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CHAPITRE PREMIER

ETUDE THEORIQUE DES ETATS DE REGIME

La méthode que nous avons mise en œuvre est une méthode
purement électrique (comme toutes les méthodes les plus
récentes). C'est une méthode de compensation en régimes sta-
tionnaires.

Alors que, dans toutes les mesures anciennes, l'effet Joule
constituait le principal obstacle à la mesure de l'effet Thomson,

nous avons, avec quelques autres auteurs du reste, cherché

à l'utiliser. Cette utilisation est double :

1° Compensation de l'effet Thomson. Les données numériques

obtenues constituent donc des résultats absolus.
2° Obtention d'un gradient uniforme de température sur

la plus grande longueur possible du barreau d'expérimentation.
Un gradient uniforme simplifie en effet considérablement

les calculs en évitant la nécessité de moyennes d'autant plus
difficiles à établir qu'on ne connaît pas la variation exacte
du coefficient a en fonction du gradient (cf. p. 3). Pour se

rapprocher pratiquement autant que possible de ce gradient
uniforme, deux moyens ont été employés: une section non
uniforme du conducteur et un chauffage électrique indépendant.

Il convenait dès lors d'étudier théoriquement les états de

régime thermique des conducteurs chauffés par le courant et
de diriger nos recherches vers l'obtention d'un gradient
uniforme.

§ 9. — Equations d'état stationnaire d'un conducteur
cylindrique.

Soit un conducteur de section uniforme, dont les extrémités

sont maintenues à une température fixe. Le conducteur
est chauffé par un courant électrique; la chaleur s'en va par
les extrémités et l'on suppose qu'il n'y a aucune perte de
chaleur latérale. La courbe de régime des températures le long
de ce conducteur en fonction des abscisses est une parabole
ou une courbe exponentielle suivant les hypothèses faites.

Supposons que la résistivité et la conductibilité calorifique
soient constantes. La répartition de régime est:

(V) '-£('—S
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où x — abscisses courantes de la barre,
t température au point d'abscisse x la température

des extrémités étant prise comme zéro,
p résistivité,
X conductibilité calorifique,
i intensité du courant,
s section droite du conducteur,
2 1= longueur de la barre.

On peut l'établir comme suit :

Soit Ag la quantité de chaleur libérée par le courant entre
les points K et M pendant l'unité de temps.

Aq=Pll (<_X)

En état de régime, cette quantité de chaleur traverse
intégralement, en vertu des hypothèses faites, la section s de la
barre en K. On a (loi de la conduction calorifique) :

^ Xd7rS
Donc

(Vi) \(ÌLS=PJ- a-x)dx s x '

(VII) dt=£(l-x)dx
d'où, tenant compte des conditions aux limites,

<6> '-S("-ï
Pour x l, on a :

(vm) tm y-
Signalons que nous parvenons à la même valeur que Bo-

relius (2) d'une manière tout à fait différente et indépendante.
Supposons maintenant qu'on ait :

p Po (1 + a*)

(VII) devient alors successivement :

(IX) dt=&j (1 + at) (l — x) dx

ÎT5 ??<'->*



UNE MÉTHODE DE MESURE DE L'EFFET THOMSON

1

15

log (!+«<) PoJl (lr _ £2

is' y-r 2

(X)

avec

(XI)

»Po'

y.

ls2
lx.— —ix 2

— 1

zp0t
21s2

Le premier cas examiné, celui d'un conducteur où la variation

de résistivité en fonction de la température serait
négligeable, n'est qu'un cas particulier de celui-ci. On le voit en
développant la fonction t (X) en série de Mac-Laurin et en
s'arrêtant au second terme.

D'ailleurs, si cette courbe ne serrait pas la réalité d'assez

près, on pourrait toujours introduire des fonctions de la
forme p p0 (1 + af + ß£2) \=X0(l + af), et intégrer.

Cela nous conduit à une méthode de calcul des pertes de
chaleur latérales, pertes utiles à connaître dans certains cas.
Exposons-la brièvement en passant, bien que nous ne l'ayons
pas utilisée.

En pratique, les températures se répartissent le long de la
barre suivant une certaine loi que l'on pourrait représenter
au besoin par

t A (x + axx2 + a2xi + a3x4 +
On peul mesurer le gradient aux extrémités et la quantité

de chaleur dégagée par seconde (e. i).
Il est facile de trouver un état théorique de régime caractérisé

par le même gradient aux extrémités. La quantité de chaleur

libérée dans ce cas est calculable par une intégration, en
se servant de la courbe du régime thermique.

La différence entre ces deux quantités de chaleur est
évidemment égale à la perte latérale :

("m — <^a) i *+/o ai) dx

ou en remplaçant t par sa valeur donnée
i

»Po
i%

(XII) ("M — fA) i Pii"
S «.

21s

par (X)

lx 2/dx
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§ 10. — Equation de régime thermique d'un barreau
de seclion variable. — Examen théorique du problème de

l'uniformité du gradient de température.

Soit y le rayon du conducteur au point d'abscisse x (fig. 3) ;

y(x) est la méridienne du barreau.

(oc.t) /
mfx rt/ac.

VA(*.

\M' ac
<ùcf.zz±:-*>

A M

Fig. 3.

La quantité de chaleur engendrée par unité de temps dans
l'élément de volume compris enlre les abscisses x et x + dx est

r I-
P\ dx.

Entre les points K et M, il se dépense donc une puissance
calorifique égale à

Ag= /W*= /'l + q.t(s) dx
X X

tandis que (VI) devient
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Il vient

rx--ky J-^r
i

Par dérivation et substitution :

X

dx

dH _ oi. ,.-8 dy z'1 + ?_'
u,

k y

— Ik v-8 2? / - ~t - rfj;

r/2< _ fly dt
— 2 y-1 + • -i-

kyr-2 i + 3.1

r2 ¦
l + at

r2

i + at-o
dx2 J dx dx

dH 2 dy dt pg' d.r- '
y rf.r eu- ' ).x2 y4

Telle est l'équation de régime thermique dans un conducteur

de section non uniforme. Sous cette forme très générale,
elle n'est pas intégrable.

A toute méridienne y(x) correspond un état de régime, et

réciproquement, à tout état de régime physiquement plausible,
correspond une méridienne. (Le problème de l'intégration
rigoureuse ou approximative restant réservé.)

Parmi toutes les fonctions y qui satisfont à l'équation (XV),
nous voulons déterminer celle qui réaliserait l'uniformité du

gradient de température.
Nous introduisons donc dans (XV) la condition

dt
dx=9

et ses deux conséquences
dlt

t gxAy h et -j-y — 0

on g el h sont des constantes.
Il vient :

2g^ + k
1 + °(y* + *) =0dx ' y3

MÉMOIRES SC. NAT. 32. 2
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y3. dy — 2~
1 + ah -f agx rf.r

x

j f dy — y j \l + ah + agx\dx
y. o

L'équation (XIII) :

k ri + at

X

donne y 0 pour x l Ce résultat permet de fixer la constante

d'intégration de l'équation (XVI) :

d'où

y^2j[(l + ah)ly "-Ç -(l + ah)x-a-^]

y* k(l-x) 1 (l + a/l) + a(t + x)j19

et, en réintroduisant la valeur de k :

(XVII) y= y/i y^\J(l-x) [| (l + afc) + a(« + *)]
L'examen de cette relation (XVII) montre que la fonction y

est réelle pour x <; Z. La tangente en x Z est verticale.
A chaque intensité de courant correspond une méridienne

particulière, comme d'ailleurs à chaque gradient de température,
à chaque température aux extrémités et à chaque longueur du
conducteur.

En posant h 0, nous fixons simplement comme zéro de

température la température des extrémités du conducteur, ce

que nous avons toujours fait dans nos expériences. Au surplus,
a coefficient d'accroissement de la résistance, étant très petit

devant l et — tous les termes en a peuvent être négligés

(aFe 0,58 10-3) Il reste

W^VeV? <*--*>
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Voici le calcul d'un cas concret, avec des données plausibles:

i 90 amp. 2 l 20 cm.
po 9,5 103 u.é.m.C.G.S. g 10 degrés cm-1
X 0,20 cal. cm-1 sec-1 degré"1. fmax 100°

ce qui donne, en unités CG.S. :

* /—
K P" -V>.u2 0,103 u.C.G.S. 3 u.C.G.S.

3?CB>. yh'-' \Jl {l~x)
Jmw

0 1,189 3,68 6 0,946 2,92
1 1,156 3,58 7 0,880 2,72
2 1,125 3,48 8 0,795 2,46
3 1,088 3,36 9 0,669 2,07
4 1,047 3,24 9,5 0,562 1,74
5 1,000 3,09 9,75 0,473 1,46

La figure 4 donne l'allure de la méridienne et de la coupe
du conducteur. Celui-ci a sensiblement la forme d'un tronc de
cône aux extrémités. Seul l'étranglement du milieu est
irréalisable.

x

Fig. 4.

Il existe en principe un tout autre moyen d'obtenir la
répartition désirée : c'est le chauffage d'un conducteur cylindrique

en son milieu seulement, sur un tronçon que l'on peut
concevoir aussi court que l'on veut. Il faut à cet effet un
chauffage extérieur au barreau d'expérimentation, mais l'idée
de principe de se servir de l'effet Joule lui-même est aban-
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donnée. Cet effet Joule vient au contraire changer la répartition

des températures.

En pratique, nous avons utilisé ces deux moyens. La barre
que nous avons choisie a ses extrémités en forme de troncs
de cônes el l'étranglement médian irréalisable est remplacé
par une partie cylindrique avec chauffage extérieur au point
milieu.

Les chapitres suivants montreront par quels moyens nous
avons surmonté les difficultés pratiques dues aux pertes de
chaleur latérales.

§ 11. — Examen pratique du problème de l'uniformité
du gradient de température.

En pratique, les pertes de chaleur latérales ne sauraient être
négligées. En outre, des nécessités techniques, telle qu'une
certaine épaisseur nécessaire à la mesure des températures,
ne permettaient pas de faire varier ad libitum la forme du
barreau d'expérimentation.

Fig. 5.

En prenant un barreau cylindrique ou en forme de double
tronc de cône de section peu variable, on obtient une répartition

des températures dont l'allure est en fait celle de la
courbe a de la figure 5.
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Le chauffage au point médian seulement donne une courbe
qui a la forme générale de la courbe 6. L'inflexion marquée,
avec concavité dans le sens des ordonnées positives, est inévitable

à cause des pertes latérales.
En chauffant simultanément par les deux moyens, les

concavités tendront, si l'on peut dire, à se neutraliser. On obtiendrait

alors une courbe telle que la courbe c, construite par
addition des ordonnées des courbes a et 6.

En faisant varier l'importance relative des deux systèmes de

chauffage et en introduisant un barreau d'expérimentation de
section variable, on peut, par tâtonnements, se rapprocher de
la forme idéale, le V renversé, des courbes de température.
C'est par ces moyens combinés que nous y sommes parvenu.

§ 12. — Calcul de l'effet Thomson.

Indiquons enfin une méthode générale de calcul de l'effet
Thomson, valable quelles que soient les courbes de températures
de régime.

Désignons respectivement par les indices J et T les
chaleurs Joule el Thomson dégagées ou absorbées dans le barreau
d'expérimentation lui-même; l'indice E indiquera une quantité

de chaleur échangée. Ainsi, l'expression tjE indique que
la température t est produite en même temps par la chaleur
Joule et par la chaleur échangée avec une autre partie de

l'appareil. Les températures sont toujours comptées en prenant
comme zéro la température des extrémités. Il sera en outre
enlendu, dans les calculs ci-dessous, que les quantités de chaleur

dégagées ou absorbées sont comprises par seconde. Des
expressions telles que QT ont donc en réalité les dimensions
d'une puissance et non celles d'une énergie.

Quelle que soit la répartition des températures, il est
toujours possible d'en développer la courbe représentative en série

(XIX) tj,E A (x)
où x varie donc entre zéro et / (cf. fig. 3). D'où pour le

gradient au point d'abscisse x :

dx/j,E d x
L'expression de la chaleur Thomson dégagée dans l'élément

de longueur dx est en valeur absolue :

(111) dQr ai^c- dx



22 R. DELACRAUSAZ

Supposons que l'effet Thomson se produise seul, mais
exactement de la même façon que s'il était causé par la répartition
exprimée par l'équation (XIX). La quantité de chaleur en jeu
dans chaque élément serait alors donnée par (III), avec dans (III)

dt
__

1 dt \ dS.

dx ydxJj^E dx

Il se produirait une autre répartition de température,
caractérisée par l'équation :

X X

qui exprime que le gradient de température dû à l'effet Thomson

seul est proportionnel à la quantité de chaleur dégagée
entre le point d'abscisse x et celui où la température est maxima,

a est un coefficient de proportionnalité.
D'où par intégration du dernier membre, entre x 0 et

x l, après avoir sorti ö de l'intégrale, ce qui revient en
première approximation à en prendre une valeur moyenne :

/

(XXI) CdQT i. a A(/)
o

La valeur absolue moyenne de a est la seule inconnue du
second membre.

La mesure consisterait à envoyer dans une partie du
conducteur un courant supplémentaire tel que la moitié la moins
chaude de la barre atteigne exactement la température de la
moitié la plus chaude. L'énergie supplémentaire dépensée dans
ce cas serait équivalente au double de la chaleur Thomson
mise en jeu entre l'une des extrémités et le point de température

maxima.

§ 13. — Principe de la méthode employée.

La méthode que nous avons employée découle de l'exposé
ci-dessus, du dernier paragraphe en particulier, mais elle
comporte de notables modifications imposées par l'expérience.

La courbe de température que nous avons obtenue est donc
en forme générale de V renversé. Sans le phénomène Thomson,

elle serait symétrique par rapport à un axe passant par
le milieu de la barre (cf. fig. 1), courbe b en trait continu.
Par suite de cet effet, les ordonnées sont légèrement modifiées.

Supposons, pour fixer les idées, que le courant principal
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se propage de droite à gauche. Les températures sont alors
augmentées du côté gauche de l'appareil, diminuées du côté
droit. Elles se répartiraient suivant une figure telle que la
courbe en traits interrompus de la figure 1.

Renversons le sens du courant : la température tend alors
à diminuer du côté gauche, à augmenter du côté droit (courbe
pointillée). On empêche ces modifications de répartition en
augmentant le courant à gauche de l'appareil, en le diminuant
du côté droit. La quantité de chaleur Joule (puissance e i)
correspondant aux deux courants compensateurs nécessaires
mesure exactement, de chaque côté de l'appareil, le double de
l'effet Thomson. C'est cette quantité de chaleur Joule qu'on
mesure.

CHAPITRE II

L'APPAREIL PRINCIPAL

§ 14. — Description générale1.

Le barreau servant à toutes les mesures est un barreau de
fer comportant trois parties: une partie médiane cylindrique
comprise entre deux parties tronconiques symétriques. Nous le

nommerons barreau principal. Il est parcouru par un .courant
continu que nous appellerons courant principal.

Si ce barreau n'était chauffé que par le courant qui le
traverse, la répartition des températures qui s'y établirait aurait
approximativement l'allure de la courbe a de la figure 5. En
outre, un courant considérable serait nécessaire pour obtenir
une température suffisante.

C'est pourquoi un système supplémentaire de chauffage
a été disposé pour déverser de la chaleur au milieu de ce
barreau et superposer à l'état thermique stationnaire a l'état ò

(fig. 5) qu'on obtiendrait en n'employant que ce dernier moyen
de chauffage (cf. § 11). Voici ce dispositif:

Deux barres effilées sont soudées rectangulairement à la
barre principale par une de leurs extrémités. Elles sont chauffées

indépendamment de la barre principale par un autre
courant.

1 De nombreuses expériences d'approche ont été faites au moyen de deux
appareils dont nous ne parlerons pas ici. — Se référer, pour de plus amples
détails, au mémoire original; exemplaires à disposition à l'Institut de
Physique de l'Université de Lausanne.
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