour PQ, est un nouveau contour 7Z que nous caractériserons
par Z,.

Si nous qualifions cette opération d’opération double, cela pro-
vient de ce que d'une part elle a exigé 'association d’une aréte du
réseau au contour Z et d’autre part la suppression d’une autre
aréte de ce contour. Entre les sommets Q et Q; se trouve un au-
tre sommet du réseau qui ne recoit pas de nom. De plus le pas-
sage de Q & Q, s’effectue en contournant une face du polyédre,
donnant & celle-ci pour ainsi dire une certaine orientation.

On n’aura qu’a répéter, & partir de Q,, une nouvelle opération
double qui nous conduira a& un autre sommet QQ,, et ainsi de suite.
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Il faut remarquer que si au départ de Q on avait le choix entre
deux arétes du réseam, ce choix n’existe plus a partir de Q, ou
de Q, ... car alors une seule aréte est & disposition.

Pour illustrer cette méthode nous ne pouvons mieux faire que
de reprendre le contour Z de la fig. 8.2 dans la fig. 10. Deux
opérations doubles suffisent pour passer du contour Z donné a un

contour V,
Q Q4
1 .
Fic. 10.
Les arétes utilisées pour passer de Q & Q, puis & Q, ... forment

un parcours spécial auquel nous avons réservé le nom de Tracé T.
Il se peut, ce qui est trés fréquent, que le tracé T conduise a un
contour V. Le probléme posé est alors résolu. Il peut cependant ar-
river que, pour des raisons que nous devons mettre en évidence,
aprés un certain nombre d’opérations doubles, on retrouve exacte-
ment le contour 7 initial. Nous dirons alors que nous sommes en
présence d'une série irréductible d’opérations doubles.

Si tel est le cas, on admet que le sommet Q demeure immobile
et que la série d’opérations doubles part du sommet P. La encore
il arrive fréquemment que l'on aboutisse & un contour V. Mais il
peut également se faire que l'on soit en présence d’une nouvelle.
série irréductible d’opérations doubles. Nous devons donc examiner
quand et comment cela se produit. Pour cela nous pensons que le
meilleur moyen consiste a4 reprendre l’examen d’un cas spécial
pour passer ensuite a& celui du cas général. A cet effet nous re-
prenons l’exemple 2) qui a été choisi précisément parce qu’il ne
renferme aucun réseau quadratique du type I et par conséquent
aucun contour V.

La fig. 11.1 représente un contour Z dont le sommet P coincide
avec le sommet a% et le sommet Q avec le sommet a°, de la fig. 2.
Durant toutes les transformations le sommet P est demeuré fixe.
A partir du sommet Q on avait i disposition les arétes alg et al,,.
Nous avons choisi 'aréte alg. D= ce fait le sommet a% est devenu
une bifurcation. Pour la faire disparaitre il a fallu supprimer
’aréte a'y;. Cela nous a conduit au sommet a° qui est devenu Q.
En passant de Q & Q; nous avons contourné la face a2;,, donnant
a cette derniere une orientation qui est indiquée par une fléche.
A partir de Q, une seule possibilité s’offre & nous : l’association de
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Paréte al;, puis la suppression de I’aréte al;, ce qui nous amene
au sommet a’ soit Q,. Ce faisant nous avons contourné la [ace
a%; imprimant & celle-ci une orientation marquée par une nouvelle
fleche. Maintenant nous tournons autour de la face «2; de telle
facon que le sommet Qg soit confondu avec Q,. Poursuivant ainsi
le tracé T, nous revenons en arriére, le sommet Q, étant confondu
avec (), en contournant A nouveau la face a2; mais cette fois en
sens contraire du précédent, ce qui détruit l'effet de la premicre
orientation.

Il ne reste qu’a poursuivre ces opérations. Aucune ambiguitd
n’est possible. A chaque sommet Q; il n’y a qu’une aréte a disposi-
tion. Finalement aprés 12 opérations doubles, on retrouve non seu-
lement le sommet de départ Q (auquel on a passé plusieurs fois)
mais encore exactement le contour Z initial. Chemin faisant on a
créé des orientations sur les faces du résean que l'on a contour-
nées, orientations qui ont régulierement été annulées par les opé-
rations suivantes. La fig. 11 donne les résultats des 12 opérations
doubles et en plus le tracé T.

Fic. 11.

Il va de soi que lon aurait pu inverser les roles de P et Q,
Q demeurant fixe, les opérations doubles partant de P. Méme on
aurait pu laisser fixe n’importe lequel des sommets Q et répéter
de nouvelles opérations doubles. On aurait ainsi mis en évidence
des tracés T distincts, mais qui auraient présenté le méme carac-
tere. En définitive cette situation résulte du fait que les faces a2, a2,,
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a?; ont chacune avec la face a2; deux arétes frontitres commu-
nes. Nous pensons pouvoir ajouter que c’est 14 une obligation in-
dispensable pour qu’un contour V n’existe pas.

En effet, du moment que deux faces, a2; et a?; par exemple, ont
en commun deux arétes frontitres, les arétes al; et al;, le tracé T
qui arrive & l'un des sommets a% ou a°; ne peut en repartir que
par le méme sommet, cela quel que soit le découpage de la face
a?; si ce découpage existait (ce qui n’est pas le cas dans la fig. 11).
Le tracé T se trouve donc dans l'obligation de suivre une voie par-
faitement déierminée. Si cette obligation ne se produit qu’une ou
deux fois, cela n’a pas d’importance. Si par contre elle se répéte
trois fois, ou davantage, la voie devient vicieuse en ce sens que
’on supprime lorientation que l’on vient de créer, redonnant ainsi
la situation initiale.

Nous ne pensons pas pouvoir mienx justifier cette affirmation
quwen reprenant lexemple de la fig. 11 auquel on adjoint une seule
aréte, celle-ci étant choisie de facon qu’il n’y ait plus que deux fa-
ces possédant une double frontitre avec la face de base. La fig. 12
montre qu’il est alors aisé d’obtenir un contour V.

B\VARR\WsE

P
Fic. 12.

Constatons maintenant que Errera (1921, p. 36) dans ce qu’il
appelle le «cas difficile » admet que « deux pays ont au plus une
aréte commune ». Ces pays sont pour nous les faces d'un polyedre.
Si donc nous formulons la méme condition, nous ne diminuons
en rien la généralité du probleme. Nous supprimons simplement la
cause qui empéche l'existence d’un contour V. C’est ce que nous allons
faire dorénavant.

IEX1STENCE D’UN CONTOUR V

Les polyedres que nous envisagerons dorénavant résultent de ré-
seaux cubiques tracés sur une spheére tels que deux faces contiguis
de ces polyédres n’ont en commun qu’une seule aréte. Nous nous
proposons de montrer que sur de tels réseaux il existe toujours au
moins un contour V. Il va de soi que l'existence d’un tel contour
assure celle d’un résean quadratique du type [. Pour prouver ce
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fait nous allons partir d’un contour Z pour aboutir & un contour V
ce qui nous permettra du méme coup de justifier la réduction du
nombre des bifurcations de n’importe quel arbre contenu dans le ré-
seau cubique donné. Rappelons & ce propos que si un tel arbre pré-
sente k bifurcations, il a également &k | 2 sommets libres. Si deux
de ces sommets libres limitent la méme aréte du réseau, en asso-
ciant cette aréte i D’arbre on forme un contour bouclé qui redevient
un arbre par la suppression de l'une des arétes du contour fermé
qui en résulte passant par une bifurcation. C’est donc bien le pas-
sage d’'un contour Z & un contour V qui constitue la clé du pro-
blgme.

Comme précédemment les extrémités du contour Z considéré sont
les sommets P et Q. Laissant P fixe, nous partons du sommet Q
a partir duquel nous effectuons une série d’opérations doubles. Nous
passons ainsi par les sommets Q,, Qy, Q;, ... et caractérisons sur
le réseau le tracé T. Si ce faisant on aboutit & un contour V, la ques-
tion est résolue. Admettons que ce ne soit pas le cas. La série d’o-
pérations est alors irréductible. On inverse dans ce cas les opéra-
tions. Laissant Q fixe, on effectue une série d’opérations doubles
a partir de P. On passe ainsi par les sommets P,, P,, ... qui font
apparafitre sur le réseau un nouveau tracé T que nous désignerons
par T’. La encore il se peut que 'on aboutisse & un contour V, au-
quel cas la question est de nouveau tranchée par Paffirmative. Pour
que ce ne soit pas le cas, il faut admettre que le tracé T’ caracté-
rise une nouvelle série irréductible d’opérations doubles.

Nous ne sommes toutefois pas a la fin des essais possibles. En
effet nous pouvons admetire que n’importe lequel des sommets Q;
ou P, demeure fixe, les opérations doubles s’effectuant & partir de
’autre sommet. Or n’oublions pas que pour atteindre un contour V
aucune condition n’est imposée. Le tracé T qui y conduit peut étre
court ou au contraire trés long. Cela n’a aucune importance. Comme
au départ des opérations doubles, on avait le choix entre deux aré-.
tes, il arrive que l’on choisisse celle qui conduit rapidement au but,
ou le contraire. Il ne faut pas oublier que le nombre des contours Z
devient trées grand des que le nombre w prend quelque importance,

Si donc dans les conditions que nous avons admises on ne devait
rencontrer aucun contour V cela signifierait que tous les tracés T
caractérisés par des opérations doubles donneraient lieu a des sé-
ries irréductibles. Or le tracé T d’une telle série satisfait & des
régles précises. Tout d’abord ses sommets se succédent de deux en
deux sur le réseau. Entre deux sommets consécutifs d'un tracé T
il y a toujours un sommet du réseau qui n’a pas de nom. Le pas-
sage de l'un de ces sommets 3 l’autre se fait autour d’une face du
polyedre qui est ainsi orientée. Le tracé T doit étre parcourn deux
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fois, une fois dans un sens, une fois en sens contraire. S’il arrive
quun sommet (); tombe précisément entre deux sommets précédem-
ment rencontrés, sur un sommet qui n’a pas de nom, la cadence
que nous signalons est rompue. On revient sur un parcours déja
suivi avec une orientation qui s’ajoute & la précédente au lieu de
la détruire. C’est ce que nous avons montré dans un mémoire déja
cité (Cmuarp, 1932, p. 89). '

Voici donc comment nous envisageons la solution du probléme
proposé. Nous partons d'un contour 7Z dont les extrémités sont les
sommets P et Q. Nous admettons que les deux séries d’opérations
doubles effectuées soit & partir de Q, soit a partir de P soient irré-
ductibles. Le tracé T est constitué par les sommets Q, Q,, Q,, ...,
Qi, .... Le tracé T’ comprend les sommets P, P,, Py, ..., Py, ....
Nous considérons le contour Z, soit P Q, et admettons que le som-
met (), demeure immobile. Les opérations doubles effectuées & par-
tir de P donneront lieu 4 un nouveau tracé T que nous désignerons
par T’,. Les tracés T’ et T’; partent tous deux du sommet P. Ils
auront donc une partie commune puis devront se détacher l'un de
Pautre. Or les faces du polyeédre autour desquelles ces sommets se
déplaceront ont tantdt des nombres pairs de cdtés, tantét des nom-
bres impairs. Les dispositions qui justifiaient l’existence du tracé T’
d’'une série irréductible ne se retrouvent plus pour le tracé T’;. La
cadence est ainsi rompue et l’existence d’'un contour V assurée.

Il faut encore prendre garde au fait que la cadence constatée
dans la succession des sommets (Q; d’un tracé T ou des sommets P
dans un tracé T” n’est pas la seule condition qui soit imposée 3 ces
tracés. Dans chaque opération double on crée un contour fermé qui,
puisque I’on est sur une sphére, limite une aire de celle-ci. De plus
quand on contourne une face on l'oriente ainsi que le constatait déja
VEBLEN & propos d’autres questions, Lorsque la série de ces opéra-
tions est irréductible, le tracé T doit étre parcouru une seconde fois,
exactement en sens coniraire de la premiére de telle facon que par
ce second passage Dorientation premiére soit détruite. On ne con-
cevrail pas qu’un cercle vicieux puisse exister sans cette obligation,
ceci précisément parce que la sphére est une surface bilatére.

Dans nos recherches il nous est arrivé & diverses reprises de de-
voir procéder 3 un trés grand nombre d’opérations doubles avant
de parvenir & un contour V. Ce faisant le tracé T était parcouru
plusieurs fois dans certaines de ses parties, ceci sans un ordre quel-
conque. Nous pouvions prévoir le résultat final, soit obtention d’un
contour V, dés que I'un des sommets Q; s’intercalait sur le tracé T
entre deux sommets déji marqués (autrement dit occupait la place
d’un sommet sans nom), ainsi que nous l’avons remarqué plus haut.
Les faces contournées étaient parcournes dans le méme sens. Clest
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comme si lon avait obtenu une superposition de ces faces, soit une
surface constituée par un nombre indéfini de couches. Or c’est pré-
cisément cela qui est inconcevable.

Nous avons vérifié ce fait en appliquant cette méthode a tous les
exemples qui nous ont été communiqués. Nous en donnons pour
preuve les exemples indiqués page 93 du mémoire (Cuuarp, 1932)
que nous avons déja cité.

Il va de soi que si toutes les faces du polyedre avaient un nom-
bre pair de cotés la cadence relevée ci-dessus serait assurée. Mais
alors dans ce cas aucun probléeme ne se poserait, Pexistence d'un
contour V étant certaine. Il en serait de méme si toutes les faces
avaient un nombre impair de cdtés. Nous n’en donnons pour preuve
que le jeu icosien d’Hamivron qui fait intervenir un polyédre de
12 faces, soit le dodécaddre pentagonal.

Si nous avons donné l'exemple 2), c’est précisément parce que,
sous une forme réduite, il met nettement en évidence la nature de
la difficulté & vaincre. Les tracés T sont canalisés par le fait qu’ils
se trouvent dans l’obligation de répondre & des exigences précises.
Trois faces du polyédre ont avec une quatrieme face une frontiére
commune constituée chaque fois par deux arétes. Tous les tracés T
sont ainsi du méme type, plus ou moins longs cela va sans dire,
mais empruntant toujours les mémes sommets Q;. A ce propos
Pexemple de la fig. 12 montre bien que dds que cette obligation
cesse, les sommets Q; ne sont plus canalisés. L’existence d’un con-
tour V est par suite assurée.

LE COLORIAGE DES CARTES DE GEOGRAPHIE

Les réseaux que nous venons d’étudier représentent, si on le dé-
sire, des cartes de géographie tracées sur une spheére. Il suffit d’ap-
peler « pays» ce que nous avons désigné jusqu’ici sous le nom de
« faces ». Les arétes sont les frontitres des faces et les sommets
des bornes frontiéres. Il convient & ce propos de rappeler la propo-
sition suivante due 3 Errera (1921, p. 34) :

Le coloriage d’une carte se raméne & celui d’une autre carte dont
tous les sommets sont de degré 3 et dont le nombre des pays n'a
pas augmenté,

En adoptant ce point de vue nous constatons que létude a la-
quelle nous venons de nous livrer est au centre de la question.
ErreEra a d’ailleurs précisé qu’en formulant certaines restrictions
on ne diminuait en rien la généralité du probleme. C’est ainsi que,
dans ce qu’il a appelé le «cas difficile» il a fait abstraction des
pays qui n’ont que deux arétes frontieres, voire trois ou quatre.
Nous n’irons pas si loin. Par contre nous admettirons que la fron-
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titgre d’'un pays ne comprend qu’un seul contour fermé. Nous élimi-
nons ainsi & la fois les isthmes et les ilots.

Si nous nous en ‘tenons aux cartes qui rentrent dans le «cas dif-
ficile » nous pouvons affirmer, en vertu de ce qui précéde, qu’il
existe un réseau quadratique du type I, soit un contour fermé uni-
que qui passe par lensemble des sommets du réseau.

Si ce contour fermé est considéré comme une coupure, il sépare
tous les pays de la carte en deux chaines fermées comprenant un
nombre pair de pays. Il suffit de deux couleurs pour colorier les
différents pays d’une chaine et par suite de quatre pour l’ensemble.

Mais pour arriver & un tel résultat il n’est pas nécessaire que le
réseau donné soit réductible en un réseau quadratique du type I.
Il saffit qu’il soit du type II. En effet dans ce cas on peut encore
regarder les différents contours fermés constitutant le résean qua-
dratique comme des coupures. Celles-ci délimitent des chaines qui

Fic. 13.
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comprennent chacune un nombre pair de pays. Or ces chaines sont
nettement séparées les unes des autres, ce qui assure le coloriage
de l’ensemble & l’aide de quatre couleurs seulement.

Nous en donnons pour preuve lexemple de la fig. 13 dont on
remarquera sans peine la parenté avec celui de la fig. 2. Le point
capital de cet exemple réside dans le fait que les faces du centre
marquées 2, 3,4 ont avec la face extérieure marquée 1, chaque fois
deux arétes communes. S’il n’y a pas de réseau quadratique du
type I, il y en a par contre du type IL. Nous en avons marqué un
en renforcant ses arétes. C’est ce qui nous a permis de montrer que
le coloriage de Dl'ensemble avec quatre couleurs est encore possible.

En définitive si l’on désirait prouver que le coloriage de la
carte avec quatre couleurs est impossible, il faudrait montrer qu’il
existe une carte dont les arétes frontiéres constitueraient un réseau
cubique réductible uniquement en résecaux quadratiques du type 1IL
Or cela est manifestement impossible.

Nous avons vu au début de cette étude que le systéme d’équa-
tions (1) a un trés grand nombre de solutions dés que u est quel-
que peu élevé, puisqu’il se chiffre par 2 — 1. De méme le nom-
bre n de solutions qui donnent lieu & des réseaux quadratiques est
lui-méme trés élevé. On peut comme nous ’avons fait ne pas pren-
dre en considération les réseaux comprenant des faces de deux cotés.
La valeur de n diminue d’une facon trés sensible. Il n’en demeure
pas moins que le nombre des réseaux quadratiques est encore trés
élevé. Or il faudrait qu’ils soient tous du type III, ce que l’on ne
saurail concevoir.
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