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40 GUSTAVE JOYET

CHAPITRE III

L’EQUATION DE DISTRIBUTION DE LA DENSITE
IONIQUE DANS L’ECOULEMENT GAZEUX UNIPOLAIRE

§ 13. Introduction au probléme.

Dans un cylindre électriquement conducteur, de section
circulaire, on considére un écoulement gazeux de vitesse uni-
forme u paralléle a I'axe. Le gaz véhicule des particules char-
gées d'un seul signe, positif ou négatif, dont les dimensions
et la masse sont d'un ordre de grandeur qui n’est pas tres
différent de celui des molécules du gaz. La distribution en
densité des particules est constante dans la section iniliale de
I'écoulement (source ionisante constante).

La charge électrique de chaque particule — ion — est
égale en valeur absolue a celle de l'électron.

Il suffit d'un petit nombre de chocs d’une particule contre
la paroi conductrice pour la neutraliser et la faire disparaitre
en tant qu’ion.

En dehors de leur entrainement de vitesse uniforme par
le gaz qui les véhicule, les i1ons subissent deux mouvements
d’ensemble qui les entrainent chacun radialement vers la pa-
roi et axialement dans le sens de l'écoulement. Ces deux mou-
vements de migration sont dus, 'un a la diffusion gazeuse,
I'autre a la diffusion électrique des ions dans le gaz. Ils s’ef-
fectuent tous deux dans le sens des densités ioniques décrois-
santes.

En un point quelconque de l'écoulement, il s’établit un
régime stationnaire de la densité ionique n, les 1ons qui dis-
paraissent par diffusion étant compensés par ceux qui sonl
apportés par la translation du gaz.

Au bout d'un temps suffisamment grand, a une dislance
trés élevée de 1'origine de l'écoulement, les ions ont été presque
tous absorbés par la paroi, el la densité 1onique tend vers zéro
dans toute la section.

Nous admettrons que les 1ons et les molécules du gaz qui
les véhicule se comportent comme deux gaz mélangés *).

*) Pour les questions de théorie cinétique des gaz, nous nous rélérons en
général a l'exposé raccourci de E. Brocu 2%, et pour les développements
spéciaux au traité de J.-H. JEans 3%,
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Pour le « gaz ionique » et pour le gaz proprement dit, la
répartition de la vitesse des particules est isotrope en direc-
tion et suit en valeur la loi de répartition de MaxwEeLL.

Cette répartition n’est pas modifiée par le mouvement
de translation du gaz.

Nous appliquerons également le théoréme d’équipartition
de I'énergie au gaz ionique.

Nous admettrons enfin que la température et la pression
sont constantes dans toute l'étendue de I'écoulement. Nous né-
gligerons donc la chute de pression — effectivement trés faible
et inférieure au milliéme dans les conditions fixées par I'expé-
rience — nécessaire au mouvement du gaz dans le cylindre.

Nous établirons I'équation différentielle qui régit le régime
permanent de distribution des densités ioniques, tout d’abord
en négligeant la diffusion électrique, puis en tenant comple
de celle-ci.

§ 14. Equation différentielle de distribulion des densilés
ioniques avec diffusion gazeuse seule.

Nous utiliserons, au cours du calcul, la formule de diffu-
sion des gaz

3
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Fi6. 19. — Courbes d’égales densités ioniques dans un écoulement unipolaire

cylindrique.

surface et de temps, au travers d’une surface élémentaire
normale a la direction z, sous l'action du gradient de densilé

o)
n . . .. ) )
normal a cet élément. I est le coefficient de diffusion.
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Cette formule s’appliquant au mélange de deux gaz, nous I'ap-
pliquerons au gaz ionique.

L’axe des z des coordonnées cylindriques est confondu
avec 'axe de révolution du cylindre conducteur. L’origine des
coordonnées est a l'origine de l'écoulement; r sera la distance
radiale, R le rayon du cylindre (fig. 19).

Nous considérons dans 1’écoulement a 1’abscisse z, un
tore élémentaire de rayons intérieur et extérieur r et r - dr,
de longeur axiale dz (fig. 20).

La densité ionique a la va-

on
e 7 dr on leur n en x, r; elle passe a
n+3-- dx B

. on
n- — dzx
ox
~en x - dx,
X ’
et a
r - on
n - dr
or
en r—+dr.

Dans ce tore fixe, on effec-
tue le bilan des charges qui en-
Fie. 20. — Tore élémentaire. trent el sorieni par la diffu-
sion gazeuse ou le mouvement
d’entrainement du gaz. Comme la densité ionique est fixe en
un point donné, la somme des charges entrant dans le tore
pendant le temps di doit étre égale a4 la somme des charges
sortantes.

X ' X

_——————— e~ -

Charges entrant par dif-
fusion par la face cylin- ( n’

drique interne s ) = ) Qur dx dt
‘ or

Charges sortant par dif-
fusion par la face cylin-

2
drigque externe —D (%:t + %:) rlr)?*r (r - dr)dzdt
Charges entrant par dif-
fusion par la face plane
amont ~ D 2 dr di

Charges sortant par dif-
fusion par la face plane on
_ D(

aval

e dm) Qnr dr dt

dr aa:

o |
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Charges apportées par le

courant nul nrdrdil

(Charges emportées par le q

) . on 5

courant n-+ [.1:) ul2ardrdt
L or

Le bilan donne

32
Dr ill“ dr dx D(an s = 8in d )drdw
or? or or
on
— urdrdr=20

et, en néghgeant la différentielle d’ordre supérieur,

2n  o%n - w on | on
(8) wtm Datra 0

C'est I'équation différentielle de distribution des densités
ioniques, ¢tablie en négligeant l'effet de répulsion électrosta-

thue

§ 15. Equation différentielle des densités ioniques avee
diffusions gazeuse et électrique.

Pour simplifier, nous négligerons les effets de la diffusion
électrique axiale. C'est-a-dire que nous supposerons que les
effets de charge d’espace dus aux ions compris dans les volumes
qui sont & I'amont de l'abscisse z d’une part, a 'aval de I'abs-
cisse x + dz d'autre part, exercent des actions égales et oppo-
sées sur une charge située dans le tore élémentaire (fig. 20).
En d’autres termes, une telle charge ne subit qu'une force élec-
trostatique radiale, due a la seule présence des charges conle-
nues entre les plans d’abscisse = et x | dr .

Cette 1mportante simplification se justifie par le fait que
le gradient radial de la densité de charge est beaucoup plus
grand que le gradient axial *).

En appliquant le théoréme de Gauss, relatif au flux de
force au travers d'une surface fermée, on peut trouver la va-

*) 100 a 1000 fois plus pour les gradients moyens qui se sont présentés
dans les expériences.
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leur du champ électrique radial E a V'abscisse x et a la dis-
tance r de laxe.

Si l'on appelle (nous devons cet artifice de calcul a N. Wo-
LODKEWITSCH 14, p. 21) Q,dx la charge électrique contenue dans
le cylindre de rayon r et de hauteur dx, le flux de force au
travers de la surface de ce cylindre a pour expression :

QarEdr—=lbxe Qgde

e étanl le pouvolr inducteur spécifique (e =1 en ues)
De la

Si les 1ons ont tous la méme mobilité &k, leur vitesse radiale

de diffusion sera
i — 2k QO

r

Pendant le temps dt, il pénétrera donc, par diffusion électri-
que, dans le tore élémentaire et par sa face cylindrique interne
un nombre d’ions,

2

er'x n2xzrdrdt = 4nknQ.dxdt

Sur la face cylindrique externe du tore, le champ électrique E’
posséde un flux:

E'2a(rtdrydr="7 (Qxdx ' 2arndrdr)
d’ou
_ 20Q0x +4anrdr

E Pl dr

Sous l'influence de ce champ, il sort du tore un nombre
d’1ons,

or

/

/ 3
( n -+ o dr) kE2na(r+dr)dxdt=

[ 2
(n %—z\%dr) (205 ~Nanrdr)2nkdr dt

[.e bilan en faveur du nombre total d’ions gagnés par le tore
par diffusion électrique s’éléve donc a
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)

/

J 3
— 4 ﬂl.‘(Qan2T-q-q- Ox +27nrn =l dr) dr dx dt
or r
Et, en négligeant la différentielle d’ordre supérieur
on
—llnl{(Qnrnﬁ—,i—gr— er) dr dx dt

terme a ajouter au bilan effectué dans le paragraphe précé-
dent, ce qui donne pour équation différentielle

2n ¢n uon 1on 2k ., 1lon -
§E+aﬂ'TME+?&T'ﬁ(2“”TFE'@J“ﬁ

et en remarquant que

r

erdx=2ndwj nrdr

0

2n 2n wudn 1on dnk 12n o
(nz—f—;g;.‘/ nrdr) =3 )
0

Nt pmTra D

ce qui constitue I'équation différentielle de distribution des
densités en tenant compte des diffusions électrique et gazeuse.

* ok Xk

[’équation (9) montre que le terme da a la répulsion élec-
trostatique, introduit de si grandes complications analytiques
dans l'équation différentielle fondamentale, que la résolution
de celle-ci devient impraticable. Nous tournerons la difficulté
en montrant que nous pouvons nous placer expérimentalement
dans des conditions de densité suffisamment basses pour que
celte répulsion devienne négligeable. Pour apprécier ces condi-
tions, nous nous référerons a un calcul de N. WorLopkewrrscu 14
(p. 21) qui calcule l'effet de la répulsion électrostatique dans
un cas tout particuliérement simple.

WoLopkeEwiTscH considére dans un gaz, a I'époque zéro, un
« nuage ionique » unipolaire, ayant la forme d'un cylindre de
longueur 1ndéfinie, de rayon imitial r, ; la répartition de la
densité de charges ne dépend que du rayon et du temps; n, est
la densité 1onique imtiale moyenne. Ce nuage se dilate en
fonction du temps, en gardant sa forme cylindrique, et si I'on
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ne considére que la répulsion électrostatique, on montre faci-
lement que le rayon r du cylindre a 1'époque ( sera

(10) r=ri(l+4nekn,et)
(e =1, en ues)

Cette formule nous permettra, dans les expériences, d'ap-
précier le role de la diffusion électrique, négligée dans la suite
de I'étude théorique.

§ 16. Condition a la paroi.

Dans un mélange de gaz, la pression est égale a la somme
cdles pressions qu’auraient les divers gaz s’ils occupaient seuls
le volume du mélange (DarrTon). Au point de vue des chocs
contre les parois, on peut donc considérer le gaz ionique iso-
iément; il exerce contre 1'u-
nité de surface de paroi, par
unité de temps, un nombre
de chocs égal a

nC

kS

(11)

Fic. 21. — Tore élémentaire & la paroi. C étant la vitesse quadrali—

que moyenne dans I'hypo-
thése d’'une distribution de MaxweLL pour les vitesses des ions
(E. Broch 23, chap.I). Si I'on admet tout d’abord qu’il suffit
d’un choc contre la paroi pour neutraliser un ion, cette ex-
pression donne le nombre d’ions qui disparaissent, en fonc-
tion de la densité n. considérée dans le voisinage immédiat
de la paroi conductrice.

Remarquons que cette formule suppose que le bombarde-
ment des 10ns s’effectue comme celui de molécules neutres sous
la seule action de I'agitation cinétique. On néglige non seule-
ment ainsi I'action du champ de répulsion électrostatique, mais
encore la force attractive exercée par l'image de signe con-
traire de l'ion qui s’approche de la paroi. Nous verrons plus
loin I'importance de cette force d’image.

Pour exprimer la condition mathématique a la paroi, nous
considérons encore les charges entrant et sortant d’'un tore
élémentaire ayant le rayon R du cylindre conducteur comme
rayon extérieur (fig.21).
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Charges apportées par 2

diffusion axiale D J:” 2nRdrdrdt
0

Charges apportées par 3

le courant — a&_’} ulnRdrdzdt
or

Charges apportées par 3 -

diffusion radiale — I)( 3‘: —ir’: dr )2 (R —dr)drdt
1 %

Charges sortant par chocs S_ n2nRdxdt
y 67

Le bilan donne, en négligeant les différentielles d’ordre supé-
rieur

--_02”2 Rdzdl — \T_nQan.cdt
ou
_on €
or Dv?ing_t

Pour simplifier cette condilion, considérons l'expression
du coefficient de diffusion donnée par la formule de Mey:r

(J.-H. JEans 29, chap. XIII, E. Brocu 28, chap. III)

. l'vn s lon’
3 (nLn)

L U, v, v, n, v, étant respectivement les libres parcours
moyvens, les vitesses cinétiques moyennes et les nombres de
molécales par unité de volume pour deux gaz mélangeés. Cette
formule se simplifie dans le cas ot 1'un des gaz est une simple
impureté dans l'autre; ou n, par exemple, est trés petit par
rapport a n’. Ce sera toujours le cas du gaz ionique relati-
vemenl au gaz qui le véhicule. S1 l'on a par exemple n = 10
ions/cm® dans un gaz a la pression normale et a 0°
'~ 2,69.10"%; n: =~ 10-*. La formule de MeyeEr peut
se simplifier et s'écrire

(13) D —

(12)

v

3

pour le coefficient de diffusion des i1ons dans les gaz.
La condition a la paroi devient ainsi

301
" T U6n
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et, en remarquant qu’avec une distribution des vitesses de
Maxwerr (E. Brocn 28, chap. I)

v\ /E
¢ V5=

ne°on 3,
(14) ' or 4
en r=R

Les ions légers étant formés de quelques molécules, leur
libre parcours, dans les condi-
tions normales, sera peu diffe-
rent, en ordre de grandeur, du
libre parcours des molécules
d'un gaz simple. [ sera compris
entre 107> et 106 cm. Le se-
cond membre de la condition
ci-dessus posséde ainsi une va-
leur trés basse qui représente
le rvapport enire la densité n
et le gradient de cette densité
au contact de la paroi. Si la
valeur du gradient est peu éle-

n

Fic. 22 —_ Re,.pqrtlt‘aon radia.le de la vée — ce que nous montrerons
densitée el condition a la parot, o ;
5 5 — la valeur de la densité doit
FES s ()—" =3 l étre constamment trés voisine

-

de zéro pour que la condition
(14) soit satisfaite (fig. 22).

§ 17. Influence des charges d’image au voisinage de la paroi.

Il convient de bien distinguer le champ électrique du aux
charges d'image, du champ qui intervient dans la diffusion
¢lectrique. Le champ de diffusion électrique que nous avons
calculé précédemment est engendré par la charge d'espace des
ions dans le courant gazeux. Il n'est pas modifié par la
présence ou l'absence de paroi.

Le champ du aux charges d’image n’intervient qu'en preé-
sence d’'une paroi conductrice. L’hypothése des charges d'image
est un artifice commode pour introduire le champ supplé-
mentaire engendré par la paroi.
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Nous examinerons tout d’abord le cas simple d'un 1ion
unique, en présence d'une paroi conductrice plane indéfinie
(fig. 23). L'ion est attiré par son image (ou par la paroi,
ce qui esl la méme chose) par une force

62
F @

Le travail de cette force — dont l'expression doit étre
d’ailleurs modifiée lorsque r devient égal ou inférieur aux
dimensions des noyaux atomiques — pour un ion allant de la
paroi a l'infini, est égal au travail d’extraction d'un électron de
la paroi conductrice (F.OrLrLeEnporr %, § 25). Ce travail d’ex-
traction qui varie avec la nature du métal qui constitue la pa-
roi est de quelques unités d’électrons-volts
(1eV =:1,60. 10712 erg).

Comparons ce travail a l'énergie ciné-
tique moyenne de translation

3
— kT
2
(T étant la température absolue, k la Fic. 23. — Charge
constante de Borrtzmann) dont un 1on est d’image.

animé selon le principe d’équipartition

de l'énergie cinétique de translation. Le calcul montre que
cette énergie de translation est trés faible relativement au
travail d’extraction. Cela veut dire que la distribution des
vitesses des 1ons doit étre modifiée d'une facon trés impor-
tante au voisinage de la paroi. Pour connaitre l'importance
de cette modification, nous allons calculer jusqu'a quelle dis-
tance elle s’exerce d’'une facon notable.

Appelons a la distance de la paroi au dela de laquelle le
travail d’extraction ou de force d’image (Bildkraft) ne re-
présente plus qu'un millieme de l'énergie cinétique de trans-
lation. Nous aurons donc 1'équation

2 1 3
/8”4}-2 dr= 1600 3 T
a
ou
e 1 3
® 42 — 1000 2 T

MEMOIRES SC. NAT. 5l 4
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et

1£80°. 10~ . 108
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“= 6. 1,38. 1075 292 0107 om

a 19 C.

A une distance supérieure au !'/100c de mm de la paroi,
la modification de l'énergie cinétique de translation d'un 1on
sous l'effet de sa charge d’image est donc pratiquement im-
perceptible. On peut aussi dire que la force d'image introduit
une modification qui peut équivaloir a un déplacement de la
paroi conductrice inférieur a '/100¢ de mm. Ce déplacement
sera parfaitement négligeable dans nos expériences.

Dans le cas concret de notre écoulement de charges a 1'in-
térieur d’'un tube métallique, chaque charge intérieure subit
non seulement l'attraction de sa seule image comme nous
venons de l'examiner, mais encore l’attraction de l'ensemble
des charges-images de signe contraire qui correspondent cha-
cune aux charges intérieures au cylindre. La distribution de
ces charges-images extérieures est symétrique; elle ne dé-
pend — comme pour les charges intérieures — que de la
distance a l'axe. On voit immeédiatement, en appliquant le
théoréme de Gauss au flux de force au travers de la paroi
cylindrique, que le champ créé intérieurement a l'écoulement
par les charges-images est nul, si l'on néglige, comme pour
la diffusion électrique, la lente décroissance des densités dans
le sens de l'écoulement.

Les deux raisonnements que nous venons de faire montrent
que nous n'aurons pas a tenir compte des charges d'image
dans l'écoulement unipolaire.

§ 18. Solution de I'équation différentielle fondamentale.
11 s’agit de déterminer une. solution
n (x,r)

de I'équation différentielle aux dérivées partielles du second
ordre, de type elliptique,

2n n u on I on

32
(8) @t Dutra =0

r

dans le domaine

O<z<< + =
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O<r<R

avec les conditions,

a) n fini dans tout le domaine

b) n=0 pour z=+4

c) n= Ny(r), fonction déterminée, pour z = QO
on

4
d) pour rzR,n:—gzél

u, D, R, I, sont des conslantes positives.

Nous devons a M. G. pe Ruam la méthode de résolu-
tion suivante:
On cherche des solutions particuliéres de la forme

n = f(z) g(r)

L'équation différentielle devient

f1(2) g(r) + () f(z) — 5 F(2) g(r) + = () f(z) =0
fr@) , ufl@) g0, g _

T J@) TDfm) " g Trgm — ¢

elle peut donc étre remplacée par deux équations du 2me or-
dre a une variable,

9(r) 1 g/(r) + g(r) = 0

r

f"(2) — 5 f(2) — af(z) = 0

ou a est donc une constante arbitraire.
La seconde équation, linéaire, a coefficients constants, a
pour équation caractéristique

A?-*;;J\~az:0

et pour solution

f(z) = Cpen* 4 Gy e

u u \* N M
EDi\“ﬂJ+w:<M

Il n'y a une racine négative que si a2 > 0.

avec
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(Cette racine est seule a retenir si 'on veut imposer a la
solution particuliére n = f(x) g(r) les conditions a) et b).

Donc,
f(z) = C; e—*

avec -
2
*=*§%+tiﬁ*“2

La premiére équation sécrit, si l'on pose

p=ar
g 1dg
R R

Si on la compare a l'équation générale de BEesser

d2g 1dg p?
oz T p dp+< “b‘é)q“o

On remarque que c'est une équation de ce type d'ordre
=0.
Elle a pour intégrale géuérale (P. Frank u. R. v. MisEs 31,
VIIIL, § 3).
g(p) = cdo(p) + c:Yo(p)

ou J, et Y, sont deux solutions particuliéres qu’'on démontre
pouvoir s’écrire sous la forme de séries

T o pf .
Jole) =1— G+ aye — (206 T
: o 4 (o)
2
b] Yy(p) = [ -+ log nat 5 J Jo(p) + (5) (2 (j)
1 1
|+2+3 P\
L (3D (§) o
Mais, J, tendant vers 1 et Y, vers — o« pour P ou r =0,

la solution particuliere Y, doit étre écartée pour satisfaire
a la condition a). Il vient

g(p) = erlo(p) = ¢ Jq(ar)
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et
n = Ce—**J(ar)
Introduisons la condition d) (condition a la paroi)
(15) Jy(aR) + gla Ji(aR) = 0

Soient a,, a,,... les racines positives de cette équation
transcendante (il y en a une infinité). A chacune d’elles cor-
respond une valeur de M et une solution de l'équation aux
dérivées partielles qui satisfait aux conditions a), b), d) . :

Ci e—*xJo(air)

On en déduit la solution plus générale

oC
- : C,C_"‘lx.](](arr)

(16) n

~
~

Les C; seront déterminés en satisfaisant a la condition c)
de maniére que

No(r) = CiJo(air)-

Nous possédons donc la solution générale de notre pro-
eme sous la rme d’une mme d’ 1 1
bl la forme d somme d’harmoniques besseliens

qui vont en s’amortissant avec l’abscisse x .

§ 19. Détermination approchée des a; .

On a, entre des fonctions de Besser J, (P), d'ordre p,
pour différentes valeurs de p,les relations (P. Frank u. R. v.

Mises %, VIII, § 3)

2J5(p) = Jo—1(p) — Jpr1(p)

(17) ?_pf Jp() = Jp—1(p) 4 Jps1(p)

on en tire, en donnant a p la valeur zéro

Jo(p) = — Ji(p)

ce qui permet d’écrire 'équation transcendante (15) qui fixe
les a; sous la forme
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Jo(aR) 4

4
R ayant dans l'expérience des valeurs de I'ordre du centimétre,
la constante }—{ sera voisine de 10—6 (§ 16). Il s’agit de

trouver des valeurs de p telles que

JO(p) o~ 10—6

«p

10

% >(\,Jmp/

VLY Nl VIR
\ \
2 \/ W4 / i
! / TS
L/
-04
-06

Fic. 24. - Fonctions de Bessel J, et J, .

Ji(p) étant toujours <1 (f:g 24), on voit que les premleres
valeurs de p qui satisfont i cette equatlon sont trés voilsines
des valeurs correspondant aux premiers zéros de J,. Elles pré-
céderont ces zéros sur l'abscisse d’une quantlte e que l'on peul
calculer en remplacant, au voisinage des zéros, J, par sa tan-
gente (Jo = — J, et J, par la valeur qu’elle prend en ces zéros.

\
Jy P) Jo=0 —_— ”;310_6!9;/0:0

—le;(p>}]_0 e | i
]y TN
3 P) ‘]o“J iJl(P) i.’o:U
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Les valeurs de p (et par conséquent de aR) qui satisfont a
la relation de condition (15) ne different que d’un millioniéme
des zéros de la fonction J,. Nous pourrons donc poser avec
une grande précision

(18) a;R = Zéros successifs de J,

Les harmoniques besseliens s’annulent sur la paroi cylin-
drique.

RemarqQue. — Cette expression reste encore valable, avec
une précision moindre, mais pourtant suffisante, quand il
faut plus d’un choc contre la paroi pour neutraliser un ion.
8’1l faut par exemple 10 chocs (probabilité de décharge 0,1
par choc), I'examen du § 16 montre immédiatemoent que la
condition a la paroi devient

ni— M 102
or 3
Et dans le calcul qui précéde, les valeurs de p qui satisfont
a la condition (15) différent d’'un 100 000¢ au lieu d’un mil-
lioniéme des zéros de J,. La relation (18) reste encore appli-
cable avec une précision élevée.

Il est difficile d’évaluer la probabilité de neutralisation
par choc. Energétiquement, l'ion incident dispose toujours de
suffisamment d’énergie pour extraire de la paroi l'électron de
neutralisation. L’ion incident libére en effet a la paroi la
somme de I'énergie d’ionisation (N2 15,8; 02 12,5 V), de I'éner-
gie de translation (1/25el) et de l'énergie communiquée par
I'attraction de la charge-image. La somme de ces énergies est
trés supérieure aux 2 a 5 el’ nécessaires pour l'éjection d'un
électron d’une paroi. Si la neutralisation n’a pas lieu, ce
pourra étre pour des raisons quantiques et non pas énergétiques.

§ 20. Débit total d’ions dans une seclion droite.

C’est la grandeur particuliérement intéressante puisque c’esl
la plus accessible a la mesure. On a par unité de temps, dans
la section d’abscisse x, un débit de charges Q tel que

R R
A ” 3
6= J un2n rdr = 21:112(}3‘“’-:‘"/ Jo air)r dr
0

—1
* 0
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On a par ailleurs, en ajoutant les relations (17), § 19, et
en posant p=1

dlpJi(p)l= P Jo(p) do

d’ou

Q=27 Ru S % e—ix] (a;R)

Et si 'on appelle p; les zéros de J, et G le débit en volume
par unité de temps du gaz qui véhicule les i1ons, il vient,

(19) Q=26 3, 2 e (p)
i—1 Vi

ou les J, (p; ) ont des valeurs uumenques bien déterminées; ce
sont celles qui correspondent aux zéros de J,. Les tables des
fonctions de BesseL donnent (Jannke-Espe 32, XVIII, p. 237).

Zéros de Jy(p)  Valeurs correspondantes
[ = ;R = p; de I{a;R)
1 2,405 +—0,6191
2 5,520 — 0,3403
3 8,654 -+ 0,2715
4

11,792 — 0.2325

Les \; sont déterminés par la formule rencontrée au § 18.
_ u [{u\? 2
N=—opty (zT)) o
que l'on peut transformer en introduisant p; et G

_%[1_\/1+(2¢2D>2J= [ \/1 4nP ]

et simplifier en remarquant que pour les valeurs de i peu
élevées

2np? D2
ulc
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prend des valeurs numeériques trés faibles dans les expériences
et que son carré est donc tout a fait négligeable *. Il vient alors

np}D
G

12

(20) .

pour les harmoniques de rang peu élevé.

§ 21. Importance des harmoniques de Bessel d’ordre
supérieur.

Pratiquement, dans les conditions expérimentales que nous
nous posons, on ne connait pas la répartition i l'origine de
I’écoulement

n = Ny(r)

qui permet de fixer les C; et par la la grandeur de chacun
des harmoniques de BesseL. Tout ce qu'on peut dire de la
fonction N, cest qu’elle doit avoir une allure parabolique.
analogue a celle de la figure 22.

Nous allons, dans un cas concret, supposer tout d’abord
chacun des C; =1 et voir comment les harmoniques s’amor-
tissent en fonction de x. Nous aurons, dans les expériences,
G = 1000 cm?/sec et nous montrerons (§ 25) que pour des
ions aériens formés de 2 molécules et diffusant dans l'air
(p=1latm., t=19,50cC), D= 0,048; le coefficient de dif-
fusion varie peu lorsque l'ion est formé de 2 a 3 molécules.
Le tableau ci-dessous montre comment les différents harmo-

niques 51— J, (P;) de lexpression du débit ionique (formule

(19)) s’amortissent pour un parcours Axr de 200 cm. \; est dé-
terminé par la formule approchée (20).

*) En effet, dans les conditions expérimentales

G = 1000 cm3/sec
u = 10 a 100 cm/sec ;
D= 0,048 pour un ion formé de 2 molécules d’air diffusant dans l'air

(cf. § 25)

on a, pour le 4° harmonique (g; = 11,79)
2

2meD? 27 A119.0,088 0 10—1
uG ~ 10.1000 — T

quantité dont le carré est bien négligeable en regard de celle-ci.
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1
¥ | | —eex ], (pi)
() i e—ex | BL

P | en val. |en?®/ dela
! | ‘ absolue fondament.

1 | 2405 | 0216 = 087.107% 0840 | 0,182 | 84
2 | 5,520 | 00617 | 4,6 .10-% | 0.3099 | 00246 | 11
3 | 8634 | 00314 | 11,3 .10~5 | 0,105 | 00033 | 1,5
4 | 11,792 | 00197 | 21:0 . 10— | 0,015 | 0,00030 0,1

Les harmoniques d’ordre supérieur au premicr s’amortis-
sent donc trés rapidement, et leur contribution au débit 10nique
devient trés vite négligeable. Pour des mesures de débit dont

AN
{ éme
Fond le + 2émeharm. n
- fendamentale . fondamentale
CJ’ =10 \'\./\ [1 = 7,0

Fondle+ 2¢™ harm.

_r N,
\~2¢meharm. |
[ o =-02
Fie. 25. — Répartition radiale de la densité ;
a) avec 2¢ harmonique de b) avec 2¢ harmonique de
+ 20/, (Cy = 0,2); — 209, (C;= — 0,2).

la précision est de l'ordre du pourcent, la considération du
2me  harmonique interviendrait seule dans I'hypothése d’une
répartition initiale de méme intensité des différents harmoni-
ques (C; égaux). Dans la figure 25 ou l'on a supposé un
2me harmonique de 20 9o (additif fig. a, soustractif fig. b),
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on voit que les déformations de la répartition radiale obtenue
sont déja telles qu'il est douteux que le 2me harmonique puisse
étre plus intense (voir la répartition intuitive de la figure 22).

Une seconde raison — expérimentale et mieux fondée -
nous autorisera pratiquement a négliger le 2me harmonique:
dans les expériences effectuées avec des densités 1oniques suf-
fisamment faibles pour que la diffusion gazeuse intervienne
seule, la décroissance du débit ionique a un caractére expo-
nentiel simple; elle ne se comporte pas comme la somme
de deux exponentielles avec coefficients d’affaiblissement dif-
férents, ainsi qu’il apparaitrait avec la présence d'un harmo-
nique d'ordre supérieur a la fondamentale.

En ne faisant ainsi intervenir que la fondamentale, les
formules de répartition des densités et du débit ionique de-
viennent trés simplement

(21) n = Ce~*xJ,(ar)
c, _.
(22) 0=2G 5 e~**J(py)
formules dans lesquelles
= P, 2

! G

avec p1 == 2,405
al == %

Ji(p:) = 0,56191
Le débit 1onique peut aussi s’écrire encore plus simplement
(23) Q= Qe

et s1 I'on considére la densité ionique moyenne

Q

n=->x

G

(24) n = nee="x

Fait trés important, a débit gazeux G constant, le coeffi-
cient d’affaiblissement )\, est indépendant du rayon R du cy-
lindre.



	L'equation de distribution de la densite ionique dans l'écoulement gazeux unipolaire

