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Mémoires de la Société vaudoise des Sciences naturelles
N° 84 1963 Vol. 13, Fase. 5

Réseaux tracés sur une surface fermée
bilatère

PAR

Jules CHUARD

INTRODUCTION

C'est la lecture du mémoire de O. Veblen (1912) qui nous a

engagé à étudier la géométrie de situation. Nous en avons d'abord
tiré l'objet de notre thèse de doctorat : « Questions d'Analysis
Situs », ce qui nous a permis d'étudier les « homologies » de H. Poincaré

et de montrer en particulier la différence qui existe entre les

« homologies par division » et les « homologies sans division ». Nous

avons alors abandonné les variétés unilatères pour ne plus nous
préoccuper que des variétés bilatères. C'est ce qui nous a donné
l'occasion de publier plusieurs études sur les réseaux cubiques et
le problème des quatre couleurs.

Si maintenant nous revenons sur cette question, c'est qu'elle nous
paraît suffisamment importante pour justifier une mise au point.
Aussi, pour éviter toute équivoque, nous commençons par rappeler
quelques définitions et principes qui ont servi de base à nos
travaux.

* * *

Une arête est un segment linéaire, droit ou courbe, peu importe.
Elle est limitée à chacune de ses extrémités par un point appelé
sommet. Nous admettons que les sommets ne font pas partie de

l'arête qu'ils limitent. Si un point d'une arête devient un sommet,
il en résulte deux arêtes distinctes.
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Tout ensemble d'arêtes en nombre fini, tel qu'un point de l'une
n'appartienne pas à une autre arête de l'ensemble, constitue un
réseau. Le réseau a parfois pris le nom de configuration linéaire.
Dans les réseaux que nous examinerons les deux sommets qui limitent

une arête ne seront jamais confondus. Nous convenons de désigner

par a0 le nombre des sommets d'un réseau et par ax celui de

ses arêtes.
On entend par degré d'un sommet le nombre des arêtes du

réseau qui aboutissent à ce sommet. Un sommet de degré 1 est dit
sommet libre. Il est de liaison lorsque son degré est supérieur à 1.

Nous désignerons volontiers dans la suite sous le nom de bifurcation

un sommet de liaison de degré 3.

Si tous les sommets d'un réseau ont le même degré, le réseau
est dit homogène.

Un réseau homogène du premier degré est appelé linéaire. Il ne
renferme que des sommets libres. Il est représenté par des arêtes
isolées. Puisque chaque arête est limitée par deux sommets, on a

l'égalité
a0 2 ax

Un réseau homogène du second degré est un réseau quadratique.
Chacun de ses sommets sert de liaison à deux arêtes du réseau.
Celui-ci comporte donc un, ou plusieurs contours fermés isolés les

uns des autres. Dans ce cas on a :

Un réseau homogène du troisième degré est un réseau cubique.
Chacun de ses sommets est une bifurcation. Il s'en suit que :

3 a0 2 c»!.

Un réseau est dit connexe si, étant donnés deux sommets quelconques

de celui-ci, il existe un certain nombre d'arêtes du réseau telles

que l'on puisse en suivant ces arêtes passer de l'un de ces
sommets à l'autre. Si cette opération n'est pas toujours possible, le
réseau n'est pas connexe. Un réseau linéaire n'est jamais connexe.
Un réseau quadratique composé de plus d'un contour fermé ne
l'est pas non plus.

Petersen 1 désigne sous le nom de feuille la partie d'un réseau

qui est maintenue en connexion avec l'ensemble par une arête unique

à laquelle il a donné le nom d'isthme. Il a en outre démon-

1 (2) V. A. Errera (1921), p. 13.



RÉSEAUX TRACÉS SUR UNE FERMÉE FERMÉE BILATÈRE 329

tré le théorème suivant auquel on a donné son nom : Un réseau

cubique irréductible possède au moins trois feuilles.
Constatons d'emblée que si un réseau cubique est réductible il

donne naissance, cela de diverses façons, à un réseau linéaire et à

un réseau quadratique, chacun d'eux empruntant la totalité des

sommets du réseau cubique donné.
Les réseaux cubiques que nous nous proposons d'examiner seront

sans isthmes et par conséquent sans feuilles. Il s'en suit qu'ils
seront toujours réductibles.

Rappelons encore les notions qui suivent dont nous ferons un
usage constant.

Un contour fermé est un réseau quadratique connexe. Il
comprend au minimum deux arêtes.

Si d'un contour fermé on supprime une, ou plusieurs arêtes en
connexion les unes avec les autres, on obtient un contour ouvert.
Un contour ouvert de n — 1 arêtes comprend n sommets.

Un arbre linéaire, parfois simplement désigné sous le nom d'ar-
bre, est un réseau connexe qui ne renferme aucun contour fermé.
Un arbre de n — 1 arêtes comprend n sommets. Ces n — 1 arêtes

constituent le nombre minimum d'arêtes qui permettent de
relier entre eux les n sommets envisagés. Un contour ouvert est
ainsi un arbre d'une forme particulière. Le théorème suivant est

connu :

// est possible de transformer en un arbre un réseau connexe
de a0 sommets et de at arêtes par la suppression de p. arêtes
convenablement choisies.

H a± — a0 -j- 1.

Un contour bouclé résulte de l'association d'un contour fermé et
d'un arbre (voire de plusieurs) à la condition que cette association
ne crée pas un second contour fermé. Un contour bouclé a un nombre

égal d'arêtes et de sommets.



330 J. CHUAHD

PREMIÈRE PARTIE

La MATRICE A.

Avec 0. Veblen (1912) nous caractérisons un réseau à l'aide d'une

matrice que nous dénommons : la matrice A. A cet effet nous
numérotons dans un ordre arbitraire les sommets

a\ a°2, a"; a°a0

puis les arêtes du réseau donné

a1i, a1-,, a1] a1a]

Nous introduisons alors un nombre à deux indices tj1^- qui est

égal à 1 si le sommet a°i limite l'arête a1j qui est nul dans tous
les autres cas. Nous disposons ces nombres T\1ij- en un tableau
rectangulaire de <x0 lignes et de ax colonnes. Ce tableau est la
matrice A. Chacune de ses lignes se rapporte à un sommet et
chacune de ses colonnes à une arête du réseau. Du moment qu'une,
arête est limitée par deux sommets distincts, une colonne de la
matrice A ne renferme que deux nombres égaux à 1. Dans une ligne
par contre il y en a un nombre égal au degré du sommet
correspondant.

Un déterminant est extrait de la matrice A s'il est formé de

lignes et de colonnes, partielles ou complètes, issues de cette
matrice. La recherche de la valeur d'un déterminant oblige souvent
à faire des combinaisons linéaires de ses lignes ou de ses colonnes.
Ces opérations sont toujours réduites selon le module 2. Il s'en suit

que pour les additions on a

1 + 1 0 1 + 0 0 + 1 1 0 + 0 0

et pour les multiplications

1.1 1 1.0 0.1 0 0.0 0

Ainsi donc nous ne travaillons qu'avec les nombres 0 et 1. Un
déterminant ne peut avoir que les valeurs 0 ou 1.

Le plus grand déterminant extrait de la matrice A qui n'est pas
nul, fixe le rang de cette matrice.

Un déterminant qui correspond à un contour fermé ou bouclé
est nul.

Dans le cas d'un arbre ou d'un contour ouvert, il y a un sommet
de plus que d'arêtes. On revient à l'égalité, sans supprimer la con-
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nexion de l'ensemble, en faisant abstraction d'un sommet libre. Le
déterminant correspondant est égal à 1.

Le rang de la matrice A d'un réseau connexe de a0 sommets est

égal à a0 — 1.

Veblen a imaginé d'associer à chaque ligne de la matrice A une
équation linéaire et homogène. Rappelons que la ligne de rang i de

cette matrice comprend les nombres

n1.!, r[1.2, -, n1*?,

Nous envisageons at inconnues xj et écrivons

(1) niix x1 + Tjii2 x2 + + t\hc<, za, 0 (mod. 2)

(i 1, 2, a0).

Les a0 équations ci-dessus constituent un système de a0 équations

linéaires et homogènes à aL inconnues que nous appellerons
le système (1). Chaque inconnue xj est liée à l'arête «+ Si Xj 1

cela signifie que l'arête a1] est retenue. Dans le cas contraire, cette
arête est momentanément omise. On fait donc abstraction des arêtes

marquées d'un 0 pour ne retenir que celles qui sont désignées

par 1.

Il va de soi que le rang du système (1) est celui de la matrice
de ses coefficients, soit <x0 — 1.

Résoudre le système (1) c'est rechercher la valeur de a0 — 1

de ses inconnues en fonction des autres ou si l'on préfère c'est
rechercher un système fondamental de solutions.

A cet effet on abandonne une des lignes du système (1) et fait
en sorte que le déterminant des a0 — 1 premiers coefficients des

inconnues du système restant soit différent de zéro. On isole ainsi
les a0 — 1 premières inconnues et en donnant la valeur 1 aux
autres, on forme une matrice de solutions à laquelle on peut donner
le nom de matrice fondamentale des solutions du système (1). Cela

signifie que cette matrice permet d'obtenir toutes les solutions du

système (1). Il ne faut pas oublier que toutes les opérations sont
faites selon le (mod. 2) et que par suite l'ensemble des solutions
du système (1) en comprend 2" — 1. Or on constate bien vite que
chacune d'elles correspond à un contour fermé (voire plusieurs)
constitué par des arêtes du réseau donné.

Ii va de soi que pour un système d'équations (1) déterminé, il
n'y a pas qu'une matrice fondamentale de solutions. Tout ensemble

de [i solutions linéairement indépendantes donne lieu à une
matrice fondamentale de solutions. Nous aurons l'occasion d'y revenir.
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Configurations superficielles.

Jusqu'ici nous avons examiné quelques propriétés des réseaux
envisagés comme systèmes de lignes, indépendamment des surfaces

sur lesquelles ils peuvent être tracés. La nature de la surface qui
supporte un réseau ne saurait cependant demeurer indifférente aux
propriétés de ce dernier. En effet tel réseau que l'on rencontre sur
une surface d'un certain genre ne se retrouve pas sur une surface
d'un autre genre. Il y a donc un réel intérêt à étudier les propriétés

d'un réseau en rapport avec celles de la surface qui le supporte.
Nous considérerons dans la suite des surfaces fermées bilatères telles

que la sphère, le tore, le tore à deux trous, Un réseau tracé
sur l'une d'elles transforme la surface en un polyèdre. On voit
ainsi apparaître des faces. Peu importe si ces faces sont planes ou
gauches.

Une face est toujours, pour nous, simplement connexe. Elle est
limitée par un contour fermé unique, sa frontière, qui comprend
au minimum deux arêtes. Si l'on considère une face isolément, nous
dirons que les arêtes de sa frontière sont de degré 1. Ce sont des

arêtes libres.
Si deux faces sont en connexion le long d'une arête commune,

celle-ci est une arête de liaison, soit de degré 2. Les autres arêtes
de l'une ou de l'autre de ces faces sont demeurées des arêtes
libres. Dans cette étude il ne sera fait état que d'arêtes de liaison
de degré 2.

Une configuration superficielle est dite connexe si, étant données

deux faces quelconques de la configuration, il existe des faces
soudées entre elles par des arêtes de liaison telles que l'on puisse
en se déplaçant sur ces faces et en traversant les arêtes de liaison
passer de l'une à l'autre.

La connexion d'une configuration superficielle est différente de

celle d'un réseau. Nous avons en effet montré qu'un réseau peut
être connexe sans que la configuration superficielle à laquelle il
sert de frontière le soit (Chuard, 1932, p. 59).

Voici quelques définitions qui nous seront utiles.
Une chaîne fermée est un ensemble de faces tel que chacune

d'elles soit contigue à deux faces de l'ensemble et à deux seulement.

Si une chaîne fermée comprend n faces, elle comprend
également n arêtes de liaison. Les autres arêtes des frontières de ces

faces sont des arêtes libres; elles forment deux contours fermés.
Un nœud superficiel est une chaîne fermée d'un type spécial.

Toutes ses arêtes de liaison convergent en un même sommet. La
frontière d'un nœud superficiel ne comporte qu'un contour fermé.
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Si d'une chaîne fermée ou d'un nœud superficiel on supprime une
ou plusieurs faces qui sont soudées entre elles, on forme une
chaine ouverte. Dans une chaîne ouverte de n faces on ne compte
que n — 1 arêtes de liaison. La frontière d'une chaîne ouverte ne

comporte qu'un seul contour fermé.
Un arbre superficiel est une configuration superficielle connexe

qui ne renferme ni nœud superficiel, ni chaîne fermée. Les n faces

d'un arbre superficiel sont maintenues en connexion par n — 1

arêtes de liaison. La frontière d'un arbre superficiel ne comporte
qu'un seul contour fermé. Une chaîne ouverte est un arbre superficiel

d'une forme particulière.
Une chaîne bouclée résulte de la soudure d'une chaîne fermée

et d'un ou de plusieurs arbres superficiels à la condition que cette
soudure n'entraîne pas la formation d'une nouvelle chaîne fermée.
Une chaîne bouclée a le même nombre d'arêtes de liaison que de
faces.

Un nœud bouclé se définit de la même manière.

La matrice B.

Nous sommes maintenant en présence d'un polyèdre, tel qu'il a

été défini plus haut, qui comprend a0 sommets, c^ arêtes et a2
faces. A l'aide des sommets et des arêtes de ce polyèdre, nous avons
dressé la matrice A. Nous allons dresser de la même façon la
matrice B à l'aide des arêtes et des faces. Pour cela nous introduisons
des nombres r\2jk qui seront égaux à 1 si l'arête axj fait partie de

la frontière de la face a2],, sinon ils seront nuls. Ces nombres
seront répartis dans un tableau rectangulaire de at lignes et de a2
colonnes, chaque ligne se rapportant à une arête et chaque colonne
à une face du polyèdre. Telle est la matrice B.

Sans qu'il soit nécessaire de nous étendre sur les avantages que
présente la matrice B, on peut faire les constatations suivantes :

Du moment qu'une arête de liaison est adjacente à deux faces du

polyèdre, et à deux seulement, chaque ligne de la matrice B
renferme deux termes égaux à 1, tous les autres étant nuls.

Dans chaque colonne les seuls termes qui ne sont pas nuls sont
ceux qui correspondent aux arêtes faisant partie de la frontière de
la face correspondante. Or ces arêtes constituent un contour fermé.

N'oublions pas que toutes les opérations de calcul se font selon
le (mod. 2). Il s'en suit que la valeur de tout déterminant extrait
de la matrice B est égale à zéro ou à 1.

En vertu de ce qui précède (deux termes égaux à 1 dans chaque

ligne), tout déterminant de a2 lignes et de a2 colonnes extrait
de la matrice B est nul. Le rang de la matrice B est donc inférieur
à cc2.
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Une chaîne fermée ou bouclée, un nœud superficiel simple ou
bouclé renferment le même nombre de faces et d'arêtes de liaison.
Tout déterminant extrait de la matrice B dont les lignes et les
colonnes correspondent à ces arêtes de liaison et à ces faces est nul.

Dans un arbre superficiel ou une chaîne ouverte, le nombre des

arêtes de liaison est inférieur d'une unité à celui des faces. Pour
obtenir l'égalité on fait abstraction de l'une des faces soudée à

l'ensemble par une seule arête de liaison (ce qui est toujours
possible) afin de ne pas détruire la connexion de la configuration
superficielle considérée. L'arête de liaison qui devient ainsi libre
est cependant considérée comme une arête de liaison non utilisée.
Le déterminant correspondant est alors égal à 1.

Il est possible de transformer le polyèdre donné, qui comprend
a2 faces, en un arbre superficiel comportant toujours ces <x2 faces

(sous la reserve exprimée ci-dessus) reliées les unes aux autres par
a2 — 1 arêtes de liaison, en supprimant ax — a2 -| - 1 arêtes
convenablement choisies. Le déterminant correspondant aux éléments
de cet arbre superficiel étant égal à 1, il s'en suit que le rang
de la matrice B est aussi égal à a2 — 1.

Nous avons indiqué un moyen de résoudre le système d'équations

(1) issu de la matrice A et avons constaté que toutes les
solutions de ce système résultent d'une matrice de solutions M à

laquelle nous avons donné le nom de matrice fondamentale de solutions

du système (1). De plus chaque solution caractérise un ou
plusieurs contours fermés constitués par des arêtes du réseau donné.
Or chaque colonne de la matrice B définit la frontière d'une face
du polyèdre, autrement dit un contour fermé. Elle représente donc

une solution du système (1). Et comme le rang de la matrice B

est égal à a2 — 1, il s'en suit que a2 — 1 colonnes de cette
matrice caractériseront des solutions linéairement indépendantes du
système (1). Ces colonnes pourront donc être utilisées dans la confection

d'une matrice fondamentale de solutions. Cette dernière
matrice sera désignée dorénavant par le symbole M'.

Imaginons maintenant que le réseau considéré soit tracé sur une
sphère. En vertu du théorème d'Euler on pourra écrire

ao — «1 + a2 2

ce qui conduit à

a1 — a0 + 1 a2 — 1 |u

Cela montre que pour la sphère, et pour la sphère seulement, on
obtiendra une matrice fondamentale de solutions du système (1) M'
en utilisant a2 — 1 colonnes de la matrice B. Ainsi il ne sera plus
nécessaire de résoudre ce système d'équations suivant la méthode

indiquée, la connaissance de la matrice B suffira.
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Réseaux tracés sur une sphère.

Exemple 1. Le réseau que nous envisageons ici (fig. 1)
comprend 8 sommets, 12 arêtes et 6 faces.

a*
aï

a. ai
as

a

Fig. 1.

Pour étudier cet exemple, nous suivons exactement la méthode

qui vient d'être exposée. Nous dressons la matrice A qui permet
d'établir le système d'équations (1). Nous résolvons ce système
d'équations et obtenons une matrice fondamentale de solutions M.
Les colonnes de cette dernière sont désignées par les symboles

Ci, C2, C3, C4, C6. Nous dressons ensuite la matrice B qui
renferme 6 colonnes dont les 5 premières constitueront la matrice M'.

Matrice A

«\ «S «s a\ "h ^6 a\ «H a\ fllio a1!! a\2

a\ 1 0 0 0 0 0 0 1 1 0 0 0

°°2 1 1 0 0 0 0 0 0 0 1 0 0

a°3 0 1 1 0 0 0 0 0 1 0 0 0

«°4 0 0 1 1 0 0 0 0 0 0 1 0

«°5 0 0 0 1 1 0 0 0 0 1 0 0

«°e 0 0 0 0 1 1 0 0 0 0 0 1

«°7 0 0 0 0 0 1 1 0 0 0 1 0

a\ 0 0 0 0 0 0 1 1 0 0 0 1
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0)

«1 ~\~ «2

«2 + «3 -f «s

«5

Xr.

HO

+ »1

S'YSTÈME (1)

+ XS + rx3 0

+ «5 + «10 °
«fi + «12

«u o

\ «7 + «8 ~T «12

(2)

«8 ~H «9

«8 I «9

x8 + x1

«8

«8

o

«io t «ii
«u
«11 X «12

öV

Matrice M Matrice B

L,l L2 c, c4 Cr, a\ «22 <x> «24 " 5 a\

1 1 0 0 0 1 0 0 0 1 0

1 1 1 0 0 1 1 0 0 0 0

1 0 1 0 0 0 1 ü 0 0 1

1 0 1 1 0 0 1 1 0 0 0
1 0 0 1 0 0 0 1 0 1 0
1 0 0 1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0 1 0 1

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 1 0 0 1 0

0 0 0 1 0 0 0 1 0 0 1

0 0 0 0 1 0 0 0 1 1 0

La matrice M' est constituée par les 5 premières colonnes de la
matrice B. C'est cette matrice M' que nous avons utilisée pour
obtenir l'ensemble des 31 solutions (25 — 1) que comporte le
système (1). Nous en avons dressé le tableau D en notant au bas de

chaque colonne le nombre d'arêtes que compte la solution
correspondante.

Exemple 2. Ce réseau (fig. 2) comprend 10 sommets, 15 arêtes
et 7 faces. Nous avons dressé la matrice A de laquelle nous avons
tiré le système d'équations (1). Ce système a été résolu, ce qui
nous a conduit à la matrice M. Nous avons donné ensuite la
matrice B dont 6 colonnes (par exemple les six premières) constituent
une matrice M' qui peut parfaitement remplacer la matrice M.

Le. système (1) a donc 6 solutions linéairement indépendantes et

en tout 26 — 1 solutions. Pour les obtenir, il est indiqué d'utiliser



Tableau de l'ensemble des solutions du système (1)

4 5 5 5 5
5
4

3 4 5 4 5 5 4 5 5 5 3 3 4 4 4 3

2 3 4 5 3 4 5 4 5 5 2 2 2 3 3 4 3 3 4 4 2 2 2 3 3 2

a\ «22 «23 a\ «25 1 1 1 1 2 2 2 3 3 4 1 1 1 1 1 1 2 2 2 3 1 1 1 1 2 1

flll 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0

fll2 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0

fll3 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1

fll4 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0

fll5 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0

fll6 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0

a11 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1

al8 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1

fll9 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1

alio 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0

fllll 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1

a112 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0

(*) 3 4 4 3 5 5 7 6 6 6 7 7 5 7 6 7 8 6 8 8 7 7 7 8 6 8 6 7 7 6 5

(*) Nombre d'arêtes que comporte chaque solution.
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ae
ae

as a7

ai

a6

asai

Fig. 2

la matrice M'. Nous n'avons pas jugé à propos de publier le
tableau D de cet ensemble de solutions. Rappelons simplement qu'il
comprend 3 solutions de 2 arêtes, 3 de 4 arêtes, 6 de 5 arêtes,
1 de 6 arêtes, 12 de 7 arêtes, 12 de 8 arêtes, 14 de 9 arêtes et
12 de 10 arêtes.

RÉSEAU TRACÉ SUR UN TORE.

Ce réseau (fig. 3) comporte 4 sommets, 8 arêtes et 4 faces.

Dans la fig. 3 nous admettons que la face a23 est située exactement
sous la face a24 et la face a24 sous a22 ¦ Nous agissons comme
précédemment en dressant la matrice A puis en résolvant le système
d'équations (1) qui en est issu. Ce système comprend 4 équations
à 8 inconnues, mais comme le rang de la matrice A est égal à 3,

il s'en suit que la matrice M comportera 5 colonnes.
La matrice B renferme 4 colonnes, mais comme son rang est

égal à 3, 3 seulement d'entre elles caractériseront des solutions
linéairement indépendantes du système (1). Elles ne suffiront pas

pour former une matrice M'. Cette dernière comprendra nécessairement

2 colonnes de la matrice M. C'est ce qui permet de conclure

que si sur la sphère tout contour fermé délimite une certaine aire
composée d'une ou de plusieurs faces du polyèdre envisagé, sur le

tore il y a des contours fermés qui ne limitent pas d'aire, fait
qui est d'ailleurs parfaitement connu.
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Le tore a deux trous

Nous envisageons ici (fig. 4) un réseau tracé sur un tore (ou

coussin) à deux trous qui comprend : 6 sommets, 12 arêtes et 4

faces. Sur le dessin la face a23 est située sous la face a\ et la face

a24 sous la face a22.
Les opérations à effectuer sont identiques aux précédentes. De

la matrice A on déduit le système d'équations (1) que l'on résout.
Puis on dresse la matrice B. Il faut remarquer que le rang de

chacune des matrices A et B est égal à 3. Le système d'équations (1)

comporte 6 équations à 12 inconnues, mais comme 5 seulement de

ces équations sont linéairement indépendantes, la matrice M des

solutions de ce système comprendra 7 colonnes qui seront dési-

signées par les lettres Ct, C2,..., C7. Les colonnes de la matrice B

ne donneront que 3 solutions linéairement indépendantes. Il s'en

suit que pour former une matrice M' à l'aide de ces 3 colonnes on

se verra dans l'obligation de conserver 4 colonnes de la matrice M.

Il en serait d'ailleurs de même quelque soit le réseau qui affecterait

la même surface.

ai

az a4

Fig. 4.
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Matrice A

fl°«

"h fl1* "h a\ "h «\ a-S "h «s a1« A1!! flX12

1 0 0 0 0 0 0 0 0 1 1 1

1 1 0 0 0 0 0 0 1 1 0 0

0 1 1 0 0 0 0 1 1 0 0 0

0 0 1 1 0 0 1 1 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 1 1

Système (1)

(1)

«1 + «10 + «11 + «12 0

«i ~r «2 4" «9 ~r «io 0

«2 4~ «3 4~ «8 4~ «Î =0
«3 + «4 + «7 4" «8 =°
«4 4" «5 4- «6 4" «7 o

«5 4~ «6 4~ «11 4" «12 — o

Matrice M

Ci C2 Cr3 C4 C5 Lg C7

a\ 0 0 0 0 1 1

al2 0 0 0 1 0 1

al3 0 0 1 0 0 1

«X4 0 1 0 0 0 1

^5 1 0 0 0 0 1

ah 1 0 0 0 0 0 0

fll7 0 1 0 0 0 0 0

«X8 0 0 1 0 0 0 0

^9 0 0 0 1 0 0 0

alio 0 0 0 0 1 0 0

A1!! 0 0 0 0 0 1 0

a1!» 0 0 0 0 0 0 1

Matrice B

a\ a\ «23 a2

1 1 0 0

1 0 1 0
1 1 0 0
1 0 1 0

1 1 0 0

0 0 1 1

0 1 0 1

0 0 1 1

0 1 0 1

0 0 1 1

0 1 0 1

1 0 1 0
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Matrice M t

Ci c2 c3 C4 a\ «2a 2 fl2.

A1! 0 0 0 0 1 0

«S 0 0 0 1 0 1

"h 0 0 1 0 1 0

a\ 0 1 0 0 0 1

ah 1 0 0 0 1 0

ah 1 0 0 0 0 0 1

ah 0 1 0 0 0 1 0

ah 0 0 1 0 0 0 1

ah 0 0 0 1 0 1 0

a\o 0 0 0 0 0 0 1

a\i 0 0 0 0 0 1 0

I1!!» 0 0 0 0 1 0 1

Les remarques que nous avons faites à propos du tore en ce qui
concerne la matrice M' se retrouvent ici avec encore plus de

pertinence. On ne peut pas obtenir une matrice fondamentale de solutions
du système (1) sans résoudre ce dernier. Une matrice M' comprenant,
des colonnes de la matrice B contiendra nécessairement des colonnes

de la matrice M. Cela s'explique par le fait qu'il existe sur la
surface considérée des contours fermés qui ne limitent pas d'aire
de la surface.

Il y a ainsi une grande différence entre la sphère et les surfaces

fermées d'un autre genre. Lorsqu'un réseau est tracé sur une
sphère, il n'est pas nécessaire de résoudre le système d'équations (1)

auquel il conduit. On a immédiatement une matrice fondamentale
de solutions M' en utilisant a2 — 1 colonnes de la matrice B.

Telle est la raison pour laquelle, dans les pages qui suivent, nous
n'allons envisager que des réseaux cubiques tracés sur une sphère.
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DEUXIÈME PARTIE

Etude systématique, selon la méthode de 0. Veblen,
des réseaux cubiques tracés sur une sphère.

Ainsi donc nous n'examinerons ici que des réseaux cubiques tracés

sur une sphère. Ces réseaux donnent naissance à des polyèdres
homéomorphes à la sphère. Nous admettons que le polyèdre considéré

repose sur une de ses faces (celle que l'on ne voit pas); par
suite toutes les autres sont parfaitement visibles. Et pour éviter
toute confusion nous précisons que la frontière d'une face est
constituée par un contour fermé unique composé d'un certain nombre
d'arêtes du réseau donné, deux au minimum. De plus une arête sert
toujours de frontière à deux faces distinctes du polyèdre.

La face de base du polyèdre peut être celle dont la frontière
comprend le plus grand nombre d'arêtes (on dit aussi de côtés), ou le

plus petit ou un nombre intermédiaire. Cela n'a aucune importance.
Il faut cependant remarquer que le polyèdre peut se présenter sous
des aspects différents suivant la face qui a été choisie pour base du

polyèdre.
Nous partons d'un polyèdre comprenant a0 sommets, a4 arêtes et

<x2 faces et introduisons le nombre u. égal à

u. a2 — 1 a4 — a0 + 1

puisqu'il s'agit de la sphère. Nous dressons les matrices A et B

ainsi que cela a été exposé plus haut. Le rang de la matrice A est
égal à a0 — 1. Celui de la matrice B à (i. De la matrice A nous

extrayons le système d'équations linéaires et homogènes (1). Les

opérations d'arithmétique s'effectuant selon le module 2, le système

(1) a 2 " — 1 solutions. Ces solutions s'expriment en nombres
0 ei 1. Elles sont représentées sur le réseau par des contours
fermés, les arêtes marquées d'un 1 étant seules prises en considération.
Or les faces du polyèdre sont limitées par des contours fermés. Chaque

colonne de la matrice B caractérise une solution du système (1).
\x d'entre elles sont linéairement indépendantes. Ces \i colonnes
forment la matrice fondamentale M' de solutions du système (1). Un
tableau D comprenant l'ensemble des solutions du système (1) peut
parfaitement se dresser à l'aide de la matrice M'. Nous allons
l'examiner.

Il comporte a4 lignes et 2 — 1 colonnes qui résultent des additions

entre elles des }x colonnes de la matrice M'. Certaines lignes
de cette matrice renferment un seul nombre 1, les autres en ont
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• leux. Regardons comme un indice le chiffre qui marque le rang de
la face correspondante du polyèdre. Cet indice se répète dans le
tableau D 2"_1 fois. Si donc cet indice caractérise l'unique 1 d'une
ligne de la matrice M' on comptera sur cette ligne du tableau D
2' '~1 nombres 1.

Si une ligne de la matrice M' renferme deux nombres 1, il faut
se rappeler que 1 + 1 0 et que par suite on doit envisager
séparément chacun de ces deux indices (en supprimant l'autre) ce

qui conduit à 2 2<"-2 2^_1, autrement dit le même nombre

que précédemment. Il en résulte que chaque ligne du tableau D
renferme 2iu_1 nombres 1 et que par suite le tableau D dans son
ensemble en renferme un nombre N a4 2^_1.

On constate ainsi que le nombre fj, joue un rôle essentiel. En

vertu du théorème d'EuLER on peut écrire les égalités suivantes :

3 2

Si par conséquent \a est connu, tous les éléments du polyèdre le
sont également de même que N. C'est la raison pour laquelle
dorénavant nous choisirons ce nombre fx comme terme de référence.

Il va de soi qu'en général, p. étant fixé, il peut exister plusieurs
polyèdres qui diffèrent entre eux par le nombre d'arêtes qui leur
servent de frontières. Pour tous ces polyèdres le nombre N demeure
invariable.

Les solutions du système (1) comporteront au minimum deux
arêtes (s'il existe au moins une face limitée par deux arêtes

seulement) et au maximum <x0, soit le nombre des sommets du

polyèdre. Dans ce dernier cas, nous serons en présence d'un
réseau quadratique, les arêtes n'intervenant pas constituant un réseau

linéaire. En obtenant de telles solutions, nous aurons opéré la
réduction du réseau cubique donné en un réseau quadratique et un
réseau linéaire. Le théorème de Petersen nous apprend que cette
réduction est toujours possible. Ainsi de tels réseaux quadratiques
existent toujours.

Il convient maintenant de rappeler que nous avons proposé de

répartir ces réseaux quadratiques en trois types, cela de la façon
suivante (Chuard, 1932, p. 68) :

Type I. Le réseau quadratique est d'un seul tenant. Il est
autrement dit constitué par un contour fermé unique.

Type II. Le réseau quadratique comprend deux ou plusieurs
contours fermés, chacun d'eux renfermant un nombre pair d'arêtes.

Type III. Le réseau quadratique comprend également deux ou

plusieurs contours fermés, certains d'entre eux ayant un nombre

impair d'arêtes.
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Remarquons que, du moment que le nombre des sommets du
polyèdre est pair, dans un réseau quadratique du type III, le nombre
des contours fermés comprenant un nombre impair d'arêtes est lui-
même pair.

Au surplus si une solution du système (1) comporte deux contours
fermés, ceux-ci sont nettement séparés l'un de l'autre. Du moment
qu'à chaque sommet du polyèdre n'aboutissent que trois arêtes et

que chaque arête n'est comptée qu'une fois, il n'y a aucune possibilité

de rencontre de deux contours fermés. La région du polyèdre
qui est comprise entre les deux contours fermés d'une solution du

système (1) caractérise une chaîne fermée telle que nous l'avons
définie précédemment.

La matrice M'

Ainsi que nous l'avons constaté plus haut, les solutions du
système (1) s'obtiennent indifféremment à l'aide d'une matrice M ou
d'une matrice M'. Lorsqu'il s'agit de polyèdres homéomorphes à une
sphère, on ne se donne pas la peine de rechercher une matrice M,
la connaissance de la matrice M' est immédiate. Il convient donc de

mettre en évidence ses caractères.
On a vu que l'on peut classer ses lignes en deux catégories

suivant qu'elles renferment un ou deux nombres 1. Lorsqu'il n'y en a

qu'un, ce nombre caractérise une face du polyèdre. Mieux il représente

l'arête qui sépare cette face de la face de base du polyèdre.
On peut le considérer comme un indice qui est compris entre 1 et

fi. Il va de soi que si ces faces ont plusieurs arêtes en commun, cet
indice sera répété plusieurs fois.

Les autres lignes de la matrice M' renferment deux nombres 1.

Elles caractérisent des arêtes servant de frontière à deux faces

adjacentes du polyèdre, la face de base étant exclue. Ces arêtes
pourraient être qualifiées d'internes par opposition à celles qui limitent
la face de base que l'on dénommerait arêtes externes. Les arêtes
internes seraient assujetties à deux indices / et k distincts, tous
deux compris entre 1 et fi. Le nombre des groupes de ces deux
indices est bien connu puisqu'il est égal à 1/2 fi (fi — 1). Là encore
si deux faces du polyèdre ont en commun plusieurs arêtes internes,
le même groupe d'indices jk se répète plusieurs fois.

Dans ces conditions, ce qui paraît prendre de l'importance, c'est
la numérotation des faces du polyèdre de 1 à fi. Les arêtes limitant

la face de base seront notées d'un seul indice, toutes les
autres le seront à l'aide de deux indices.

On peut opérer une distinction analogue à l'égard des sommets

en disant que ceux d'entre eux qui appartiennent à la frontière de

la face de base sont externes, les autres sommets étant internes. Mais



RESEAUX TRACES SUR UNE SURFACE FERMEE BILATERE 347

à ces derniers on préfère donner le nom de nœuds. Il va de soi

que ces qualifications sont toutes relatives, attendu qu'elles dépendent

de la présentation du réseau celle-ci résultant du choix que
l'on a fait pour la face de base.

Revenons maintenant au tableau D en reprenant, pour fixer les

idées, l'exemple de la fig. 1. 11 s'agit d'un réseau composé de 2

triangles, de 2 quadrilatères et de 2 pentagones. Le polyèdre qui
en résulte comprend donc 6 faces, 12 arêtes et 8 sommets. Le nombre

fi est égal à 5. Nous avons déjà indiqué, page 337, le tableau D

auquel il donne lieu. C'est un tableau de 12 lignes et 31 colonnes.

Chaque ligne contient 16 nombres 1. Il s'en suit que

N 12 16 192.

Si l'on classe ces colonnes en catégories suivant la quantité de

nombres 1 qu'elles renferment, on obtient

2x3,2x4,4x5,8 10 X 7 5X8.
Une solution du système (1) comporte au minimum 3 arêtes

(puisque la plus petite face du réseau est un triangle) et au maximum

8 (soit le nombre des sommets du réseau).
On peut encore ajouter que le réseau cubique considéré renferme

5 réseaux quadratiques distincts. Nous désignerons volontiers ces

réseaux par le symbole R, ceci par souci d'abréviation. Nous les

représentons fig. 5 en constatant que les deux premiers tracés sont
du type HT tandis que les trois derniers sont du type I. Les arêtes
de ces réseaux quadratiques sont marquées de traits renforcés

Fig. 5.

Le nombre fi étant égal à 5, il existe d'autres réseaux cubiques

pour lesquels le nombre N est égal à 192 : le cube par exemple,,
dont les 6 faces sont des quadrilatères. On y rencontre 9 réseaux
quadratiques distincts.

La recherche du nombre de ces derniers nous intéressant d'une

façon toute particulière, nous désignerons dorénavant par n le nombre

des réseaux R contenus dans un réseau cubique donné. Le
tableau qui suit indique différentes valeurs de n correspondant à quelques

valeurs de fi.
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Il va de soi que ce tableau est très incomplet. Il n'est d'ailleurs
donné uniquement qu'à titre indicatif, ceci pour bien montrer la
grande variété du nombre de réseaux quadratiques qui sont contenus

dans un réseau cubique donné. Dès que le nombre fi prend quelque

importance, les nombres N et n deviennent extrêmement grands.

Fig. 6

Constatons maintenant que l'exemple fourni par la fig. 2 appartient

au groupe fi 6. Il renferme 12 réseaux quadratiques qui
sont tous du type IT. Nous l'avons choisi précisément pour cette
raison. Nous indiquons (fig. 6) quatre de ces réseaux, les huit autres
s'obtenant de ceux qui sont représentés par une simple rotation
autour du centre de chaque dessin. Là encore les arêtes des réseaux R

ont été marquées par des traits renforcés.

Examen de quelques cas particuliers

a) Un réseau cubique d'un type spécial est celui qui comporte
2 faces de 2 fi — 2 arêtes et fi — 1 faces de 2 arêtes. Si l'on
totalise le nombre des arêtes on obtient 6 fi — 6 2 a4 soit le
double du nombre d'arêtes du réseau, ce qui est normal attendu

que chaque arête a été comptée deux fois. Tous les sommets sont
situés sur la frontière de la face de base. 11 n'y a donc pas de

nœuds. Le nombre des réseaux quadratiques que renferme le réseau
donné est 2U_1 + 1. En effet la frontière de la face de base en
est un. Puis on peut associer à cette frontière celles des faces de

2 arêtes, combinées entre elles de toutes les manières possibles, ce

qui donne 2<u_1.

b) Un second cas est celui qui est donné par un réseau composé
de 2 faces de 2 côtés, fi — 2 faces de 4 côtés et une face de

2 fi — 2 côtés. Si l'on totalise le nombre des arêtes on obtient
également 6 fi — 6 comme ci-dessus. On crée de tels réseaux par un
procédé élémentaire que nous tenons à exposer. On part du réseau

qui renferme un nombre minimum d'éléments. Il comprend 3 faces,
3 arêtes et 2 sommets : fi 2. L'une des faces étant la face de

base, 2 faces seules sont apparentes. Ces faces sont liées entre elles

par une arête que nous supposons verticale. Une arête extérieure est
à gauche, l'autre à droite. Sur l'arête de gauche, nous marquons
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2 points qui deviennent des sommets. Cette arête est ainsi remplacée

par 3 arêtes. Les nouveaux sommets sont reliés entre eux par une
nouvelle arête. Un nouveau polyèdre est donc créé qui comprend
4 faces, dont 2 de 2 côtés et 2 de 4 côtés. La face de gauche est
limitée par 2 arêtes dont l'une est extérieure.

Sur cette arête extérieure nous marquons 2 points qui deviennent

des sommets lesquels sont reliés par une nouvelle arête. Nous
créons un nouveau polyèdre qui comporte 5 faces soit 2 faces de
2 côtés, 2 de 4 côtés et une de 6 côtés. Ici fi 4. La face de

gauche est encore limitée par 2 arêtes dont l'une est extérieure.
On répète la même série d'opérations et l'on aboutit à un polyèdre

de 6 faces, fi 5, comprenant 2 faces de 2 côtés, 3 de 4 côtés et
une de 8 côtés. C'est ainsi que finalement on aboutit à la disposition

générale énoncée plus haut.
Il va de soi que de tels polyèdres ne renferment pas de nœuds,

tous les sommets étant situés sur la frontière de la face de base.

En ce qui concerne les réseaux quadratiques contenus dans de tels

réseaux, les constatations suivantes s'imposent :

Le premier réseau renfermait 3 réseaux quadratiques. Chacune
des arêtes du réseau cubique se retrouve dans 2 réseaux quadratiques.

C'est le cas, par exemple, de l'arête sur laquelle nous avons
marqué 2 nouveaux sommets. L'un et l'autre de ces 2 réseaux
quadratiques vont donner naissance dans le nouveau polyèdre à 2

réseaux quadratiques et le troisième à un seul. Nous voyons donc que
si

fi 2, il y a 2+1 =3R.
fi 3, ilya 2 2 + 1 5 R.

Quand on passera de ft 3 à fi 4, l'arête sur laquelle sont
marqués les 2 nouveaux sommets se retrouvera sur 3 réseaux
quadratiques et non sur les deux autres. Il s'en suit que pour

fi 4, ilya3.2 + 2 8R.
Pour les mêmes raisons, si l'on continue on obtient pour

fi 5, 5 2 + 3 13 R.
fi 6, 8 2 + 5 21 R.
fi 7, 13 2 + 8 34 R.
H 8, 21 2 + 13 55 R.
fi 9, 34 2 + 21 89 R.

c) Un autre exemple de même nature mais qui diffère cependant
des précédents est celui qui est caractérisé par 1 face de 2, 2 de

3, fi — 4 de 4, 1 de 5 et 1 de 2 fi — 3 arêtes. Là encore on
constate que le total des arêtes est 6 ju. — 6 soit 2a4.
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Le nombre de réseaux quadratiques que renferme un réseau
donné obéit à la même loi que celle du cas b) à la seule réserve
d'un décalage dans la valeur de fi. En effet c'est pour fi 3 que
l'on rencontre 3 réseaux quadratiques. Pour fi 4, il y en

aura 5, pour fi 5, il y en aura 8, etc.
Ce qui est intéressant à relever, c'est que tous ces réseaux

renferment un nœud.

d) Il convient encore d'examiner cet autre cas de réseaux qui
renferment 2 nœuds et comprennent 1 face de 2 côtés, 1 de 3,

fi — 3 de 4, 1 de 5 et 1 de 2 fi — 4 côtés. Si l'on totalise ces

derniers on trouve 6fi — 6 qui est effectivement égal à 2a4.
On constate immédiatement que le réseau, pour lequel fi 4,

qui renferme 2 faces de 3 côtés et 3 faces de 4 côtés contient 4
réseaux quadratiques. Par l'adjonction d'une nouvelle arête nous

remplaçons une des faces triangulaires par une face de 2 et une
face de 4 côtés. Nous obtenons ainsi un polyèdre de 6 faces

comprenant une face de 2 côtés, 1 de 3, 2 de 4, 1 de 5 et 1 de 6

côtés pour lequel fi 5. 3 des réseaux quadratiques cités plus
haut donnent naissance chacun à 2 nouveaux réseaux quadratiques et
1 à 1 seul. Il s'en suit que :

fi 5 conduit à 3.2 + l 7R.

En suivant le même processus que précédemment, on crée une
face de plus, ce qui donne un polyèdre de 1 face de 2 côtés, 1

de 3, 3 de 4, 1 de 5 et 1 de 8 côtés. Des 7 réseaux quadratiques
que nous venons d'obtenir, 4 donnent lieu chacun à 2 réseaux
quadratiques nouveaux et 3 à un seul. D'où

fi 6 et 4 2 + 3 11 R.

Ces opérations peuvent se poursuivre, ce qui conduit à

fi 7 7. 2 + 4 18 R.
fi 8 12. 2 + 6 30 R.

Cette étude quoique sommaire va nous permettre de tirer des

conclusions intéressantes. A cet effet pour fixer les idées, admettons

que fi 6.

Le réseau considéré est du type :

b) Fig. 7.1 II comprend 2 faces de 2, 4 de 4 et 1 de 10 côtés.

Il n'a pas de nœud et renferme 21 R.

e) Fig. 7.2 II comprend 1 face de 2, 2 de 3, 2 de 4, 1 de 5

et 1 de 9 côtés.

Il a 1 nœud et renferme 13 R.
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d) Fig. 7.3 II comprend 1 face de 2, 1 de 3, 3 de 4, 1 de 5

et 1 de 8 côtés.

Il a 2 nœuds et renferme 11 R.

Fig. 7.4 11 comprend 3 faces de 3, 2 de 4, 1 de 6 et 1 de
7 côtés.

Il a 3 nœuds et renferme 7 R.

Fig. 7.5 II comprend 2 faces de 3, 2 de 4, 2 de 5 et 1 de
6 côtés.

Il a 4 nœuds et renferme 6 R.

Fig. 7.

Du moment que le réseau a dans son ensemble 10 sommets et

que 6 d'entre eux se trouvent sur la frontière de la face de base,

il ne peut y avoir au maximum que 4 nœuds. II s'en suit que pour
les réseaux tels que fi 6 il y a au minimum 6 réseaux quadratiques.

On pourrait répéter des opérations analogues sur d'autres
réseaux cubiques. On serait amené à conclure que les réseaux que nous
envisageons renferment au minimum fi réseaux quadratiques.

Dans tous les cas un fait est certain : la présence d'une face

limitée par 2 arêtes seulement augmente le nombre des réseaux

quadratiques que renferme un réseau cubique donné. On pourrait
poursuivre cette étude. Nous préférons la reprendre sous une autre

forme.
Remarque. Lorsqu'un réseau quadratique est du type I, il est

formé d'un contour fermé unique qui comprend un nombre pair
d'arêtes. Il est par suite decomposable en deux réseaux linéaires.
Le réseau cubique donné est ainsi decomposable en trois réseaux
linéaires. Comme on peut associer entre eux, deux à deux, ces

réseaux linéaires de 3 manières différentes, on aboutit ainsi à trois
réseaux quadratiques distincts. On peut dire que ces trois réseaux
forment une famille. Il arrive qu'ils soient tous trois des réseaux
du type I. Il se peut aussi que certains d'entre eux soient du

type II. Pour effectuer cette décomposition, on aurait pu partir
d'un réseau du type IL Mais alors il existe une plus grande
variété d'association des réseaux linéaires entre eux, par suite des

familles de réseaux quadratiques plus étendues.
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Arbres linéaires
On peut étudier les réseaux cubiques tracés sur une sphère en

procédant d'une toute autre façon. Il n'y a qu'à faire apparaître
sur le réseau donné un arbre qui relie entre eux l'ensemble de ses

sommets. Du moment que le réseau renferme a0 sommets, un tel
arbre comprend a0 — 1 arêtes. Il présente des sommets de degré

1 (sommets libres), de degré 2 (sommets de liaison), de degré 3

(bifurcations). Le nombre des sommets libres est toujours supérieur

de deux unités à celui des bifurcations. Si l'arbre a n'a pas
de bifurcations, il devient un contour ouvert.

Une façon de distinguer ces arbres entre eux consiste à les classer

d'après le nombre de leurs bifurcations. Au surplus, bien que
cela n'ait pas une grande importance, on constate qu'un tel arbre
a au plus 2, parfois 3 bifurcations. Le problème qui se

pose naturellement est celui de la réduction du nombre des

bifurcations d'un arbre donné. Il faut remarquer à ce propos que
si deux sommets libres de l'arbre limitent la même arête du

réseau, en adjoignant cette arête à l'arbre on forme un contour bouclé,

lequel renferme un contour fermé. Ce dernier est relié à

l'ensemble en un sommet qui est une bifurcation. Mais si l'on supprime
une des arêtes qui passent par cette bifurcation et qui fait partie

du contour fermé, la bifurcation disparaît et l'on retrouve un
arbre. Par ce moyen le nombre des bifurcations de l'arbre considéré
a diminué d'une unité (parfois de deux).

Le cas limite est celui dans lequel l'arbre est devenu un contoui
ouvert. Les bifurcations ont alors disparu. A ce propos, il y a lieu
de distinguer deux cas.

a) Les deux sommets libres du contour ouvert limitent la même
arête du réseau. Nous disons que nous sommes en présence d'un
contour V.

b) Dans tous les autres cas, nous disons qu'il s'agit d'un contour

Z.

Jl
8.

Nous donnons (fig. 8) des types d'arbres contenus dans le

réseau de la fig. 1. La fig. 8.1 fait apparaître 3 bifurcations, la

fig. 8.2 n'en a plus qu'une, les deux autres n'en ont point. La

fig. 8.3 est un contour Z et la fig. 8.4 un contour V.
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Fig. 9

La fig. 9 fait de même avec l'exemple 2).
Si l'on revient au cas général, on doit constater que le

problème de la réduction du nombre des bifurcations d'un arbre donné
est de même nature que celui qui consiste à passer d'un contour Z
à un contour V. Si en effet un tel passage est réalisé, ainsi que
nous venons de le voir, la diminution du nombre des bifurcations
d'un arbre est certaine. Et comme un arbre a toujours un nombre
de sommets libres égal à celui des bifurcations plus 2, les
possibilités de faire en sorte que deux sommets libres limitent la même
arête du réseau sont plus grandes que pour un contour Z.

Nous partons donc d'un contour Z qui rencontre tous les sommets

d'un réseau cubique donné et nous désignons par P et Q
chacune de ses extrémités. Ce sont des sommets libres par lesquels
passent 2 arêtes du réseau qui n'appartiennent pas au contour Z.
Nous allons exposer ce que nous entendons par une opération double.

Pour cela nous admettons que l'un de ces sommets, P par
exemple, demeure immobile. Nous utilisons une des arêtes du
réseau qui rencontrent Q, n'importe laquelle des deux, qui n'appartient

pas au contour Z et l'associons à celui-ci. Nous créons de cette
manière à la fois une bifurcation et un contour bouclé. Ce dernier
renferme un contour fermé, puisqu'il s'agit d'un réseau tracé sur
une sphère, limite une certaine aire de cette surface. Pour faire
disparaître à la fois le contour fermé et la bifurcation, on ne dispose

que d'une arête (sinon on revient en arrière). La suppression de cette
arête conduit à un sommet du réseau que nous désignerons par Qr
Le contour PQ4 est un nouveau contour Z que nous caractériserons

par Zv
Si nous qualifions cette opération d'opération double, cela

provient de ce que d'une part elle a exigé l'association d'une arête du
réseau au contour Z et d'autre part la suppression d'une autre
arête de ce contour. Entre les sommets Q et Q4 se trouve un autre

sommet du réseau qui ne reçoit pas de nom. De plus le passage

de Q à Qt s'effectue en contournant une face du polyèdre,
donnant à celle-ci pour ainsi dire une certaine orientation.

On n'aura qu'à répéter, à partir de Q4, une nouvelle opération
double qui nous conduira à un autre sommet Q2, et ainsi de suite.
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Il faut remarquer que si au départ de Q on avait le choix entre
deux arêtes du réseau, ce choix n'existe plus à partir dc Q4 ou
de Q2 car alors une seule arête est à disposition.

Pour illustrer cette méthode nous ne pouvons mieux faire que
de reprendre le contour Z de la fig. 8.2 dans la fig. 10. Deux

opérations doubles suffisent pour passer du contour Z donné à un
contour V.

Q2 P

Fig. 10.

Les arêtes utilisées pour passer de Q à Q4 puis à Q2 forment
un parcours spécial auquel nous avons réservé le nom de Tracé T.

Il se peut, ce qui est très fréquent, que le tracé T conduise à un
contour V. Le problème posé est alors résolu. Il peut cependant
arriver que, pour des raisons que nous devons mettre en évidence,
après un certain nombre d'opérations doubles, on retrouve exactement

le contour Z initial. Nous dirons alors que nous sommes en

présence d'une série irréductible d'opérations doubles.
Si tel est le cas, on admet que le sommet Q demeure immobile

et que la série d'opérations doubles part du sommet P. Là encore
il arrive fréquemment que l'on aboutisse à un contour V. Mais il
peut également se faire que l'on soit en présence d'une nouvelle
série irréductible d'opérations doubles. Nous devons donc examiner
quand et comment cela se produit. Pour cela nous pensons que le
meilleur moyen consiste à reprendre l'examen d'un cas spécial

pour passer ensuite à celui du cas général. A cet effet nous

reprenons l'exemple 2) qui a été choisi précisément parce qu'il ne
renferme aucun réseau quadratique du type I et par conséquent
aucun contour V.

La fig. 11.1 représente un contour Z dont le sommet P coïncide
avec le sommet a°3 et le sommet Q avec le sommet a°9 de la fig. 2.

Durant toutes les transformations le sommet P est demeuré fixe.
A partir du sommet Q on avait à disposition les arêtes a18 et a1ll.
Nous avons choisi l'arête a18. De ce fait le sommet a°8 est devenu
une bifurcation. Pour la faire disparaître il a fallu supprimer
l'arête a115. Cela nous a conduit au sommet a°1 qui est devenu Qv
En passant de Q à Q4 nous avons contourné la face a\, donnant
à cette dernière une orientation qui est indiquée par une flèche.
A partir de Q4 une seule possibilité s'offre à nous : l'association de
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l'arête a1^ puis la suppression de l'arête a1^ ce qui nous amène

au sommet a°6 soit Q2. Ce faisant nous avons contourné la faceup

imprimant à celle-ci une orientation marquée par une nouvelle
flèche. Maintenant nous tournons autour de la face a26 de telle
façon que le sommet Q3 soit confondu avec Q2. Poursuivant ainsi
le tracé T, nous revenons en arrière, le sommet Q4 étant confondu
avec Q, en contournant à nouveau la face a23 mais cette fois en
sens contraire du précédent, ce qui détruit l'effet de la première
orientation.

Il ne reste qu'à poursuivre ces opérations. Aucune ambiguïté
n'est possible. A chaque sommet Q; il n'y a qu'une arête à disposition.

Finalement après 12 opérations doubles, on retrouve non
seulement le sommet de départ Q (auquel on a passé plusieurs fois)
mais encore exactement le contour Z initial. Chemin faisant on a

créé des orientations sur les faces du réseau que l'on a contournées,

orientations qui ont régulièrement été annulées par les

opérations suivantes. La fig. 11 donne les résultats des 12 opérations
doubles et en plus le tracé T.

Q?Q5

*~N
QS

Q2

CU
OIO

Fig. 11.

Il va de soi que l'on aurait pu inverser les rôles de P et Q,
Q demeurant fixe, les opérations doubles partant de P. Même on
aurait pu laisser fixe n'importe lequel des sommets Q et répéter
de nouvelles opérations doubles. On aurait ainsi mis en évidence
des tracés T distincts, mais qui auraient présenté le même caractère.

En définitive cette situation résulte du fait que les faces a2t, a22,
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a23 ont chacune avec la face a27 deux arêtes frontières communes.

Nous pensons pouvoir ajouter que c'est là une obligation,
indispensable pour qu'un contour V n'existe pas.

En effet, du moment que deux faces, a23 et a27 par exemple, ont
en commun deux arêtes frontières, les arêtes al6 et a11, le tracé T
qui arrive à l'un des sommets a°6 ou a°7 ne peut en repartir que

par le même sommet, cela quel que soit le découpage de la face

fl2c si ce découpage existait (ce qui n'est pas le cas dans la fig. 11).
Le tracé T se trouve donc dans l'obligation de suivre une voie
parfaitement déterminée. Si cette obligation ne se produit qu'une ou
deux fois, cela n'a pas d'importance. Si par contre elle se répète
trois fois, ou davantage, la voie devient vicieuse en ce sens que
l'on supprime l'orientation que l'on vient de créer, redonnant ainsi
la situation initiale.

Nous ne pensons pas pouvoir mieux justifier cette affirmation
qu'en reprenant l'exemple de la fig. 11 auquel on adjoint une seule

arête, celle-ci étant choisie de façon qu'il n'y ait plus que deux faces

possédant une double frontière avec la face de base. La fig. 12

montre qu'il est alors aisé d'obtenir un contour V.

Fig. 12.

Constatons maintenant que Errera (1921, p. 36) dans ce qu'il
appelle le « cas difficile » admet que « deux pays ont au plus une
arête commune ». Ces pays sont pour nous les faces d'un polyèdre.
Si donc nous formulons la même condition, nous ne diminuons
en rien la généralité du problème. Nous supprimons simplement la
cause qui empêche l'existence d'un contour V. C'est ce que nous allons
faire dorénavant.

Existence d'un contour V

Les polyèdres que nous envisagerons dorénavant résultent de

réseaux cubiques tracés sur une sphère tels que deux faces contiguës
de ces polyèdres n'ont en commun qu'une seule arête. Nous nous

proposons de montrer que sur de tels réseaux il existe toujours au
moins un contour V. Il va de soi que l'existence d'un tel contour
assure celle d'un réseau quadratique du type t. Pour prouver cc
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fait nous allons partir d'un contour Z pour aboutir à un contour V
ce qui nous permettra du même coup de justifier la réduction du
nombre des bifurcations de n'importe quel arbre contenu dans le
réseau cubique donné. Rappelons à ce propos que si un tel arbre
présente k bifurcations, il a également k + 2 sommets libres. Si deux
de ces sommets libres limitent la même arête du réseau, en asso>-

ciant cette arête à l'arbre on forme un contour bouclé qui redevient
un arbre par la suppression de l'une des arêtes du contour fermé
qui en résulte passant par une bifurcation. C'est donc bien le
passage d'un contour Z à un contour V qui constitue la clé du
problème.

Comme précédemment les extrémités du contour Z considéré sont
les sommets P et Q. Laissant P fixe, nous partons du sommet Q
à partir duquel nous effectuons une série d'opérations doubles. Nous

passons ainsi par les sommets Q±, Q2, Q3, et caractérisons sur
le réseau le tracé T. Si ce faisant on aboutit à un contour V, la question

est résolue. Admettons que ce ne soit pas le cas. La série
d'opérations est alors irréductible. On inverse dans ce cas les opérations.

Laissant Q fixe, on effectue une série d'opérations doubles
à partir de P. On passe ainsi par les sommets P4, P2, qui font
apparaître sur le réseau un nouveau tracé T que nous désignerons

par T'. Là encore il se peut que l'on aboutisse à un contour V,
auquel cas la question est de nouveau tranchée par l'affirmative. Pour
que ce ne soit pas le cas, il faut admettre que le tracé T' caractérise

une nouvelle série irréductible d'opérations doubles.

Nous ne sommes toutefois pas à la fin des essais possibles. En
effet nous pouvons admettre que n'importe lequel des sommets Q;
ou Pfc demeure fixe, les opérations doubles s'effectuant à partir de

l'autre sommet. Or n'oublions pas que pour atteindre un contour V
aucune condition n'est imposée. Le tracé T qui y conduit peut être
court ou au contraire très long. Cela n'a aucune importance. Comme

au départ des opérations doubles, on avait le choix entre deux arêtes,

il arrive que l'on choisisse celle qui conduit rapidement au but,
ou le contraire. Il ne faut pas oublier que le nombre des contours Z
devient très grand dès que le nombre fi prend quelque importance,

Si donc dans les conditions que nous avons admises on ne devait
rencontrer aucun contour V cela signifierait que tous les tracés T
caractérisés par des opérations doubles donneraient lieu à des
séries irréductibles. Or le tracé T d'une telle série satisfait à des

règles précises. Tout d'abord ses sommets se succèdent de deux en
deux sur le réseau. Entre deux sommets consécutifs d'un tracé T
il y a toujours un sommet du réseau qui n'a pas de nom. Le passage

de l'un de ces sommets à l'autre se fait autour d'une face du

polyèdre qui est ainsi orientée. Le tracé T doit être parcouru deux
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fois, une fois dans un sens, une fois en sens contraire. S'il arrive
qu'un sommet Q; tombe précisément entre deux sommets précédemment

rencontrés, sur un sommet qui n'a pas de nom, la cadence

que nous signalons est rompue. On revient sur un parcours déjà
suivi avec une orientation qui s'ajoute à la précédente au lieu de

la détruire. C'est ce que nous avons montré dans un mémoire déjà
cité (Chuard, 1932, p. 89).

Voici donc comment nous envisageons la solution du problème
proposé. Nous partons d'un contour Z dont les extrémités sont les

sommets P et Q. Nous admettons que les deux séries d'opérations
doubles effectuées soit à partir de Q, soit à partir ds P soient
irréductibles. Le tracé T est constitué par les sommets Q, Q4, Q2,
Qi, Le tracé T' comprend les sommets P, P4, P2, P^,
Nous considérons le contour Zt soit P Q4 et admettons que le sommet

Q4 demeure immobile. Les opérations doubles effectuées à partir
de P donneront lieu à un nouveau tracé T que nous désignerons

par T'4. Les tracés T' et T't partent tous deux du sommet P. Ils
auront donc une partie commune puis devront se détacher l'un de

l'autre. Or les faces du polyèdre autour desquelles ces sommets se

déplaceront ont tantôt des nombres pairs de côtés, tantôt des nombres

impairs. Les dispositions qui justifiaient l'existence du tracé T'
d'une série irréductible ne se retrouvent plus pour le tracé T'4. La
cadence est ainsi rompue et l'existence d'un contour V assurée.

Il faut encore prendre garde au fait que la cadence constatée
dans la succession des sommets Qj d'un tracé T ou des sommets P&
dans un tracé T' n'est pas la seule condition qui soit imposée à ces

tracés. Dans chaque opération double on crée un contour fermé qui,
puisque l'on est sur une sphère, limite une aire de celle-ci. De plus
quand on contourne une face on l'oriente ainsi que le constatait déjà
Veblen à propos d'autres questions. Lorsque la série de ces opérations

est irréductible, le tracé T doit être parcouru une seconde fois,
exactement en sens contraire de la première de telle façon que par
ce second passage l'orientation première soit détruite. On ne
concevrait pas qu'un cercle vicieux puisse exister sans cette obligation,
ceci précisément parce que la sphère est une surface bilatère.

Dans nos recherches il nous est arrivé à diverses reprises de de.-

voir procéder à un très grand nombre d'opérations doubles avant
de parvenir à un contour V. Ce faisant le tracé T était parcouru
plusieurs fois dans certaines de ses parties, ceci sans un ordre
quelconque. Nous pouvions prévoir le résultat final, soit l'obtention d'un
contour V, dès que l'un des sommets Q; s'intercalait sur le tracé T
entre deux sommets déjà marqués (autrement dit occupait la place
d'un sommet sans nom), ainsi que nous l'avons remarqué plus haut.
Les faces contournées étaient parcourues dans le même sens. C'est
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comme si l'on avait obtenu une superposition de ces faces, soit une
surface constituée par un nombre indéfini de couches. Or c'est
précisément cela qui est inconcevable.

Nous avons vérifié ce fait en appliquant cette méthode à tous les

exemples qui nous ont été communiqués. Nous en donnons pour
preuve les exemples indiqués page 93 du mémoire (Chuard, 1932)

que nous avons déjà cité.
Il va de soi que si toutes les faces du polyèdre avaient un nombre

pair de côtés la cadence relevée ci-dessus serait assurée. Mais
alors dans ce cas aucun problème ne se poserait, l'existence d'un
contour V étant certaine. Il en serait de même si toutes les faces
avaient un nombre impair de côtés. Nous n'en donnons pour preuve
que le jeu icosien d'HAMiLTON qui fait intervenir un polyèdre de

12 faces, soit le dodécaèdre pentagonal.
Si nous avons donné l'exemple 2), c'est précisément parce que,

sous une forme réduite, il met nettement en évidence la nature de

la difficulté à vaincre. Les tracés T sont canalisés par le fait qu'ils
se trouvent dans l'obligation de répondre à des exigences précises.
Trois faces du polyèdre ont avec une quatrième face une frontière
commune constituée chaque fois par deux arêtes. Tous les tracés T
sont ainsi du même type, plus ou moins longs cela va sans dire,
mais empruntant toujours les mêmes sommets Q;. A ce propos
l'exemple de la fig. 12 montre bien que dès que cette obligation
cesse, les sommets Qj ne sont plus canalisés. L'existence d'un contour

V est par suite assurée.

Le coloriage des cartes de géographie

Les réseaux que nous venons d'étudier représentent, si on le
désire, des cartes de géographie tracées sur une sphère. Il suffit d'appeler

« pays » ce que nous avons désigné jusqu'ici sous le nom de

« faces ». Les arêtes sont les frontières des faces et les sommets
des bornes frontières. Il convient à ce propos de rappeler la proposition

suivante due à Errera (1921, p. 34) :

Le. coloriage d'une carte se ramène à celui d'une autre carte dont
tous les sommets sont de degré 3 et dont le nombre des pays n'a
pas augmenté.

En adoptant ce point de vue nous constatons que l'étude à

laquelle nous venons de nous livrer est au centre de la question.
Errera a d'ailleurs précisé qu'en formulant certaines restrictions
on ne diminuait en rien la généralité du problème. C'est ainsi que,
dans ce qu'il a appelé le « cas difficile » il a fait abstraction des

pays qui n'ont que deux arêtes frontières, voire trois ou quatre.
Nous n'irons pas si loin. Par contre nous admettrons que la fron-
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tière d'un pays ne comprend qu'un seul contour fermé. Nous éliminons

ainsi à la fois les isthmes et les îlots.
Si nous nous en tenons aux cartes qui rentrent dans le «cas

difficile » nous pouvons affirmer, en vertu de ce qui précède, qu'il
existe un réseau quadratique du type I, soit un contour fermé unique

qui passe par l'ensemble des sommets du réseau.
Si ce contour fermé est considéré comme une coupure, il sépare

tous les pays de la carte en deux chaînes fermées comprenant un
nombre pair de pays. Il suffit de deux couleurs pour colorier les

différents pays d'une chaîne et par suite de quatre pour l'ensemble.
Mais pour arriver à un tel résultat il n'est pas nécessaire que le

réseau donné soit réductible en un réseau quadratique du type I.
11 suffit qu'il soit du type IL En effet dans ce cas on peut encore
regarder les différents contours fermés constitutant le réseau
quadratique comme des coupures. Celles-ci délimitent des chaînes qui

Fig. 13.
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comprennent chacune un nombre pair de pays. Or ces chaînes sont
nettement séparées les unes des autres, ce qui assure le coloriage
de l'ensemble à l'aide de quatre couleurs seulement.

Nous en donnons pour preuve l'exemple de la fig. 13 dont on

remarquera sans peine la parenté avec celui de la fig. 2. Le point
capital de cet exemple réside dans le fait que les faces du centre
marquées 2, 3, 4 ont avec la face extérieure marquée 1, chaque fois
deux arêtes communes. S'il n'y a pas de réseau quadratique du

type I, il y en a par contre du type II. Nous en avons marqué un
en renforçant ses arêtes. C'est ce qui nous a permis de montrer que
le coloriage de l'ensemble avec quatre couleurs est encore possible.

En définitive si l'on désirait prouver que le coloriage de la
carte avec quatre couleurs est impossible, il faudrait montrer qu'il
existe une carte dont les arêtes frontières constitueraient un réseau

cubique réductible uniquement en réseaux quadratiques du type III.
Or cela est manifestement impossible.

Nous avons vu au début de cette étude que le système d'équations

(1) a un très grand nombre de solutions dès que fi est quelque

peu élevé, puisqu'il se chiffre par 2a — 1. De même le nombre

n de solutions qui donnent lieu à des réseaux quadratiques est
lui-même très élevé. On peut comme nous l'avons fait ne pas prendre

en considération les réseaux comprenant des faces de deux côtés.
La valeur de n diminue d'une façon très sensible. Il n'en demeure

pas moins que le nombre des réseaux quadratiques est encore très
élevé. Or il faudrait qu'ils soient tous du type III, ce que l'on ne
saurait concevoir.
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