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Deuxième partie
Quelques considérations théoriques

Généralités.
On rencontre fréquemment, dans la littérature scientifique,

les mots : lames discontinues, lames lacunaires, lames granulaires,

lames continues, lames poreuses, lames compactes et
d'autres enoore qui indiquent de manière plus ou moins
heureuse la structure du dépôt désigné. Nous verrons comment
cette terminologie se justifie par un oetain nombre de faits
expérimentaux.

11 est intéressant de savoir ce que peut signifier du point
de vue théorique l'existence de oes différents états.

N. Cabrera fut le premier, senmble-t-il, à étudier l'équilibre

des dépôts minces solides (16 et 17).
Supposant des «grains» ou «trous» de forme oubique, il

introduit le paramètre e0/eT, quotient de l'épaisseur équivalente
à l'épaisseur réelle. Il calcule l'énergie, évalue l'entropie et
montre que pour une valeur de e0/er il peut y avoir un
minimum d'énergie libre.

Nous nous proposons d'étudier ici l'équilibre thermodynamique

dans les cas suivants : en premier lieu pour les
dépôts liquides constitués de relativement grosses gouttes, puis
pour des gouttes de très petites dimensions en introduisant
formellement la notion de couche limite. Ce résultat se généralise

sans peine aux dépôts solides en supposant que l'on a des
cristaux obéissant aux relations de Wulff.

Finalement un calcul est fait pour d'autres formes de
cristaux. On admet pour cela que l'énergie libre peut être
évaluée en ne tenant compte que des interactions entre voisins
immédiats dans le réseau.

Dans tous les cas un fait apparaît clairement : L'état
d'énergie libre minimum correspond à un regroupement de la
substance en une agglomération unique.

Selon la valeur des tensions superficielles et de l'épaisseur
équivalente1, oette agglomération peut recouvrir ou au
contraire ne pas reoouvrir complètement la surface du support.

Il convient d'examiner de plus près ces deux possibilités.
La première ne pose apparemment pas de problème, la lame
compacte est alors stable. La seconde est plus complexe, car

1 C'est l'épaisseur calculée d'après la masse déposée. Voir à ce propos
mesure de l'épaisseur (page 66).
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il faut savoir dans quelle mesure la matière qui arrive
uniformément sur le support peut diffuser sur celui-ci pour former

cette goutte ou cet édifice cristallin unique.
Dans le cas des dépôts solides, nous supposerons qu'il se

produit des échanges de substance par l'intermédiaire du
support, échanges tendant à donner des cristaux de plus en plus
gros, et partant, de plus en plus espacés les uns des autres.
Ce phénomène ne devrait cesser en principe que lorsque l'équilibre

thermodynamique est parfaitement établi.
En réalité, la vitesse d'évolution d'un dépôt vers son état

idéal devient insignifiante dès que la distance séparant deux
agglomérats voisins atteint une certaine valeur. On ne peut
donc observer que de faux équilibres (ou si l'on préfère, des

équilibres gênés). Il faut tenir compte de ce fait pour prévoir
la structure réelle des lames minces.

On pourrait à cette fin étudier en détail le problème du
« gaz à deux dimensions » responsable du transfert de
matière dont il vient d'être question. On peul aussi écrire simplement

que la distance entre deux agglomérats contigus ne peut
excéder, à une température donnée, une valeur Sm.

Nous verrons par la suite que cette notion devient presque
essentielle pour la compréhension des dépôts métalliques.

Nous appellerons lame primaire le dépôt tel qu'il apparaît

immédiatement après sa formation et lame stabilisée le
dépôt ne subissant plus aucune modification de structure
décelable.

Expérimentalement, il sera intéressant d'étudier cette
évolution, d'établir la preuve qu'il existe des échanges de substance

par le support, et enfin, d'observer si la structure
correspond à ce que l'on peut attendre théoriquement.

Nous disposerons pour cela de trois méthodes :

1. La détermination précise des propriétés électriques.
2. L'observation au microscope électronique.
3. La diffraction électronique.

Dépôts liquides.
Nous étudierons tout d'abord les dépôts liquides en nous

plaçant dans le cas de la figure 1 (qui correspond à la
condensation de mercure sur un support de verre, par exemple).

Nous supposerons :

1. qu'il y a n gouttes identiques par cm2 de support ;

2. que ces gouttes sont des portions de sphères raccordées
au plan du support par un angle 8 obéissant à la relation
a12 ai + aa oos 0 (1) (équilibre de la ligne interfaciale).
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I .es symboles utilisés ici sont :

«, la tension superficielle du support
ct2 celle du liquide
al2 la tension interfaciale
F' l'énergie libre d'une goutte
F l'énergie libre de l'ensemble (goutte el support)
V2 le volume d'une goutte
R son rayon
m2 le nombre de moles de substance contenue par chaque

goutte
ft2 le potentiel chimique de Gibbs
P2 la pression à l'intérieur de la goutte
P0 la pression à l'extérieur
A2 et A12 respectivement, les aires ayant les tensions super¬

ficielles a, et a12.

(2]

Ü)

Fig. 1.

On a alors pour chaque goutte :

(2) F' p2 rn2 -f- a2 A2 — a.2 A12 — P2 V2

avec l'équation de Gibbs-Duhem écrite dans le cas : T cte

(3) - V2rfP2-fm2rfp2 0.

On sait que a2 est indépendant de la courbure tant que le

rayon n'est pas beaucoup plus petit que le micron. Nous nous
plaçons pour l'instant dans ce cas particulier, ce qui permet
d'écrire d a2 0.

L'équation de Laplace est alors valable :

2 a.,
(4) P2 Po + ir2

Calculons le potentiel chimique de Gibbs, p.2

En vertu de (3) on a (si d T 0)

VjcZPg m3 d j-i2
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V,
2m — le volume molaire de la phase 2,

m

donc : (5) Vom 1 -MI.
3^2

3P,/T C«e

H2 est une fonction de P2 qui vaut nx lorsque le rayon H est
très grand (alors : P2 P0)

•*-"¦ + (HOT— Fr-V.) + l (H?.)T('V P.)- I -
Remplaçons âp/T Par V? et P2 — Po Par Sil valeur

tirée de (4).
Il vient :

r4-M« + V,
2«2 1_ / c1 V2„,

* •¦"" R + 2 l 3P,
4o|
R»

or |—-J5 — Vo,„x x étant le coefficient de compressibilité.
\ 3P, /

^2 — f1* - R v2mt 1
R

Dans le cas du mercure x ^ 4.10~12 dynes-L cm*
a2 484 dynes cm-1

a9x IO-9
OO*2*

R R

Ce terme est négligeable vis-à-vis de 1 tant que R > 10 A.

On a donc finalement

(6) "2
2a,V.cx2 t 2m

Ecrivons F'.

F' Hœ m2 + ^ mgVjn, — / P0 -f- -~ V2 -j- «2A2 -f a]2AI2

où V, Vs "R3 (1 + 00s 0)2(2 — cos 0)

A2 2 ti R2 1 f cos 0) et A,2 n R2 sin2 0

l'énergie libre totale est F — n F' -j- F support

où : F support a.t (1 — n A12)

F nfix m2 + na227iR2(l +OOS0) + na127i R2sin20
¦J-oJI-hïïRs sin2 0) — P0 V2 n
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Dans le cas d'une lame formée sous vide, le terme P0 V2

est négligeable par rapport aux autres 1.

L'équation de continuité s'écrit :

n m2 Cte M M étant le nombre de moles déposées par
cm2 de support. On a aussi n V2 en, par définition de

l'épaisseur équivalente (en supposant les gouttes incompressibles)

n 1/3 ti Rs (Lj- oos 0)2 (2 — cos 0) e0.

L'énergie libre vaut, en tenant compte de 1 :

n

(7) F n.7t.a2 R2 (2 + 2 oos 0 + cos 0 sin2 0)

à une Cte près.

Or l'équation de continuité permet de calculer la valeur
suivante de n.

3 e0 3 e0

Tt. R3 (1 + COS0)*. (2 —cos©) n .R3(2 — 2 cos 0 — cos 0 sin2 0)

On voit qu'en remplaçant n par cette expression dans 7,

on obtient un résultat indépendant de l'angle 0.

(7') F 3. ^
R

Pour une valeur donnée de e l'état d'énergie libre minimum

est évidemment celui pour lequel R est maximum. Le
dépôt le plus stable est donc constitué d'une seule grosse
goutte placée quelque part sur le support.

En réalité, nous l'avons vu, une condensation uniforme
ne peut donner naissance à cette goutte unique.

Gouttes très petites.
Voyons rapidement ce qui arrive lorsque le rayon des

gouttes devient très petit.
Les théories de Young et de Gibbs ne permettent pas de

fixer le domaine de validité des lois macroscopiques.
Au lieu d'imaginer une surface conventionnelle séparant

deux milieux, on introduit quelquefois la notion plus
physique de couche-limite (on l'appelle aussi couche de transition,

couche superficielle, etc.) (3, 23, 19, 28).

1 Si la condensation avait lieu à pression atmosphérique, ce terme jouerait

un rôle important pour des gouttes de 1 (X déjà. Dans ce cas il conviendrait

donc de l'introduire.
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La oouche superficielle a en général une épaisseur très
o

faible (voisine de 10 A). Elle doit être traitée comme une
phase hétérogène.

Il nous paraît interessant d'introduire cette notion dans
les calculs qui vont suivre.

Soit un élément de la couche limite ARCDEFGH (fig. 2).
Et soit P(r) la pression exercée sur l'élément de sphère de

rayon r, et [P(r) — Q(f)] la pression sur chaque face (ACDR),
(CEFD), etc.

dr V

iß d/3

Fig. 2.

Q (r) est une fonction caractéristique de la couche
superficielle qui s'annule en dehors de celle-ci.

L'équilibre des forces s'écrit :

(70

Donc (7")

2 (P—Q) rdr r°-dP + 2 rPdr d (Pr2)

oQdP 2^. dr
r
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En intégrant : (7'") P2-P0 =2 fQdr

Nous écrivons : (8) P2 — P0
2o(R)

R

re •

aver (9) „(R) f' R ' ^r) ¦ dr

où R est un rayon compris entre ri et re qui à priori peut être
absolument quelconque.

SURFACE COUCHE

FICTIVE LIMITE
X

QCP

Fig. 3.

Appelons k — re — ri l'épaisseur de la couche limite.
ri-H

Si R > k on a (10) «,=jQ(r)rfr

Considérons un élément de volume de la phase hétérogène
dV12 r2(dß)2. dr et faisons-le varier en produisant un accrois-
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sèment br de r et b (dß) de l'angle dß. (On garde l'épaisseur e

constante).
On a : b(dV12) 2 r(rfß)2 dr br -f 2 r*drdßb(dß).
Le travail fourni à cet élément vaut — (P—Q) b(dY12)

(P—Q) [2r(d$ydr br + 2r*-drdß b (dß)}.
Intégrons de ri à ri -j- e re.
On obtient une première intégrale de la forme :

re
-A

dm,- j 2(P—Q)rdr
ri

qui vaut r/ß->hr(P0r^ — P2/-/) en vertu de 7'

in second terme dßb(dß) I 2(P— Q)r-drel u

Posons : r R -j- a;, r2 r(R-j-x) Rr -f- rx
r2 Rr -f Rx -f x2

On a donc (toujours en vertu de 7') :

re

— dßb(dß) j 2(P~Q)/-2dr — ^ßb(<fß)R(P0r* — P2r;)

*2 rta

- 2dßb(rfß) [R / ar(P—Q)dx+ fx*(P—Q)dx]
X, V,

P—Q étant une fonction de x -f- R Choisissons R de
manière à annuler le terme

xa X,

R f x(P—Q)dx y fx*(P—Q)dx
». t,

Xt Xi

(Nous verrons plus loin la signification de oe choix.)
Cela étant le travail s'écrit simplement :

(P2r? - P0rl)\(dßY br f dßRo(dß)]

Or l'aire de l'élément de rayon r vaut d\ r2(dß)2, la
variation : b(dA) 2rbr(dß)2 y 2 ?-2 dßb(dß)

On voit que le travail est proportionnel à l'accroissement
d'aire b(r/A(R)), le facteur de proportionnalité étant

—jj- ("jr,- *ore)
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Si l'on tient compte des relations suivantes :

P2 P0 + 2Ä)-, re R-|-x2, n R -| x, R - e + x,.

Ce facteur s'écrit :

«(R) - P0x2 - P2 (e-x2) + ^ • (e-x2)2 - ^ • (x2)2

On aura donc pour l'aire A un travail : bW :

(11) bW («(„>- P0x2 - P2 (e-x2) + ^ (e-x2)2 - ^**) bA

Si e2 est négligeable vis-à-vis de R2, on peut laisser tomber
les termes quadratiques et la formule (H) se réduit à

l'expression classique du travail dans le modèle de la surface
fictive.

On peut alors écrire la formule de Gibbs (22) pour l'énergie

libre spécifique superficielle :

(12) /lem* <*(*) + £ Ti fi,
î

où Ti est Vadsorption molaire du constituant t, c'est-à-dire le
nombre de moles de ce constituant qu'il faut attribuer à la
surface pour rendre le modèle équivalent, au point de vue
massique, à la réalité.

Montrons encore que dans ces conditions (e « R2) la surface

de référence définie par

R / x (P — Q) d x + / x2 (P — Q)dx= 0

X, X,

est pratiquement oonfondue avec la surface des tensions, et

que a' est égal à notre a(R). (Voir fig. 3).
Pour cela, comparons le modèle de la couche limite qui a

été adopté dans ces calculs au modèle de la surface fictive
de Young (v. fig. 3).

Mécaniquement, ils doivent être équivalents, ce qui entraîne

J

a) pour les foroes

(P — Q) d x - - a' + P0 (x2 — R' + R) -j- P2 (e — x2 + R' — R)
Xl

b) pour les moments
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fx(P-Q)rfx=-a'(R'-R) + P0^~(R2~R^
x,

p2r(*2-s)2-(R'-R)

Les équations a et b doivent être considérées comme la
définition de la tension superficielle a' et de la surface des
tensions dans le modèle de Young.

On a en vertu de 7'

fr (P — Q) d x Tr (P — Q) d x + fx (P — Q) d x
xt xt xt

^(R + x2)2-^(R-e + x2)2

Etant donné que R a été choisi de manière à annuler

R fx (P — Q) d x + fx2(P — Q)dx
X, X,

on doit avoir :

a') a' — P0 (x, — R' + R) — P2 e — x2 -f- R' — R)

- ^- (R + ^ + § (R - b + x2)2 + ffç (P -Q)dx
xi

et 6") -»•(R'-R) + P04~(^R)'

_ Pifct (*L=*E +j\ (p _ g, „ _ o

On voit d'après b') que R ne diffère de R' que d'une quan-
e2 *î ex2tite très petite (par des termes en S" > jr > ~5~~ )¦

La relation a' est alors satisfaite (toujours en négligeant

R
2 a

e2 vis-à-vis de R2) si a'= a(R) (car P2 — P0 - R
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Dépôts liquides, a gouttes très petites.
Revenons aux dépôts liquides qui nous intéressent. Comme

2 a., \„
précédemment, on a dans toute la masse u2 - - \xx -—L """

Le potentiel chimique de la substance adsorbée aura la
même valeur à l'équilibre physioo-chimique que celui de la
substance sous-jacente.

Il faudra donc ajouter à l'expression (7) de l'énergie libre
un terme en :

n (xrpL-j. (r2A2-;-r12A12).

On peut admettre que la densité de la couche superficielle
ne diffère pas trop de celle du corps massif, de sorte que
F2 • V2m vaut à peu près x2 (fig. 3). On poser.-i de niêmie

l 12 • ' 2m xi
On a alors :

(7") F n n a2 lR2 (2 -r 2 cos 0 -j- cos 0 sin- 0)

-t- 2 R (2 -j- 2 cos 0) x2 -p 2 R sin2 0 x't]

L'équation de continuité s'écrit :

Wi= 1^_
ti (R f .r2)'\ (2 -f 2 oos e -r oos 0 sin2 0)

Si la tension superficielle -est constante, les extrema «»il
donnés par la relation suivante :

R. 2 2 cos Ö -j- cos 0 sin2 0 -r 2 R 2 x'., sin2 0 2 x2 -f 2 x2 cos 0

- x2 cos 0 sin20) - 4 x; l T cos 0) 2 x, x sin2 0 0

Cette équation a deux racines réelles de signes opposés

pour toutes les valeurs de 0 sauf 0 0.

La seule solution positive correspond à un maximum
d'énergie libre et n'a d'ailleurs aucun sens physique, car elle est

incompatible avec l'hypothèse de base : R2 » xl
Si a2 dépend du rayon, l'énergie libre est donnée par une

expression de la forme : F a2 (R) / (R) où / (R) est une
fonction positive, décroissante, monotone de la variable R.

Dans ces conditions, F sera optimum pour les valeurs de
R satisfaisant à l'équation :

d o» a., t//(R)
dR~ /(¦)' dR
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On peut donc affirmer que si la tension superficielle est
constante, ou est une fonction décroissante du rayon de courbure,

le seul état prévisible d'équilibre thermodynamique est
celui pour lequel R est le plus grand.

Lames cristalines :

Etude thermodynamique du cristal parfait.

Le problème des lames cristallines est considérablement
plus compliqué que celui des dépôts liquides.

Il y a toutefois une manière simple de le traiter en
supposant que les cristaux obéissent aux relations de Wulff :

(13) ^ Cte-

où a, u, a,- sont les tensions superficielles des faces :

1 2 i ayant les aires : A. A3 A,- et distante« re&-
pectivement de /ix /i2 ht d'un point commun.

On sait que les conditions de Wulff s'obtiennent généralement

en annulant la variation b [z; <x; A; -j- \V] où V est le
volume du cristal et X un coefficient de Lagrange.

On considère souvent que cet cxtremum du ternie d'énergie
libre Zi «i A,- à volume constant, donne la forme naturelle des
cristaux. R. Defay et I. Prigogine proposent une interprétation

plus précise des relations de Wulff (19).
Ce sont en effet les conditions nécessaires pour qu'un

cristal puisse être étudié oomme une phase homogène à pression

uniforme : p2. Celle-ci est alors donnée en fonction des
dimensions par une formule du même type que celle de L\-
place.
i1A\ • 2ai(i4) p2 Po+ -f^-

I^e potentiel chimique devient :

(15) W=C. + yV«.
Le calcul se fait alors exactement comme dans le cas des

gouttes liquides.
Il ne présente pas un très gros intérêt pour les lames minces

car l'hypothèse du cristal de Wulff est ici trop restrictive.
Nous introduirons de préférence le cristal de la figure 4 dont
la forme est caractérisée par deux paramètres a et b.
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En réalité, il y a autant de paramètres que de faces cris--
tallines possibles et le calcul pour être parfait devrait les introduire

tous (comme par exemple dans la recherche de la forme
naturelle des cristaux). Un tel calcul nécessite non seulement
la connaissanoe des tensions superficielles de chacune des faces,
mais encore celle des tensions interfaciales de chaque face en
contact avec le support. Le modèle de la figure 4 a l'avantage
de conduire rapidement à un résultat.

99% 'TZZ zz//
zèè y7?A

m
//// T

Fig. 4.

Nous nous inspirerons pour évaluer l'énergie libre des

méthodes utilisées par Stransky, Kossel, etc. dans l'étude
de la croissance des cristaux (19, 24, 34, 25, 15).

Afin de faciliter le raisonnement, nous prendrons un
réseau cubique simple et nous ne tiendrons compte que des
interactions entre voisines immédiates.

(Stransky a discuté ce fait dans différents cas de
cristaux, dont le cristal métallique — voir par exemple la
référence 2).

Soit e le travail qu'il faut fournir pour détruire une liaison,

et M; le nombre de liaisons détruites, lorsqu'on arrache la
ième particule.

L'énergie libre du cristal à la température T cte peut
s'écrire :

(16) F N' cp(T) —Zi e m

où N' est le nombre total de particules.
Divisons le cristal en petits cubes de côté b contenant chacun

une seule particule.
Si l'on conduit l'arrachement dans l'ordre 1, 2 et 3

-— 1 j... indiqué par la figure 4, en laissant les particules

marquées d'une croix sur le dessin, on rompt chaque fois
trois liaisons.
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Chacune de ces opérations est appelée par Kossel un pas
répétable, car elles nécessitent toutes une même quantité de
travail : 3 e.

Il y en aura I - — 1 I pour chaque plan, soit au total

'a y (b \
fr / l b / > c* qui fait un travail de

a
3e g S"*

Les particules restantes sont alors dans trois plans
orthogonaux, elles peuvent être enlevées de la manière suivante :

a) toutes, sauf celles des 3 arêtes par pas de deux liaisons;
6) celles des arêtes, sauf celle du sommet, par pas d'une

liaison ;

c) celle du sommet est alors libre.
Cela nécessite un travail :

2e s-'M i

Soit au total

»•il 0Y-î-n,a«
i +

¦Kl

»ij-i

1+2

1 +

On trouve finalement

(17)

ou

F N' cp(T) „ a2 b a2
9 ab

"b1 b2 ~ "b2"

N'
a2 b

donc (IT) F N'(cp(T)-3e)+ ^ + 2ab

On a dF bdT — P0dV-j-y.dm.
P0 étant la pression à l'extérieur du cristal.
Posons pour simplifier : P0 0

alors
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(-)\dm/T
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Supposons que le cristal s'accroisse, tout en gardant la même

forme
<da db^

a \ b

'2a da 2a_db 2b da''
T2

alors: dF dN' (9(T) - 3e) + (*£. + *g +
\ b b"

e

et d m
dN
N

m étant le nombre de moles, N le nombre d'AvoGADRO.

On a aussi

1 [2abda + a2 db\ 1 / ,T, a2 b\dm =N v NT( } rf6' (Puiscfue N - T"J
donc :

u N(cp(T)-3e) + Nb(J. l + ï--l)e
A « • 2N& /1 2\ce qu on peut écrire u u -I — - -I— e

3 \b '

a J

u^ est la limite vers laquelle tend le potentiel chimique
lorsque les dimensions du cristal deviennent très grandes
(f*. =N(9m-3e)).

Remarquons encore que la tension superficielle vaut :

a
2 b2

(la moite du travail nécessaire à rompre un cristal dont la
section est 1 cm2).

Donc 4Nb3 /1,2
la quantité N b3 est le volume molaire Vm

(19) i v 41/1_l2

Si a 6 on retrouve la formule du potentiel chimique
dans un cristal de Wulff (15) et dans les gouttes (6).
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Introduisons encore 18 dans l'expression de l'énergie libre.
On obtient

(20) F uœ ^ + 2 et (a2 + 2 a b) m fi„ + 2 a (a2 + 2 a b)

F comprend donc un premier terme proportionnel à la

quantité de substance et un seoond proportionnel à la surface

(c'est le seul terme variable lorsqu'on modifie la forme du
cristal en gardant sa masse constante).

Le fait de n'avoir tenu compte que des interactions entre
voisins immédiats dans le réseau a deux conséquences importantes

:

1) L'absenoe de tension d'arête (voir référence 12).
2) L'absence de couche superficielle, la maille étant

nécessairement invariante dans tout le cristal.
Rien que cette hypothèse soit justifiée dans certains cas, il

est intéressant de faire un calcul de seconde approximation
en introduisant l'énergie d'interaction «diagonale» (ed) de

deux particules distantes de : b y 2.
Dans un réseau cristallin indéfini, imaginons l'emplacement

d'un petit cristal de volume a2, b (fig. 5).

Fig. 5.

Il y a 3 liaisons e et 6 liaisons ed par particule, de sorte
a2b

que l'énergie libre des N' —- particules vaut

N'. (cp(T) — 3e — 6ed).
La séparation du cristal du reste de l'édifice nécessitera un

certain travail pour rompre les 2 -5 + 4 -^ liaisons e et les
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o T 1

8 — + 16 —-f 8-4-4r liaisons ed. En admettant qu'il n'y
b* oz o b J

a pas de déformation dans la région superficielle, l'énergie
libre peut s'écrire :

(2O0 'F N' (cpcD— 3 c — 6 ed) + a (2a2 + 4« fe) + y (8a + 4 6)

ou (21) —2T + 1? et *-£
La tension d'arête est très petite, mais elle peut jouer un

rôle lorsqu'on étudie des cristaux de faibles dimensions

(T<ab).

Lames cristallines: couche superficielle et énergie libre.

La couche limite est une région déformée du cristal au
voisinage de la surface.

Imaginons que l'on ait un édifioe cristallin parfait de
dimensions ; a, a et fe, son énergie libre est donnée par (20*) :

(2(y)F cte-r(jb-ï + 2-^y (2a2+iab)+^(8a+ib)
S'il se forme une couche limite, les distances entre les plans

réticulaires de la région superficielle qui étaient initialement
égales à b, deviennent : bt &2 bj et les énergies de couplages

correspondantes: elt e2 ¦¦¦ e,-, e<n, e<j2 ••• Cdj> oe qui a

pour effet de modifier l'énergie libre d'une quantité :

AF _[(ii6i~7"6) + 4(li€di_7'e<,)](Ti + i^)^
(y nombre de plans affectés).

Ainsi le coefficient a vaut :

i f i
e>o Zei — je+4k Le,« — jed

e ó e<j i=i \i=i(21') a —X + =-^Sy*!, j u, 0 -i2b2 '

b2 2 b2

et (20-) F a(2a2 + 4afe)+ï(8a+46)

Remarquons que la surface de référence qui permet d'écrire
l'énergie libre sous cette forme simple est celle qui limiterait
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le cristal s'il était parfait. Elle ne correspond à rien de
particulier dans le cristal réel, sa position étant dans la couche
limite ou en dehors de celle-ci selon qu'on a une dilatation ou
une contraction de la maille.

a,

^f

s
4 •

a
—•

Fig. 6.

Supposons qu'il y a n cristaux identiques par cm2 de

support, répartis uniformément et distants d'une quantité S

L'énergie libre du dépôt ainsi caractérisé est :

(22) F Cte -j- (a2 -f <x12 — at) n a2

+ 4afefia2-r-4fenT2-f4qn(y2-f T)2)

(L'indice 1 se rapporte au support, l'indice 2 au cristal
et l'indice 12 à l'interface.)

Etant donné le choix particulier que nous avons fait des

plans de référence qui ne correspondent pas exactement à la
surface limitant le cristal réel, mais à celle qu'aurait un cristal

entièrement homogène de même masse, l'équation de
continuité s'écrit simplement :

n a2 b Cte. Cette oonstante étant e0 par définition même

(23) na2b e0.
En éliminant n entre (22) et (23) on obtient :

(22')

F (q2 -f- a12 — ¦0-?+4«,& + 4T,g+4(T, + Ttt)^
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Remarquons que l'énergie libre se compose d'un terme
principal en (a2 -4- a12 — ai) eo/b+ 4 a2 e0/o et d'un terme
«perturbateur» qui ne peut prendre de l'importance que pour les
dépôts extrêmement minces.

Lames minces cristallines : stabilité thermodynamique.

Nous rechercherons le minimum d'énergie libre en fonction

des paramètres caractérisant une lame mince (a-fe ou a-S
ou fe-S) en négligeant le terme d'arête.

On a d'après (22') :

1} aT _(a2 + ai2_ai)
fe2

2) f*—4«,*da a2

Deux cas sont à envisager :

Premier cas :

(a2 -f a12 — at) > 0. L'énergie libre diminue lorsque a
el 6 augmentent. La forme la plus stable sera donc caractérisée

par un seul gros cristal.
Ce résultat rappelle celui qui avait été obtenu pour les

dépôts liquides.
ll faudra reprendre le calcul en introduisant une condition

supplémentaire qui rende compte du fait que la substance ne
peut diffuser librement sur la support pour former ce cristal
unique.

Second cas :

(a2 -f a12 — at) < 0. L'énergie croît lorsque fe augmente
et décroit lorsque a augmente.

La forme d'équilibre sera donc une couche compacte
recouvrant toute la surface du support.

Introduisons maintenant la distance S entre deux cristaux
contigus. Puisque les cristaux sont uniformément répartis,

on a : (24) n (a + S)2 1

En remplaçant n par sa valeur tirée de 23 on obtient :

b e0(a+.S)s
(24')v ' a2
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Ce qui permet d'écrire l'énergie libre sous la forme
suivante :

(22") F 4 a, — 4- (a, -4- a,, — a.) ——2
a tv 2-r i2 ^ (a_|_S)*

Si (a2 -f a12 — ax) ;> 0, F décroît constamment lorsque S

augmente. Or nous avons vu que S ne peut dépasser une
valeur Sm.

Celle-ci est naturellement liée à la « tension de vapeur du
gaz à deux dimensions » dont nous avons supposé l'existence
et qui est responsable des échanges de substance entre
agglomérats voisins.

Sm dépendra donc de la température et aussi dans une
certaine mesure de a et de fe.

En première approximation, nous admettrons que Sm ne
dépend que de la température, oe qui justifie le calcul suivant :

dV
d a o2- 4q2 ^--f (q2 + a12— «,)

Annulons cette dérivée

2a2e0 (a-f Sm)3
— (a2 + q.

2aSm
(a + Sm)3

t) Sm 0

Or (a -j- Sm)2
On a donc

(25) fe8X— Jm e'
(a2 -f q]2 -

2 a.
- «i)

La grandeur a peut être tirée de (24')

On obtient : (24") „ e0+ \/e0b
C'm ï. "y.b — e0

Discussion.

Nous avons envisagé l'alternative suivante : Une lame mince
peut être compacte ou discontinue. Dans le premier cas, a
est très grand, 6= eQ et S 0. Dans le second, a et fe sont
donnés par les relations (25) et (24"), S prend alors la valeur
la plus grande possible, c'est-à-dire Sm (grandeur qui ne
dépend que de la température). Voyons dans quelle mesure les
solutions de (25) et (24") ont une signification physique.
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Premier cas : o2 -4- o12 — a^ 0.

A) Lorsque l'épaisseur équivalente est inférieure à la

valeur Sm p la solution trouvée correspond à un

minimum de l'énergie libre (donnée par (22")). L'épaisseur
réelle 6 est alors supérieure à e0 et a est d'autant plus petit
que 6 — e0 est plus grand.

Lorsque 6 se rapproche de la valeur e0, on voit que a
croit indéfiniment. Le dépôt est alors constitué de plages de
substance de plus en plus étendues et distantes les unes des
autres d'un petit espace Sm (qui est constant par hypothèse).

Soit r\ un nombre positif assez petit par rapport à l'unité
(par exemple n 0,1 ou 0,2). L'épaisseur équivalente à la-

0 e i

quelle on a : - t\ (26)

est en vertu de 25 :

(25') eo=(l + n)-B,,Sm^±|l
2

,i 2S„
a vaut alors n ~ (24'")

Prenons par exemple n 0,1, alors a 20 Sm et

e0 0,87 S„ a2 + a12 «1

2a2

R) Lorsque l'épaisseur équivalente est supérieure à

q2 -h ai2 — oibm- 2^
la solution des équations (25) et (24") n'a plus de sens
physique. On trouve en effet : 6 <; e0 et a < 0.

L'énergie libre, donnée par (22") n'a pas d'extremum pour
une valeur finie, positive de a.

Quelle que soit la valeur de S, on voit que F est dans oe

cas une fonction décroissante monotone de la variable a.
La lame sera donc compacte.

C) Au voisinage de l'épaisseur

a2 + a12 al
2 eu
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On peut considérer qu'il y a une incertitude, car a tend
alors très rapidement vers une valeur infinie (voir la figure 8).

C'est dans ce domaine d'épaisseur que se fait In transition
frames discontinues - Ijames compactes.

>

fr

Fig. 7.

D) La figure 7 représente l'énergie libre en fonction de
a pour deux valeurs de Sm (c'est-à-dire pour deux températures

différentes), dans le cas discuté sous la lettre A).
On voit que si Sm est momentanément augmenté, il se produit

un regroupement des cristaux en éléments plus gros, la
transformation étant irréversible puisqu'elle s'accompagne d'une
diminution d'énergie libre.

Nous nommerons ce phénomène : Effet thermique irréversible.

E) Si le mécanisme de formation des agglomérats est bien
celui qui a été imaginé, la résistance électrique des lames
discontinues doit augmenter rapidement après leur fabrication,
puis de moins en moins vite sans toutefois que le phénomène
s'arrête complètement. Nous verrons que ce phénomène d'évolution

de structure se complique en réalité d'une adsorption
gazeuse.

Second cas : a2 4- al2 — qt < 0.

La théorie prévoit une structure compacte, quelle que soit
l'épaisseur de la lame.
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2CU

Ce résultat ne s'applique probablement plus aux dépôts
ultra-minces, car il apparait alors des circonstances dont il
n'a pas été tenu compte dans le calcul. Par exemple : la
tension d'arête peut commencer à jouer un rôle et la tension
superficielle peut varier considérablement avec les dimensions
des cristallites.



PROPRIÉTÉS ET STRUCTURE DE LAMES MINCES D'ARGENT 59

En conclusion, la présente théorie permet de prévoir un
certain nombre de faits remarquables (effet thermique, épaisseur

critique, structure) dont l'existence ne dépend pas
uniquement des tensions superficielles, mais encore de la grandeur

Sm, introduite ici d'une manière assez formelle, mais dont
la signification physique est parfaitement claire. Cette grandeur

devient presque essentielle dans l'étude des dépôts solides.
Rappelons encore que nous avons fait les hypothèses

suivantes :

1) La validité générale de l'équation de base étahlie pour
un cristal particulier.

2) La possibilité de négliger les termes en énergie d'arête.
3) L'existence d'échanges de matière entre agglomérats par

la surface du support.
4) L'invarianoe de la grandeur Sm caractérisant ces échanges

pour différentes dimensions de cristallites.

Troisième partie
Equipement et technique expérimentale

Installation d'évaporation sous vide.

L'enoeinte à vide destinée à la préparation et à l'étude des
lames minces est constituée par une cloche en verre munie
d'une fenêtre en glace pour les observations optiques (fig. 9).
Cette cloche repose sur un joint en caoutchouc pris dans une
gorge de la platine (fig. 10). Cette dernière est équipée de
huit traversées de courant calculées chacune pour une intensité
maximum de 50 A et dont la résistance d'isolement est
voisines de 1010 ohms.

La mesure du vide se fait au moyen d'un «vacuummètre »

Phillips oonnecté à un galvanomètre enregistreur. L'évapora-
teur est une petite nacelle en molybdène de 0,03 mm d'épaisseur,

4 mm de largeur et 15 mm de longueur. Le vide poussé
est obtenu au moyen d'une pompe à diffusion d'huile speedi-
vac type 02, reliée à la platine par l'intermédiaire d'un oon-
denseur à neige carbonique. Celui-ci a été construit de
manière à ne pas réduire sensiblement le débit d'aspiration.

L'installation à vide préliminaire comporte une pompe à

palette à deux étages et un réservoir de 50 litres muni de
robinets. Les connexions entre les différents organes du circuit
sont assurées par des tubes flexibles en tombac (Roa-Spira)
(fig. 9).
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