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Essai sur le phénomène des Céphéides

CHAPITRE PREMIER
Les Céphéides.

Données d'observation. Hypothèses. Les décalages.

Les étoiles variables peuvent se répartir en quatre classes

principales:
1. Les variables à éclipses dont les fluctuations lumineuses

sont dues au passage d'un compagnon devant l'étoile principale.
Les variations d'éclat sont périodiques, la période durant de
6 heures à 10 jours, suivant l'étoile considérée.

2. Les Céphéides, ou variables à courte période, dont le

type est & Cephei, et sur lesquelles nous reviendrons dans un
instant.

3. Les variables à longue période (analogues à Mira-Ceti)
dont la durée de fluctuation d'éclat peut être supérieure à

20 ans.
4. Les variables irrégulières dont les changements d'éclat

ne semblent suivre aucune loi déterminée.
Nous résumons dans le présent chapitre les connaissances

actuelles sur les Céphéides ainsi que quelques-unes des
hypothèses émises dans le but de rendre compte des faits observés.

1. Données d'observation.

Les Céphéides sont des géantes, ainsi qu'en témoignent
leur magnitude absolue moyenne très forte (ordre de grandeur

entre —2 et —3), leurs petits mouvements propres et
leurs faibles parallaxes.

La magnitude d'une Céphéide subit des variations périodiques

de l'ordre de 1,3 m. en moyenne. Parallèlement à ces
variations d'éclat, on observe une variation du spectre de l'étoile,
le spectre le plus avancé se produisant à peu près au moment
du minimum de lumière et le spectre le moins avancé au
moment du maximum de lumière.

Dans un premier groupe de Céphéides, la période est

comprise entre quelques heures et un jour; dans un deuxième
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194 PIERRE JAVET

groupe, la période est supérieure à 3 jours et peul monter
jusqu'à 50 jours. Par contre, pour une Céphéide particulière,
la période est invariable, ainsi que l'a montré Hertzsprung en
1918 i.

L'éclat augmente, en général, rapidement du minimum de
lumière jusqu'au maximum suivant, pour diminuer ensuite
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Fig. 1 : d'après G, Tiercy.8
Fig. 2: d'après AAdrich. Michigan, vol. 4, 1932.

plus lentement du maximum au minimum, ainsi qu'on le voit
sur les courbes des figures 2 et 4.

La vitesse radiale d'une Céphéide est variable: si l'on trace
la courbe de lumière et la courbe des vitesses radiales, on
est frappé de leur étroite correspondance: leurs périodes soni
égales, leurs extrema sont presque simultanés.

Nous donnons, comme illustration de ce qui précède, les
courbes de lumière et des vitesses radiales de deux Céphéides:
S Sagittae et W Sagittarii.

1 The Observatory, t. XLI, p. 379.
2 G. TiBRCï : L'équilibre radiatif dans les étoiles. Paris 1935, p. 283.
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2. Hypothèses.
On a cru pendant longtemps que les Céphéides étaient des

variables à éclipses. Mais H. Shapley 1 a montré en 1914
à quelles impossibilités on est conduit en appliquant aux
Céphéides la théorie des binaires. Ce point de vue doit donc
être abandonné.
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Fig. 3 : d'après G. Tiercy. *

Fig. 4 : d'après Pub. Observât, de Genève, fase. 7 et Chandler, A. A., 2119;
Pickering, Harv. Ann. 24.

II est remplacé, à la suite des travaux de Shapley et d'Ecl-
dington :!, par l'hypothèse des pulsations: on suppose une étoile
unique qui se dilate et se contracte périodiquement. Cette
hypothèse, jointe à la théorie de l'équilibre radiatif (voir
chapitre II), a permis à Eddington de rendre compte des carac-

1 Astrophysical Journal 1914, p. 448.
2 G. Tiercy : L'équilibre radiatif dans les étoiles, p. 291.
3 Monthly Notices, t. LXXIX 1918 ; voir aussi Eddington : The internai

constitution of the stars, Cambridge.
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téristiques essentielles des Céphéides: grandeur ties périodes
observées, allure de la courbe des vitesses radiales et de la
courbe de lumière.

3. Les décalages.
Les courbes données dans les figures 1, 2, 3 et 4 mettent

en évidence un phénomène remarquable, commun à toutes les

Céphéides : les extrema lumineux ne se produisent pas au
même instant que les extrema du rayon.

Le minimum de lumière a lieu après l'instant du maximum
du rayon; et le maximum de lumière après l'instant du
minimum du rayon. Il y a donc un décalage entre les extrema
respectifs du rayon et de la magnitude.

En désignant par: décalage I le décalage entre l'instant
du minimum de lumière et celui du maximum du rayon, et

par: décalage II celui entre l'instant du maximum de lumière
et l'instant du minimum du rayon, les figures précédentes
montrent qu'on a:

pour S Sagittae:

décalage I 0,20 Q

î décalage 11 0,12 0
ö P^iode.

pour W Sagittarii:

(décalage 1 0,189
/ décalage II 0,14 9

Pour la plupart des Céphéides, le décalage II est plus
petit que le décalage I. Ces deux décalages peuvent être égaux;
mais le décalage II n'est jamais plus grand que le décalage I.
Ajoutons encore que le décalage I vaut en moyenne l/5 de:

période.
Ces décalages, signalés par de nombreux auteurs, sont restés

inexpliqués jusqu'en 1935, date à laquelle G. Tiercy ' a

montré qu'ils pouvaient se déduire de la théorie générale de

l'équilibre radiatif complétée par certaines hypothèses au sujet

de la pulsation de l'étoile.
G. Tiercy étudie le cas d'une étoile à pulsation sinusoïdale

el obtient alors des valeurs égales pour le décalage I et pour
le décalage II.

Dans la plupart des cas, la pulsation n'est pas harmonique
et les deux décalages sont inégaux. C'est l'étude de ce cas
— plus général — qui fait l'objet du présent travail.

1 G. Tiercy : L'équilibre radialif dans les étoiles. Paris 193S.
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Avant d'exposer, à partir du chapitre III, les résultats de

nos recherches, nous résumons dans le chapitre II les traits
principaux de la théorie de l'équilibre radiatif, théorie sur
laquelle nous nous soinnies basé dans la suite.

CHAPITRE II
L'équilibre radiatif dans les étoiles1.

1. Equilibres polytropiques.
Le mémoire fondamental est dû à Emden2. Considérons

une masse isolée de gaz. Sous l'effet de sa propre attraction!
gravitationnelle, et en l'absence de mouvement de rotation
ou d'autres causes perturbantes, cette masse prend une
distribution à symétrie sphérique.

Trouver quelle est, à l'intérieur de cette masse, la répartition

des pressions, des températures et des densités, tel est
le problème résolu par Emden en 1907.

Soil :

p la pression du gaz à une distance r du centre.
p la masse spécifique au point considéré.
g l'accélération de la pesanteur en ce point.

Mr la masse contenue à l'intérieur de la sphère de rayon r.
Ces 4 grandeurs sont liées entre elles par les égalités bien

connues:

(1)
\ GMr

r

Mr 4ti / pr2o?r

(G constante de la gravitation)

Pour qu'il soit possible de déterminer les 4 fonctions de

r ci-dessus introduites, une quatrième égalité est nécessaire.
Cette quatrième égalité est:

(2) pv« ®

dans laquelle © et k sont deux constantes.
La relation (2) est une équation de Poisson généralisée.

1 Pour tout ce qui concerne ce chapitre, voir G. Tiercy, loc. cit. passim.
2 Emden : (ìazkugeln 1907.
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L'exposant k sera dans la suite différent dc sa valeur habi

tuelle y ^
Quand l'égalité (2) est satisfaite, la distribution est appelée
polylropique.

Du système formé par les équations (1) et (2), on dé-«

duit facilement1 l'équation suivante, dite écpiation d'Einden:

- °) drz + r dr '

dans laquelle on a posé:

w"=p
a2= ^ n

(n-r-l)Re
et ou:

H poids atomique moyen.
R — constante des gaz.

L'exposant n définit la classe polytropique envisagée. Cette
équation (3) est fondamentale pour la théorie qui nous occupe.
Sa solution générale, à l'aide des fonctions élémentaires, peut
s'obtenir pour les trois classes polytropiques n 0 n 1

n 52. Dans le cas général (n quelconque), avant de résoudre

numériquement (3), on fait, le changement de variable et
de fonction suivant:

>

(4) r= —^ u — uc \{3

ttK(~2"

dans lequel uc= valeur de u au centre de l'étoile.
L'équation (3) devient:

Emden a calculé la solution de cette équation pour les
classes polytropiques

,i 0 - 0,5 - 1 - 1,5 - 2 - 2,5 - 3 - 4 - 4,5 - 4,9 - 5 et 6.

Voici, à litre d'exemple utile pour la suite, la table d'Em-
den pour n 3. La valeur S; 6,90 correspond à la surface
de l'étoile.

Cette table (de même que les tables analogues pour les
autres classes polytropiques) donne, on le voit, la répartition

1 Voir par exemple Eddington : The internai constitution of the stars,
p. 79 et suiv.

2 G. Tiercy : loc. cit., p. 68 et suivantes.
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des températures, densités et pressions, du centre à la surface
de l'étoile.

Table ciEmden pour n 3

; "i r ¦j/H-l di d'i 3rf^
>c -o >c ^v: >o •>D oo

r T P g Mr Oc

0 1 i 1 0 0 1

0,25 0,98975 0,96960 0,95966 0,08204 0,00513 1,0158
0,50 0,95987 0,88436 0,84886 0,15495 0,03874 1,0756
0,75 0,91355 0,76242 0,69650 0,21270 0,11964 1,1754
1,00 0,85505 0,62513 0,53451 0,25219 0,25219 1,3218
1,25 0,78897 0,49111 0,38747 0,27370 0,42765 1,5224
1,50 0,71948 0,37244 0,26797 0,27993 0,62984 1,7862
1,75 0,64996 0,27458 0,17847 0,27460 0,84097 2,1243
2.00 0,58282 0,19796 0,11538 0,26149 1,0450 2,5495
2.1 G 0,54133 0.15863 0.08587 0.25052 1,1710 2,8768
2,50 0,46109 0,09803 0,01520 0,22396 1,3994 3,7210
3,00 0,35921 0,04635 0,01665 0,18393 1,6553 5,4370
3,50 0,27629 0,02109 0,00583 0,14859 1,8203 7,8697
1,00 0,20942 0.00918 0,00192 0,11998 1,9197 11,113
4,50 0,15529 0,003746 0,000582 0,09748 1,9740 15,387
5,00 0,11110 0,001371 0,000152 0,08003 2,0007 20,826
6,00 0,04411 8,583.10-;¦ 3,786.10 -a 0,05599 2,0156 35,720
6,80 0,00471 1,045.10-6 4,921. IO-10 0,04360 2,0161 51,987
6,90 0 0 0 0,04231 2,0182 54,350

2. Equilibre radiatif.
Les recherches d'Emden, que nous venons de résumer

brièvement, ne tiennent pas compte de la pression de radiation.
Or cette pression, qui est proportionnelle à la 4me puissance
de la température absolue, ne peut être négligée dans le
problème de l'équilibre stellaire: aux énormes températures qui
régnent à l'intérieur des étoiles, la pression de radiation peut
être du même ordre de grandeur que la pression matérielle.

Ainsi que le fait remarquer J. Bosler1 : « Il est même

surprenant qu'on ait tardé si longtemps à s'apercevoir d'une
chose aussi naturelle. »

Il faut donc reprendre la théorie d'Emden et y introduire,
au lieu de la seule pression matérielle p la pression totale P
définie par: p _

1 J. Bosler : Cours d'astronomie, 111 Astrophysique, p. 546.
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où p' est la pression de radiation, égale comme on sait à

1/-i a T4 C'est ce qu'a fait Bialobrzeski en 1913 *.

Le système formé par les équations (1) et (2) du
paragraphe précédent est remplacé par:

rfP n
"XT - 9P ou P p -f- p'

(6)

dr
GM

9-ysv

I Mr 4ix / pr2aY

I pu* ©

Ces équations (6), dont la dernière est caractéristique des

distributions polytropiques, définissent l'équilibre radiatif.
En traitant le système (6) comme on a traité le système

(1) (2), on obtient une équation différentielle du 2mp

ordre correspondant à l'équation d'Emden -'. Mais cotte nouvelle
équation est, dans le cas général, beaucoup plus compliquée
que celle d'Emden. Il est cependant très remarquable que pour
la classe polytropique n 3 l'équation en question se simplifie
considérablement et devient:

d"-u 2 du 3tiGu
(7) j-a y - -r- 4- r^pr *- M3 ^=0v ' dr* r dr ' 3R© -f aja©i

Cette équation est du même type que celle d'Emden. Seul le
coefficient constant du dernier terme, désigné plus haut par
a2 a une valeur différente. Désignons ce coefficient par to2

En posant, comme dans la théorie d'Emden:

COM,.n-l
(8)

'

ra"c 2

U — Ucli?

l'équation (7) devient grâce à (8):

«*\ d** m
2 d* < ,ks n(9) W>+%tt+A' °

Cette dernière équation est identique à l'équation (5) dans
laquelle on poserait n 3 La table d'Emden pour n 3

donnée plus haut est donc valable maintenant, et donne, dans

1 Bialobrzeski. — Sur l'équilibre thermodynamique d'une sphère gazeuse
libre. Bull, de l'Académie de Cracovie.

* G. Tiercy : loc. cit.. p. 100.
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le cas de l'équilibre radialif, la distribution des pressions, densités

el températures.
Cette table d'Emden indique — entre autres — que T p

et P sont respectivement proportionnels à $ 4>3, if>* On établit

en effet les formules suivantes que nous relevons ici sans
les démontrer:

T &u uc ©i}>

p u-- =-. usc tf>3

dû) j p =5"^4 P^4

IV —- «4 Pc valeur de P au centre.
\ co2 c

Ces formules (10) donnent les valeurs de T, p et P dès

que uc, © et ro sont connus. Ces trois constantes sont faciles
à determiner si l'on considère comme connus:

le rayon /0 de l'étoile,
la masse M de l'étoile.

Les trois constantes uc, © et œ se calculent alors au moyen
des relations:

(ii) ra=-ivr "c=t;(,t) 3 et

f co2 (3R© y a^®*) 3ttGu
relations dans lesquelles on a:

,#0=2,018
et So 6,90 étant la valeur de S correspondant à r^rg.1

La table d'Emden donne, à la surface de l'étoile
(So =6,90):

4> 0 et par conséquent: T 0

Ce résultat n'est évidemment pas acceptable. On admet
ordinairement que la solution polytropique donne des résultats
exacts à l'intérieur de l'étoile, là où les températures sont
supérieures à un million de degrés. Ce « noyau polytropique »

s'étend de S 0 à S '%' 5 De S' 5 jusqu'à la surface
(So =6,9); il faut envisager une autre distribution des
pressions, densités et températures.

D'après la table d'Emden, et pour S'= 5 on a:

Mr 2,0007
M " 2,0182

0,9913

et : -1- ^ 0,725
So o,90

1 Pour ces dernières formules, voir: G. Tiercy, loc. cit., chapitre V.
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725
Ainsi la sphère dont le rayon est les »»» du rayon total

contient les 99,13u,'o de la niasse totale de l'étoile. Le « noyau
polytropique » comprend donc la presque totalité de la masse;
on conçoit alors que la partie périphérique n'ait que très peu
d'influence sur la solution générale.

Le choix de la classe polytropique 3, justifié au point de

vue mathématique par les simplifications qu'il apporte, se

justifie-t-il physiquement? En d'autres termes, l'étude des
conditions physiques régnant à l'intérieur des étoiles conduit-elle
au choix de cette classe polytropique?

La réponse à ces questions est affirmative. Elle a été fournie

par Éddington en 1916'. L'analyse d'Eddington ne pouvant

prendre place ici, nous renvoyons aux mémoires cités.

CHAPITRE III
Les sphères puisantes.

PREMIÈRE PARTIE

Si l'on admet pour les Céphéides l'hypothèse de la pulsation,

il devient nécessaire de compléter, pour l'appliquer aux
étoiles variables, la Ibéorie de l'équilibre radiatif établie poulies

étoiles fixes. En effet, la pulsation du rayon entraîne des

variations de même période de la pression, de la densité, et
de la température.

1. Notations. Equations fondamentales.
La théorie de l'équilibre radiatif donne les valeurs statiques

de P p et T valeurs que nous désignerons maintenant

par P/, p,- et T,-. Dans une étoile fixe, ces grandeurs
1J/ P/ et T,- sont invariables. Au contraire, dans une Céphéide
la pression, la densité et la température oscillent autour de ces
valeurs P,- P,- et T, De même une particule, qui dans la
solution statique est à la distance /• du centre, oscille, dans
l'hypothèse de la pulsation, autour de cette valeur r,-

Nous posons:

Îr
=/•/ (l + rj d'où : t r — r,= br, r, rt

P P,(1 + P1) P-P,= bP, P,P,
P P« (1 -i- Pi) f P - P i bP, P/ Pt

1 A.. S. Eddingto.n : On the radiative equilibrium of the stars. Monthly
Notices 77, 1916. Voir aussi Eddington : The internal conslilulion of the stars.
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La solution statique, fournissant les valeurs r, P, p, T,
est celle indiquée au chapitre IL

Posons encore:
<0, /• ro rayon de l'étoile,

(13) X= ''
A

r0 a la surface x()= 1.

Il y a lieu de faire, au sujet de cette fonction x les deux

remarques essentielles suivantes:
I. Si les différents rayons de l'étoile varient simultanément

dans la même proportion, le rapport x est fonction de

r seul. La pulsation ainsi définie est dite « uniforme ». Dans
ce cas, les extrema de la pression P (ainsi que ceux de p
et T) ont lieu au même instant que les extrema du rayon r.
La pulsation uniforme ne peut donc conduire à un décalage
entre les extrema de r et ceux de P.

IL On peut penser, avec G. Tiercy1, que ce mécanisme
— trop simple — de la pulsation uniforme doit être remplacé
par le suivant: les différents rayons de l'étoile atteignent
successivement leurs extrema respectifs. Dans cette hypothèse,
la pulsation se transmet de proche en proche, du centre de
l'étoile à sa surface. Le rapport x est alors fonction du rayon r
et du temps t La pulsation ainsi définie est dite « homologue

». La suite de ce travail montrera que cette hypothèse
permei de rendre compte des décalages signalés.

Nous admettons que les variations du rayon r donnant la

position d'une particule proviennent uniquement de la pulsation

envisagée. Il ne se produit donc aucun courant de
matière à l'intérieur de l'étoile. Chaque particule est alors ani-

i. t i i • dr
mee d un mouvement radial de vitesse w -rr ¦dt

Les équations de l'hydrodynamique se réduisent donc à

deux: l'équation de continuité et l'équation en w :

it as ?P Sp „ (dw 2w\

(15) *l *,w i*=0v ' dt
' dr dr P dr

dans lesquelles: V désigne le potentiel de gravitation et P la

pression totale, somme de la pression matérielle et de la

pression de radiation.
On sait que l'équation de continuité (14) se ramène à la

suivante:

(16, <*_0
1 G. Tiercy : loc. cit., chapitre XVII.
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qui signifie que la masse intérieure à la sphère de rayon r
est constante.

L'équation (15) intégrée entre les limites r et r0 donne:

r
cette intégrale devant être effectuée à temps constant. De
plus on a:

3V 1 M
^r— G —- G constante de la gravitation.
dr r2 &

2. Calcul de la pression.
Posons encore:

(18) T-i
Cette nouvelle variable x fonction de t. seulement, se

rapporte à la surface de l'étoile. L'intégrale figurant dans (17)
doit être effectuée à t constant, donc à x constant, puisque
x est fonction de t seul.

Transformons l'intégrale en y introduisant la variable x
(définie par 13) au lieu de la variable r. Grâce à (13) et (18)
on a:

r x

A temp» constant il vient:
dx

dr= —
x

On obtient encore successivement:

?V=G%= GM, 4dr r2 x2

dr d /x\ 1 dx x dx
w Tt dt \ x y ~~ x dT ~~ ï5 rf/
dw
—r- X
d:

2^dx\2_ I d2T

X3\d</ X2 d<2

r

De M, 4n / r2pd

2 dx r/x 1 d2x
x2 dT dT x dT2

on tire :

0

1 3Mr 2Mr 1
X

47tr2 3r dx 4irx2

Avec ces valeurs, l'égalité (17) devient:
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1

X3 dMr GMrnq- P- / tfJMr U1VJ Vffr\*_ J^ d^x
x3\rfi/ x» dT

2 dx dx 1 d2x dx
t« 37 dt ~ x dT" i T"

Posons, pour simplifier l'écriture:

(20)

cp (x) /
GMr dMr
4tix4 3x

• 1 3M,

dx

¦m-M£*
*•«-./sibJ_ dx 3Mr

nx2 dt 3x
dx

205

1 d2x 3Mrt / \ / l d2x c'Mr j

Avec ces notations, (19) s'écrit:
d2x 2 /dx\2

$1(x) + ^<D2(x) — xcD3(x)<21> f=*)H* .w
Si l'on considère le cas d'une étoile invariable, les vitesses

de transformation sont nulles et la pression est donnée par

(22) T/4<P(*/)=-;r-.'P(*f)
0,1

Les grandeurs sont notées maintenant avec l'indice i puisqu'il

s'agit des valeurs statiques. La troisième équation (10)
du chapitre II que nous écrivions:

P Pcl|>*

s'écrit avec les nouvelles notations:

(23) P/ Pc**
La comparaison de (22) et (23) donne:

(24) (P(xi) 'li'V*4
Mais revenons aux étoiles puisantes dont la pression est

donnée par (21). Les grandeurs x et x oscillent autour des

valeurs statiques x, et x,-. Posons alors:

X=X/(1+T1)
x x,-(l-j-x1)

(25)
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^alilés d'où l'on tire:

(h
dt ~

rf2x

x.^' dt
dx dx,
dì *'di

d2xt d2x
_ d2x,

dt2== HW ~dP *' dT"

Les quatre fonctions cp(x) elOn(x) définies par les égalités

(20) oscillent autour de leurs valeurs moyennes
cp(x,-j et $>n{%i).

Développons ces quatre fonctions suivant les puissances
croissantes de x—x, c'est-à-dire suivant les puissances de x,
puisque

2 a. Développement de la fonction T(x)
On a:

i

cp(x) cp(x,-rx,x1) / : ; \ '

dv.
CGMr dMr

4ttx4 3x
X, -t- X/X,

Le développement de cp(x) suivant les puissances
croissantes de xt est :

(26) cp(x) cp (x,-) + "Y ?'(*') + ^T CP"(X,) 4" • • •

Or cp'(x,), de même que ses dérivées successives cp'(x,) cp"(x,X
peut se calculer au moyen des tables d'Emden pour la solution
polytropique de classe 3. La valeur de ^(x,) est fournie par
(24). D'autre part, à cause des notations utilisées dans le
problème de l'équilibre radiatif, notations déjà indiquées au clia-
pitre II, on a:

S

r,=
et

couc

r

r0.i

dn dS
dy-i — — —

r0.i

So '

dS

s écrit:

d'où :

Ô0 r0,io)Uc

On obtient maintenant, à partir de (24):

^ d-x r*.P .ib*
0,1 c,i ¦

s,
(t

d%
r* P .ib*

0,1 c,i
ou :
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V'fxA - £ r* P d^
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Rappelons alors les égalités suivantes, données au

chapitre II sous les numéros (10) et (11):

Pc
iiG 4^Jé0 So /47iJ60\_i
co2 c ' M ' c ~ /'„./ V M

(So 6,9 ,«0 2,018).
Elles permettent de mettre (27) sous la forme:

(28) <P'(X')
S60GM2 dir?

inJél V dS

La table d'Emden pour n 3 permet de calculer la valeur
numérique de cp'(x,-) pour toute valeur de S •

Le calcul de cp"(x,) se présente de la façon suivante:

«"'(*<)=<£ r(«/j So ?'(*/)

(29) 9"(x,)
SgGM2 ^ + W^Y

dS2 ' '

v rfs /

Mais l'équation d'Emden (chapitre II, éq. 9) donne:

d2ib
_ _

2 dib

dS2~~SdS~
en sorte que (29) peut s'écrire:

Xb«

(30) cp"(x,-)
S «GM2 ^m .$<.

2ib3 d$
±i-M% \"^ \dlj S dS

Sous cette forme, cp" est calculable au moyen des tables
d'Emden.

On obtiendrait d'une manière analogue des expressions donnant

les dérivées suivantes de la fonction 9. Mais les deux
premières dérivées suffisent, ainsi qu'on le verra par la suite.

2 6. Développement de la fonction Ot(x)

3Mr dxl \- l clVlr X

A cause de la relation:
_x*_ 3M_r
4ttx2 3x

cl>,(x) peut se mettre sous la forme:
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1 1

*i(*)= / '8UP^" ',„ / Pi'dr

X X

et par conséquent:
'0,1 S,,

So

h
°

S

En utilisant l'équation d'Emden, et en tenant compte du

fait que pour Ç0 6,888 les tables donnent -,y — 0,0425 et

ib presque nulle, on obtient :

*,(*.) «£+? + 0,278

on encore:

(31> •.W-a6(fâ + * + o.«8

L'égalité définissant ^(x) permet d'écrire:

/DON A'/ \ 1 «M, Xp
(32) *,(*,) - -j— —-r - x _ r8px _ r*prV ' 1X ' V.Y. Sx X'' u

H'2 £XI
vp3S

On obtient ensuite:

-— Sib-;

*l>\

Ces deux premières dérivées suffisent; elles sont à introduire

dans le développement

*iO) ^("H-x^O <M*,) - ^ *',(*/) +xir *«(*/) 4- • • •oi

2 c. Développement de la fonction <l)2(x)

f?Mr 1 dx
$

i

2(x)= / ^>r 2^5 37
dx

On sait que

il en résulte que:

x

3M, 1 2p
Sx 2nx3 x:!

i
dx

4>,(x) 2 / pr« 3- dx

sine à 1 o/o. Le nombre de polynucléaire est de 1KX) par mm3
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'0,1

''i
En tenant compte de:

P u»if>3 ruc i x,- .-= 1
co £0

on obtient pour Oo(x,-):
So

S

Les deux premières dérivées de <t>2(x<) sont:

(36> •;¦>.>—jj§K«!k
d2xt

' dtdl
Les expressions précédentes sont à introduire dans le

développement:

d>2(x) cd2(x,.) + ^p*;(x,) + ^ $;'(x.) +...

2d. Développement de la fonction 0:;(x).

CdMr 1 d2X0^ l^4^dtïdy
x

Par des calculs analogues aux précédents, on obtient:

So

S

PriM d2y
(38) *;(x/) -1|25-t|,»Çd '

ESM
(39) *:(x/)

4tt^0 y ^ d<2

V d«2 ' ^ dS d<2 V Ç
c/i2rfS4*,/£0

Ces expressions sont à introduire dans le développement:
x?x?

d,3(x) *8(x,) 4- ^ *;(x,) x -iy-1 *;'(x,) +
Les développements des fonctions cp et <i\ étant maintenant

MÉMOIRES SC. NAT. 43. 14



210 PIERRE JAVET

connus, il suffit de les introduire dans la relation (21) pour
avoir la valeur de P à un instant donné.

Les considérations qui précèdent ont été données déjà par
G. Tiercy, dans son ouvrage: « L'équilibre radiatif dans les

étoiles», chapitre XVII.
Les relations des derniers paragraphes contiennent les quan-

dy.. d2x, .11». p • itites -rr- cl —TTrT qu il est utile d exprimer en fonction de /•. 0

On a:
rx x r,-x/ x,-

'ï( 1 -r ri)M 1 -r- Ti) *i( 1 + *i)
et par conséquent:

(l + r1)(l + T1) l r",
En dérivant par rapport à t on obtient:

<40> &-<i+'.)& + <* + ¦-.>&
Mais

l-rTi= T-J-- =l-r10 + r*o —r«o + -..i -f- Tifi

Tl —ri,o + rî,«—••¦
dxj d/'i,o.
d< " d« '(-l + 2r,0-3r1,0 "' 1,0 I

Introduisons dans (40) les valeurs de l-f-Ti et de -rr, il
vient:

+ IT (-l + 2rM-3r»f0 + ...)(l + r1)

et encore:

+ ^°(-1 + 2rM-3^o + -") +

Il faut remarquer que la variation du rayon r0 esl connue
grâce à l'enregistrement de la courbe des vitesses radiales; il en
est de même de r10.
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Le type de variation le plus simple est:

rx A,- cos (Nt-f- N/) avec à la surface

'1,0 A0cos Nt

égalités dans lesquelles on a posé:
C~>7T

N —- 0 période de la pulsation.

Les grandeurs A,- et N,- sont fonction de r,- (donc de S) ; ainsi
l'amplitude et la phase de la pulsation varient avec la distance
au centre. Les égalités précédentes définissent une pulsation
harmonique, laquelle entre dans la catégorie des pulsations
homologues dont nous parlions au début de ce chapitre.

C'est une pulsation de ce type qu'a étudiée G. Tiercy dans
l'ouvrage déjà cité.

Si quelques Céphéides (T Vulpeculae; SU Cassiopeae, par
exemple) ont des pulsations du type défini ci-dessus, la plupart
des Céphéides, par contre, ont une courbe des vitesses radiales
plus compliquée. II est nécessaire, pour représenter ces pulsations,

de prendre pour r10 et pour r. des expressions de la
forme:

C /i,o A0 cos Nt + A; cos (2N* X N')
i6) \ rx A, cos (Nt H N,) + AJ cos (2Nt X Nj)

dans lesquelles on a:

N — 6 période de pulsation.

rito étant connu grâce à la courbe des vitesses radiales, il s'ensuit

que A0 A0 et N1 sont des constantes connues. Quant à

A(. A'. N, N't ce sont des fonctions de r,-, donc de S •

Les constantes A0 et A„ (amplitudes de surface) étant au

plus de l'ordre de rr\ on ne conservera dans les développements

qui suivent que la première puissance de A0 A0 A; \'(.

DEUXIEME PARTIE

3. Calcul de la pression P dans le cas d'une pulsation
du type (43).

Nous avons établi, sous le n° 21, la relation suivante, que
nous récrivons maintenant sous le n° 44:

(44) P x4cp(x)
d2x

__
2/dxV

dt2 xldl *l(*) +%*,(*)-&*(*)
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Reprenons les développements des fonctions 9 et $ donnés

plus haut, en abandonnant les termes x* qui sont de l'ordre

de grandeur de A02. On obtient:

cp(x)=cp(x,-)T-x,xJlcp'(y.,)

^<> <^ I^SÜGM2 dib

*1(x) <D1(x/)+x,x1*;(x/)

<D2(x) 02(x/) -j-x/x^^x/)

*»<•')-•lab./«'^*

s

Sa0Mç,, d2xx

Avant de porter toutes ces valeurs dans (44) il faut encore
calculer les valeurs de

d2x 2 /cfr V dx
x4 -,— - U-, et -f-d«2 x ^d«7 dt

expressions qui figurent dans (44)
On a, grâce à (18, :

1

_ couc

>\),i So

Mais, d'après (43):
/•j,o A0 cos Nt + A; cos (2Nt+ N')

14- x, 1 — n,o 1 — A0 cos Nt — A; cos (2Nt -f N')



ESSAI SUR LE PHÉNOMÈNE DES CÉPHÉIDES

' x,(l + xt) fp T i _ a0 cos Nt- A0 cos (2N* + N') 1

^ — ^rAoNsinNf-f 2A;Nsin(2Nt + N')]

~ f A0N2 cos Nt + 4A;N2 cos 2Nt + N') 1

213

d2x
~dst?

2 (d*\*_ 2couc [AplN sin Nt + 2A,',N cos (2Nf + N') ]»

TVd«;- ^0 1- A0cosNi — A;cos(2Nt-f N')

Tt Tf(l-fx1)i= ^ fl-AoCosNf —Aicos(2Nt + N')

Portons ces valeurs, de même que les développements des
fonctions cp et O dans l'expression (44). En ne conservant que
les termes du premier ordre, on obtient:

(45)

P

+

+

^xHf [l — 4A0 cos Ni— 4A; cos (2Nl-i-N')
^o L

^r A0N2 cos Nt + 4AJ.N2 cos (2Nt + N')
So L

S4 G M2 x^«GM2 dib

16tt^ v ~t~ ±hM\
W dl

«oM/^+^+ 0,278
47tJ^0\ dS 4:rJÉ0

iJjS

-[a„n -.n, + 2a;nc„8(2Nl+N0][|â->. £*- $KT *¦ %]

couc

~s7
1 —A0cosN« —A;cos(2N« +N'0ir SoM_ r

;J|_m0J

So

W dt2 a%
4*Mo * dt2

/-i i- c dKt d2x,
Lette égalité renferme encore Xj —j- et -y—- •

Or on a : xt rt + xt + r1 Xj

Le dernier terme de cette relation est de l'ordre de A02 ;

nous le négligeons. On a alors :

(46)

x^A, cos(N* + ]\,) + A; cos(N«+]\;) —AncosN« —A|icos(2N« + N')

^ —A,N sin (Nt + N,) — 2A; N sin (2Nt 4- N)) -f A0N sin Nt + 2A^Nsin (21N«+ N')

ÎÇ — A^2 cos (N« + N(.) - 4A; IS2 cois (2N* + N;) + A0N2 cos Nf + 4A^N* cos (2Nt + N')

En introduisant les valeurs (46) dans (45) de nombreux
termes disparaissent; et on obtient:
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i4') v= nâ Ut

cq4u^;m2 dò
4*.«J - ^S

1 — 4A0cosNi — 4A0cos(2N« + N') ib*

\/cos (Ni + N.) + A;cos (2Nt + NI) — A0cos Nt — A' cos (2Ni! -\ N')

+ C-^|+™- [ A0 cos Nt + 4Ao cos 2NI + N') (s-S ¦- * -|- 0,278^

So

' / ^3 -A.cos(Ni + ]N;)-4A;cos(2Ni + N:) + AoCosN<
47t„./^0

4A'cos(2Ni + N') di

Pour simplifier le dernier terme de cette expression (47),
donnons à A, AJ N, N) leurs valeurs moyennes dans
l'intervalle d'intégration S — So- Cette approximation est d'autant

meilleure que l'intervalle S—So es* petit.
On a:

moyenne de A,

moyenne de A'.

Ao+A,
2

A„ + A/

moyenne de N;

moyenne de N'.

N/

N^_-_N-
2

A,-, A;, N,-, N'i sont ici les valeurs correspondant à la valeur
de S pour le rayon considéré.

Cette simplification permet d'écrire:
co*u4GM2

(48) Pr
16*.,«?.

1 — 4A0cos Nt— 4A; cos (2Nt + N') ib*

co*n*GM2 „ LQ
dib

+

4ti,/^ dS

œucMN2

4^17
cou,MN2

A cos (Nt N.) -|- A) cos (2Nt - N]) -- A0 cos (Nt) — .V cos (2Nt + N'

A0 cos Nt + 4A; cos (2Nf — N') (S 5 -, * XXN
'/S

A0 + A, / N/
4si.1i0 2 \ 2

Ai + Ai N' - Ni
-1 ¦¦" "cos(2N^+^2

So

+ A0 cos Nt y- 4A0 cos (2N* + N') 1 X / Svp:V/S

Posons: S

a^Pc.r
(49)

co*u4GM2

16n^t|
œucMN2

At-Mq

d où :

6 4N2./4
« co3u?GM
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Grâce à (49) l'égalité (48) devient:

215

So

(50) P mM y A0 cos Nt 4a (V + S<}xJ) +6 (V| +vb + 0,278) - /"s<WS

A' cos(2N<-l N') !'" '''' Svb3 Q) + 4òfs 5t* r 0,278 Ì - Çw&.di di

A. cos (Ni + N,) -p A^ cos (2N« + NJ) 4r/Çib-'
dib
WS

X6 A0 + A/

S

So

<¦<>* n<+j)J- 2(a; + a;.) cos (-2Nt + r^-^)l /'s<WS

Telle est la valeur de la pression au sein d'une étoile dont
la pulsation est définie par (43).

4. Calcul de V,

De P P,(1 i P,) on tire:
P —P- P — mb*Pi=Sr^= 7 car P/=--Pc>4 «^

F,- f/ib4

En tenant compte de ces relations, ainsi que de (50) on
obtient:

(51) I\ A0cosN<
S cty>\ 6/ S d-ip 1 0,278 1 r

So

' "Lib dS + a l>4 di, +
i>3

' ib* ò\£-£ »w

+ Alco8(2Nt + N')

y

So

./. S rfM 4ò/S<iib 1 0.278 1 /%,,,^4(,+^) + T(^dS+^ + ^-^/^S'
S

A. cos (Nt y N.) + A', cos (2i\X- N'.)"'4? *
* rfÇ

X
s.

i+A'coS (N, + I') + 2(K + A;) ces (m, + M]^Cette valeur de P, esl valable quel que soit le rayon.
11 s'agit maintenant de comparer cette valeur de P, aux

résultats fournis par l'observation. Nous prendrons pour So
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la valeur 6,888; elle correspond en effet à une valeur convenable

de la température T, alors que S 6,90 correspond à

T=0. Quant à la limite inférieure S, elle est quelconque.
Mais rappelons que la formule (51) est basée sur la solution
polytropique et que celle-ci ne saurait être appliquée au delà
de S' 5. Nous calculerons donc la valeur de pour S' 5
et c'est la valeur ainsi obtenue que nous comparerons à

l'expérience.

Notons que pour So= 6,888, les coefficients de (51) sont
finis. En effet ò (des tables d'Emden) n'est pas nul à cette
distance du centre. On a vu que la sphère limitée par
S'=5 contient les 99,13 °o de la masse totale, de sorte que
les conditions qui régnent à cette profondeur ne sauraient
différer sensiblement des conditions valables pour So ; le P[ que
nous obtiendrons pourra effectivement être confronté avec
l'observation.

Pour "i' 5 les tables d'Emden donnent:

ib 0,11110
dò
„ - 0,08003 S -,ydt, dt,

ib*= 0,0013713
dib

ib4

-0,40015 |$ib dS

0,00015235

- 3,602

Ces valeurs permettent de calculer les coefficients des

termes de (51) On trouve:

coefficient de A0 cos Nt —

10.408+ - (— 72,4942—42,4242) 10,408— 114,9184 -

Coefficient de Ai cos (2Nt + N') 10,408

Coefficient de A/cos (N* + N,) + Aicos (2N« + N'()

459,6736 -
a

-14,408
Coefficient du dernier crochet de (51) — 42,4242-

a
Avec ces valeurs, (51) devient:

(52) Pt= 10,408 114,9184 - )A0cosN/

+ 10,408 - 459,6736 - \ k\ cos (2Nt y N')

14,408

42.4242
A0 + A,-
—^-k— COS

A. cos (Ni. y N.) + A; cos (2Nt + N!)

f 2(A; + A'.) cos I 2Ntm+^
On a posé précédemment:

b
_

4N2.,«q

a
""" œ'!u?GM

(égalité 49)

N' - Ni
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mais co:1 4*^f° (égalité (11) chap. II
ar conséquent:

b

n

N2 N2
: —rjT^ /s car u* p
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Montrons que ce quotient - est approximativement constant,

pour toutes les Céphéides.

Eddington a montré ' que:
9y Pc constante (approximativement)

mais Ö ^j-
y/p'c N2

par consequent : ^- const. ou : —- const.
il Pc

Cette dernière égalité entraîne la constance (approximative)
b

du quotient -
L'égalité (52) est donc valable pour toutes les Céphéides.

La valeur de cette constante - est mal connue. L'incertitude
a

régnant à son sujet provient de l'incertitude de la valeur de pc.
D'un tableau dressé par Eddington2 on peut déduire comme

valeur moyenne de - pour 16 Céphéides:

- =0,031625
n

Les valeurs extrêmes, d'après le même tableau, sont:

- (min.) 0,021 pour RR Lyrae.

- (max.) 0,042 pour SU Cygni.

D'autre part, G. Tiercy qui utilise d'autres formules que
Eddington pour le calcul de pc trouve:

- 0,01287 pour Y Sagittarii.

Nous prenons dans ce travail la valeur

(53) -=0,02264

i Eddington : The internai constitution of the stars, p. 192.
~ Eddington : Ibid., p. 182.



218 PIERRE .lAVET

Cette valeur a l'avantage d'annuler le coefficient de

Ac'( cos (2Nt + N-')

dans l'égalité (52). Nous reviendrons, dans une remarque

finale, sur ce choix de la valeur de -,a
Par le moyen de (53), la valeur P, donnée par (52) devient:

(54)
P, 7,808 A0 cos N/ — 14,408 [A. cos (Ni + N.) -;- A', cos (2Nt + N;.)]

0.960
A0 + A/

COS i
N/N«-^)-r2(AXr A;)cos(2NH-^^/)

N' + Ni

Cette dernière relation, correspondant à S'=5, jouera un
rôle essentiel dans les chapitres suivants.

Toutefois, avant de l'appliquer à des Céphéides particulières,
il \ a lieu de faire la remarque suivante :

Soil / tn l'époque d'un extremum de /•, Comme on aipoq
pose:

r, A,, cos (Nt y N,.) + A) cos (2Nt - N])

cette valeur /0 est racine de l'équation:
(55) A, sin (Nt + N.) f 2A| sin 2Nt -\ N'.) 0

A la même époque t tQ on a:

(56) /^i)=- 7,808 A0NsinNi0+ 14,408 A.sin (Nf0 + N(.) '- 2.V. sin (2N/0+ N.)l

0,960 N A. + A,- NV
sin(N/0--^') f4(A;+A;,)sin(2N«0

N' y Nï

Le premier crochet de (56) étant nul en vertu de (55) il
reste:

\ dt
:57) 7,808 A0N sin ft/0— 0,960 N X

"Aq + A, /-j NA /,X1/ N' + N)
g— sin I Ntn - -j J + 4(A0 -t- A,.) sin 2N<0 -| ^—

t tf, étant racine de (55). cette valeur tn n'annule pas,
en général, le deuxième membre de (57): ce qui nous montre

que les extrema de la pression ne sont en général pas
simultanés avec les extrema du rayon.

Les relations obtenues jusqu'ici sont donc parfaitement
compatibles avec l'existence d'un décalage entre les extrema
de la pulsation et ceux de la pression.
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CHAPITRE IV
Etude de S Sagittae.

N' 0

La pulsation a été définie au chapitre III par les égalités

(43) qui seront les égalités (58) de ce présent chapitre:

/• AnCosNf + Alcos(2Nt + N')
(58) } lfi °

/-, A. cos (INH- N,-) + A) cos (2Nt + N'.)

Une pulsation de ce type entraîne pour P, la valeur

(59) P. 7,808 A0 cos Ni- 14,408 A, cos (Nt-\- -N,) +A;.cos (2Nty N.)

-0.960 ^±A''cos(n<+ Ç\ + 2(a; + a;.)cos (aw + N'"i"N;'

qui est celle donnée sous le n° 54 du chapitre précédent.
Cette valeur de P. etani obtenue pour S;' 5.

Les grandeurs A0 A'0 N et N' qui figurent dans (58) sont
des constantes relatives à la surface de l'étoile, constantes
connues grâce à la courbe des vitesses radiales.

Si A0 0 l'ondulation secondaire disparait. Ce cas a été
étudié par G. Tiercy 1. Mais en général la pulsation n'est pas
harmonique, ainsi que nous l'avons déjà fait remarquer au
chapitre III ; par conséquent A0 et A0 sont différents de zéro
tous deux. Ce cas général peut présenter une alternative,
suivant que N' est nul ou non.

Le présent chapitre est consacré à l'étude de S Sagittae,
étoile pour laquelle N' 0

1. Introduction des données d'observation.

Nous avons donné au chapitre I la courbe des vitesses
radiales de S Sagittae. La variation du rayon indiquée par cette
courbe est représentée par

(60) /•10 4'CosN< — -}-cos2Nt
' 'lo 4»

La comparaison de la première équation (58) avec (60)
donne:

1 G. Tiercy : loc. cit., chapitre XVII.
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D'autre part on sait que la période 0 vaut :

2n

N
0= ?J 8,381615 jours

Dans (60) les coefficients j-: et —- sont fixés par les

considérations suivantes:
An

doit être égal à 3 pour obtenir l'allure de1. le rapport
la courbe observée.

2. la valeur absolue maximum de rin doit être d'environ

p, Cette valeur jt. résulte du calcul de l'amplitude de la

pulsation1.
U faut encore fixer la valeur des coefficients A,- et AJ de

la deuxième équation (53), pour £'=5.
On sait, grâce à la théorie générale établie par Eddington.

que l'amplitude de la pulsation diminue quand on s'éloigne de
la surface de l'étoile. (L Tiercy trouve 2 que si à la surface

on a A0= -rr alors pour ^'=5 on a:

A._l. A'X.-6
A'-14- A0-7

En admettant le même rapport pour les coefficients qui
nous occupent ici, on obtient:

A, p| 0,054 pour S' 5

Celte valeur de A,- correspond à

1
An= -r-, à la surface.

Ib
On sait, toujours par le calcul des amplitudes, que

A/<0 (de même que AJ,<C0). Mais la pulsation, pour
Ç' 5 est inconnue.

On peut alors faire l'une des trois hypothèses suivantes:

1"
A/

_
A,

Ai A0

Ce qui revient à dire que la pulsation se transmet sans
changements (à part la diminution d'amplitude) de S'= 5 jusqu'à
la surface.

1 Eddington : The inlcrnal constitution of the stars. Chap. Vili.
2 G. Tiercy: loc, cit., chap. XII.

G. Tiercy : loc. cit., chap, XVIt.
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2" A«

a,;

Ce qui indique que pour S' 5, l'ondulation secondaire est
relativement plus importante qu'à la surface.

3"
A«

Ai > Ao

a:
Dans ce cas, l'ondulation secondaire serait relativement plus
importante à la surface qu'à l'intérieur.

Ces trois hypothèses sont étudiées dans les pages qui
suivent; mais nous pouvons remarquer dès maintenant que c'est
la première qui semble devoir être retenue, et pour la raison
suivante: nous avons dit (chap. II, §2) que la partie
périphérique de l'étoile (de S'=5 à So =6,90) ne contient que
0,87 "/o de la masse totale. Cette partie de l'étoile a donc très

peu d'importance, et la pulsation doit s'y transmettre sans
modifications sensibles.

iTC hypothèse.
A
Ai

A«

An
3

Puisque A,- 0,054 et que Ai est de signe contraire à

cette hypothèse donne Ai — 0,018.
Les 4 coefficients figurant dans (58) ont donc les valeurs

suivantes:

A,

A -iA,- 16
0,063

A« -48 - °'°21

A. 0,054

A'. =-0,018

de plus: N' 0

Avec ces valeurs, les égalités (58) et (59) deviennent:

/¦M 0,063 cos m — 0,021 cos 2Nt
r/= 0,054 cos (Nt + N,.) - 0,018 cos (2Nt + N.)

(62) P, 0,49 cos Nt — 0,78 cos (Nt + N,) - 0,26 cos (2Nt

(61)

n;.)

+ 0,056 cos Ni y %
0.074 cos 2Nty Ni

Nous écrivons les coefficients avec deux chiffres significatifs;
de même les calculs numériques qui suivent sont effectués

à la même précision relative. Cette précision est suffisante,
si l'on songe aux approximations admises pour établir l'égalité

(59).
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2 a. Calcul de N,- et N't.
Nous devons encore déterminer la valeur de N, et Ni

Utilisons pour cela le fait suivant: l'examen des courbes du
chapitre I montre que la luminosité — et par conséquent la

pression du moins en première approximation — est extrema
à peu près au moment où le rayon atteint sa valeur moyenne.
La simultanéité de ces deux événements n'est pas parfaite;
toutefois elle est suffisante pour que nous puissions l'admettre,
en première approximation.

Le rayon r atteint sa valeur moyenne quand ri/0= 0. On a

donc, d'après (61):
0,063 cos Ni — 0,021 cos 2Nt 0

d'où l'on tire aisément: {.Nt' =106°
} Nt"= 2540

A ces instants t' et (", le rayon atteint sa valeur moyenne,
et la pression est approximativement extrema. On a donc les

deux équations approchées suivantes pour déterminer N, et Ni:

t)r° (f)=o
En dérivant (62) on obtient:

1 dP
(63) ^ -~ — 0,49 sin N« + 0,78 sin Nt cos N,. + 0,78 cos Nt sin N;

— 0,52 sin 2N< cos N] — 0,52 cos 2Nt sin N'. — 0,056 sin Nt cos -/

— 0,056 cos Nt sin Ç + 0,15 sin 2Nf cos y + 0,15 cos 2Nt sin y
En faisant successivement

t=,f et f=r
(63) donne les deux équations:

0,47 + 0,75 cos N. — 0,22 sin N.+ 0,28 cos N: r 0,44 sin N:

0,054 cos Ç - 0,016 sin y - 0,080 cos - - 0.13 sin y 0

(64)
0,47 — 0,75 cos N. - 0,22 sin N.- 0,28 cos N. - 0,44 sin N\

+ 0,054 cos y + 0,016 sin y + 0,080 cos Ç _ 0,13 sin y 0

Tel est le système qui détermine pratiquement N,- et N,-. En
additionnant — puis en soustrayant — membre à membre
les équations qui le composent, on obtient :
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Ì— 0,44 sin N. -p 0.88 sin N'. + 0,032 sin ^ - 0,26 sin -' 0

(65)
' ' -

N.
-

N.
f- 0.94 - 1,5 cos N(. + 0.56 cos N) - 0,11 cos -~ - 0,16 cos -y 0

Nili
est permis de négliger le terme 0,032 sin y, dont le

coefficient est au plus égal à 1/10 des autres coefficients. Le
système (65) peut alors s'écrire plus simplement:

N'
sin N. 2 sin N'. — 0,59 sin X

"î(î; < V N'-
- 94 + 150 cos N, + 56 cos N\- 11 cos y — 16 cos y 0

Nous résolvons ce système (66) de la manière suivante:
ayant choisi une certaine valeur pour Ni, nous en déduisons,
par le moyen de la première équation (66), la valeur
correspondante de N,-. Les deux valeurs ainsi obtenues doivent alors
vérifier la deuxième équation (66).

On obtient de cette façon:

(.N, -6lo
<6?> U, -32«

Il est évident que le système (66) admet d'autres solutions
que (67). Mais il n'est pas nécessaire, pour le but que nous
poursuivons, d'obtenir toutes les solutions de (66). Nous
cherchons à retrouver les décalages signalés au chapitre I. Si la
solution (67) le permet, le but sera atteint, et les autres
solutions, mathématiquement admissibles, ne conduiraient pas au
résultat physique attendu. Il reste donc à voir si ces valeurs
(67) permettent de vérifier la loi de variation de P.

2 b. Calcul des décalages. — Introduisons les valeurs données

par (67) dans (62). On obtient:
P, 0,49 cos Nt — 0,78 cos (Nt — 61) + 0,26 cos (2Nt — 32)

- 0,056 cos (Nt — 301/2 — 0,074 cos (2Nt — 16)

Calculons les instants des extrema de P, Ils sont donnés par

dP
Si l'on pose: sinN< .r l'équation—>— 0 peut s'écrire, tous

calculs faits:

(69) 58x* + 93x* — 12x2 - 86a; - 37 0
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Deux racines de cette équation sont imaginaires; les deux
autres valent:

jl 0,84 x2 — 0,73
d'où l'on déduit:

V Ni, 58» ¦ N<3 -47o
[ ' l Nt, 1220 l Nt. — 1330

tx t2 t-, tx sont les instants des extrema de P, dont les
principaux sont t2 et f4, proches respectivement de t' et t".

Calcul de la valeur de P, au moment des extrema.

En introduisant les valeurs (70) dans (68) on obtient les
résultats suivants :

P, — 0,42 pour Ni 58°
Pi — 0,80 pour Ni =122° P minimum
P1 0,49 pour Nt —133° P maximum
P, 0.46 pour N/ —470

Il résulte de là que la pression est minimum pour Nt 122°
et qu'elle est maximum pour Nt=—133".

D'autre part, il résulte de (61) que r0 est maximum pour
Nt 40° et minimum pour Nt 180°

Les résullats précédents sont portés sur le schéma suivant,
établi pour une période:

min lum. max lum.
0 r„.« I r moyen 106° - I r moyen 2f>4°

extrema de r: U
40° | 180" |

< Décalage I >- -(Oécal.llv

extrema de P: °- ^ ^—
P».. 227°

P„.,

Le schéma fait apparaitre les deux décalages signalés au
chapitre I.

Ces décalages ont pour valeur:

Décalage I 122° - 40° 82» ou — 6 0,23 9
c 180

Décalage II 227» — 180° 47« ou ~ 6 0,1.3 6

Or les courbes d'observation donnent, ainsi que nous le

disions au chapitre I :

Décalage 1 0,20 0

Décalage II 0,12 0
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Ainsi donc l'hypothèse envisagée à la page 221 est admissible.

Les calculs faits jusqu'ici confirment le fait déjà signalé
que la partie périphérique de l'étoile (de S' 5 jusqu'à la

surface) a peu d'importance sur les pbénomènes intéressant
l'étoile entière. En particulier, la pulsation traverse cette couche

périphérique sans subir d'autres modifications appréciables
qu'une diminution d'amplitude.

3. 2e hypothèse.
Nous avons indiqué précédemment les trois hypothèses

possibles au sujet du rapport A,
Ä]

Voyons à quelles conclusions on est conduit par l'adoption
de la deuxième hypothèse:

<A
Ai

Supposons par exemple que:
|A,-

A,
Ai

(71)

Ia;
Les quatre coefficients des relations (58) ont alors les

valeurs suivantes:
A0 0,063 A,- 0,054

(A4 — 0,021 (Ai — 0,027

avec, comme dans le cas précédent,
N' 0.

Les relations (58) et (59) deviennent:

/i,o 0,063 cos Nt — 0,021 cos 2Ni
t ri= 0,054 cos (Nt + N,-) — 0,027 cos (2Ni + Ni)

(72) Px 0,49 cos Nt — 0,78 cos (Nt + N,-) + 0,40 cos (2Nl -r Ni)

+ 0,057 cos Nt +^ - 0,096 cos (zNt +^
Pour déterminer N, et N) nous procédons comme nous

l'avons déjà fait lors du calcul dans le cas de la première
hypothèse.

Le système déterminant N, et N',- peut se mettre sous la
forme :

¦ Ni
\ sin N, 3 sin Ni — 0,74 sin -J

(73) < TU. TM'

j -94+ 150 cos N, +84 cos Ni- 11 cos J -20 cos ~=0
ce système (73) correspondant au système (66) du numéro
précédent.

MÉMOIRES SC NAT. 43 IS
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Une solution de (73) est:

iN, -77o
(Ni -21i/2°

La valeur de Pt donnée par (72) devient alors:

(74) Px 0,49 cos Nt — 0,78 cos (Nt — 77) + 0,40 cos (2Nt — 2iy3)
+ 0,057 cos (Nt — 381/2) — 0,096 cos (2Nt— 11)

Les instants des extrema de P sont donnés par l'équation:

En posant sinNt x l'équation précédente prend la forme:
39z* — 22x3 _ 33;r2 + 24x — 4 =0

Les deux racines réelles de cette équation ont pour valeur:

x 0,90 x — 1

d'où l'on déduit:

^ 65« n
Nt2=115o m, — — 2

tt t2 et t3 sont les instants des extrema de P. A oes instants,
Px a les valeurs suivantes, calculées au moyen de (74):

Px _ 0,58 pour Ntx 65o

Pi -1,09 pour Nt2= Ho»

pt o,52 pour Nf3 — 77

Le minimum de P se produit donc pour Nt2=115°
et le maximum pour N<3 270°

Un schéma analogue à celui de la page 224, et qu'il est
inutile de répéter ici, montrerait les résultats suivants:

75
Décalage I 115« - 40° 75° ou ^g-

9 0,21 0

Décalage II 270» - 180° 90° ou | 0,25 9

Les résultats précédents sont inadmissibles pour les deux
raisons suivantes:

1° Pour toutes les Céphéides, et pour S Sagittae en
particulier, le décalage II est plus petit que le décalage I.

2° L'égalité définissant Pj :

P P,.(1 + P1)
exige que | Pt | < 1

Or pour N<2=115° on a obtenu:

P^-1,09
La deuxième hypothèse, envisagée dans ce n° 3, ne peut

donc être admise.
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I A,-
4. 3e hypothèse : —,

I A,- > Ao

4

Supposons par exemple que
A/
Ai

Les quatre coefficients de (58) ont alors les valeurs:
c A0 0,063 i At 0,054
(Ai -0,021 (Ai -0,014

La valeur de Pt devient:

Px 0,49 cos Nt - 0,78 cos (Nt + N,) + 0,20 cos (2Nf + Ni)

+ 0,057 cos Nt + 5A _ o,067 cos (2Nt + ^
Le système déterminant N, et N,- est:

Nisin N,- =1,5 sin Ni — 0,50 sin ^
94 -:- 150 cos N,- + 42 cos NJ - 11 cos ^

dont une solution est:
N,-

1,. N'; n14 cos -^- 0

i in,- -- 55°
Ni - 42"

La valeur de P,^ est alors la suivante:
Px 0,49 cos Nt - 0,78 cos (Nt- 55) + 0,20 cos 2Nt- 42)

+ 0,057 cos (Nt — 27i/2) - 0,067 cos (2Nt- 21)
Les dates des extrema de P sont déterminées par l'équation:

32x* + 53x3 + 6x2 — 48x — 32 0

dans laquelle on a posé sin Nt x
La pression P est extrema aux quatre instants tx t2 t3 l,

déterminés par:
Ntx 810 Nt, - 70°
Nt2 99o Nf4 -110°

Le minimum absolu a lieu pour:
Nt2 99°

et le maximum absolu pour:
Ntt —110°

Les décalages ont alors les valeurs suivantes:

Décalage 1 0,17 9

Décalage II 0,20 9

L'hypothèse envisagée maintenant conduit, comme la
précédente, à un décalage II plus grand que le décalage I. Cette
troisième hypothèse doit donc être rejetée.
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5. Remarque.
Dans le calcul précédent, nous avons été amené à donner

A-
la valeur — 3 au rapport -p, tandis que les valeurs — 2 et — 4

A
sont à écarter parce qu'elles conduisent à un décalage II plus
grand que le décalage I. Nous nous proposons de chercher,

dans cette remarque, quel est le domaine admissible,
autour de — 3, pour le rapport en question.

Nous posons:
A,

=_ ^3
Ai

~~
e

e voisin de 1

d'où l'on tire:

(75)
i Ai 0,054
I Ai -0,018e

en tenant compte des données du § 1 du présent chapitre.
Le tableau suivant résume les résultats obtenus dans les

pages précédentes.

/re hypothèse //e hypothèse 11Ie hypothèse

^ -3 6=1
A/ Ai" d £~2

Ai 3
r- — 4 E

7A, 4

<;N, — 610 (N,- - 770 N/ — 55"
Ni - 320 t Ni - 2iy,o / Ni - 420

Les grandeurs N,- et N] sont fonction de e, fonctions pre-
3 3

nant les valeurs indiquées ci-dessus, pour e ^ ; e= 1 et e ; •

On peut, sans erreur sensible, interpoler en représentant N,- et
Ni par des polynômes du deuxième degré en (e—1). On
obtient:

t N/ —61—26(e—1)—ll(e—l)s — 46— 4e— lle2
(7b) | Ni — 32 + 33(b - 1) - 27(e - 1)2 - 92 + 87e - 27e*

Portons les valeurs (75) et (76) dans (59), Px devient:

Px 0,49 cos Nt- 0,78 cos (Nt - 46 — 4e — lie»)
+ 0,266 cos (2Nt — 92 f 87e — 27e2) + 0,06 cos (Nt — 23 - 2e — 5e*)

— (0,04 + 0,03e) cos (2Nf- 46 + 44e - 14e»)

Cette valeur de Pj se réduit à celle donnée sous le n°(68)
pour e 1.

Nous calculons, comme nous l'avons déjà fait à trois
reprises, les dates des extrema de Pt, cela pour différentes
valeurs de 6 Nous en déduisons ensuite les valeurs des décalages

I et II. On obtient les résultats suivants:



A,-

Ai
- - 2,5

e 1,1
A,
Ai — 2,7

6 0,95
Ai
Ai -3,15

e 0,90
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12
(Décalage 1 0,189
ì Décalage II 0,25 9

e Décalage 1 0,18 9
l Décalage II 0,10 9

Décalage I 0,18 9

l Décalage II 0,17 9

-r^ ------ Décalage I 0,18 0

-.-, - 3,3 ¦ Décalage II 0,20 9
A/

Seuls les décalages correspondant à e =1,1 ont des
valeurs sensiblement égales aux valeurs d'observation. La meilleure

valeur pour e paraît être comprise entre 1 et 1,1; ce

qui permet de penser que l'ondulation secondaire s'atténue
légèrement en passant de S' 5 à la surface.

Les résultats précédents mettent en évidence un autre fait:
le décalage I ne dépend pas (en première approximation tout
au moins) de e C'est donc l'ondulation principale qui détermine

ce décalage.

CHAPITRE V.
Etude de W Sagittarii.

N' + o

1. Introduction des données d'observation.

Nous avons donné au chapitre I la courbe des vitesses
radiales de cette étoile. La variation du rayon indiquée par cette
courbe est représentée par:

(77) rlfi 0,083 cos Nt- 0,018 cos (vtit + Ù
La comparaison de (77) avec la première des équations (78)

/?8^ /-1)0 A0 cos Nt + A; cos (2Nt + N')
f rx A,- cos (Nt + N,-) + Ai cos (2Nt + Ni)

permet d'écrire:

A0 0,083 A; -0,018 N' |
Pour déterminer les coefficients A, et A), on procède comme

nous l'avons indiqué au début du chapitre IV. On trouve:
A,-= 0,067 Ai -0,015

Les coefficients A0 et A^ ont été choisis de manière que.
1

la valeur absolue maximum de ri>0 »oit environ .-y. C'est en
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effet la valeur admise pour l'amplitude de la pulsation de
l'étoile qui nous occupe 1.

Quant au coefficient AJ, il a été calculé en admettant la
première hypothèse du chapitre IV.. Les développements du
chapitre IV ont montré en effet que pour rendre compte des
décalages observés, il fallait supposer que la pulsation se

transmet sans modifications importantes de S' 5 jusqu'à la
surface, en vertu du fait que la sphère de rayon S' 5
contient les 99,13»/o de la masse totale.

Les valeurs indiquées pour A0 A^ A,- et AJ conduisent à

l'expression suivante:

(79) Px 0,65 cos Nt - 0,95 cos (Nt + N,) + 0,22 cos (2Nf + Ni)

+ 0,07 cos fût + jj - 0,06 cos ^2Nt + y + jf
qui se déduit de la relation (54) du chapitre III.

Telle est la valeur de P, qui va nous permettre de retrouver
les décalages signalés au chapitre I, pour W Sagittarii.

Nous traitons ce cas de deux manières différentes. Dans
la première partie de ce chapitre, nous utilisons la méthode
qui nous a servi déjà au chapitre précédent, dans le cas de
S Sagittae. Ce fait nous dispense d'entrer dans tous les détails
du calcul; aussi ne donnons-nous, dans cette première partie,
que les résultats principaux.

Nous emploierons, dans la deuxième partie de ce chapitre,
un autre procédé de calcul.

2. Premier calcul.

Pour déterminer N, et Ni, nous avons supposé, au début
du chapitre IV, que les instants de luminosité extrema
coïncidaient avec les instants du rayon moyen. En faisant
maintenant la même hypothèse, les deux inconnues N, et Ni sont
déterminées par le système:

^Uodt Jr Nt' 98°

dPX aveC:< Nt"=260°
dt

0
r

où t' et t" sont les instants du rayon moyen, c'est-à-dire les
instants où r10 s'annule. Le système précédent se simplifie et
se ramène au suivant:

1 G. Tiercy : loc. cit.. p. 452.
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N'- N'
sin N, 2,1 sin Ni — 0,53 sin -^ — 0,26 cos ¦ -

127 + 185 cos Ni + 6 sin N/ + 34 cos Ni — 14 cos Ç — 8 cos +' + 4 sin ~= 0

dont une solution est: N,- — 46°

Ni -33o
Ces valeurs approchées sont à introduire dans (79), qui

devient :

(80) Px 0,65 cos Nt- 0,95 cos (Nt- 46) +0,22 cos (2Nt - 33)

+ 0,07 cos (Nt- 23) - 0,06 cos (2Nt -f 13Va)

Les dates des extrema de P, sont données par l'équation
95 sin*Nt + 116 sin3Nt — 44 sin2Nt — 119 sin Nt — 45 0

dont les deux racines réelles sont :

sin Nt 0,994 sin Nt — 0,67

d'où l'on tire:
t Nt, 84° N«, - 420
\ Nt, 96° Ì Ntx - 1380

La relation (80) fournit ensuite les résultats suivants:

Px — 0,75 pour Nt, 84°
Pt _ 0,80 pour Nt2 96° P min.
Px —0,36 pour Nt3 —420
Px 0,53 pour Nt, - 138o P max.

Les instants t2 et t. sont proches respectivement des
instants I' et t" donnant les rayons moyens. (r10 o).

Les instants des extrema du rayon sont:

i Nt'm 24° pour ri,o maximum

Nt" 167° pour ri,o minimum

Ces résultats sont portés sur le schéma suivant, établi pour
une période:

Tmax Tmia
0 24° 167° T. 2~

extrema de r : LJ

-< Décalage I *-; H Décalage II —<

extrema de P : 9
96° (-138°)
P»i„ 222°

Décalage I 96o — 24° 72° ou 0,20 9

Décalage II 222o- 167° 55° ou 0.15 9
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Rappelons que les courbes d'observation données au
chapitre I mettent en évidence les décalages suivants:

{ Décalage 1 0,18 9

Décalage II 0,14 9

L'accord, on le voit, est satisfaisant. Il n'y a pas lieu de
retoucher les valeurs de N,- et N/.

3. Deuxième calcul.
Nous avons admis, dans les pages précédentes, la simultanéité

entre les instants des extrema lumineux et les instants
du rayon moyen. Ce n'est là qu'une indication approximative.

Pour une seconde approximation, nous prendrons, comme
valeurs de t' et t" conduisant à la détermination de N, et N)
les phases t2 et t4 trouvées dans le calcul précédent pour les

extrema de P. On a ainsi:
S Nt' 96o
i Nt"=222°

Ces deux époques sont d'ailleurs à très peu près celles des

extrema lumineux, comme on peut facilement s'en rendre
compte en construisant la courbe de pulsation, et en comparant

celle-ci à la courbe de lumière.
La pression étant extrema aux époques t' et i" ci-dessus

indiquées, la dérivée, de Px s'annule lorsqu'on y fait:
\ Nt' 96°
t Nt"=222o

Les deux équations déterminant N,- et Ni sont donc:

0(t)x m,-
P, étant déterminé par la relation (79).

Le système (81) peut se mettre sous la forme simplifiée
suivante:

(cos N,- 0,68 — 0,15 cos Ni — 0,47 sin Ni r 0,10 cos ~ - 0,08 sin -r

(82) N.
"

N.
*

f — 2 -f 3 cos N / — 8 sin N,- — 3,5 cos Ni + 0,6 sin ^' — 1,4 sin y 0

Une solution de ce système (82) est:
(N,- -22i/2o
l Ni - 40°

La valeur de P, donnée par (79) devient alors:

(83)P, 0,65 cos Nt — 0,95 cos (Nt- 22y2) + 0,22 cos (2Nf — 40)

-r 0,07 cos (Nt— 11) — 0,06 cos (2Nt+10)
Cette valeur de P± étant obtenue en considérant des pha-
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ses t' et t" meilleures que celles des rayons moyens, doit
redonner ces instants t' et t" comme instants des extrema de P,

Vérification. — Ces instants sont solutions de l'équation:

$-°
qui, grâce à (83), peut s'écrire:

(84) 55 sin*Nt +13 sin3Nt — 41 sin2Nf — 22 sin Nt — 3,3 0

Cette équation (84) a deux racines réelles:
sin Nt 0,989

t sin Nt —0,66
d'où l'on tire: $ Nt, 82o Nt3 — 41«

t Nf2 98° Ì Nt4 — 139°
La relation (83) permet de calculer les valeurs de P, à

ces quatre instants t± tt ts tt. Seules les valeurs de P,
indiquant le minimum absolu et le maximum absolu de P sont
utiles pour le but que nous poursuivons. Ces valeurs sont:

Pt _ 0,48 pour Nt,= 98° P min.
P, 0,51 pour Nt4 — 139o(ou + 221) P max.

Nous retrouvons ici, à très peu près, les instants t' et t"
introduits plus haut. La vérification est donc bonne.

Remarques finales.

I Le rapport -

Les analyses des chapitres IV et V sont basées essentiellement

sur la relation (54) du chapitre III. La valeur de P,
donnée par (54) est valable pour toutes les Céphéides à

condition d'admettre la constance du rapport -. Nous avons

démontré (chap. Ill § 4) la constance approximative de ce

rapport, en utilisant le résultat suivant, établi par Eddington:
le produit Q\ pc est approximativement constant pour toutes
les Céphéides. Eddington a calculé les valeurs suivantes1:

Etoile. Type. Q\Pc Etoile. Type. eyPc
1 Car. F8 — GH 0,74 Y Sgr. F,-G a 0.67
Y Oph. F5-G8 0,92 b Cep. F0 —G2 0,89
X Cyg. F6 1,38 T Vul. A9 — Gx 0,92
S Gém. G,, 0,71 SU Cyg. A6-F7 1,23
S Sge.
W Sgr.
r\ Aql.

F4-G3 0,79 RT Aur. A,-Gi 0,95
A8-G2 1,10 SZ Tau. A9-G0 0.83
A8-G5 0,94 SU Cas. An — r s 0,82

X Sgr. F,-G-, 0,80 RR Lyr. B9 — F2 0,62
1 Eddington n'emploie pas les mêmes unités que nous pour exprimer la

valeur de Oypc •
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Les valeurs extrêmes de 6ypc sont entre elles comme 1

est à 2.
Pour nous rendre compte si ces valeurs de 9y pc étaient

fonction du type spectral de l'étoile, nous avons établi un
graphique (qu'il est inutile de reproduire ici) en portant en
ordonnées les valeurs de 9yi pc et en abscisses le type spectral,
suivant l'ordre évolutif: B — A — F — G — K.

Les points représentatifs sont dispersés assez irrégulièrement:

cependant on observe une diminution de la valeur

moyenne de 9yPc du côté des spectres avancés. On a par
exemple:

Valeur moyenne de 9y/pc pour les étoiles dont les spectres

moyens sont compris entre F0 et F5=1,0.
Pour les spectres compris entre F6 et G0 la valeur moyenne

de 9y pc est 0,83 et pour les spectres compris entre Gu et G5

cette valeur est de 0,72.
La diminution de 9y/pcest nette. Il faut remarquer cependant

que les spectres des étoiles que nous utilisons n'occupent

qu'un faible intervalle du domaine spectral. D'autre part
on sait1 que plus le type spectral est avancé, plus la période 8

est longue. Y a-t-il une corrélation entre ces deux phénomènes

Quoi qu'il en soit, nous n'avons pas jugé nécessaire
d'introduire dans notre travail ces variations de 9 y pc, qui entraînent

des variations de -. On se rend aisément compte que

le premier coefficient de (52) n'est pas sensiblement modifié

par de petites variations de - Quant au dernier coefficient

de (52), c'est sa petitesse qui rend négligeables ses variations
éventuelles.

II. La couche périphérique.
Nous avons comparé, dans ce travail, les courbes de

lumière et des vitesses radiales. La première de ces courbes est
obtenue par des mesures photométriques, elle est donc relative

à la photosphère de l'étoile envisagée; tandis que la courbe
des vitesses radiales, obtenue spectroscopiquement, concerne
la couche renversante. Peut-on, dans ces conditions, comparer
ces deux courbes?

G. Tiercy montre2 que cela est légitime, et les raisons
qu'il donne dans le cas d'une pulsation du type :

1 Shapley — Aslrophysical Journal, t. XL, 1914.
2 G. Tiekcy : loc. cit., p. 45B et suivantes.



ESSAI SUR LE PHÉNOMÈNE DES CÉPHÉIDES 235

/om $ /1,0 A0COsNt)
{öö) r1 A,cos(Nt + N,)
sont encore valables pour la pulsation du type (43) envisagé
dans ce travail. Cela tient, en dernier ressort, à la très faible
masse de la couche périphérique, fait déjà signalé au chapitre

III § 4. Cependant les cas (43) et (88) ne se présentent
pas de la même manière.

Dans le cas d'une pulsation du type (88), on ne peut
admettre que N tende vers 0 quand S tend vers So. car dans
cette supposition on aurait:

Pi,o=x — 0,2 cos Nt »

et les extrema de P10 se produiraient alors en même temps
que ceux de r10, ce qui n'est pas le cas.

Cette difficulté ne se présente pas de la même façon dans
le cas d'une pulsation du type (43). En effet, pour:

A, -v A0 et Ni ->- 0
Ni -v N'a; -^ a;

on a : /¦, -v /\to Mais, dans ces conditions, la relation
fondamentale (54) montre que les dates des extrema de P^o soni
différentes de celles de rij0. Il conviendra cependant de tenir
compte du fait que la photosphère se prolonge par une
atmosphère, dont la partie inférieure est justement la couche
renversante observée, laquelle donne les indications sur les
vitesses radiales. Et, lorsque S -*¦ So »

i on sera amené à

considérer que N,- et Ni tendent vers d'autres valeurs que 0 et N'.

III. Conclusion.

L'hypothèse des pulsations a permis à Eddington de rendre

compte des caractéristiques essentielles des Céphéides. Mais,
ainsi que le remarque J. Bosler: « l'interprétation des détails
nécessiterait cependant des recherches ultérieures ». Parmi ces
détails, le plus frappant est certainement celui des décalages
qui font l'objet de cette étude. L'hypothèse des pulsations nous
ayant permis de retrouver les décalages observés, nous pensons

que ce travail apporte un fait de plus en faveur de cette
hypothèse.

1 G. Tiercy : loc. cit., p. 458.



236 PIERRE JAVET

Table des matières.

Chapitre I. — Les Céphéides. Pages
1. Données d'observation 193
2. Hypothèses 195
3. Les décalages 196

Chapitre II. — L'équilibre radiatif dans les étoiles.
1 Equilibres polytropiques 197
2. Equilibre radiatif 199

Chapitre III. — Les sphères puisantes.
Ire partie :

1. Notations. Equations fondamentales 202
2. Calcul de la pression 204

2a. Développement de la fonction <P(X) 206
2 b. » » » <ï>i(x) 207
2 c. » » » d>2(x) 208
2d. » » » <53(x) 209

2e partie :

3. Calcul de la pression dans le cas d'uno pulsation du
type (43) 211

4. Calcul de P, 215

Chapitre IV. — Etude de S Sagittae. N' 0

1. Introduction des données d'observation 219
2. Première hypothèse 221
2 a. Calcul de N,- et de Ni 222
2 b. Calcul des décalages 223
3. Deuxième hypothèse 225
4. Troisième hypothèse 227
5. Remarque 228

Chapitre V. — Elude de W Sagittarii. N'+ 0

1. Introduction des données d'observation 229
2. Premier calcul 230
3. Deuxième calcul 232

Remarques finales.
1. Le rapport - 233

2. La couche périphérique 231
3. Conclusion 235

Rédaction: M"e Suzanne Meylan, professeur, Florimont 14, Lausanne.
Imprimerie Commerciale, Ch. Baud, av. de l'Université 5, Lausanne.


	Essai sur la phénomène des Céphéides

