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CHAPITRE PREMIER

ETUDE THEORIQUE DES ETATS DE REGIME

La méthode que nous avons mise en ceuvre est une méthode
purement électrique (comme loutes les méthodes les plus ré-
centes). C'est une méthode de compensation en régimes sta-
tionnaires.

Alors que, dans toutes les mesures anciennes, l'effet Joule
constituait le principal obstacle a la mesure de l'effet Thom-
son, nous avons, avec quelques autres auteurs du reste, cher-
ché a l'utiliser. Cette utilisation est double :

1o Compensation de 1l'effet Thomson. Les données numé-
riques oblenues constituent donc des résultats absolus.

2o Obtention d'un gradient uniforme de température sur
la plus grande longueur possible du barreau d’expérimentation.

Un gradient uniforme simplifie en effet considérablement
les calculs en évitant la nécessité de moyennes d’autant plus
difficiles a établir qu’on ne connait pas la variation exacte
du coefficient o en fonction du gradient (cf.p.3). Pour se
rapprocher pratiquement autant que possible de ce gradient
uniforme, deux moyens ont été employés: une section non
uniforme du conducteur et un chauffage électrique indépen-
dant.

Il convenait dés lors d’étudier théoriquement les états de
régime thermique des conducteurs chauffés par le courant et
de diriger nos recherches vers l'obtention d'un gradient uni-
forme.

"~ § 9. — Equations d’état stationnaire d’'un conducteur
cylindrique.

Soit un conducteur de section uniforme, dont les extré-
mités sont maintenues a une température fixe. Le conducteur
est chauffé par un courant électrique; la chaleur s’en va par
les extrémités et l'on suppose quil n'y a aucune perte de
chaleur latérale. La courbe de régime des tempéralures le long
de ce conducteur en fonction des abscisses est une parabole
ou une courbe exponentielle suivant les hypothéses faites.

Supposons que la résistivité et la conductibilité calorifique
soient constantes. La répartition de régime est:

(¥) b 2 s? (l v 2
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ou x = abscisses courantes de la barre,
t = lempérature au point d’abscisse x, la tempéra-
ture des extrémités étant prise comme zéro,

p = résistivite,

A = conductibilité calorifique,

l = 1ntensité du courant,

s = section droite du conducteur,
2 { = longueur de la barre.

On peut 'établir comme suit :
Soit Ag la quantité de chaleur libérée par le courant entre
les points K et M pendant I'unité de temps.

1:2
Aq= (1— 1)
g N
En étal de régime, cette quantité de chaleur traverse inté-

gralement, en vertu des hypothéses faites, la section s de la
barre en K. On a (loi de la conduction calorifique) :

Aq:l:—i—%‘ s
Donc
dt __pi2
(VI) ?\E;S——T (Il —x)
VI i — B o) A
)

st

d’oti, tenant compte des conditions aux limites,

ol? &
(5) t:)-?(lx—j)

Pour z =1, on a:

. o pﬁ [*
(VIII) Ly — oY

Signalons que nous parvenons a la méme valeur que Bo-
relius (2) d'une maniére tout a fait différente et indépendante.
Supposons maintenant qu’'on ait :

P =Py (1+°'t)

(VII) devient alors successivement :

B &
(1X) dt:-ﬁg (14 at) ({—z) dx

di ) i
[ra— e (7% 00
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Le premier cas examiné, celui d’'un conducteur ou la varia-
tion de résistivité en fonction de la température serait négli-
geable, n'est qu'un cas particulier de celui-ci. On le voit en
développant la fonction ¢ (X) en série de Mac-Laurin et en
s'arrétant au second terme.

D’ailleurs, si cette courbe ne serrait pas la réalité d’assez
prés. on pourrait toujours introduire des fonctions de Ila
forme p=p, (14 at+ Bt2), \:==Xo (14 at), et intégrer.

Cela nous conduit & une méthode de calcul des pertes de
chaleur latérales, pertes utiles a connaitre dans certains cas.
Exposons-la briévement en passant, bien que nous ne 1l'ayons
pas utilisée.

En pratique, les températures se répartissent le long de la
barre suivant une certaine loi que l'on pourralt représenter
au besoin par

t=A (z+ a2® + a.x® 4 agzt - ...... )

On peut mesurer le gradient aux extrémités et la quantité
de chaleur dégagée par seconde (e. 1).

Il est facile de trouver un état théorique de régime caracté-
risé par le méme gradient aux extrémités. La quantité de cha-
leur libérée dans ce cas est calculable par une intégration, en
se servant de la courbe du régime thermique.

La différence entre ces deux quantités de chaleur est évi-
demment égale a la perte latérale :

= (oM — va) L — ——“—f(1+at) dr

ou en remplacant ¢ par sa valeur donnee par (X)
1

apgl? (Lx__”_z)
(XII) P = (oM — va) i — E—“}fe 4 %) g

0



16 R. DELACR\USAZ

§ 10. — Equation de régime thermique d’'un barreau
de seclion variable. — Examen théorique du probleme de
Iuniformité du gradient de température.

Soit ¥ le rayon du conducteur au point d’abscisse z (fig. 3);
y(x) est la méridienne du barreau.

Fiac. 3.

La quantité de chaleur engendrée par unité de temps dans
I'élément de volume compris enire les abscisses x et z -+ dx est

2
% dz .
Entre les points K et M, il se dépense donc une puissance
calorifique égale a
que €g . 1
Koy ['pwdxx /=1+a.t(m) dx .
J o=y ()

X X

tandis que (VI) devient




UNE METHODE DE MESURE DE L’EFFET THOMSON 17

Aq=)\(% ny?

D’ou |
t _ pgt® 14+oa.t(x)
(X111) = vy, f o da
Posons .
(X1V) ="
Ix?
Il vient :

d*t 1 :zt | at
o = 2 y—scn/ j}; ky— 1"2
T
ﬁ:_ﬁgyﬂd_y.ﬂ_ , 1ot
d.x? dr dx y2
&t 2 dy dt | pi* 1+at
XV) Tty & mthie oy O

Telle est 'équation de régime thermique dans un conduc-
teur de section non uniforme. Sous cette forme trés générale,
elle n’est pas intégrable.

A toute méridienne y(x) correspond un état de régime, et
réciproquement, a tout état de régime physiquement plausible
correspond une méridienne. (Le probléeme de I'intégration ri-
goureuse ou approximative restant réservé.)

Parmi toutes les fonctions y qui satisfont a I'équation (XV),
nous voulons déterminer celle qui réaliserait 1'uniformité du
gradient de température.

Nous iniroduisons donc dans (XV) la condition

et ses deux conséquences
2

d?t

ou g et h sont des constantes.
Il vient :

dy 1+a(ge-+ h)
g T E—

y3

MEMOIRES SC. NAT. 32. 2
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y3. dy—-—%q[l—,— ah - ug:r]

fy“ dy——— [1—[—-0]1—{—(191‘]
(XVI) l’ _1&—_£[(1_L.ah)x+“9 z*
;T % = g | "3

L'équation (XIII) :

{
k (1+at
9= ?f .

donne y =0 pour x =1[. Ce résultat permet de fixer la cons-
tante d’'intégration de l'équation (XVI) :

¥ — el i+ 4E)

d’ou

y4=%k[(1-}-ah)l+ | L T - “92'“‘2]

yt=k(l—x) [% (1—|—ah)—§—a(l—i—a:)]

et, en réintroduisant la valeur de k :

(XVIT) y— \/:V% V(z_m) [‘3 (1—,‘—ah)—]-a(t—!—:v)]

L’examen de cette relation (XVII) montre que la fonction y
est réelle pour x <. La tangente en x = [ est verticale.

A chaque intensité de courant correspond une méridienne
particuliére, comme d’ailleurs a chaque gradient de température,
a chaque température aux extrémités et a chaque longueur du
conducteur.

En posant h =0, nous fixons simplement comme zéro de
température la température des extrémités du conducteur, ce
que nous avons toujours fait dans nos expériences. Au surplus,
a , coefficient d’accroissement de la résistance, étant trés petit

2 .
devant [ et — , tous les termes en a peuvent étre négligés
(epe = 0,08. 10—%) . Il reste

y=\i \/E 2 )
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Voici le calcul d'un cas concret, avec des données plausibles:

i = 90 amp. 21 = 20 cm.
Po 9,5.10%u.é.m.C.G.S. g = 10 degrés. cm™!
A = 0,20 cal. cm~! sec™!. degré—t. tp,, = 100°

i

ce qui donne, en unités C.G.S. :

; _
\ /)ﬁ".z — 0,108 u.C.G.S. \/i —3u.C.G.S.
&y
4 /5 4 /3
e \/ g - i, \/;, (I—=) T

0 1,189 3,68 6 0,946 2,92
1 1,156 3,58 . 7 0,880 2,72
2 1,125 - 3,48 8 0,795 2,46
3 1,088 3,36 9 0,669 2,07
4 1,047 3,24 9,5 0,562 1,74
5 1,000 3,09 9,75 0,473 1,46

La figure 4 donne I'allure de la méridienne et de la coupe
du conducteur. Celui-ci a sensiblement la forme d’un tronc de
cone aux extrémités. Seul I'étranglement du milieu est irréa-

lisable.
/

X cm.

ymm

/, ,

ymm

Fic. 4.

Il existe en principe un tout autre moyen d’obtenir la ré-
partition désirée : c’est le chauffage d’un conducteur cylindri-
que en son milieu seulement, sur un trongon que l'on peut
concevoir ausst court que l'on veut. Il faut a cet effet un
chauffage extérieur au barreau d’expérimentation, mais 11dée
de principe de se servir de l'effet Joule lui-méme est aban-
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donnée. Cet effet Joule vient au contraire changer la répar-
tition des températures.

En pratique, nous avons utilisé ces deux moyens. La barre
que nous avons choisie a ses extrémités en forme de troncs
de cones el l'étranglement médian irréalisable est remplacé
par une partie cylindrique avec chauffage extérieur au point
milieu.

Les chapitres suivants montreront par quels moyens nous
avons surmonté les difficultés pratiques dues aux pertes de
chaleur latérales.

§ 11. — Examen pratique du probléme de I'uniformité
du gradient de température.

En pratique, les pertes de chaleur latérales ne sauraient étre
négligées. En outre, des nécessités techniques, telle qu'une
certaine épaisseur nécessaire a la mesure des températures,
ne permettaient pas de faire varier ad libitum la forme du
barreau d’expérimentation.

¢ j
|
|
i
i
i ¢
!
|
|
|
.' a
|
i b
[}
|
!
!
!
0 | x

Fia. 5.

En prenant un barreau cylindrique ou en forme de double
tronc de cone de section peu variable, on obtient une réparti-
tion des températures dont l'allure est en fait celle de la
courbe a de la figure 5.
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Le chauffage au point médian seulement donne une courbe
qui a la forme générale de la courbe b. L’inflexion marquée,
avec concavité dans le sens des ordonnées positives, est inévi-
table a cause des pertes latérales.

En chauffant simultanément par les deux moyens, les con-
cavités tendront, si I'on peut dire, a se neutraliser. On obtien-
drait alors une courbe telle que la courbe ¢, construite par
addition des ordonnées des courbes a et b.

En faisant varier I'importance relative des deux systémes de
chauffage et en introduisant un barreau d’expérimentation de
section variable, on peut, par titonnements, se rapprocher de
la forme 1déale, le V renversé, des courbes de température.
(C’est par ces moyens combinés que nous y sommes parvenu.

§ 12. — Calcul de Peffet Thomson.

Indiquons enfin une méthode générale de calcul de I'effet
Thomson, valable quelles que soient les courbes de températures
de régime.

Désignons respectivement par les indices J et T les cha-
leurs Joule et Thomson dégagées ou absorbées dans le barreau
d’expérimentation lui-méme; l'indice E indiquera une quan-
tité de chaleur échangée. Ainsi, l'expression t;g indique que
la température ¢ est produite en méme temps par la chaleur
Joule et par la chaleur échangée avec une autre partie de 1’ap-
pareil. Les températures sont toujours comptées en prenant
comme zéro la température des extrémités. Il sera en outre
entendu, dans les calculs ci-dessous, que les quantités de cha-
leur dégagées ou absorbées sont comprises par seconde. Des
expressions telles que Qp ont donc en réalité les dimensions
d’une puissance et non celles d'une énergie.

Quelle que soit la répartition des températures, il est tou-
jours possible d’en développer la courbe représentative en série

(XIX) | e —=A ()

ou x varie donc entre zéro et [ (cf. fig. 3). D'ou pour le
gradient au point d’abscisse x :

dt dA
(%) (E") e dr

L’expression de la chaleur Thomson dégagée dans I'élément
de longueur dx est en valeur absolue :
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Supposons que l'effet Thomson se produise seul, mais exac-
tement de la méme facon que s'1l était causé par la répartition
exprimée par l'équation (XIX). La quantité de chaleur en jeu
dans chaque élément serait alors donnée par (I1I), avec dans (1II)

e /dt\ _ dA
(—l—l— (—i.’—FJ'E_EZ_E-

Il se produirait une autre répartition de température, carac-
térisée par l’équation :

() = [dQT;ﬂ [ o(2), 2

qui exprime que le gradlent de température da a l'effet Thom-
son seul est proportionnel a la quantité de chaleur dégagée
entre le point d’abscisse x et celui ou la température est maxi-
ma. o est un coefficient de proportionnalité.

D’ou par intégration du dernier membre, entre z =0 et
x =1, aprés avoir sorti o de l'intégrale, ce qui revient en pre-
miére approximation a en prendre une valeur moyenne :

(XXI) dQr = i.5. A(l)
J

La valeur absolue moyenne de o est la seule inconnue du
second membre.

La mesure consisterait a enveyer dans une partie du con-
~ducteur un courant supplémentaire tel que la moitié la moins
chaude de la barre atteigne exactement la température de la
moitié la plus chaude. L’énergie supplémentaire dépensée dans
ce cas serait équivalente au double de la chaleur Thomson
mise en jeu entre l'une des extrémités et le point de tempé-
rature maxima.

§ 13. — Principe de la méthode employée.

La méthode que nous avons employée découle de I'exposé
ci-dessus, du dernier paragraphe en particulier, mais elle com-
porte de notables modifications iinposées par l'expérience.

La courbe de température que nous avons obtenue est donc
en forme générale de V renversé. Sans le phénoméne Thom-
son, elle serait symétrique par rapport a un axe passant par
le milieu de la barre (cf.fig. 1), courbe b en trait continu.
Par suite de cet effet, les ordonnées sont légérement modifiées.

Supposons, pour fixer les idées, que le courant principal
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se propage de droite a gauche. Les températures sont alors
augmentées du coté gauche de l'appareil, diminuées du coté
droit. Elles se répartiraient suivant une figure telle que la
courbe en traits interrompus de la figure 1.

Renversons le sens du courant : la température tend alors
a diminuer du c6té gauche, 3 angmenter du coté droit (courbe
pointillée). On empéche ces modifications de répartition en
augmentant le courant a gauche de l'appareil, en le diminuant
du coté droit. La quantité de chaleur Joule (puissance e . i) cor-
respondant aux deux courants compensateurs nécessaires me-
sure exactement, de chaque coté de l'appareil, le double de
I'effet Thomson. C'est cette quantité de chaleur Joule qu’on
mesure.

CHAPITRE II

L’APPAREIL PRINCIPAL

§ 14. — Description générale !.

Le barreau servant a toutes les mesures est un barreau de
fer comportant trois parties: une partie médiane cylindrique
comprise entre deux parties tronconiques symeétriques. Nous le
nommerons barreau principal. Il est parcouru par un .courant
continu que nous appellerons courant principal.

Si ce barreau n’était chauffé que par le courant qui le tra-
verse, la répartition des températures qui s’y établirait aurait
approximativement l'allure de la courbe a de la figure 5. En
outre, un courant considérable serait nécessaire pour obtenir
une température suffisante.

C’est pourquoi un systéme supplémentaire de chauffage
a été disposé pour déverser de la chaleur au milieu de ce bar-
reau et superposer a l'état thermique stationnaire a 1'état b
(fig. 5) qu’'on obtiendrait en n'employant que ce dernier moyen
de chauffage (cf.§11). Voici ce dispositif :

Deux barres effilées sont soudées rectangulairement a la
barre principale par une de leurs extrémités. Elles sont chauf-
fées indépendamment de la barre principale par un autre cou-
rant.

! De nombreuses expériences d' approche ont été faites au moyen de deux
apparelia dont nous ne parlerons pas ici. — Se référer, pour de plus amples
détails, au mémoire original; exemplaires a disposition a I'lnstitut de Phy-
sique de I'Université de Lausanne.
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