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§ 7. Réscalux cubiques tracés sur une sphère.

Les propositions que nous venons d'établir sont très
générales. Elles s'adaptent à des réseaux dont il n'était pas
nécessaire de préciser la forme. Il est cependant particulièrement

intéressant, pour le but que nous visons, de les appliquer

à des réseaux cubiques tracés sur une sphère. C'est ce

que nous allons examiner.
Il n'est pas inutile de rappeler que si un réseau cubique

comprend an sommets et at arêtes, ces nombres sont liés entre

eux par les égalités suivantes :

- - «,-«„
Si de plus, ce réseau est tracé sur une sphère qu'il

transforme en un polyèdre comprenant encore a2 faces simplement
connexes, le théorème d'Euler permet d'écrire:

a2 — 1 aL — a0 + 1 (J.

Considérons un tel polyèdre et imaginons que l'on ail
établi les deux matrices A et R, en correspondance, la
première avec ses sommets et ses arêtes, la seconde avec ses

arêtes et ses faces. De la matrice A on déduit le système
d'équations linéaires et homogènes ,(1), dont on forme un
système fondamental de solutions à l'aide de n colonnes de

la matrice R. Il n'y a donc pas lieu de se préoccuper de la
forme du système (1), puisque l'on dispose d'emblée de ses

solutions.
Cependant ici, une remarque s'impose. Suivant une

méthode propre à l'Analysis situs, on sait que l'on peut
procéder à l'extension de l'une des faces du polyèdre considéré,
n'importe laquelle, tout en rétrécissant au besoin les autres,
et ceci de telle façon qu'elles viennent s'appliquer sur la face
étirée. Cette dernière seule est ainsi masquée, les autres
demeurent toutes visibles. Or lorsque l'on décrit le système
fondamental de solutions, on peut précisément négliger celle des

colonnes de la matrice R qui correspond à la face cachée.
Partant de ce système fondamental, on obtient l'ensemble

des solutions du système (1) en combinant de toutes les

manières possibles, d'abord 1 à 1, puis 2 à 2, 3 à 3,
ses u colonnes. Leur nombre est égal à 2" — 1 si l'on fait
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abstraction de la solution identiquement nulle, qui d'ailleurs
ne nous intéresse pas ici. Cette méthode a justement été ap-.
pliquée à l'exemple qu'illustre la figure 13. Alors u était
égal à 6. Nous avons indiqué le tableau des 2e — 1 solutions
obtenues en partant des six premières colonnes de la
matrice R.

Ainsi que nous l'avons vu plus haut, à chaque solution
du système (1) correspond un contour fermé ou un ensemble

de contours fermés. Cette propriété entraîne, dans le cas
des réseaux cubiques, une proposition intéressante :

Deux contours fermés correspondant à la même solution
du système (1) ne peuvent pas se rencontrer.

La rencontre ne serait possible en un sommet du réseau

que si par celui-ci passaient quatre arêtes, car la même arête
ne peut appartenir à deux contours fermés distincts. Si en
effet, cette dernière éventualité se présentait pour l'arête a^
la quantité xm serait égale à 2 =0 (mod. 2), d'où l'on
conclurait que cette arête n'appartient à aucun des deux contours.-

D'autre part, les réseaux que nous considérons ne
renferment aucun isthme. En vertu du théorème de Petersen,
ils sont réductibles en un réseau quadratique et un réseau
linéaire. Mais un réseau quadratique est représenté par un
ou plusieurs contours fermés. Il correspond donc à une
solution du système (1). Et comme un tel réseau comprend
un nombre égal d'arêtes et de sommets, soit a0 la solution
correspondante comprendra a0 valeurs des Xj égales à 1, les

ax — a0 valeurs qui restent étant nulles. Il s'en suit la

proposition :

A chaque réseau quadratique contenu dans le réseau
cubique considéré correspond une solution du système (1) qui
comprend a0 valeurs'des Xj égales à 1.

Grâce au théorème de Petersen, nous savons que de
pareilles solutions existent. Remarquons en passant que ce sont
celles qui possèdent un nombre maximum de valeurs Xj égales

à 1, ceci en vertu du fait que le polyèdre renferme a0

sommets et de la propriété des réseaux quadratiques que
nous venons de rappeler. De plus, le nombre total des

solutions du système (1) étant égal à 2f- — 1 il n'y a qu'à
prélever dans cet ensemble les solutions qui sont marquées
de an quantités Xj égales à 1, pour obtenir tous les réseaux

quadratiques qui sont contenus dans le réseau cubique envi-
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sage. On a ainsi un moyen de déceler toutes les réductions
possibles, d'où la proposition :

Le nombre des réductions d'un réseau cubique donné est

égal au nombre de solutions du système (1) qui comprennent

a0 valeurs Xj égales à 1.

Une question vient ici tout naturellement à l'esprit '¦

Le nombre n étant donné, quel est le nombre des réductions

que comporte le réseau cubique considéré?
Il n'apparaît pas que la réponse en soit aisée. Son

importance, pour la suite de nos déductions, n'étant pas
essentielle, nous ne nous y attarderons guère. Nous nous
bornerons simplement à constater que, sous cette forme, la question

manque de précision. Il existe un général plusieurs
polyèdres dont le nombre des faces est le même, mais qui se

distinguent les uns des autres par la nature de ces faces. Le
nombre y. relatif à ces polyèdres est invariable, tandis que
le nombre des réductions possibles varie d'un polyèdre à l'autre.

Nous en donnerons pour preuve les quelques exemples
ci-dessous qui correspondent tous au cas ja 6 Le dernier
est celui que nous avons étudié plus haut, fig. 13. Nous
avions alors, dans le tableau complet des solutions, marqué
d'un * celles qui définissent les différents réseaux quadratiques.

• * •
Il est possible de classer les réseaux quadratiques qui

sont issus de la réduction d'un réseau cubique, en trois types,
de la façon suivante :

Nous dirons qu'un réseau quadratique est du-:
Premier type, s'il est représenté par un contour fermé unique.
Second type, s'il comprend deux ou plusieurs contours fer¬

més, chacun d'eux renfermant un nombre pair d'arêtes

(ou de sommets).
Troisième type, s'il comprend deux ou plusieurs contours

fermés, parmi lesquels il en est qui renferment un nom-
• bre impair d'arêtes.
Du moment que a0 est un nombre pair, on peut ajouter

de suite que, dans ce dernier cas, le nombre des contours
fermés qui renferment un nombre impair d'arêtes est lui-
même pair.

Dans les planches I à VI, nous avons accompagné chaque

réseau quadratique d'un indice I, II ou III correspondant
à son type.
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Planche I. — Six réseaux quadratiques.

®TO©
Planche 2. — Sept réseaux quadratiques.

Planche 3. — Huit réseaux quadratiques.
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Planche i. — Neuf réseaux quadratiques.

IA /I »

i \ /T i

Planche S. — Dix réseaux quadratiques.

Planche 6. — Onze réseaux quadratiques.



JULES CHUARD. — LES RÉSEAUX CUBIQUES 71

L'importance de ces types de réseaux quadratiques
apparaît lorsque l'on se place au point de vue du coloriage du
polyèdre. A cet effet, nous allons regarder chacun de ces
réseaux comme une coupure et examiner ce qui en résulte
relativement au morcellement de la sphère.

Premier type. La surface de la sphère, autrement dit
celle du polyèdre, se trouve partagée en deux parties
nettement distinctes. Ni l'une, ni l'autre de ces parties ne peut
renfermer une chaine fermée, car la présence d'une telle
chaîne entraînerait l'existence d'un second contour fermé. Elles
ne peuvent pas davantage contenir de nœud superficiel, puisque

tous les sommets sont sur la frontière. Ce sont donc
des arbres superficiels.

Ainsi un contour fermé unique qui passe par tous les

sommets du réseau a pour effet de grouper les différentes
faces du polyèdre en deux arbres superficiels. Et comme
deux couleurs suffisent à colorier différemment les faces d'un
tel arbre, quatre couleurs assureront certainement le coloriage
du polyèdre dans son entier.

Second type. Chaque contour fermé étant regardé comme
une coupure, leur ensemble morcellera la surface de la sphère
en un certain nombre de régions, les unes limitant des arbres
superficiels, les autres des chaînes fermées ou bouclées.

Considérons l'un de ces arbres superficiels. Sa frontière
est un contour fermé qui renferme un nombre pair de
sommets. Certains de ces sommets sont reliés entre eux par des

arêtes de liaison des faces de l'arbre superficiel envisagé. Mais
ces sommets-là sont toujours en nombre pair. Il en résulte

que les sommets situés sur la frontière de cet arbre, mais

qui ne font pas partie des arêtes de liaison de ses faces, sont
aussi en nombre pair. Or c'est précisément par ces derniers
sommets que passeront les arêtes de liaison de la chaîne
fermée qui entoure le dit arbre superficiel. Il s'en suit que la
chaîne fermée renfermera un nombre pair de faces.

Le même raisonnement se poursuivrait à l'égard des

autres chaînes fermées, qui toutes renfermeront un nombre pair
de faces.

Imaginons maintenant que l'on attribue l'indice 1 à l'une
quelconque des régions que nous venons d'examiner. On
attribuera l'indice 2 à toutes les régions qui sont en connexion
avec la première, puis l'indice 1 à toutes celles qui sont en
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connexion avec la région 2, et ainsi de suite. On est certain,
de cette façon, d'épuiser toutes les régions de la sphère.

Nous savons que deux couleurs suffisent à assurer le
coloriage d'un arbre superficiel ou d'une chaîne fermée, si
celle-ci renferme un nombre pair de faces. C'est précisément
le caractère des différentes régions que nous venons de mettre

en évidence. Nous sommes donc encore en droit de
conclure que quatre couleurs suffiront à assurer le coloriage de
l'ensemble des faces du polyèdre.

Troisième type. La répartition de la surface de la sphère
en régions d'indices 1 et 2 est toujours possible. Mais ici
il existera des chaînes fermées comprenant un nombre
impair de faces, dont le coloriage nécessitera trois couleurs.
On ne pourra plus affirmer que par ce moyen on a encore
le loisir-de colorier les différentes faces du polyèdre avec quatre
couleurs. Cela pourra avoir lieu dans certains cas particuliers,

mais cela ne sera plus possible en général.
En conclusion de ce qui précède, nous dirons que la

présence d'un seul réseau quadratique du premier ou du
second type suffit à assurer le coloriage des différentes faces
des polyèdres considérés à l'aide de quatre couleurs. Pour
que cette opération soit impossible, il est nécessaire que tous
les réseaux quadratiques soient du troisième type.

Planche VII. — Exemple de M. de la Vallée-Poussin.
Un réseau quadratique de chaque type.

La présence dans l'une quelconque des régions que nous
avons affectées plus haut d'un indice 1 ou 2 d'une ou
plusieurs ramifications superficielles arborescentes ne complique
en aucune façon le problème du coloriage. La difficulté
provient uniquement des chaînes fermées qui renferment un nombre

impair de faces.
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Dans l'exemple que nous donnons, planche VII, dû à M. de
la Vallée-Poussin 1, nous indiquons un représentant de chaque
type de réseau quadratique.

'
i

§ 8. Le problème de la carte.

Une carte de forme arbitraire étant donnée sur une sphère,
les propositions suivantes sont connues2:

1) Le coloriage d'une carte se ramène à celui d'une autre

carte, dont tous les sommets sont de degré trois, et dont
le nombre des pays n'a pas augmenté.

L'ensemble des arêtes frontières constitue alors un réseau

cubique.
Au point de vue du coloriage, on ne restreint pas la portée

du problème, dans chacun des cas suivants :

2) Le réseau cubique considéré est connexe. Il ne
comprend donc pas des pièces séparées.

3) Ce réseau cubique ne renferme pas de boucle. Sinon
une arête n'appartiendrait à aucune frontière.

4) La frontière commune à deux pays voisins se compose
d'une seule arête.

C'est ainsi que nous excluons des réseaux cubiques que
nous allons examiner, des particularités telles que celles qui
sont représentées planche VIII.

>-#K >^H
Planche Vili. — Particularités qui sont exclues de nos réseaux cubiques.

Les restrictions que nous venons d'apporter aux réseaux

cubiques que nous examinerons dorénavant, on ne le répétera
jamais assez, ne diminuent en rien la généralité du problème
du coloriage de la carte. Le réseau qui subsiste est
précisément celui d'une carte minima, d'une carte normale, ou
d'une carte qui appartient au cas difficile. Si par conséquent,
l'on parvient à colorier cette carte minima à l'aide de qua-

1 Cf. A. Errera : Loc. cit. 2, page 13.
a Cf. par exemple A. Errera : Loc. cil. page 34,
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