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à la fois à une face marquée 1 et à une face marquée 2.
Une troisième couleur est donc nécessaire pour colorier cette
face. (Exemple, fig. 7.)

2° Chaîne ouverte et arbre superficiel. Dans un arbre
superficiel, on peut noter d'un indice 1 une face quelconque.
Toutes les faces qui lui sont contiguës seront marquées d'un
indice 2 ; puis on reprendra l'indice 1 pour toutes les faces

qui sont contiguës aux faces marquées 2, etc. Cette opération
peut se poursuivre jusqu'à épuisement des faces, car l'arbre
superficiel ne contient aucune chaîne fermée, de sorte que
l'on ne revient jamais au point de départ. Deux couleurs
suffisent donc à assurer le coloriage soit d'un arbre superficiel,
soit d'une chaîne ouverte. (Exemples, fig.9 et 10.)

3° Chaîne bouclée et nœud bouclé. On commence par
colorier les faces de la chaîne fermée ou du nœud superficiel,
puis on s'attaque à celles des arbres superficiels qui lui sont
soudés. Cette dernière opération n'offre aucune particularité.
Seul le nombre des faces de la chaîne fermée est important.
Suivant qu'il est pair ou impair, il faudra utiliser deux ou
trois couleurs. (Exemples, fig.'11 et 12.)

En résumé, l'on peut dire que deux couleurs sont
suffisantes pour colorier les faces de l'un ou de l'autre des types
de configurations superficielles que nous venons de définir,
sauf lorsque la dite configuration renferme une chaîne fermée
ou un nœud superficiel d'un nombre impair de faces, cas qui
nécessite l'emploi de trois couleurs. Il est important de bien
constater que les embranchements arborescents, quel que soit
leur nombre ou leur étendue, ne compliquent en aucune façon
le problème du coloriage.

§ 6. La matrice B.

Nous considérons un polyèdre quelconque de l'espace usuel,
qui satisfait aux conditions énoncées plus haut. Soient aL et a2

les nombres respectifs de ses arêtes et de ses faces. De la
même façon que l'on a établi la matrice A d'un réseau, on

peut définir une nouvelle matrice, la matrice R de ce polyèdre.
L'on introduit à ce propos un nombre njfc qui est égal à 1 si

l'arête a] fait partie de la face a|, sinon le nombre r\jk est nul.
L'on dispose ces nombres t\L en un tableau rectangulaire de

«x lignes de a2 colonnes, de telle façon que la iigne de rang
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j corresponde à l'arête aj et que la colonne de rang k corresponde

à la face a£. Ce tableau est la matrice R

Deux constatations sont immédiates:
1° Puisque chaque arête du polyèdre est une arête de

liaison, soit de degré 2, chaque ligne de la matrice R contient
deux termes égaux à 1, tous les autres étant nuls.

2° Dans chaque colonne, les seuls termes qui ne sont

pas nuls sont ceux qui correspondent aux arêtes faisant partie
de la frontière de la face envisagée. Or ces arêtes constituent
un contour fermé.

L'on peut se proposer d'étudier les propriétés de la
matrice R de la même façon que l'on a obtenu celles de la
matrice A- Là encore on conviendra de réduire toutes les opérations
arithmétiques suivant le module 2.

Il en résulte que la valeur de tout déterminant extrait de
la matrice R est égale soit à 1, soit à zéro.

Si l'on désire connaître la valeur du déterminant qui
correspond à l'un des types de configurations superficielles
envisagés plus haut, il faut admettre que cette correspondance
a lieu, d'une part entre les lignes du déterminant et les arêtes
de la dite configuration, et de l'autre, entre les colonnes du

premier et les faces de la seconde.
A ce propos, nous devons remarquer que dans une chaîne

ouverte, de même que dans un arbre superficiel, le nombre
des faces est supérieur d'une unité à celui des arêtes de liaison.

Pour rétablir l'égalité entre ces deux nombres, il est
nécessaire de négliger une face. Si cette suppression s'opère sur
une face qui est soudée à l'ensemble le long d'une seule
arête de liaison, la configuration qui reste est encore connexe
et se présente sous la forme d'un arbre superficiel sur lequel,
en plus des arêtes de liaison, une arête libre est prise en
considération d'une façon particulière. Si l'on enlève une autre

face, on morcelle l'arbre superficiel en deux ou plusieurs
fragments du type ci-dessus. Il suffira donc d'examiner le

premier cas.
Nous nous bornerons enfin à énoncer les résultats

intéressants, sans nous attarder à des démonstrations qui sont
immédiates, et qui de plus sont en tous points calquées sur
celles du § 3. C'est ainsi que l'on trouve que :

Tout déterminant qui correspond à :

1° une chaîne fermée ou bouclée, est nul;
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2° un nœud superficiel ou bouclé, est nul;
3° une chaine ouverte ou un arbre superficiel, est égal à 1.

En outre, puisque le polyèdre considéré est connexe, il est

possible, et cela de diverses manières, de le transformer en

un arbre superficiel unique, celui-ci comprenant les a2 faces
du polyèdre soudées entre elles le long de a2 — 1 arêtes de
liaison. Et puisque le déterminant d'ordre a2 — 1 qui lui
correspond est égal à l'unité, le rang de la matrice R est

au moins égal à ce nombre. Mais ce rang ne peut pas être
supérieur, car chaque ligne de la matrice R contient deux
termes égaux à 1, et deux seulement. La somme des a2
colonnes est donc identiquement nulle (mod. 2). On a par suite
la proposition :

Le rang de la matrice B est égal à a2 — 1

Mais la matrice R peut encore être envisagée à un autre
point de vue. En effet, nous avons vu que chacune de ses

colonnes caractérise un contour fermé, soit la frontière de la
face correspondante. Elle définit donc une solution du
système (1), en nombres zéro et 1. Et comme cette matrice
comprend a2 colonnes, elle fournit le moyen d'écrire immédiatement

a2 solutions du système (1). Son rang étant a2— 1,
on en conclut que parmi ces a2 solutions, a2 — 1 sont
linéairement indépendantes, et peuvent concourir à la formation
d'un système fondamental de solutions.

Une circonstance particulière se présente dans le cas de

la sphère, car on a en vertu du théorème d'Euler

a0 -r- al + a2 2

OU a2 — 1 tt] — a0 + 1 n

ce qui prouve que l'on peut former un système fondamental
de solutions du système (1) uniquement à l'aide de a2— 1

colonnes de la matrice R.

Exemple. Nous considérons un polyèdre caractérisé par :

a0 10 sommets, at 15 arêtes, a2 7 faces (fig. 13).
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Tableau de l'ensemble des solutions du système (1).

345645 6 56 0

234563456456566 2 2223 3 34 4 5

1234561111122223334451111111111
1 1100000111111110 0 00 00 00 0 0111111
2 101000101111000111000 0 1110 0 0 111
3 10 0 10 0 110 110 10 0 10 0 110 10 110 110 0 1

4 100 0 1011101001001010 11101101010
5 10 0 0 0 111110 0 0 0 10 0 10 111110 110 10 0
6 0110001100001111110000111111000
7 0 100011000111100010111110001011
8 0011000110011000111101100011110
9 0001100011001101100110110 111011

10 0000110001100110 11110 0 011010110
11 010000100001111000000111100 00 0 0

12 00100001000100 0 1110001000111000
13 0001000010001001001100100100110
14 0000100001000100101010010010101
15 000 0 0100001000100101100010010 11

Tableau de l'ensemble des solutions du système (1).
(Suite.) 6

5 6 6 6 6 6 5

456 5 66 5 6665666644 5 5554
456566566633344544554 4555333444 3

333445445522222233343 3 3442222 3 32

__ 2222223334111111111122 2 231111121
1 11111100000000001111111100 0 0 0110
2 11100011100001110001111010001010
3 10011011010110010010110110010010
4 0101011011101010 0 100101110100010
5 001011011111010 0 100 0 011111000010
6 0 0 0 1111110 0 0 0 1111110 0 0 0 110 0 0 110 0

7 1101000 111110100011110001100010 0

8 0111100 0 110111100011001100 0 11000
9 1 1 0 0 1.1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0

10 0 1111 0 1100011110 11001 1000110 0 0 00
11 111111000011111100001 11101111011
12 11100011101110001110 1110 11110111
13 100110 1.1 01 10011011011 10 11110 1111
14 010101101101010110 11101111011111
15 00101101110010110111011110111111***** ***** «
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