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Essai sur le phénoméne des Céphéides

CHAPITRE PREMIER
Les Céphéides.
Données d’observation. Hypothéses. Les décalages.

Les étoiles variables peuvent se répartir en quatre classes
principales:

1. Les variables a éclipses dont les fluctuations lumincuses
sont dues au passage d'un compagnon devant 1'étoile principale.
Les variations d’éclat sont périodiques, la période durant de
6 heures a 10 jours, suivant l'étoile considérée. '

2. Les Céphéides, ou variables a courte période, dont le
type est b Cephei, et sur lesquelles nous reviendrons dans un
mstant.

3. Les variables a longue période (analogues a Mira-Cet1)
dont la durée de fluctuation d’éclat peut étre supérieure a
20 ans.

4. Les variables irréguliéres dont les changements d’éclat
ne semblent suivre aucune loi déterminée.

Nous résumons dans le présent chapitre les connaissances
actuelles sur les Céphéides ainsi que quelques-unes des hypo-
théses émises dans le but de rendre compte des faits observés.

1. Données d observation.

Les Céphéides sont des géantes, ainsi qu'en témoignent
leur magnitude absolue moyenne trés forte (ordre de gran-
deur entre —2 et —3), leurs pelits mouvements propres et
leurs faibles parallaxes.

La magnitude d’une Céphéide subit des variations périodi-
ques de l'ordre de 1,3m. en moyenne. Parallélement a ces
variations d’éclat, on observe une variation du spectre de l'étoile,
le spectre le plus avancé se produisant a peu prés au moinent
du minimum de lumiére et le spectre le moins avancé au mo-
ment du maximum de lumiére.

Dans un premier groupe de Céphéides, la période est
comprise entre quelques heures et un jour; dans un deuxiéme
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194 PIERRE JAVET

groupe, la période est supérieure a4 3 jours et peul monter
jusqu’a 50 jours. Par contre, pour une Céphéide particuliere,
la période est invariable, ainsi que 'a montré lHertzsprung en
19181

L’éclat augmente, en général, rapidement du minimum de
lumiére jusqu'au maximum suivant, pour diminuer ensuite

S Sagittae. période = 8,38 .
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plus lentement du maximum au minimum, ainsi quon le voit
sur les courbes des figures 2 et 4.

La vitesse radiale d'une Céphéide est variable: si I'on trace
la courbe de lumiére et la courbe des vitesses radiales, on
est frappé de leur étroite correspondance: leurs périodes sont
égales, leurs extrema sont presque simultanés.

Nous donnons, comme illustration de ce qui précede, les
courbes de lumiére et des vitesses radiales de deux Céphéides:
S Sagittae et W Sagittarii.

t The Observatory, t. XLI, p. 379.

¢ . Tiercy : L'équilibre radiatif dans les étoiles. Paris 1935, p. 283.
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2. Hypothéses.

On a cru pendant longtemps que les Céphéides étaient des
variables a éclipses. Mais H. Shapley ! a montré en 1914
a quelles impossibilités on est conduit en appliquant aux Cé-
phéides la théorie des binaires. Ce point de vue doit donc
étre abandonné.

W Sagittarii. période = 7,59 j.
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Fig. 3: d’aprés G. Tiercy.?
Fic. 4. d’apres Pub. Observal. de Geneve, fasc. T et CuanprLer, A. N., 2119 ;
PickerinGg, Harv. Ann. 24,

Il est remplacé, a la suite des travaux de Shapley et d’Ed-
dington ¥, par I'hypothése des pulsations: on suppose une étoile
unique qui se dilate et se contracte périodiquement. Cette hyv-
pothése, jointe a la théorie de l'équilibre radiatif (voir cha-
pitre II), a permis & Eddington de rendre compte des carac-

1 Astrophysical Journal 1914, p. 448.
2 (5. Tiercy : L'équilibre radiatif dans les étoiles, p. 291.

3 Monthly Notices, t. LXXIX 1918 ; voir aussi EppingTon : The internal cons-
litution of the stars, Cambridge.
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téristiques essentielles des Céphéides: grandeur des périodes
observées, allure de la courbe des vilesses radiales et de la
courbe de lumiére.

3. Les décalages.

Les courbes données dans les figures 1, 2. 3 et 4 mettent
en évidence un phénomeéne remarquable, commun & toutes les
Céphéides : les extrema lumineux ne se produisent pas au
méme 1nstant que les extrema du rayon.

Le minimum de lumiére a lieu aprés l'instant du maximum
du rayon; et le maximum de lumiére aprés l'instant du mi-
nimum du rayon. Il v a donc un décalage entre les extrema
respectifs du rayon et de la magnitude.

En désignant par: décalage I le décalage entre D'instant
du minimum de lumiére et celui du maximum du rayon, et
par: décalage Il celui entre l'instant du maximum de lumiére
et l'instant du minimum du rayon, les figures précédentes
montrent qu'on a:

pour S Sagittae:

{ decaage 1= 8’?22 0 = période.

|
! décalage 11

pour W Sagittarii:

g décalage 1= 0,186
décalage 11 = 0,140

Pour la plupart des Céphéides, le décalage Il est plus
petit que le décalage I. Ces deux décalages peuvent étre ¢gaux;
mais le décalage II n’est jamais plus grand que le décalage 1.
Ajoutons encore que le décalage 1 vaut en moyenne !/, de
période.

Ces décalages, signalés par de nombreux auteurs, sonl res-
tés inexpliqués jusqu'en 1935, date a laquelle G. Tiercy! a
montré qu'ils pouvaient se déduire de la théorie générale de
I'équilibre radiatif complétée par certaines hypothéses au su-
jet de la pulsation de @'étoile.

G. Tiercy étudie le cas d'une étoile a pulsation sinusoidale
el obtient alors des valeurs égales pour le décalage 1 et pour
le décalage II.

Dans la plupart des cas, la pulsation n’est pas harmonique
et les deux décalages sont inégaux. C'est l'étude de ce cas
— plus général — qui fait I'objet du présent travail.

1 G. Tiercy : L’équilibre radialif dans les étoiles. Paris 1935.
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Avant d’exposer, a partir du chapitre III, les résultats de
nos recherches, nous résumons dans le chapitre II les traits
principaux de la théorie de I'équilibre radiatif, théorie sur la-
quelle nous nous sommes basé dans la suite.

CHAPITRE II
L’équilibre radiatif dans les étoiles 1.

1. Equilibres polytropiques.

Le mémoire fondamental est did & Emden 2. Considérons
une masse 1solée de gaz. Sous l'effet de sa propre attraction
gravitationnelle, et en l'absence de mouvement de rotation
ou d’autres causes perturbantes, cette masse prend une distri-
bution & symétrie sphérique.

Trouver quelle est, a I'intérieur de cette masse, la répar-
tition des pressions, des lempératures et des densités, tel est
le probleme résolu par Emden en 1907.

Soil :

p la pression du gaz a une distance r du centre.

P la masse spécifique au point considéré.

g laccélération de la pesanteur en ce point.

M, la masse contenue a l'intérieur de la sphére de rayon r.

Ces 4 grandeurs sont liées entre elles par les égalités bien
connues:

dp _
ar — 9
\_ f == (Ii:lr (G = constante de la gravitation)

(1)

Pour qu’il soit possible de déterminer les 4 fonctions de
r ci-dessus introduites, une quatriéme égalité est nécessaire.
Cette quatrieme égalité est:
(2) pr¥ =0
dans laquelle ® et / sont deux constantes.

La relation (2) est une équation de Poisson généralisée.

! Pour lout ce qui concerne ce chapitre, voir G. Tiercy, loc. cit. passim.
-2 EmpEN : Gazkugeln 1907.



198 PIERRLE JAVET

L'exposant & sera dans la suite différent de sa valeur habi-
tuelle y = Q’
Cy

Quand 'égalité (2) est satisfaite, la distribution est appelée
polytropique.

Du systéme formé par les équations (1) et (2), on dé-

duit facilement' l'équation suivante, dite équation d’Emden:

d2u 2 d
(3) ot S Fetun=0
dans léque]le on a posé:
ut=9p 1
. 4nGp T T
(n+1)Re

et ou:
i = poids atomique moyen.
R =: constante des gaz.

L’exposant n définit la classe polytropique envisagée. Cette
équation (3) est fondamentale pour la théorie qui nous occupe.
Sa solution générale, a I'aide des fonctions é¢lémentaires, peut
s'obtenir pour les trois classes polytropiques n =0, n - 1,
n=>52 Dans le cas général (n quelconque), avant de résou-
dre numériquement (3), on [fail le changement de variable et
de fonction suivant:

(4) r=

gy

==ty

L
i, 2

-

dans lequel u,= valeur de u au centre de 'étoile.
L’équation (3) devient:
d2® 2dv
d® T eaE

Emden a calculé la solution de cette équation pour les
classes polytropiques
fim= Qo 5 om ] o L o B Bl e 3 o o 8 o B8 T 8 D

Voici, a ltre d’exemple utile pour la suite, la table d'Em-
den pour n = 3. La valeur £ = 6,90 correspond a la surface
de 1'étoile.

Cette table (de méme que les tables analogues pour les
autres classes polytropiques) donne, on le voit, la répartition

"= 0

(9)

' Voir par exemple Ebbixetox: The internal constitution of the stars,
p. 79 et suiv.
2 G. Tiercy : loc. cil., p. 68 et suivantes.
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des températures, densités et pressions, du centre a la surface
de létoile. _
Table d’Emden pour n =3 .

dy zo A fdk
s 4 L bt ST dE 3dy
~> O o ™~ ™~ >0 ™o
/ T o P g - M, oc
or
0 1 1 1 0 0 1

0,25  0,98975  0,96960  0,95966  0,08204  0,00513  1,0158
0,50 095987  0,88436  0,8488G  0,153495  0,03874 . 1,0756
0,75 091355  0,76242  0,69650  0,21270  0,11964  1,1754
1,00 085305 0,62513  0,53451 025219  0,25219  1,3218
1,25  0,78897  0,49111  0,38747  0,27370  0,42765  1,5224
1,50  0,71948  0,37244  0,26797  0,27993  0,62984  1,7862
1,75 0,64996  0,27458  0,17847  0,27460  0,84097  2,1243
200  0,58282  0,19796  0,11538 026149  1,0450 25495
216 0,54133  0.15863  0.08587  0.25052  1,1710 2,8768
2,50 046109  0,09803  0,04520  0,22396  1,3994 3,7210
3,00  0,35921  0,04635  0,01665  0,18393  1,6553 5,4370
3,50  0,27629  0,02109  0,00583  0,14859  1,8203 7,8697
1,00 0,20942  0,00918 000192  0,11998  1,9197 11,113
150 0,15329  0.003746  0,000582 0,09748 19740 15,387
500 011110  0,001371 0000152 0,08003  2,0007 20,826
6,00 004411  8,583.10 3,786.10-5 0,05599  2,0156 35,720
6,80  0,00471  1,045.10-6 1,921.10-10 0,04360  2,0161 51,987
6,90 0 0 0 0,04231  2,0182 54,350

2. Equilibre radiatif.

Les recherches d’Emden, que nous venons de résumer brié-
vement, ne tiennent pas compte de la pression de radiation.
Or cette pression, qui est proportionnelle a la 4me puissance
de la température absolue, ne peut étre négligée dans le pro-
bléme de I'équilibre stellaire: aux énormes températures qui
regnent a l'intérieur des étoiles, la pression de radiation peut
¢tre du méme ordre de grandeur que la pression matérielle.

Ainst que le fait remarquer J. Boslert: «Il est méme
surprenant qu'on ait tardé si longtemps a s’apercevoir d'une
chose aussi naturelle. »

Il faut donc reprendre la théorie d’Emden et y introduire,
au lieu de la seule pression matérielle p, la pression totale P,
définie par: P=pip

! J. Boster : Cours d’astronomie, Il Astrophysique, p. 546.
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’

ou p’ est la pression de radiation, égale comme on sait a
1/;aTt. Clest ce qu'a fait Bialobrzeski en 19131,

Le systtme formé par les équations (1) et (2) du para-
graphe précédent est remplacé par:

T =P ou P=p-+p

-

M, =4n / eradr

0

pv¥ =6

Ces équations (6), dont la derniére est caractéristique des
distributions polytropiques, définissent l'équilibre radiatif.

En traitant le systéeme (6) comme on a traité le sysle-
me (1) (2), on obtient une équation différentielle du 2me or-
dre correspondant a I'équation d’Emden 2. Mais cette nouvelle
équation est, dans le cas général, beaucoup plus compliquée
que celle d’Emden. Il est cependant trés remarquable que pour
la classe polytropique n = 3 I'équation en question se simplifie
considérablement et devient:
d2u 2 du 3nGp
dre T 7 dr T 3RE T apé
Cette équation est du méme type que celle d’Emden. Seul le
coefficient constant du dernier terme, désigné plus haut par

«?, a une valeur différente. Désignons ce coefficient par o2.
En posant, comme dans la théorie d’Emden:

u¥ w=]

(1)

R
== n—1 " wou,
(8) U, 2
U = ucp
I'équation (7) devient grace a (8):
d* | 2db
— — —_ 1.3 —=
(9) d&g + g dE | v 0

Cette derniére équation est identique a l'équation (5) dans
laquelle on poserait n=3. La table d’Emden pour n—=3
donnée plus haut est donc valable maintenant, et donne, dans

! BuarLoBrzeskl. — Sur I’équilibre thermodynamique d’une sphere gazeuse
libre. Bull. de I’Académie de Cracovie.

3 G. Tiercy : loc. cit., p. 100.
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le cas de I'équilibre radiatif, la distribution des pressions, den-
sités el températures.

Cette table d’Emden indique — entre autres — que T, ¢
et P sont respectivement proportionnels a v, 3, $t. On éta-
blit en effet les formules suivantes que nous relevons ici sans

les démontrer:
T = 0Gu=u,

o 1% = u? P3
. n(
(10) / P =—sut=F 4
\ [y e % ut  P.=valeur de P au centre.

Ces formules (10) donnent les valeurs de T, p et P deés
que u,, ® et o sont connus. Ces trois constantes sont faciles
A déterminer si I'on considére comme connus:

le rayon r, de I'étoile,
la masse M de l'étoile.
Les trois constantes u,, @ et o se calculent alors au moyen
des relations:
' 4 Jt, €y /46, \ L
\ 3 = ——— Up= —] e | B
(1 M o M
| ) ©? (3RO - auet) = 3aG
relations dans lesquelles on a:
.,‘féo = 2,018

et &, = 6,90 étant la valeur de & correspondant & r=r,.!
[.a table d’Emden donne, a la surface de [I'étoile

(£, = 6,90):

et

b = 0 et par conséquent: T =20.

Ce résultat n'est évidemment pas acceptable. On admet or-
dinairement que la solution polytropique donne des résultats
exacts a l'intérieur de l'étoile, la ou les températures sont
supérieures & un million de degrés. Ce « noyau polytropique »
s‘étend de E=0 a E=% =5. De & =05 jusqu'a la surface
(o= 6,9): 1l faut envisager une autre distribution des pres-
sions, densités et températures.
D’aprés la table d’Emden. et pour & =5 on a:

M, 20007
M = 3oige — 09913
g 5 .

! Pour ces derniéres formules, voir: G. Tiercy, loc. cit., chapitre V.
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o . : 725
Ainsi la sphére dont le rayon est les 1000 du ravon total

contient les 99,1300 de la masse totale de l'étoile. Le « noyau
polytropique » comprend donc la presque totalité¢ de la masse;
on congoit alors que la partie périphérique n’ait que trés peu
d'influence sur la solution générale.

Le choix de la classe polytropique 3, justifié au point de
vue mathématique par les simplifications qu’il apporte, se
justifie-t-il physiquement? En d’autres termes, 1'étude des con-
ditions physiques régnant a lintérieur des étoiles conduit-elle
au choix de cette classe polytropique?

La réponse a ces questions est affirmative. Elle a ¢té four-
nie par Eddington en 1916'. L’analyse d'Eddington ne pou-
vant prendre place ici, nous renvoyons aux mémoires cités.

CHAPITRE III

Les sphéres pulsantes.

PREMIERE PARTIE

Si 'on admet pour les Céphéides I'hypothése de la pulsa-
tion, 1l devient nécessaire de compléter, pour 'appliquer aux
¢toiles variables, la théorie de I'équilibre radiatif établie pour
les étoiles fixes. En effet, la pulsation du rayvon entraine des
variations de méme période de la pression, de la densité, et
de la température.

1. Notations. FEquations fondamentales.

La théorie de l'équilibre radiatif donne les valeurs stati-
- ques de P, p, et T, valeurs que nous désignerons mainte-
nant par P;, p; et T;. Dans une étoile fixe, ces grandeurs
P;, p; et T; sont invariables. Au contraire, dans une Céphéide
la pression, la densité et la température oscillent autour de ces
valeurs P;, P; et T;. De méme une particule, qui dans la
solution statique est a la distance r du centre, oscille, dans
’hypotheése de la pulsation, autour de cette valeur r; .
Nous posons:

r=r; (1+ ry) d’on : \ r —rip= br; == Ppry
(12) P=DP;(1+4P) ) P—Pi=58P;=P; P,
P =0 (1‘1'91) ! p-“p,-:bp[:p,-pl

1 A. 8. EvpingTox : On Lhe radiative equilibrium of the stars. Monthly
Notices 77, 1916. Voir aussi Epbpixgton : The inlernal constilulion of the stars.
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La solution statique, fournissant les valeurs r; P; p; T,
est celle indiquée au chapitre I1.

Posons encore:
Iz ro = rayon de l'étoile
(13) % == " ’

Fy a la surface »g=1.

Il v a lieu de faire, au sujet de cette fonction y , les deux
remarques essentielles suivantes:

I. Si les différents rayons de l'étoile varient simultané-
ment dans la méme proportion, le rapport y est fonction de
r seul. La pulsation ainsi définie est dite « uniforme ». Dans
ce cas, les extrema de la pression P (ainsi que ceux de p
et T) ont liew au méme instant que les extrema du rayon r.
La pulsation uniforme ne peut donc conduire a un décalage
entre les extrema de r et ceux de P.

II. On peut penser, avec G. Tiercy!, que ce mécanisme
— trop simple — de la pulsation uniforme doit étre remplacé
par le suivant: les différents rayons de l'étoile atteignent suc-
cessivement leurs extréma respectifs. Dans cette hypothése,
la pulsation se transmet de proche en proche, du centre de
I'étoile a sa surface. Le rapport y est alors fonction du rayon r
et du temps {. La pulsation ainst définie est dite « homolo-
gue ». La suite de ce travail montrera que celte hypothese
permel de rendre compte des décalages signalés.

Nous admettons que les variations du rayon r donnant la
position d’'une particule proviennent uniquement de la pulsa-
tion envisagée. Il ne se produit donc aucun courant de ma-
tiecre a l'intérieur de l'étoile. Chaque particule est alors ani-

dr

mée d'un mouvement radial de vitesse 1 =7

Les équations de I’hydrodynamique se réduisent donc a
deux: l'équation de continuité et l'équation en w :

: % oo E&e):
(14) a Yo 'p(ar+r L
] 2 2 5]
. w cw__cV loP _
(15) ¥y 3t VY

dans lesquelles: V désigne le potentiel de gravitation et P la
pression totale, somme de la pression matérielle et de la
pression de radiation.

On sait que l'équation de continuité (14) se raméne a la

suivante:
dM,

(16) o

! G. Tiercy : loc. cit., chapitre XVIL.

=)
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qui signifie que la masse intérieure a la sphére de rayon r
est constante.
L’équation (15) intégrée entre les limites r et r, donne:

¥ oV dw
(17) P:L/ p(?"ﬁi’) dr

r

cette 1intégrale devant étre effectuée a temps constant. De

plus on a:

\Y% .o
oa_r — 3 r—zr G == constante de la gravitation.

2. Calcul de la pression.

Posons encore:
(18) cem b
o

Cette nouvelle variable t, fonction de ¢ seulement, se rap-
porte a la surface de I'étoile. L’intégrale figurant dans (17)
doit étre effectuée a t constant, donc a t constant, puisque
© est fonction de t seul.

Transformons I'intégrale en y introduisant la variable x
(définie par 13) au lieu de la variable r. Grace a (13) et (18)

on a:

r %
7 o . g P i
T T
A temps constant 1l vient:
dx
dr = —
T
On obtient encore successivement:
oV \/l T2
e G — =GM, =
. dr d [~ 1 dx % dt
) e e o e
T dt dt\ T Tt dt 12 (¢
dw 2(’dr 2 1 d2t 2 dt dx n 1 d2x
dF | w\de) T ede] T edtdl o de
r
De M, = 4= [r2pdr on lire :
(').
o — 1 aM,_ 38M, 1

S =1
4dnr2 r v 4nxn2

Avec ces valeurs, l'égalité (17) devient:



ESSAI SUR LE PHENOMENE DES CEPHEIDES 205
1

" M. GM, | 2/dT\2 | d2t]
(13) P:_’/ fax? ox { w —"[5(2{?> _5@}7‘

%X

2 dt dx Idzx)dx

Posons, pour simplifier 1'écriture:

G\l oM,
P = /47174 % - dx
b4
YoM
() = [ g5, 5 4"
20 : *
(20) ) o, (x) 1 dx aM,l
» ( Drx® df 9 o
»

1
1 dxx oM,
By () = /4nx2 diz x das
i [ &

| b
\

Avec ces notations, (19) s’écrit:
(21) P =rttp(x) [d2 2 (-i—z\)z d (x)—l—c-i-ICD (%) — dy(%)
v, i dt2 - dt ) 1 i dt 2 3\,

Si 'on considére le cas d’une étoile invariable, les vitesses
de transformation sont nulles et la pression est donnée par

: I
(22) P, =t 9(x)== = P(x,)

0,i
Les grandeurs sont notées maintenant avec l'indice i puis-
quil s’agit des valeurs statiques. La troisiéme équation (10)
cdu chapitre 1l que nous écrivions:
P=Pc‘b4
s’écrit avec les nouvelles notations:
(23) Py =P
La comparaison de (22) et (23) donne:
24) =rt D
(24) P () =rs Dbt
Mais revenons aux étoiles pulsantes dont la pression est

donnée par (21). Les grandeurs t et x oscillent autour des
valeurs statiques t; et x; . Posons alors:

o A FA
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égaliiés d’ou l'on tire:

dv ‘t-dTl dx ([x,
dt — dt dt~ dt
d2t d’ d2x a' 25,
de ([t’ de ~ tde

Les quatre fonctions (%) et ®,(x) définies par les éga-
lités (20) oscillent autour de leurs valeurs moyennes
P(x;) et D).
Développons ces quatre fonctions suivant les puissances

croissantes de x—x; c'est-a-dire suivant les puissances de %,
puisque

2a. Développement de la fonction ¢(x).
On a:

i -1 K%y

Le développement de ¢(x) suivant les puissances crois-
santes de %, est:
i’.xﬂ
i

Mt e
(26) () =P (m) + 2 (k) + " (%)

Or ¢/(%,), de méme que ses dérivées successives 97(%) ¢”(%),
peut se calculer au moyen des tables d’Emden pour la solution
polytropique de classe 3. La valeur de 9(x;) est fournie par
(24). D’autre part, a cause des notations utilisées dans le pro-
bleme de I'équilibre radiatif, notations déja indiquées au cha-
pitre 11, on a:

g
= ——
(DLlc
r i .
et W= — s ecrit:
f'”
I A
Rp— — = =, d’ot :
"0, Eo
('ll'i dE dE
d%i— e - - .
0,i Eo /()1('3uc

On obtient maintenant, a partir de (24):

V() = [,* P J:E_O(%‘J (”P}dﬂJ ou :
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p 4%
(27) ?'(xi) =By 01 ct “dE
Rappelons alors les égalités suivantes, données au cha-
pitre Il sous les numéros (10) et (11):
ﬁG 4"-{ %0 L EO (*lﬂ.jéo)_._%

Py = ut, of=---2", y,— =
. w2 ¢’ M ¢ lo,i M

(8,=6,9 b, =2,018).
Elles permettent de mettre (27) sous la forme:

‘ sGMz | d
(28) @' (%) = 547%2 b d‘é’

La table d’Emden pour n=3 permet de calculer la valeur
numérique de ¢ (A,) pour toute valeur de E.
Le calcul de ¢”(%;) se présente de la facon suivante:

P (%) = —d-[ ( u] =8 ¢ dE [‘P (“z)]

o ” E”GM’ AR d
® SR [wd (2]
Mais l'équation d’ Emden (chapitre II, éq.9) donne:
o SR L..
dg? E dE

en sorte que (29) peut s'écrire:

- vy EoGMZ b 208 dp
w0 = | (e )~ a

Sous cette forme, ¢” est calculable au moyen des tables
d’Emden.

On obtiendrait d’une maniére analogue des expressions don-
nant les dérivées suivantes de la fonction ?. Mais les deux
premiéres dérivées suffisent, ainsi qu'on le verra par la suite.

2b. Développement de la fonction @,(x)

1

D, (%) = / oM, dx

x 4dnx
%
A cause de la relation:
™ M,
T 4ax

®, (%) peut se mettre sous la forme:



208 PIERRE JAVET

! 1
(I)l(x\) = / Izp’/.d,‘/. =r, / p,-dr
Z <
et par conséquent:
’01 En
q)l("“f') =Ty, / ordr = E / OEAE

En utilisant l'équation d’Emden, et en tenant compte du

fait que pour g;= 6,888 les tables donnent Zlg = —0,0425 et

b presque nulle, on obtient :

D, (%) = E”[ 4% |\ by 0,278-1

dEg
on encore:
. EM /. do 1
! D ()= 2" ([EZF L Hb1-05
(31) l(yl) 43,/{0(2(15 ] 1':) ] 05278)
L’égalité définissant ® (%) permet d’écrire:
. r S 1 aMr %p 3 e 2 —
(32) @ (%;) =— yri bt S ropr = —ripr=
2 £2\|
0 h3E 2 B
IRt e = dn ft, &b

On obtient ensuite
; ., B EIM . (llb
(33) (I),( )“"EO dg 41 ’éo(l‘bj E" )

Ces deux premiéres dérivées suffisent: elles sont a intro-

duire dans le développement

() = By () = By () = 20 @ () + 7

,! .3
r "

D, 04)

2¢. Développement de la fonction ®,(x%)

1
. M, 1
V) = | T 5o 4y O
%
On sail que
M, 1 2p
e 2ax2 T
il en résulte que:
1
? dx
Dy(%) = -2./ pré o dx

%
sine a 19. LLe nombre de polvnucléaire est de 4100 par mm?.
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I'o,i

(x,)_Zr [.Pf— dr

En tenant compte de:

P = ulp? ru,:~_~~E x,-:gm
© g4
on obtient pour ®,(x%;):
(34) Dy(%;) = EO / qﬁ" dxl dg
E
Les deux premiéres dérivées de @, (y) sont:
QRS Pa § E:M
(35) D, (%,) = ~ Sl nbﬁ‘é
< 7 P G,,\l dxl i 9 dlb le daxl
(36) (1)2(%1') - )Tf./lé ,:q)i i E‘b dE dt lb'}g dtd&]

Les expressions précédentes sont a introduire dans le dé-

veloppement:
2

X% %7 y
Dg(n) = Dy %) + - LD () + tzl Bx) .

2d. Développement de la fonction ®y(x).

1
M, 1 d2
CI)S(X) _ / ¢l %

o dmxz de2

Par des calculs analogues aux précédents, on obtient:

G Ly EM [' , d"yl
£ i) = g, T, S
‘ o ;~;M dex,
(’38> (Da(%J - 47&%0 b? e dt2
G EM [ d L dbd
(39) @(n) = — g | 00T sEw G G 0 e |

Ces expressions sont & introduire dans le développement:
2,2
% (% L

Dy) = By(g) - =7 Py00) 5 O(x,) -

Les développements des fonctions ¢ et ®, étant maintenant

MEMOIRES SC. NAT. 43. 14
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connus, il suffit de les introduire dans la relation (21) pour

avoir la valeur de P a un instant donné.

Les considérations qui précédent ont été données déja par
G. Tiercy, dans son ouvrage: « L’équilibre radiatif dans les
étoiles », chapitre XVII.

Les relations des derniers paragraphes contiennent les quan-

d2x

. x 3. . ’ . .
tités “Eﬁl el W; qu’il est utile d’exprimer en fonction de r,

On a:

re==ux ity =%

ri(1 - rl)Tf(l = T1) = x%;( 1+ %)
et par conséquent:
(l_é"r]) (1%'51) =1+
En dérivant par rapport a ¢t on obtient:

j dx, dr, dt,
(40) == (1%} - (L i
Mais
; 1 .
1“’?‘11:1+r1’0= 1n+r 1() LR
Ty === r:o+rfo_
dt dr .
=g (=142, =3}, +...)
Introduisons dans (40) les valeurs de 11, et de %?, 1l
vient:
dx dr ‘ I |
(41) R?l-:_: «d—t’(l—'rltofrioﬁrf’ov;-»...)-r
| (ll'lo

- dtJ (——1—}—«2!‘1’0—3rf0—}—~...)(lw}rl)
et encore:
d¥x,  dr,

(42) diz T dez (1 1,0+rl120_r5110+"')+
o dr, dr ; ; ,
A+ dtl dtm( 1*3_3"1,0_?”;,07‘ e )+
d? .
i d;;"(—1+2r1,0—3r;,0+...)+

‘d
+( ;;ﬂ (2—6r,,--12rt —...)(1+r)

Il faut remarquer que la variation du rayon ry est connue
grace a lenreglstrement de la courbe des vitesses radiales; il en
est de méme de r;,.
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Le type de variation le plus simple est:
ry=A;cos (Nt4-N;) avec a la surface
I'e = AO cos Nt
égalités dans lesquelles on a posé:

_ 2m
0

Les grandeurs A; et N; sont fonction de r; (donc de £): ainsi
'amplitude et la phase de la pulsation varient avec la distance
au centre. Les égalités précédentes définissent une pulsation
harmonique, laquelle entre dans la catégorie des pulsations ho-
mologues dont nous parlions au debut de ce chapitre.

G’est une pulsation de ce type qu’a étudiée \G. Tiercy dans
I'ouvrage déja cité.

Si quelques Céphéides (T Vulpeculae SU Cassiopeae, par
exemple) ont des pulsations du type défini ci-dessus, la plupart
des Céphéides, par contre, ont une courbe des vitesses radiales
plus compliquée. Il est nécessaire, pour représenter ces pulsa-
tions, de prendre pour r,;, et pour r; des expressions de la
forme:

(43)

, 0= période de la pulsa’uon

ri = Agcos Nt +— A, cos (2Nt + N)
ry=A, cos (Nt - N,) 4+ A; cos (2Nt N))

dans lesquelles on a:

2n o :
N= == 0 = période de pulsation.
ri,0 étant connu grace a la courbe des vitesses radiales, il s’en-
suit que Ay Ay et N' sont des constantes connues. Quant a
A, AN, N, ce sont des fonctions de r;, donc de E.

Les constantes A, et A, (amplitudes de surface) étant au

on ne conservera dans les développe-

plus de l'ordre de T
ments qui suivent que la premiére puissance de A, A, A; A,

DEUXIEME PARTIE

3. Calcul de la pression P dans le cas d'une pulsation
du tvpe (43).

Nous avons établi, sous le no 21, la relation suivante, que
nous récrivons maintenant sous le no 44:
dzt d
(44) P — (%) [dt2 — (d;‘) ]qa( )+ ST @y ) 1y ()
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Reprenons les développements des fonctions ? et ® don-
nés plus haut, en abandonnant les termes »; qui sont de l'or-
dre de grandeur de Ay2. On obtient:

@(%) =5 () + m (%)
£,GM:=
P(ri) =ry, czlb4='1'é 6L
EaGM2
() = 4mf162¢ dE

(Dl(‘x) = @, (%; ) —;“”-i”vlq)l(xi)
@, (m) = g2 (858 +0 -+ 0.278)

dn by \ " dE
Dy (%) =— fﬁm E?
Do) = Py(%i) - %%, P (%)
Zo
() = Eg?géo [[e G de
3
EM . dx,

CDZQ(%,') == — 21_(0’:[60&1*'9 dt

\

Dy(x) = Dy(x;) {— %% Py (%)

2y
Do) = ¢ %OJ 5‘*’“ T

. E(',M L dx,
(Ds(xt) =] 41_{'/’60211)3 d!2

Avant de porter toutes ces valeurs dans (44) il faut encore
calculer les valeurs de
dzr 2 (dt )2 dt
Tt - B T el —
dee T \dt, dt
expressions (ui figurent dans (44).

On a, grace a (18;:
1 o,
T — — —

7o, &

Mais, d’aprés (43):
Iy = Agcos Nt + A cos (2Nt - N’ )
141 =1-—ry=1—A,cos Nt — A cos (2Nt 4 N’)
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, ou
T=1t(14 )= —

[1 — Aycos Nt — A| cos (2Nt N')]

0

z—g = mguc[AON sin Nt 2A /N sin (2Nt + N/ )]
d2t ¢ o ; ' ; LN

2 /cf_)’_ 2ou, [AN sin Nt - 2A N cos (2Nt 4- N J*
( dt ) & 1-—Ajcos Nt— A cos (2Nt + N’)

4 4 | 4 wtue ! L N’ i
M=t} (l41)i= £ 1-—Aycos Nt — Aj cos (2Nt -+ N’)

Portons ces valeurs, de méme que les développements des
fonctions ¢ et @ dans l'expression (44). En ne conservant que
les termes du premier ordre, on obtient:

(45)

2 , . . G M2 £ (M2
P_mgil [1—— 4A, cos Nt — 4A; cos (21\!«}1\1’;][ 2167:,/[63 bt - “1%5::%2 B3 d;b]
+ 9%l A N2 cos Nt - 4A) N2 cos (2Nt + N’ ][ ( bt 0278) 5" M ¢>3]

& | dg dn 06
€o
o[ o N - ’ EM [ d%1 _ %EEM o dx
+ % | AN Sllll\tqu2AUNCOS(2Nt—!r—N)][2 '/’(DJ CEYA }3 dt]
oot T . i EM f d? W xIEOE M d2x, J
EO [1 A{j COS ht A'() COS (2Nt 1= N ][4 %0 Elb dt2 47[‘/}&(] lb dt2
R %y d?x,
Cette égalité renferme encore x, 7 et T
Or on a: my ==y ry T

Le dernier terme de cette relation est de l'ordre de A2 ;

nous le négligeons. On a alors:
(46)

x, == A; cos (Nt 4+ N,) + A, cos (Nt 4-N;) — A, cos Nt — A’ cos (2Nt -|-N')

%‘ = ~—A,—N sin (Nt -+ N,) — 2A Nsin (2Nt N;) -+ A,N sin Nt - 2A! Nsin (2Nt - N)
: ANz cos (Nt -+ N,) — 4A! N2 cos (2Nt -+ N) 4 A N2 cos Nt +- 4A' N2 cos (2Nt + N)
W T I i \ T =N Ao . | ,

En introduisant les valeurs (46) dans (45) de nombreux
termes disparaissent; et on obtient:
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A otuiGM?2 . , _ N
(47) P= W[ 1 -—d4A cos Nt — 4A  cos (2Nt -+ N) l bt

otuiGM?2 db T ’
+WE¢J' dg[\LOb(l\t N,) 4 ACOS(Z\t~-l\)—\0c0~,1\(_A cos (2N -+ N)

| oucMN: [ Aucos N+ 48 cos (N1 N,)](Ef;g o 0.278)

47116(}
.
‘”Z;“%N B [ — A, cos (NE -+ N,) — 4A7 cos (2NL -+ NJ) + A, cos Nt
S i

&
--4A] cos (2Nt - N ]dE

Pour simplifier le dernier terme de cette expression (471,
donnons a A;, Aj, N,, N;, leurs valeurs movennes dans l'in-
tervalle d’intégration & —%,. Cette approunmtlon est d’au-
tant meilleure que l'intervalle £-—%, est petit.

On a:

Ao Ay N;
moyenne de A; — 'iﬁ—‘ moyenne de N; — P

Ay + A; + N +-N;
moyenne de A} —= —*5— moyenne de N\ = — 2%

A;. A;, N;, N; sont ict les valeurs correspondant a la valeur

de € pour le rayon considéré. E
Cette simplification permet d’écrire:

1GM2 N
(48) P-.G’l‘é o [1---4A0cosNz—‘ 4_»\Ocns(2ht——3)}tb4+

o ueGM s d‘b[x cos (Nt | N)) + A cos (2Nt - N;) - Agcos (Nt) — A cos (2Nt - N')
dn 03 dg = ! * v |

&)UCI\INE N4 / . (D] 1 dlb o
Il [AO cos Nt -+ 4A cos (2Nt - N )] ( g v )
owu,MN2 As Ay o N, AL »\’ N \
e | — T con(Ne 5} = 4 2R eos ( 2N14 =)
2
+ Agcos Nt - 4A), cos (2NL -+ N')] < [ Evd
Posons: 2
_p.. otuiGM?2
g = X;;=— 1631 lé) . % 4N) [&0

49 dou: —=
( ) ) - cou,ci\'ﬁ\ﬁ « UJBU,C(I\[

L dn b,
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Grace a (49) l'égalité (48) devient:

(50) P =abt+ A, cos Nt [ - 4a (1,74 - B i]{lg) (Eg{é + -+ 0,278) - /1E,1b=‘dﬁ:|
g

| ' ONF | G dlb dlb 1 oal D 2 3
+ A cos (2NI-+ N ){ - 4a( bt - Bl ;{g) -+ 4b( qE To 0,276) —..[Elb dE_]
3

db

+[\ cos (Nt - N,) + A} cos (2Nt -] [)]4 a&? — JE

Eo
1. A. / - r |- N/ &
o] BB eos (e ) 208 A cos (2Nt S ) | v
i 1 = ' / 2 4.
g
Telle est la valeur de la pression au sein d’une étoile dont
la pulsation est définie par (43).

4. Calecul de P,

De P=PJ1P,) on tire:
s P—P;, P—apt
P == P, s b car P;= P bt = adt
En tenant compte de ces relations, ainsi que de (50) on
obtient:

&

- _ E db b/ &g db | 0,298 1 [ .
(t?l) Pl == A, cos Nt [-m— 4( 1! ?’ (IE) = (;(E)‘* C[E & 153"{_? A= lb*t/ &p"d&)]

, N d 4b [ & 0.278 1
A cos (2Nt - N’)[ ([ +§d%) Z(gl—q’ = T L\b‘!/ ELbSdE)l

48 d

—|—[ .cos (Nt--N,) - A’ cos()I\ImN)]lb e

E
O A,-! A ( N, i N’ -+ N;
e ey 7\.._'“_.)__.:__‘ _/"—L—” (" Vil ! / 3
+a[ 2 t )- 2(A, +A}) cos \21\1 L 5 Lb4 Eb3dE
Cette valeur de P, est valable quel que soit le rayon.
Il s’agit maintenant de comparer cette valeur de P, aux
résultats fourms par l'observation. Nous prendrons pour %,
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la valeur 6,888; elle correspond en effet a une valeur conve-
nable de la température T, alors que &= 6,90 correspond a
T=0. Quant ala limite inférieure £, elle est quelconque,
Mais rappelons que la formule (51) est basée sur la solution
polytropique et que celle-ci ne saurait étre appliquée au dela
de & =05. Nous calculerons donc la valeur de P, pour & =5,
et c'est la valeur ainsi obtenue que nous comparerons a l'ex-
périence.

Notons que pour §,= 6,888, les coefficients de (51) sont
finis. En effet ¥ (des tables d’Emden) n’est pas nul a cetle
distance du centre. On a vu que la sphére limitée par
E2’=05 contient les 99,1300 de la masse totale, de sorte que
les conditions qui régnent a cette profondeur ne sauraient dif-
férer sensiblement des conditions valables pour &,; le P, que
nous obtiendrons pourra effectivement étre confronté avec 1'ob-
servation.

Pour & =5 les tables d’Emden donnent:

b=0,11110 ¢*=0,0013713 ¥*=0,00015235

db dy Edb o
= —.0,08003 E e~ - 0,40015 S - 3,602

Ces valeurs permettent de calculer les coefficients des ter-
mes de (51). On trouve:

~ coefficient de A, cos Nt=
= 10,408 - g (— 72,4942 — 42 4242) = 10,408 — 114,9184 g
Coefficient de Ajcos (2Nt-- N’) = 10,408 -— 459,6736 g
Coefficient de A;cos (Nt -+ N;) -~ Ajcos (2Nt-= N}) = — 14,408

Coefficienl du dernier crochet de (51)=43,4‘242;b£

Avec ces valeurs, (51) devient:
(52) P, — (10,408 14,9184 %)AO cos Nt
+(10,408~459,6736 2) A} cos (2N{ - N")
14,408 [x cos (NZ - N,) - A, cos (2Nt -+ N;.)]
+ 42,42422["";"}\ (Nt~--1i) 2(A, A} cos(‘ZNl—]—— Ll » 15})]

On a posé précédemment:

]) L 4N2¢i160 ' cer
@ oaiGM (égalité 49)

=/
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47[:/%()

M (égalité¢ (11) chap. II) -

mais b =

par conséquent:
/] Nz Nz
a

oG e G

- .
cal uc_Pc

) b ) .
Montrons que ce quotient — est approximativement constant
a

pour toutes les Céphéides.
Eddington a montré' que:
6y/p. = conslante (approximalivement)

: 27
mais 0=
N
= .
’ Vl c 1N=
par consequent : = consl. ou: — =consl.
N Pe
Cette derniére égalité entraine la constance (approximative)

: b
du quotient - .
«

[’égalité (52) est donc valable pour toutes les Céphéides.
‘ b ) .
La valeur de cette constante - est mal connue. L’incertitude

régnant a son sujet provient de l'incertitude de la valeur de p,.
D’un tableau dressé par Eddington2 on peut déduire comme

valeur moyenne de - » pour 16 Céphéides:
?z =0,031625
Les valeurs extrémes, d'aprés le méme tableau, sont:
b . .
7: (min.) = 0,021 pour RR Lyrae.
l; )
;3 (max.) = 0,042 pour SU Cygni.

D’autre part, G. Tiercy qui utilise d’autres formules que
Eddington pour le calcul de p, trouve:

L ; -
é = 0,01287 pour Y Sagittarii.

Nous prenons dans ce travail la valeur

(53) b _ 0,02264

a

1 Eppixgrox : The internal conslitution of the stars, p. 192.
2 EppiNgTon : Ibid., p. 182.
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Cette valeur a l'avantage d’annuler le coefficient de
A, cos (2Nt - N")
dans l'égalité (52). Nous reviendrons, dans une remarque
finale, sur Cé choix de la valeur de et

Par le moyen de (53), la valeur P, donnée par (52) devient:
(54)
P, = 7,808 A;cos Nt — 14,408 [A,cos (Nt - N,) A’ cos (2Nt +- N})]

£ 0.960 [\ﬁ)— cos (\I—v—— ) +2(A,+A)) cos('“z_i\?t =

=

Cette derniére relation, correspondant a £ — 5, jouera un
role essentiel dans les chapitres suivants.

Toutefois, avant de 'appliquer & des Céphéides particulie-
res, 1l .\'- a lhieu de faire la remarque suivante :

Soil { =1t, I'époque d'un extremum de r,. Comme on a
posé:

ry=A;cos (Nt--N,) 4- A’ cos (2Nt - N;)

cette valeur f, est racine de I'équation:

(55) A sin (NE-N) = 24 sin (2N7 = Ny = 0

A la méme époque t=t, on a:
J= - TR08 Ao am NE; +- 14-408[-\,- sin (Nty+ N.) - 24 sin (2Nt - N;)J
-A}) sin ( 2Ny -1 N_N‘):|

Le premier crochet de (56) étant nul en vertu de (55) il
reste:

| N
9 0

-

(57) ( 5{% \): — 7.808 A N sin Nt;— 0,960 N X<
\ o
‘A 'I-- ‘A i * ! T ‘Tl. r il 1\ - I A 4 I" - - I’-\
IrﬁUﬁTz'“\" sin ( Ntof' 2—) = 4(“\0 -+ "'\ir} sin ( _)\io —- mN 5 N )]

t =1, étant racine de (5Hd), cette valeur {, n'annule pas.
en général, le deuxieme membre de (57): ce qui nous mon-
tre que les extrema de la pression ne sont en général pas si-
multanés avec les extrema du rayon.

Les relations obtenues jusqu’ict sont donc parfaitement
compatibles avec l'existence d'un décalage entre les extrema
de la pulsation et ceux de la pression.
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CHAPITRE 1V
Etude de S Sagittae.
N'=0

La pulsation a été définie au chapitre III par les égali-
tés (43) qu seront les égalités (58) de ce présent chapitre:
ryo=Aocos Ni 4 Aj cos (2Nt 4 N’)
(7, =A;cos (Nt4-N,) + A, cos (2Nt -+ N;)

Une pulsation de ce type entraine pour P, la valeur

(68)

(59) P, = 7,808 A,cos Nl — 14,408 [Aicos (Nt-+N,) A’ cos (2Nt V;)]

/ - A f A /- N
- 0,960 [X(’?\f cos (Nt L I\)I' ) -+ 2(A, +A}) cos (th—j— i —2 N’)J
qui est celle donnée sous le ne 54 du chapitre précédent.
Cette valeur de P, étant obtenue pour & =25.

Les grandeurs Ay Ay N et N’ qui figurent dans (58) sont
des constantes relatives a la surface de l'étoile, constantes con-
nues grace a la courbe des vitesses radiales.

Si A, =0 l'ondulation secondaire disparait. Ce cas a été
étudié par G. Tiercy'. Mais en général la pulsation n’est pas
harmonique, ainsi que nous l'avons déja fait remarquer au
chapitre I1I; par conséquent A, et A sont différents de zéro
tous deux. Ce cas général peut présenter une alternative, sui-
vant que N’ est nul ou non.

Le présent chapitre est consacré a l'é¢tude de S Sagittae,
étoile pour laquelle N'=0.

s /

1. Introduction des données d'o_bservation.

Nous avons donné au chapitre I la courbe des vitesses ra-
diales de S Sagittae. La variation du rayon indiquée par cette
courbe est représentée par

(60) Fy g == 1—16 cos Nt — % cos 2Ni
La comparaison de la premiére équation (58) avec (60)
donne:
L~ v-_L1  Nn_o
016 o 48

1 G. Tiercy : loc. cit., chapitre XVII.
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[)’autre part on sait que la période 0 vaut:

o i
0= = 8,381615 jours

N
. .. | 1 G .
Dans (60) les coefficients e et 78 sont fixés par les con-

sidérations suivantes:

A i C
1. le rapport i—f doit étre égal a 3 pour obtenir 1'allure de
fa Xi}
la courbe observée.
2. la valeur absolue maximum de rio doit étre d’environ

] , .
o Cette valeur D résulte du calcul de l'amplitude de la

pulsation 1.

Il faut encore fixer la valeur des coefficients A; et A; de
la deuxiéme équation (58), pour & =25,

On sait, grace a la théorie générale établie par Eddinglon,
que I'amplitude de la pulsation diminue quand on s’éloigne de
la surface de I'étoile. G. Tiercy trouve 2 que si a la surface
on a A,= alors pour &' =5 on a:

1. A6

12
T4 A, 7
En admettant le meéme rapport pour les coefficients qui
nous occupent ici, on obtient:

3
A= 76 = 0,054 pour & =5

Cette valeur de A; correspond a

A, a la surface.

. 1
16

On sait, toujours par le calcul des amplitudes, que
A;<<0 (de méme que A <Z0). Mais la pulsation, pour
E’=5H, est mconnue.

On peut alors faire 1'une des trois hypothéses suivantes:
A; A,
Ce qui revient a dire que la pulsation se transmet sans chan-
gemenis (& part la diminution d’amplitude) de & =5 jusqu’a
la surface.

10

1 EppingTon : The inlernal constitution of the stars. Chap. VIII.
2 G.Tiercy: loc, cit., chap. \II.
G. Tiercy : loc. cil., chap, XVIL
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Ce qui indique que pour E’=5, l'ondulation secondaire est
relativement plus importante qu’a la surlace.

30

A;
K;-l>

Dans ce cas, l'ondulation secondaire serait relativement plus
importante a la surface qu'a l'intérieur.

Ces trois hypothéses sont étudiées dans les pages qui sui-
vent; mais nous pouvons remarquer dés maintenant que c’est
la premiére qui semble devoir étre retenue, et pour la raison
suivante: nous avons dit (chap. II, §2) que la partie péri-
phérique de l'étoile (de £&=5 a §,=06,90) ne contient que
0,87 0% de la masse totale. Cette partie de l'étoile a donc tres
peu dimportance, et la pulsation doit s’y transmettre sans
modifications sensibles.

2. 1rc hypothése. i‘] e %ﬂ =3
Puisque A; = 0,054 et que A; est de signe contraire a
A;, cette h)pothese donne A; = —0,018.

Les 4 coefficients flgurant dans (58) ont donc les valeurs
sulvantes:

S A, = % — 0,063 A, = 0,054

1
I,:-;--u—--— S sy 2 / I e — 4
( Aj=— g =—0,021 Al =—0,018

de plus: N=0
Avec ces valeurs, les égalités (58) et (59) deviennent:
rio = 0,063 cos Nt — 0,021 cos 2 Nt _.
; ry = 0,054 cos (Nt -+ N,) — 0,018 cos (2Nt +- N;)
(62) P,=0,49cos Nt — 0,78 cos (Nt 4 N,) - 0,26 cos (2Nt — N))

N;

— 0,056 oos( Nt + -—) — 0,074 cos <2Nt+ E)')

E
/

(61)

Nous écrivons les coefficients avec deux chiffres significa-
tifs; de méme les calculs numériques qui suivent sont effec-
tués a la méme précision relative. Cette précision est suffisante,
si I'on songe aux approximations admises pour établir I'éga-

lité (59).
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2a. Calcul de N; et N;.

Nous devons encore déterminer la valeur de N; et N;. Uti-
lisons pour cela le fait suivant: 'examen des courbes du cha-
pitre I montre que la luminosité — et par conséquent la
pression du moins en premiére approximation — est extrema
a peu prés au moment ou le rayon atteint sa valeur movenne.
La simultanéité de ces deux événements n’est pas parfaite;
toutefois elle est suffisante pour que nous puissions 'admettre,
en premiére approximation.

L.e rayon r atteint sa valeur moyenne quand r;o=0. On a
donc, d’aprés (61):

0,063 cos Ni — 0,021 cos 2Nt =0
d’ou l'on tire aisément: ?Nt’z 1060
Nt”= 2540

A ces instants ¢’ et {”, le rayon atteint sa valeur moyenne,
et la pression est approximativement extrema. On a donc les
deux équations approchées suivantes pour déterminer N; et N;:

dP.\ dP,\
(@)re (a)ro
En dérivant (62) on obtient:

(63) X - — 0,49 sin Nt - 0,78 sin Ni cos N, 4 0,78 cos Ni sin N,

— 0,52 sin 2Nt cos 1\ — 0,52 cos 2Nt sin N — 0,056 sin Nt cos ~V)—
— 0,056 cos Nt sin Ij- -+ 0,15 s1n 2Nt cos ~N— -0,15 cos 2Nt sin 1\TI’

En faisan!l successivement
==t e {=1"
(63) donne les deux équations:

— 0,47+ 0,75 cos N. —0,22sin N 0,28 cos N: - 0,44sin N;.
N; N; N; N;
“0054003_ 001651117 0080008#——”—0 136:111,#:0
(64 .
) 0,47 — 0,75 cos N, — 0,22sin N, — 0,28 cos N, —- 0,44 sin N,

"
0054cosN' -+ 0,016 sin —‘~0080c0511—~013sml\ =]

it
2

Tel est le systeme qui détermine pratiquement N; et N En
additionnant — puis en soustrayant — membre a membre
les équations qui le composent, on obtient :
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"\v 0,44sin N, +- 0,88sin N’ -+ 0,032 sin NTI — 0,26 sin ﬁi =¥
(65) ) d

1\)Ii—0,16cosl,\17i=0

4
i

[—0.94 - 1,5c08 N, + 0,56 cos N, — 0,11 cos

) ) . N;
Il est permis de négliger le terme 0,032sin 7‘, dont le

coefficient est au plus égal a t/,, des autres coefficients. Le
systtme (65) peut alors s’écrire plus simplement:

sinN; = 2sin N; — 0,59 sin ,)—'
(66) 2

slg—":-—ﬂ

; N;

— 94 -+- 150 cos N, 4 56 cos N, — 11 cos - — 16 co

Nous résolvons ce systeme (66) de la maniére suivante:
avanl choisi une certaine valeur pour N;, nous en déduisons,
par le moyen de la premiére équation (66), la valeur corres-
pondante de N;. Les deux valeurs ainsi obtenues doivent alors
vérifier la deuxiéme équation (66).

On obtient de cette facon:
Ni=-—-61°
Ni=—320

Il est évident que le systéme (66) admet d’autres solulions
que (67). Mais 1l n’est pas nécessaire, pour le but que nous
poursuivons, d’obtenir toutes les solutions de (66). Nous cher-
chons a retrouver les décalages signalés au chapitre 1. Si la
solution (67) le permet, le but sera atteint, et les autres solu-
tions, mathématiquement admissibles, ne conduiraient pas au
résultal physique attendu. Il reste donc a voir st ces valeurs
(67) permettent de vérifier la loi de variation de P.

(67)

2b. Calcul des décalages. — Introduisons les valeurs don-
nées par (67) dans (62). On obtient:
P, = 0,49 cos Nt — 0,78 cos (Nt — 61) + 0,26 cos (2Nt — 32)
-+~ 0,056 cos (Nt — 301/ ) — 0,074 cos (2Nt — 16)
Calculons les instants des extrema de P, . Ils sont donnés par

P,
4 =Y

) o : e . dP .
S1 l'on pose: sin Nt =z 1'équation —dt—l = 0 peul s’écrire, tous

calculs faits:
(69) 58xt — 93x% — 1222 — 86x — 37=0
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Deux racines de cette équation sont imaginaires; les deux
autres valent:

2, =0,84 z,=—0,73
d’ou l'on déduit:
\ N, = 580 ¢ Niy==— 470
(70) ! Ni, = 1220 / Nt = — 1330

t, ty Iy &, sont les instants des extrema de P,, dont les prin-
cipaux sont ¢, et t;, proches respectivement de ¢’ et (”.

Calcul de la valeur de P, au moment des extrema.

En introduisant les valeurs (70) dans (68) on obtient les
résultats suivants :

P,=—0,42 pour N{ =58

P,=—0,80 pour Nt =1220 P minimum
P, = 0,49 pour Nt =—133¢ P maximum
P,=0.46 pour Nt = — 470

Il résulte de la que la pression est minimum pour Nt = 1220
et qu’elle est maximum pour Nt =-—1330.

D’autre part, il résulte de (61) que r, est maximum pour
Nt =400 et mimimum pour Nt= 1800,

Les résultats précédents sont portés sur le schéma suivant,
établi pour une période:

min lum. max lum.
0 F'max ‘ r moyen 106° = ‘ r moyen 2>4°
exirema de r: ' ' ‘ oz
10 | 180° |
i< Décalage| >: <Decal. I
0 : s 2‘:
extrema de P:
122 (—133)
Pmin ;%270

Le schéma fait apparaitre les deux décalages signalés au
chapitre 1.
Ces décalages ont pour valeur:

41

Décalage 1= 1220 — 400 = 820 ou 80 0=0,236
Décalage 11 = 2270 180° = 470 ou % 0=-0,130
D

Or les courbes d’observation donnent, ains1 que nous le
disions au chapitre I:
Décalage 1=0,200
Décalage 11 = 0,12 6
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Ains1 donc I'hypothése envisagée a la page 221 est admissi-
ble. Les calculs faits jusqu'ici confirment le fait déja signalé
que la partie périphérique de 1'étoile (de & =05 jusqu’a la
surface) a peu d’importance sur les phénoménes intéressant
I'étoile entiére. En particulier, la pulsation traverse cette cou-
che périphérique sans subir d’autres modifications appréciables
qu'une diminution d’amplitude.

3. 2e¢ hypothése.

Nous avons indiqué précédemment les trois hypothéses pos-
sibles au sujet du rapport |A;

A
Voyons a quelles conclusions on est conduit par l'adoption
de la deuxiéme hypothese:

Afl<
A;

Supposons par exemple que:

A
Ao

_A_f|m2
A;

Les quatre coefficients des relations (58) ont alors les
valeurs suivantes: '

3 A,= 0,063 ; A; = 0,054
Ay =—0,021 ¢ Aj=—0,087
avec, comme dans le cas précédent,

N=0.

Les relations (58) et (59) deviennent:
(71) % ri0 = 0,063 cos Nt — 0,021 cos 2N¢
ri = 0,054 cos (Nt - N;) — 0,027 cos (2Nt 4 N;)
(72) P, = 0,49 cos Nt — 0,78 cos (Nt - N;) - 0,40 cos (2Nt + Nj)

| N-) — 0,096 cos (2Nt-}—§i)

0,057 cos (Nt 3
Pour déterminer N; et N; nous procédons comme nous
I'avons déja fait lors du calcul dans le cas de la premiére
hypothése. :
Le systéme déterminant N, et N; peut se mettre sous la
forme:

sin N; = 3sin N; — 0,74 sin %

—94 1150 cos N; -84 cos N; — 11 cos N; — 20 cos 1;,': 0

—

(73)

2
ce systéme (73) correspondant au systéme (66) du numéro
précédent.

MEMOIRES SC. NAT. 43 - 15
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Une solution de (73) est:
3 N;=—-"770
Ni=— 21150
La valeur de P; donnée par (72) devient alors:
(74) P, =0,49cos Nt — 0,78 cos (Nt — 77) - 0,40 cos (2Nt — 2114)
+ 0,057 cos (Nt — 3813 ) — 0,096 cos (2Nt — 11)
Les instants des extrema de P sont donnés par l'équation:

dP,

dt
En posant sin Nt =2 I'équation précédente prend la forme:
39xrt — 2223 — 33x21-24x — 4 =0
Les deux racines réelles de cette équation ont pour valeur:
r=0,90 r=—1
d’ot 'on déduit:
Nt, = 650 T

Nt, — 1150 Ny=—5

t, ty et t; sont les instants des extrema de P. A ces instants,
P, a les valeurs suivantes, calculées au moyen de (74):

P;=—0,58 pour N¢, = 65°
P, =—1,09 pour Nt;=115°
P, = 0,52 pour Ni;=— ;
Le minimum de P se produit donc pour Nt,= 115°
et le maximum pour Nit;= 2700
Un schéma analogue a celui de la page 224, et qu'il est
inutile de répéter ici, montrerait les résultats suivants:

, 5 :
Décalage 1= 115°— 400 = 75 ou 360 0=0,210
6
=

Les résultats précédents sont inadmissibles pour les deux
raisons suivantes:
10 Pour toutes les Céphéides, et pour S Sagittae en parti-
culier, le décalage II est plus petit que le décalage I.
20 L’égalité définissant P, :
P—P,(14P,)

Décalage II = 2700 — 1809 = 90° ou 0,256

exige que |P,|<1
Or pour Nit;=115° on a obtenu:
P,=—1,09
La deuxiéme hypothése, envisagée dans ce n° 3, ne peut
donc étre admise.
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4. 3¢ hypothese :

A,
K;-' =

Ag
A,

Supposons par exemple que

Ril=
Les quatre coefficients de (58) ont alors les valeurs:
3 A,= 0,063 ( A;= 0,054
Ay =—0,021 (Aj=—0,014

La valeur de P, devient:

P, = 0,49 cos Nt — 0,78 cos (Nt + N;) -+ 0,20 cos (2Nt + N;)
-+ 0,057 cos (Nt + Ni) — 0,067 cos (2Nt -+ 1;’)

2
Le systéme déterminant N; et N; est:

e

' sin N; = 1,5sin N; — 0,50 sinE)i
| ; N; N;
— 94 - 150 cos N; -+ 42 cos N; — 11 cos 5 — l4cos 5 = 0
dont une solution est:
; N; = — bH50
Ni=—420

La valeur de P, est alors la suivante:
P, = 0,49 cos Nt — 0,78 cos (Nt — 55) -1 0,20 cos (2Nt — 42)
-+ 0,057 cos (Nt — 27155) — 0,067 cos (2Nt — 21)
Les dates des extrema de P sont déterminées par I'équation:
32x¢ 4 53x% | 622 — 482 — 32= 0

dans laquelle on a posé sinNt=ux.
La pression P est extrema aux quatre instants &, ¢, {5,
déterminés par:

Nt, = 810 Nt, = — 700
Nt, = 990 Nt, = —1100°
Le minimum absolu a lieu pour:
Nt, = 990
et le maximum absolu pour:
Nt, = — 1100

Les décalages ont alors les valeurs suivantes:
Décalage 1=10,17 6
Décalage II = 0,20 6
L’hypothése envisagée maintenant conduit, comme la pré-
cédente, a un décalage II plus grand que le décalage I. Cette
troisieme hypothése doit donc étre rejetée.
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5. Remarque.

Dans le calcul précédent, nous avons été amené a douner
A; . .
la valeur — 3 au rapport —, tandis que les valeurs — 2 et — 4
Aj

sont a écarter parce qu’elles conduisent a un décalage II plus
grand que le décalage 1. Nous nous proposons de cher-
cher, dans cette remarque, quel est le domaine admissible, au-
tour de — 3, pour le rapport en question.

Nous posons:

%!: e _:éé e voisin de 1
d’ou l'on tire:
S A,‘ = 0,054
(75) ' Aj=—0,018¢

en tenant compte des données du § 1 du présent chapitre.
Le tableau suivant résume les résultats obtenus dans les
pages précédentes.

Ire hypothése I1¢ hypothése 111° hypothése
A . A 3 \,_ 3

SN,':'——-610 QN,2~—770 _('N,":~—55('

¢ Nj=— 320 ( Ni=— 21150 ( Ni=— 420

Les grandeurs N; et N; sont fonction de €, fonctions pre-
= ; £= £ =.
5 3 1 et i
On peut, sans erreur sensible, interpoler en représentant N; et
N; par des polynomes du deuxiéme degré en (¢ —1). On ob-
tient:

nant les valeurs indiquées ci-dessus, pour € =

76 %N,v=——61ﬁ—26(8—1)—11(3—1)2:—46——48—1182
(76)  N; — — 32 £ 83(s — 1) — 27(e— 1)* — — 92 - 87¢ — 272

Portons les valeurs (75) et (76) dans (59), P, devient:

P, =0,49cos Nt — 0,78 cos (Nt — 46 — 4e — 11e2)
-+ 0,26¢ cos (2Nt — 92 + 87e — 27€2) -+ 0,06 cos (Nt — 23 — 2e — be?)
— (0,04 -+ 0,03¢) cos (2Nt — 46 - 44e — 14¢2)

Cette valeur de P, se réduit a celle donnée sous le no (68)
pour & = 1.

Nous calculons, comme nous l'avons déja fait a trois re-
prises, les dates des extrema de P,, cela pour différentes va-
leurs de €. Nous en déduisons ensuite les valeurs des décala-
ges I et II. On obtient les résultats suivants:
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Afa =12 ( Décalage 1=10,186
T‘ — 25 { Décalage Il = 0,25 6
[\f'. =11 ( Décalage 1=0,186
i{l'. - 27 ( Décalage I = 0,10 0
T £=0,95 % Décalage 1=0,180
A#';___3,15 Décalage Il = 0,17 6
A%? = 0,90 3 Décalage 1=0,180
A—‘ =33 Décalage IT = 0,20 0

Seuls les décalages correspondant & e=1,1 ont des va-
leurs sensiblement égales aux valeurs d’observation. La meil-
leure valeur pour € parait étre comprise entre 1 et 1,1; ce
qui permet de penser que l'ondulation secondaire s’atténue lé-
geérement en passant de & =05 a la surface.

Les résultats précédents mettent en évidence un autre fait:
le décalage I ne dépend pas (en premiére approximation tout
au moins) de e. C’est donc l'ondulation principale qui déter-
mine ce décalage.

CHAPITRE V.
Etude de W Sagittarii.
N 40
1. Introduction des données d’observation.

Nous avons donné au chapitre I la courbe des vitesses ra-
diales de cette étoile. La variation du rayon indiquée par cette
courbe est représentée par:

(77) ri,0=0,083 cos Nt — 0,018 cos (2Nt+3)
La comparaison de (77) avec la premiére des équations (78)
(78) g ri,o = Ay cos Nt - Aj cos (2Nt - N)

r=A;cos (Nt + N;) + Ajcos (2Nt N;)

permet d’écrire:

—

A,= 0,083 Al=—0,018 N'=3

Pour déterminer les coefficients A; et A;, on procéde comme
nous l'avons indiqué au début du chapitre IV. On trouve:

A; = 0,067 Ai=—0,015
Les coefficients A, et A) ont été choisis de maniére que

. . ) 1 ,
la valeur absolue maximum de r;, soit environ 0 C’est en
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effet la valeur admise pour ['amplitude de la pulsation de
I'étoile qui nous occupe!.

Quant au coefficient A;, il a été calculé en admettant la
premiére hypothése du chapitre IV. Les développements du
chapitre IV ont montré en effet que pour rendre compte des
décalages observés, il fallait supposer que la pulsation se
transmet sans modifications importantes de & =5 jusqu’a la
surface, en vertu du fait que la sphére de rayon & =05 con-
tient les 99,139 de la masse totale.

Les valeurs indiquées pour A, A; A; et A; conduisent a
I'expression suivante:

(79) P, =0,65cos Nt — 0,95 cos (Nt 4+ N;) + 0,22 cos (2Nt + N;)
+0.07cos (Ne-+ ) — 0,08 cos (2Nt - 5+ 7)

qui se déduit de la relation (54) du chapitre III.

Telle est la valeur de P, qui va nous permettre de retrou-
ver les décalages signalés au chapitre I, pour W Sagittarii.

Nous traitons ce cas de deux maniéres différentes. Dans
la premiere partie de ce chapitre, nous utilisons la méthode
qui nous a servi déja au chapitre précédent, dans le cas de
S Sagittae. Ce fait nous dispense d’entrer dans tous les détails
du calcul; aussi ne donnons-nous, dans cette premiére partie,
que les résultats principaux.

Nous emploierons, dans la deuxiéme partie de ce chapitre,
un autre procédé de calcul.

2. Premier calcul.

Pour déterminer N; et N;, nous avons supposé, au début
du chapitre 1V, que les instants de luminosité extrema coin-
cidaient avec les instants du rayon moyen. En faisant main-
tenant la méme hypothése, les deux inconnues N; et N; sont
déterminées par le systéme:

()0
3 dt )¢ ¢ N =198
avec:
( (@l)_o { Nt”= 2600
dt )y

ou t' et t” sont les instants du rayon moyen, c'est-a-dire les
instants ou r,;, s'annule. Le systéme précédent se simplifie et
se raméne au suivant:

' G. Tiercy : loc. cit., p. 452.
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sin N; = 2,1sin N; — 0,53 sin I;E — 0,26 cos ]\ji

— 127+ 185 cos N; - 6 sin N; - 34 cos N}f— 14 cos I%IimSCOS 1§»"—}—4sin 1—}20

dont une solution est: ( N;=— 46
) N;=— 380
Ces valeurs approchées sont a introduire dans (79), qui
devient :

(80) P,=0,65cos Nt— 0,95 cos (Nt — 46)+0,22 cos (2Nt — 33)
—+ 0,07 cos (Nt — 23) — 0,06 cos (2Nt -+ 131)
Les dates des extrema de P, sont données par I'équation
95 sintNt -1~ 116 sin3N{ — 44 sin?Nt — 119sin Nt — 45=0
dont les deux racines réelles sont :

sin Nt = 0,994 sin Nt = — 0,67
d’ou l'on tire:
( Nt, — 840 ( Nt, — — 420
! Nt, — 960 ! Nt, — — 1380

La relation (80) fournit ensuite les résultats suivants:
P;=—0,7 pour Nt = 84°
P,=—0,80 pour Nt,=96° P min.
P;=—0,36 pour Nf;=— 420
P, =0,b3 pour N{,—=— 138" P max.

Les 1instants {, et ¢, sont proches respectivement des ins-

tants (' et ¢” donnant les rayons moyens. (ry,=o0).
Les instants des extrema du rayon sont:

( N¢,, =24°  pour rio maximum
/ Nt:’;: 167° pour r;y minimum

Ces résultats sont portés sur le schéma suivant, établi pour

une période:
Fmax Fmin
0 2 187° 7= 9
extrema de r: | 'I |

< Décalage | > > Décalage Il i~

-
i

extrema de P: 0

9%6° (—1389
999

Pmin
Puwax

( Décalage I = 960 — 240="720 ou 0,20 0
¢ Décalage 1T = 2220 — 1670 =55 ou 0,15 0
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Rappelons que les courbes d’observation données au cha-
pitre I mettent en évidence les décalages suivants:
( Décalage 1=0,180
( Décalage Il = 0,146
L’accord, on le voit, est satisfaisant. Il n'y a pas lieu de
retoucher les valeurs de N; et N;.

3. Deuxiéeme calcul.

Nous avons admis, dans les pages précédentes, la simulta-
néilé entre les instants des extrema lumineux et les instants
du rayon moyen. Ce n’est la qu'une indication approximative.

Pour une seconde approximation, nous prendrons, comme
valeurs de (¢ et t” conduisant a la détermination de N; et N;
les phases ¢, et f, trouvées dans le calcul précédent pour les
extrema de P. On a ainsi:

¢ Nt'= 96°
{ Nt"= 2220

Ces deux époques sont d’ailleurs a trés peu pres celles des
extrema lumineux, comme on peut facilement s’en rendre
compte en construisant la courbe de pulsation, et en compa-
rant celle-ci a la courbe de lumiére.

La pression étant extrema aux époques ' et {” ci-dessus
indiquées, la dérivée de P; s’annule lorsqu'on y fait:

% Nt' = 960
Nt”-= 2220
Les deux équations déterminant N; et N; sont donc:
dP, ) "dP, )
(81) ()0 (@)=

P, étant déterminé par la relation (79).
Le systéme (81) peut se mettre sous la forme simplifiée
sulvante:

N N
\cos N; = 0,68 — 0,15cos N;— 0,47 sin N; -~ 0,10 cos i:i' -+ 0,08 s1n ~
(82) 3 )

— 24 3cos N;— 8sin N; — 3,5 cos N; -+ 0,6 sin y' — 1,4 s1n ?\) =0
Une solution de ce systéme (82) est:
( N;= — 2210
( N} = — 400

La valeur de P, donnée par (79) devient alors:

(83)P, = 0,65 cos Nt — 0,95 cos (Nt — 221/5) — 0,22 cos (2Nt — 40)
+ 0,07 cos (Nt — 11) — 0,06 cos (2Nt -+ 10)

Cette valeur de P, étant obtenue en considérant des pha-
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ses ¢ et t” meilleures que celles des rayons moyens, doit re-
donner ces instants {’ et {” comme instants des extrema de P, .

Vérification. — Ces instants sont solutions de l'équation:
| dP,
il QU
dt

qui, grace a (83), peut s’écrire:
(84) 55sintNt - 13 sin3Nt — 41 s1n2Nt — 22sin Nt — 3,3 =0
Cette équation (S4) a deux racines réelles:
( sin Nt = 0,989
! sin Nt =— 0,66
d’ou l'on tire: ; Nt, = 820 ( Nt;=—41°
Nt, = 980 ( Nt,==— 1390
La relation (83) permet de calculer les valeurs de P, a
ces quatre instants ¢, t, {3 t,. Seules les valeurs de P, indi-
quant le minimum absolu et le maximum absolu de P sont
utiles pour le but que nous poursuivons. Ces valeurs sont:
P, ==-- 0,48 pour N¢, = 98° P min.
P; = 0,51 pour N¢; = — 139°(ou -} 221)
Nous retrouvons ici, a trés peu preés, les instants ¢’ et t”
mtroduits plus haut. La vérification est donc bonne.

P max.

Remarques finales.

I Le rapport f)_z ;

Les analyses des chapitres IV et V sont basées essentielle-
ment sur la relation (54) du chapitre III. La valeur de P,
donnée par (54) est valable pour toutes les Céphéides a con-

dition d’admettre la constance du rapport o Nous avons

démontré (chap. III § 4) la constance approximative de ce
rapport, en utilisant le résultat suivant, établi par Eddington:
le produit 6y/p. est approximativement constant pour toutes
les Céphéides. Eddington a calculé les valeurs suivantes!:

Etoile. Type.  0\p Etoile. Type. OyP.
[ Car. F,—G, 0,74 Y Sgr. F,—G, 0,67
Y Oph. F,—G;, 0,92 5 Cep. F,—G, 0,89
X Cyg. F, 1,38 T Vul. Ag— G, 0,92
EGém. G, 0,71 SU Cyg. A;—F, 1.23
S Sge. F, -G, 0,79 RT Aur. A,—G;, 0,95
W Sgr. A;—G, 1,10 SZ Tau. A,—G, 0,83
n A % As—G; 0,94 SU Cas. A,—F; 0,82
X Sgr. ,—G; 0,80 RR Lyr. By—F, 0,62

1 Eddington n'emploie pas les mémes unités que nous pour exprimer la

valeur de fypc .
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Les valeurs exlrémes de 6y/p, sont entre elles comme 1
est a 2. :

Pour nous rendre compte si ces valeurs de 6y p, étaient
fonction du type spectral de l'étoile, nous avons établi un
graphique (qu’il est inutile de reproduire ici) en portant en
ordonnées les valeurs de 6y/p, et en abscisses le type spectral,
suivant l'ordre évolutif: B—A —F —G — K. |

Les points représentatifs sont dispersés assez irréguliére-
ment: cependant on observe une diminution de la valeur
moyenne de 6y/p, du coté des spectres avancés. On a par
exemple:

Valeur moyenne de 6y/p. pour les étoiles dont les spec-
tres moyens sont compris entre F,et I';=1,0.

Pour les spectres compris entre F; et (G, la valeur moyenne
de 6y/p, est 0,83 et pour les spectres compris entre G, et G;
cette valeur est de 0,72.

La diminution de 6,/p, est nette. Il faut remarquer cepen-
dant que les spectres des étoiles que nous utilisons n’occu-
pent qu'un faible intervalle du domaine spectral. D’autre part
on sait! que plus le type spectral est avancé, plus la période 9
est longue. Y a-t-1l une corrélation entre ces deux phéno-
ménes ?

Quoi qu’il en soit, nous n’avons pas jugé nécessaire d’in-
troduire dans notre travail ces variations de 9\/5‘:, qui entrai-

. b .,
nent des variations de pt On se rend aisément compte que
le premier coefficient de (52) n'est pas sensiblement modifié
par de petites variations de o Quant au dernier coefficient

de (52), c’est sa petitesse qui rend négligeables ses variations
¢ventuelles.
II. La couche périphérique.

Nous avons comparé, dans ce travail, les courbes de lu-
miere et des vitesses radiales. La premiére de ces courbes est
obtenue par des mesures photométriques, elle est donc rela-
tive & la photosphére de l'étoile envisagée; tandis que la courbe
des vitesses radiales. obtenue spectroscopiquement, concerne
la couche renversante. Peut-on, dans ces conditions, comparer
ces deux courbes?

G. Tiercy montre? que cela est légitime, et les raisons
qu’il donne dans le cas d'une pulsation du type :

1 SHAPLEY — Astrophysical Journal, t. XL, 1914.
2 (5. TiERCY : loc. cil., p. 456 et suivantes.
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( r,0=A,cos Nt
(88) ! ry=A;cos ('Nt-)—i—_ N;:)
sont encore valables pour la pulsation du type (43) envisagé
dans ce travail. Cela tienl, en dernier ressort, a la trés faible
masse de la couche périphérique, fait déja signalé au chapi-
tre II1 § 4. Cependant les cas (43) et (88) ne se présentent
pas de la méme maniére.

Dans le cas d'une pulsation du type (88), on ne peut
admettre que N tende vers 0 quand £ tend vers §,, car dans
celte supposition on aurait:

Pio=—0,2cosNt !
et les extrema de P,, se produiraient alors en méme temps
que ceux de rio, ce qui n'est pas le cas.

Cette difficulté ne se présente pas de la méme facon dans
le cas d'une pulsation du type (43). En effet, pour:

i A > A " N; —> 0

A7 —» A, N, > N
on a: s, -> o . Mais, dans ces conditions, la relation fon-
damentale (54) montre que les dates des extrema de P, soui
différentes de celles de ryo. Il conviendra cependant de tenir
compte du fait que la photosphére se prolonge par une al-
mosphére, dont la partie inférieure est justement la couche
renversante observée, laquelle donne les indications sur les
vitesses radiales. Et, lorsque & — §,, | on sera amené a con-
sidérer que N; et N; tendent vers d’autres valeurs que O et N°.

II1. Conclusion.

L’hypothése des pulsations a permis a Eddington de ren-
dre compte des caractéristiques essentielles des Céphéides. Mais,
ainsi que le remarque J. Bosler: «l'interprétation des détails
nécessiterait cependant des recherches ultérieures ». Parmi ces
détails, le plus frappant est certainement celui des décalages
qui font I'objet de cette étude. L’hypothése des pulsations nous
ayant permis de retrouver les décalages observés, nous pen-
sons que ce travail apporte un fait de plus en faveur de cette
hypothése.

1 G. Tiercy : loc. cit., p. 438.



236 PIERRE JAVET

Table des matiéres.

CHAPITRE I. — Les Céphéides, Pages
1. Données d’observation . . . . . . . . . . . . . 193
2. Hypothéses . . . . . . . . . . . . . . . . . 19
3. Les décalages . . . . . . . . . . . . . . . . 196
Cuapitre Il. — L’équilibre radiatif dans les éloiles.
1 Equilibres polytropiques . . . . . . . . . . . . 197
2, Equilibre radiatif . . . . . . . . . . . . . . . 199
Cuaritre III. — Les sphéres pulsantes.
1re partie :
1. Nolations. Equations fondamentales . . . . . . . 202
2. Calcul de la pression . . Ce ... 204
2a. Développement de la fonctlon <P(x) s & B OB 3 £ & 206
20, » » » CDI(K) e e e 207
2 c. » » » (bz(%\f ¥ ¥ % @ & @ 208
2d. » » » (1)3(74-) e e e e e, 209

2¢ partie :
3. Calcul de la pression dans le cas dune pulsation du

type (43 « + « 5 5 2 s 2 + ® o : = & » 2SI
4. Calcul de P, . . . . . . e 215
CHAPITRE IV, — FEtude de S Sagz!lae N'=0.
1. Introduction des données d'observation . . . . . . 219
2, Premiére hypotheése .- . . . . . . . . . . . . 221
2a. Caleul de Ny etde N;. . . . . . . . . . . . . 222
2b. Calcul des décalages . . . . . . . . . . . . . 223
3. Deuxiéme hypothése . . . . . . . . . . . . . 225
4. Troisiéme hypothése . . . . . . . . . . . . . 227
5.  Remarque ¢ .8 3 £ & § & & 3 228
CHAPITRE V. — Efude de W Sagtttaru \":g: 0.
1. Introduction des données d’'observation . . . . . . . 229
2. Premier calcal . . . . . . . . . . . . . . 230
3. Deuxiéme calcul . . . . . . . . . . . . . . . 232
REMARQUES FINALES.
1. Le rapport i—: 5 m S.F ® § B B ° B B § F = § . 209
2. La couche périphérique . . . . . . . . . . . . 234
3. Conclusion . . . . . . . . . . . . . . . . . 23

Rédaction: Mle Suzanne Meylan, professeur, Florimont 14, Lausanne.
Imprimerie Commerciale, Ch. Baud, av. de I'Universit¢ 5, Lausanne.



	Essai sur la phénomène des Céphéides

