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40 GUSTAVE .lOYET

CHAPITRE III
L'EQUATION DE DISTRIBUTION DE LA DENSITE

IONIQUE DANS L'ECOULEMENT GAZEUX UNIPOLAIRE

§ 13. Introduction au problème.

Dans un cylindre électriquement conducteur, de section
circulaire, on considère un écoulement gazeux de vitesse
uniforme u parallèle à l'axe. Le gaz véhicule des particules chargées

d'un seul signe, positif ou négatif, dont les dimensions
el la masse sont d'un ordre de grandeur qui n'est pas 1res

différent de celui des molécules du gaz. La distribution en
densité des particules est constante dans la section initiale de
l'écoulement (source ionisante constante).

La charge électrique de chaque particule — ion — est
égale en valeur absolue à celle de l'électron.

Il suffit d'un petit nombre de chocs d'une particule contre
la paroi conductrice pour la neutraliser et la faire disparaître
en tant qu'ion.

En dehors de leur entraînement de vitesse uniforme par
le gaz qui les véhicule, les ions subissent deux mouvements
d'ensemble qui les entraînent chacun radialement vers la paroi

et axialement dans le sens de l'écoulement. Ces deux
mouvements de migration sont dus, l'un à la diffusion gazeuse,
l'autre à la diffusion électrique des ions dans le gaz. Ils
s'effectuent tous deux dans le sens des densités ioniques décroissantes.

En un point quelconque de l'écoulement, il s'établit un
régime stationnaire de la densité ionique n les ions qui
disparaissent par diffusion étant compensés par ceux qui soni
apportés par la translation du gaz.

Au bout d'un temps suffisamment grand, à une dislance
très élevée de l'origine de l'écoulement, les ions ont été presque
tous absorbés par la paroi, el la densité ionique tend vers zéro
dans toute la section.

Nous admettrons que les ions et les molécules du gaz qui
les véhicule se comportent comme deux gaz mélangés *).

•) Pour les questions de théorie cinétique des gaz, nous nous rélérons en
général à l'exposé raccourci de E. Bloch28, et pour les développements
spéciaux au traité de J.-H. Jeans*9.
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Pour le « gaz ionique » et pour le gaz proprement dit, la
répartition de la vitesse des particules est isotrope en direction

et suit en valeur la loi de répartition de Maxwell.
Celte répartition n'est pas modifiée par le mouvement

de translation du gaz.
Nous appliquerons également le théorème d'équipartition

de l'énergie au gaz ionique.
Nous admettrons enfin que la température et la pression

sont constantes dans toute l'étendue de l'écoulement. Nous
négligerons donc la chute de pression — effectivement très faible
et inférieure au millième dans les conditions fixées par l'expérience

— nécessaire au mouvement du gaz dans le cylindre.
Nous établirons l'équation différentielle qui régit le régime

permanent de distribution des densités ioniques, tout d'abord
en négligeant la diffusion électrique, puis en tenant compte
de celle-ci.

§ 14. Equation différentielle de distribution des densités
ioniques avec diffusion gazeuse seule.

Nous utiliserons, au cours du calcul, la formule de diffusion

des gaz

(7) -D\n:à z

qui exprime le nombre de molécules qui passent par unité de
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Fig. 19. — Courbes d'égales densités ioniques dans un écoulement unipolaire
cylindrique.

surface et de temps, au travers d'une surface élémentaire
normale à la direction z sous l'action du gradient de densité
c n

normal à cet élément. D est le coefficient de diffusion.
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Cette formule s'appliquant au mélange de deux gaz, nous
l'appliquerons au gaz ionique.

L'axe des x des coordonnées cylindriques est confondu
avec l'axe de révolution du cylindre conducteur. L'origine des
coordonnées est à l'origine de l'écoulement; r sera la distance
radiale, R le rayon du cylindre (fig. 19).

Nous considérons dans l'écoulement à l'abscisse x un
tore élémentaire de rayons intérieur et extérieur r et r y dr,

de longeur axiale dx (fig. 20).
n+4*-dr

or "*jtdX

dr\

dx

La densité ionique a la
valeur n en x r ; elle passe à

en x -f- dx
et à

dn
dx

dn

dr

dx

di¬

en r -j- dr

Fr;. 20. — Tore élémentaire.

Dans ce tore fixe, on effectue

le bilan des charges qui
entrent et sorteli i par la diffusion

gazeuse ou le mouvement
d'entraînement du gaz. Comme la densité ionique est fixe en
un point donné, la somme des charges entrant dans le tore
pendant le temps dt doit être égale à la somme des charges
sortantes.

Charges entrant par
diffusion par la face
cylindrique interne

Charges sortant par
diffusion par la face
cylindrique externe

Charges entrant par
diffusion par la face plane
amont

Charges sortant par
diffusion par la face plane
aval

D~) 2nrdxdt

D { d"- + ~ dr)2* (r -f dr) dx dt
\ dr dr2 I

D^2nrdrdt
dx

D(~- + Pldx)2nrdrdt
\dx dx2 J
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Charges apportées par le
courant n u 2 n r dr dl

dnCharges emportées par le
courant n -j- ~ dx) u 2 tt r dr dt

V ' dx J

Le bilan donne

D r -.- -dr dx y Dl-—\- —— dr dr dx -f- D r ¦=— dr dx
dr2 \ dr dr2 I dx2

cTÌ,
— ^r~ ur dr dx 0

dx

et, en négligeant la différentielle d'ordre supérieur,

(8)
d2n u dn I dnc-n + --y o+ D dxdx2 dr2 CT

C'est l'équation différentielle de distribution des densités
ioniques, établie en négligeant l'effet de répulsion électrostatique.

§ 15. Equation différentielle des densités ioniques avec
diffusions gazeuse et électrique.

Pour simplifier, nous négligerons les effets de la diffusion
électrique axiale. C'est-à-dire que nous supposerons que les
effets de charge d'espace dus aux ions compris dans les volumes
qui son! à l'amont de l'abscisse x d'une part, à l'aval de l'abscisse

x -j- dx d'autre part, exercent des actions égales et opposées

sur une charge située dans le tore élémentaire (fig. 20).
En d'autres termes, une telle charge ne subit qu'une force
électrostatique radiale, due à la seule présence des charges contenues

entre les plans d'abscisse x et x -j- dx
Cette importante simplification se justifie par le fait que

le gradient radial de la densité de charge est beaucoup plus
grand que le gradient axial *).

En appliquant le théorème de Gauss, relatif au flux de
force au travers d'une surface fermée, on peut trouver la va-

*) 100 à 1000 fois plus pour les gradients moyens qui se sont présentés
dans les expériences.
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leur du champ électrique radial E à l'abscisse x et à la
distance r de l'axe.

Si l'on appelle (nous devons cet artifice de calcul à N. Wo-
LODKEWiTSCH u, p. 21) Qxdx la charge électrique contenue dans
le cylindre de rayon r et de hauteur dx le flux de force au
travers de la surface de ce cylindre a pour expression :

2rirEdx âiie Qxrdx

e étant le pouvoir inducteur spécifique (e 1 en ues)
De là

Si les ions ont tous la même mobilité k leur vitesse radiale
de diffusion sera

/,- Fa — 2îT
r

Pendant le temps dt, il pénétrera donc, par diffusion électrique,

clans le tore élémentaire et par sa face cylindrique interne
un nombre d'ions,

2 k Qr
- -^ n 2 nr dx dt h n k n Qrxdx dt

Sur la face cylindrique externe du tore, le champ électrique E'
possède un flux:

£'2it(r-f dr) dx ân (Qxr dx \ 2nrndr dx)

d'où

£,
2 Qxr y â-jnrdr

r -f dr

Sous l'influence de ce champ, il sort du tore un nombre
d'ions,

n y y dr \ k E' 2 n (r + dr) dx dt

n-\--z- dr (2 Qxr — h n n r dr) 2 Tt k dx dt

Le bilan en faveur du nombre total d'ions gagnés par le tore
par diffusion électrique s'élève donc à
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— // n k 2 n r n2 -f- ~— QXr -f 2 rt r n x- dr) dr dx dt

Et, en négligeant la différentielle d'ordre supérieur

— 4 .i k (2 n r n2 -f- ^ Qxr\ dr dx dt

terme à ajouter au bilan effectué dans le paragraphe précédent,

ce qui donne pour équation différentielle

d2n d2n u dn i dn 2k /X „
1 dn „ \ n

dx> + -dr>-Ddx +rdr--^{2"n~^T'Jr Qxr) °

et en remarquant que
r

Qxr dx 2 7i dx f nr dr

d2n d*n _u dn 1 3rc

_ w_*c_fc / 2
1 9n_ /*

()3x2+3r2 Dte + rSF" D l^+rar/" rdr) =0
0

ce qui constitue l'équation différentielle de distribution des
densités en tenant compte des diffusions électrique et gazeuse.

* * *

L'équation (9) montre que le terme dû à la répulsion
électrostatique, introduit de si grandes complications analytiques
dans l'équation différentielle fondamentale, que la résolution
de celle-ci devient impraticable. Nous tournerons la difficulté
en montrant que nous pouvons nous placer expérimentalement
dans des conditions de densité suffisamment basses pour que
celte répulsion devienne négligeable. Pour apprécier ces conditions,

nous nous référerons à un calcul de N. Wolodkewitsch14
(p. 21) qui calcule l'effet de la répulsion électrostatique dans
un cas tout particulièrement simple.

W OLODKEWiTSCH considère dans un gaz, à l'époque zéro, un
« nuage ionique » unipolaire, ayant la forme d'un cylindre de

longueur indéfinie, de rayon initial r0 ; la répartition de la
densité de charges ne dépend que du rayon et du temps; n0 est
la densité ionique initiale moyenne. Ce nuage se dilate en
fonction du temps, en gardant sa forme cylindrique, et si l'on
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ne considère que la répulsion électrostatique, on montre
facilement que le rayon r du cylindre à l'époque l sera

(10) r2 r'o 1 -f- U n e k n0 e t)
(« 1, en ups)

Cette formule nous permettra, dans les expériences,
d'apprécier le rôle de la diffusion électrique, négligée clans la suite
de l'étude théorique.

§ Iß. Condition à la paroi.

Dans un mélange de gaz, la pression est égale à la somme
des pressions qu'auraient les divers gaz s'ils occupaient seuls
le volume du mélange (Dalton). Au point de vue des chocs
contre les parois, on peut donc considérer le gaz ionique iso¬

lément; il exerce contre l'u-
_x »ité de surface de paroi, par

unité de temps, un nombre

n-è^dr
ôr

i r-

~i

de chocs égal à

wmmmmmm£iImAimmm!mmm;t
(H)

n C

\ 6 71

Fig. 21. Tore élémentaire à la paroi. /-, ,tL étant la vitesse quadrati¬
que moyenne dans l'hypothèse

d'une distribution de Maxwell pour les vitesses des ions
(E.Bloch2«, chap. I). Si l'on admet tout d'abord qu'il suffit
d'un choc contre la paroi pour neutraliser un ion, cette
expression donne le nombre d'ions qui disparaissent, en fonction

de la densité n considérée clans le voisinage immédiat
de la paroi conductrice.

Remarquons que cette formule suppose que le bombardement

des ions s'effectue comme celui de molécules neutres sous
la seule action de l'agitation cinétique. On néglige non seulement

ainsi l'action du champ de répulsion électrostatique, mais
encore la force attractive exercée par l'image de signe
contraire de l'ion qui s'approche de la paroi. Nous verrons plus
loin l'importance de cette force d'image.

Pour exprimer la condition mathématique à la paroi, nous
considérons encore les charges entrant et sortant d'un tore
élémentaire ayant le rayon R du cylindre conducteur comme
rayon extérieur (fig. 21).
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Charges apportées par -.,
diffusion axiale D -~ 2 tt R dr dx dt

dx2

Charges apportées par
le courant —- u2nRdrdxdt

dx

Charges apportées par yi
diffusion radiale — DÌ —-= 2dr \2 ti (/? — dr)dx dt

C
Charges sortant par chocs —^= n 2 n R dx dt

\ 6 n

Le bilan donne, en négligeant les différentielles d'ordre supérieur

- Dd~2nRdxdi -ÏL= n 2 nR dx dl

dn C
„— : n

ou

dr D y/ 6 t-

Pour simplifier cette condition, considérons l'expression
du coefficient de diffusion donnée par la formule de Meyer
(J.-H. Jeans29, chap. XIII, E.Bloch28, chap. Ill)

n o\ n l'vm ~ lvn'
{1^ D-3(n + n')

I, l', v, v, n, n', étant respectivement les libres parcours
moyens, les vitesses cinétiques moyennes et les nombres de

molécules par unité de volume pour deux gaz mélangés. Cette
formule se simplifie dans le cas où l'un des gaz est une simple
impureté dans l'autre; où n par exemple, est très petit par
rapport à n'. Ce sera toujours le cas du gaz ionique
relativement au gaz qui le véhicule. Si l'on a par exemple n IO3

ions/cm3 dans un gaz à la pression normale et à 0n,

n'2X2,69. IO19; n: n'^ IO-14. La formule de Meyer peut
se simplifier el s'écrire

(13) D |
pour le coefficient de diffusion des ions dans les gaz.

La condition à la paroi devient ainsi

dn 3C 1

: ndr ' lv J 6 n
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et, en remarquant qu'avec une distribution des vitesses de

Maxwell (E. Bloch 28, chap. I)

(14)

v 1 8
C on

dn 3
n

dr — 4
l

en r R

Les ions légers étant formés de quelques molécules, leur
libre parcours, dans les conditions

normales, sera peu différent,

en ordre de grandeur, du
libre parcours des molécules
d'un gaz simple. I sera compris
entre IO-3 et IO-6 cm. Le
second membre de la condition
ci-dessus possède ainsi une
valeur très basse qui représente
le rapport entre la densité n
et le gradient de cette densité
au contact de la paroi. Si la
valeur du gradient est peu élevée

— ce que nous montrerons
— la valeur de la densité doit
être constamment très voisine
de zéro pour que la condition
(14) soit satisfaite (fig. 22).

tgœ-xz

Fig. 22. — Répartition radiale de la
densité et condition à la paroi,

4dn
3

l

§ 17. Influence des charges d'image au voisinage dc la paroi.

Il convient de bien distinguer le champ électrique dû aux
charges d'image, du champ qui intervient dans la diffusion
électrique. Le champ de diffusion électrique que nous avons
calculé précédemment est engendré par la charge d'espace des
ions clans le courant gazeux. Il n'est pas modifié par la

présence ou l'absence de paroi.
Le champ dû aux charges d'image n'intervient qu'en

présence d'une paroi conductrice. L'hypothèse des charges d'image
est un artifice commode pour introduire le champ
supplémentaire engendré par la paroi.
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Nous examinerons tout d'abord le cas simple d'un ion
unique, en présence d'une paroi conductrice plane indéfinie
(fig. 23). L'ion est attiré par son image (ou par la paroi,
ce qui est la même chose) par une force

(2/-)2

Le travail de cette force — dont l'expression doit être
d'ailleurs modifiée lorsque r devient égal ou inférieur aux
dimensions des noyaux atomiques — pour un ion allant de la

paroi à l'infini, est égal au travail d'extraction d'un électron de

la paroi conductrice (F. Ollendorf 30, §25). Ce travail
d'extraction qui varie avec la nature du métal qui constitue la paroi

est. de quelques unités d'électrons-volts
(leV - 1,60. 10"12erg).

Comparons ce travail à l'énergie ciné- ij
tique moyenne de translation .g m

9-

2kI II
(T étant la température absolue, k la Fig. 23. — Charge

constante de Boltzmann) dont un ion est d'image.

animé selon le principe d'équipartition
de l'énergie cinétique de translation. Le calcul montre que
cette énergie de translation est très faible relativement au
travail d'extraction. Cela veut dire que la distribution des
vitesses des ions doit être modifiée d'une façon très importante

au voisinage de la paroi. Pour connaître l'importance
de cette modification, nous allons calculer jusqu'à quelle
distance elle s'exerce d'une façon notable.

Appelons a la distance de la paroi au delà de laquelle le
travail d'extraction ou de force d'image (Bildkraft) ne
représente plus qu'un millième de l'énergie cinétique de
translation. Nous aurons donc l'équation

ou

e2

E4r^ dr
1

1000
3

'
2

kT

e2

eTa
1 3

1000 2
kT

MÉMOIIIES SC. NAT. 51
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et

4,80". 10~2X 10» nQr in° - 6 1,38 10-1X292 °'95 ' 10~3 Cm

à 19° C.
A une distance supérieure au VICK)6 de mm de la paroi,

la modification de l'énergie cinétique de translation d'un ion
sous l'effet de sa charge d'image est donc pratiquement
imperceptible. On peut aussi dire que la force d'image introduit
une modification qui peut équivaloir à un déplacement de la
paroi conductrice inférieur à l/100e de mm. Ce déplacement
sera parfaitement négligeable dans nos expériences.

Dans le cas concret de notre écoulement de charges à
l'intérieur d'un tube métallique, chaque charge intérieure subit
non seulement l'attraction de sa seule image comme nous
venons de l'examiner, mais encore l'attraction de l'ensemble
des charges-images de signe contraire qui correspondent
chacune aux charges intérieures au cylindre. La distribution de
ces charges-images extérieures est symétrique; elle ne
dépend — comme pour les charges intérieures — que de la
distance à l'axe. On voit immédiatement, en appliquant le
théorème de Gauss au flux de force au travers de la paroi
cylindrique, que le champ créé intérieurement à l'écoulement
par les charges-images est nul, si l'on néglige, comme pour
la diffusion électrique, la lente décroissance des densités dans
le sens de l'écoulement.

Les deux raisonnements que nous venons de faire montrent
que nous n'aurons pas à tenir compte des charges d'image
dans l'écoulement unipolaire.

§ 18. Solution de l'équation différentielle fondamentale.

11 s'agit de déterminer une solution

n (x,r)

de l'équation différentielle aux dérivées partielles du second
ordre, de type elliptique,

/m d2n d2n u dn I dn
__ „1 j W2 + W2~ Ddi + r 3r

dans le domaine

0 < x < -f -y.
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0<r<fl
avec les conditions,

a) n fini dans tout le domaine
b) n — O pour x -f- °°

c) n N0(r) fonction déterminée, pour x 0
a\ d dn 4
a) pour r R n : — -r- ô(
u, D, /?, Z, sont des constantes positives.

Nous devons à M. G. de Rham la méthode de résolution

suivante:
On cherche des solutions particulières de la forme

n f(x) g(r)

L'équation différentielle devient

f"(x) g(r) + g"(r) f(x) - £ f'(x) g(r) + i g'(r) f(x) 0

ou
f"(x) u f'(x) g"(r) 1 g'(r) _f(x) + D f(x) - g(r) + r g(r) "

elle peut donc être remplacée par deux équations du 2me
ordre à une variable,

9"(r) y j g'(r) -r a2g(r) 0

/"(*) - £ /'(*) - a2f(x) 0

où a est donc une constante arbitraire.
La seconde équation, linéaire, à coefficients constants, a

pour équation caractéristique

X2 — 73
X — a2 0

et pour solution

f(x) C e*'* + C, e'*»*

avec

Il n'y a une racine négative que si a2 _> 0.
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Cette racine est seule à retenir si l'on veut imposer à la
solution particulière n f(x) g(r) les conditions a) et b).
Donc,

f(x) C, e—
avec

X
u

" 2D W(â>P-a2

a première équ ition s

#9

'écrit, si I'

P ar

1 dg

on

-

pose

d?2 '

p dp
' »

Si on la compare à l'équation générale de Bessel

^ +^ + fi-^Wodp2 + p dp + v pv
On remarque que c'est une équation de ce type d'ordre

p o.
Elle a pour intégrale générale (P. Frank u. R. v. Mises D1,

VIII, § 3).
g(p) cj0(p) -y c2Y0(p)

où J0 et Y0 sont deux solutions particulières qu'on démontre
pouvoir s'écrire sous la forme de séries

•>olPJ - 22 + (2.4)2
"

(2M.6)2 +

| y0(p) [c + log nat |] y„(p) + (|) - il (|V

1+2 + 3 / P \
"*"

(3!)2 \ 2 I

Mais, J0 tendant vers 1 et F0 vers — œ pour P ou r — 0,
la solution particulière Y0 doit être écartée pour satisfaire
à la condition a). Il vient

SKp) <-V'o(p) cj0(ar)
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n Ce-'kXJa(ar)

Introduisons la condition d) (condition à la paroi)

53

(15) J0(aR) + ~laJ'0(aR) 0

Soient a. a2 les racines positives de cette équation
transcendante (il y en a une infinité). A chacune d'elles
correspond une valeur de X et une solution de l'équation aux
dérivées partielles qui satisfait aux conditions a), b), d) :

Ci erxi*J0(air)

On en déduit la solution plus générale

(16)

Les C, seront déterminés en satisfaisant à la condition c)
de manière que

A'o(r) V CiJ0(a,r)-

Nous possédons donc la solution générale de notre
problème sous la forme d'une somme d'harmoniques besseliens

qui vont en s'amortissant avec l'abscisse x

x
n V

1=7
Qe- 'ixJ0(a r)

§ 19. Détermination approchée des «,•

On a, entre des fonctions de Bessel Jp (P), d'ordre p
[jour différentes valeurs de p, les relations (P. Frank u. R. v.
Mises »i, VIII, § 3)

(17)

2 J'p(p) Jp-i(p) — Jp+i(p)

-f Jp(p) =Jp-i(p) + Jp+,(p)

on en tire, en donnant à p la valeur zéro

/ô(p) — Ji(p)

ce qui permet d'écrire l'équation transcendante (15) qui fixe
les a,- sous la forme
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Jo(aR)
J.(aR) 3

la iL
37? (aR)

R ayant dans l'expérience des valeurs de l'ordre du centimètre,
4 l3 7?

trouver des valeurs de p telles que

a constante r, t; sera voisine de 10-,i (§ 16). U s'agit de

Up)
Up) ~ io-*. p

W
yp)

m

0.6

Ji(?)

04

02

10 15

02

V
04

0,6

Fig. 24. - Fonctions de Bessel J0 et J,

yt(p) étant toujours < 1 (fig. 24), on voit que les premières
valeurs de p qui satisfont à cette équation sont très voisines
des valeurs correspondant aux premiers zéros de J0 Elles
précéderont ces zéros sur l'abscisse d'une quantité e que l'on peul
calculer en remplaçant, au voisinage des zéros, ¦/„ par sa
tangente (J'0 — J, et J. par la valeur qu'elle prend en ces zéros.

Up)

Up)
/„=0 Up)

jyj ¦W L=o

y°~n K^/0-6!Pjy„=o
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Les valeurs de p (et par conséquent de aR) qui satisfont à

la relation de condition (15) ne diffèrent que d'un millionième
des zéros de la fonction J0 Nous pourrons donc poser avec
une grande précision

(18) ajR Zéros successifs de J0

Les harmoniques besseliens s'annulent sur la paroi
cylindrique.

Remarque. — Cette expression reste encore valable, avec
une précision moindre, mais pourtant suffisante, quand il
faut plus d'un choc contre la paroi pour neutraliser un ion.
S'il faut par exemple 10 chocs (probabilité de décharge 0,1

par choc), l'examen du § 16 montre immédiatement (pie la

condition à la paroi devient

n : — —-=10^ l
dr à

Et dans le calcul qui précède, les valeurs de p qui satisfont
à la condition (15) diffèrent d'un 100 000e au lieu d'un
millionième des zéros de J0 La relation (18) reste encore applicable

avec une précision élevée.
Il est difficile d'évaluer la probabilité de neutralisation

par choc. Energétiquement, l'ion incident dispose toujours de
suffisamment d'énergie pour extraire de la paroi l'électron de

neutralisation. L'ion incident libère en effet à la paroi la

somme de l'énergie d'ionisation (A'2 15,8; O2 12,5 eV), de l'énergie

de translation (l/2ô eV) el de l'énergie communiquée par
l'attraction de la charge-image. La somme de ces énergies est
très supérieure aux 2 à 5 eV nécessaires pour l'éjection d'un
électron d'une paroi. Si la neutralisation n'a pas lieu, ce

pourra être pour des raisons quantiques et non pas énergétiques.

§ 20. Débit total d'ions dans une section droite.

C'est la grandeur particulièrement intéressante puisque c'est
la plus accessible à la mesure. On a par unité de temps, dans
la section d'abscisse x un débit de charges Q tel que

R R

Q / uu2tt r dr — 2nu^C.e-'ix / 70/rt,r)r dr
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On a par ailleurs, en ajoutant les relations (17), § 19, el
en posant p 1

d[pJl(p)]=pJ0(p)dp
d'où

C?=2*/?uV ^-e-H*Jx(a(R)

Et si l'on appelle p,- les zéros de J0 et G le débit en volume
par unité de temps du gaz qui véhicule les ions, il vient.

(19) Q^2Gyj^e-'H*J.(pi)

où les Jl (pj ont des valeurs numériques bien déterminées; ce
sont celles qui correspondent aux zéros de J0 Les tables des
fonctions de Bessel donnent (Jahnke-Emde :!2, XVIII, p. 237).

1

2

3

4

Zéros de J0(p)
atR pt

Valeu rs correspondantes
de JiiciiR)

2,405
5,520
8,654

11.792

-0,5191
- 0,3403
-0,2715
- 0.2325

Les X, sont déterminés par la formule rencontrée au § 18.

x<--m + v(m)'+'t
que l'on peut transformer en introduisant P, et G

u
2D -V1*"47iPf£>2

et simplifier en remarquant que pour les valeurs de i peu
élevées

2kp\D2
«G
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prend des valeurs numériques très faibles dans les expériences
et que son carré est donc tout à fait négligeable *. Il vient alors

(20) X.âi7^^

pour les harmoniques de rang peu élevé.

§ 21. Importance des harmoniques de Bessel d'ordre
supérieur.

Pratiquement, dans les conditions expérimentales que nous
nous posons, on ne connaît pas la répartition à l'origine de
l'écoulement

n N0(r)

qui permet de fixer les C, el par là la grandeur de chacun
des harmoniques de Bessel. Tout ce qu'on peut dire de la
fonction /Vn c'est qu'elle doit avoir une allure parabolique,
analogue à celle de la figure 22.

Nous allons, dans un cas concret, supposer tout d'abord
chacun des C,- 1 et voir comment les harmoniques s'amortissent

en fonction de x. Nous aurons, dans les expériences,
G 1000 cm3/sec et nous montrerons (§ 25) que pour des
ions aériens formés de 2 molécules et diffusant dans l'air
(p=latm., t=19,5°C), D 0,048; le coefficient de
diffusion varie peu lorsque l'ion est formé de 2 à 3 molécules.
Le tableau ci-dessous montre comment les différents harmoniques

p- J1 (p,) de l'expression du débit ionique (formule

(19)) s'amortissent pour un parcours Ax de 200 cm. X,- est
déterminé par la formule approchée (20).

*) En effet, dans les conditions expérimentales
G 1000 cm3/sec
u 10 à 100 cm/sec
D 0,048 pour un ion formé de 2 molécules d'air diffusant dans l'air

(cf. S 23)
on a, pour le 4e harmonique (/>/= 11,79)

IkhW _ 2^.11,79.0,048 _uG 10.1000 '

quantité dont le carré est bien négligeable en regard de celle-ci.
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ïUpù

1 W X-e-^7,(p,)
i Pi x,- e~'H"x P«

Pi en val. cn °/0 do la
absolue fondamenf.

841 2,405 0,216 0,87. 10-3 0.840 0,182
2 5,520 0.0617 4,6 10-3 0.399 0,0246 11

3 8,654 0,0314 11,3 IO"3 0,105 0,0033 1,5
4 11,792 0,0197 21.-0 IO-' 0.015 0.00030 0,1

Les harmoniques d'ordre supérieur au premier s'amortissent

donc très rapidement, et leur contribution au débit ionique
devient très vite négligeable. Pour des mesures de débit doni

kn
Fondlà +2*22harm.

Fondamentale
C, 1,0

in

,222?harm. \\
Cj=0.2 \\

+ r

Fondamentale

V Cftt0
Fondls+2^harm.

R

/2^harm.' C2=-0,2
R

^r

Fig. 25. — Répartition radiale de la densité :

a) avec 2e harmonique de b) avec 2e harmonique de

+ 20 "/o (C, 0,2) ; - 20 % (C.2= - 0,2).

la précision est de l'ordre du pourcent, la considération du
2me harmonique interviendrait seule dans l'hypothèse d'une
répartition initiale de même intensité des différents harmoniques

(C/ égaux). Dans la figure 25 où l'on a supposé un
2me harmonique de 20 «o (additif fig. a, soustractif fig. b),
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on voit que les déformations de la répartition radiale obtenue
sont déjà telles qu'il est douteux que le 2mc harmonique puisse
être plus intense (voir la répartition intuitive de la figure 22).

Une seconde raison — expérimentale et mieux fondée —

nous autorisera pratiquement à négliger le 2me harmonique:
dans les expériences effectuées avec des densités ioniques
suffisamment faibles pour que la diffusion gazeuse intervienne
seule, la décroissance du débit ionique a un caractère
exponentiel simple; elle ne se comporte pas comme la somme
de deux exponentielles avec coefficients d'affaiblissement
différents, ainsi qu'il apparaîtrait avec la présence d'un harmonique

d'ordre supérieur à la fondamentale.
En ne faisant ainsi intervenir que la fondamentale, les

formules de répartition des densités et du débit ionique
deviennent très simplement

(21) n Cle-^xJ0(a1r)

(22) Q=2G^le-W1(p1)
Pi

formules dans lesquelles
eo npyD

Xl~—G~~
avec pi — 2,405

J,(Pl) 0,5191

Le débit ionique peut aussi s'écrire encore plus simplement

(23) Q Qoe-x,

et si l'on considère la densité ionique moyenne

-g-
(24) nne-

Fait très important, à débit gazeux G constant, le coefficient

d'affaiblissement \l est indépendant du rayon R du
cylindre.
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