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au moins égal à a„ — 1 Mais, puisque chacune des colonnes

de cette matrice contient deux nombres ni égaux à 1, la
somme de toutes ses lignes est identiquement nulle. Son rang
est donc bien supérieur à a0 ; il est a0 — 1

§ 4. Equations et solutions.

M. Veblen a imaginé d'associer à chaque ligne de la
matrice A une équation linéaire et homogène. Rappelons que
la ligne de rang i de cette matrice comprend les nombres :

"n ' % ' .' "<a,

Envisageons donc at inconnues Xj et écrivons :

(1) £* + >£*,+ + 4, •*«, 0 (mod. 2)

i 1, 2 o0

Il existe a0 équations de la forme (1). Elles constituent
un système de a0 équations linéaires et homogènes aL inconnues.

Nous nommerons ce système: le système (1).
Chaque inconnue Xj du système (1) est liée à l'arête de

même indice. La valeur qu'elle peut prendre, comme d'ailleurs
son coefficient, est toujours un entier réduit selon le module 2.

Lorsque Xj=l, nous conviendrons de dire que l'arête aj
est prise tout particulièrement en considération, ou qu'elle
est parcourue une fois dans n'importe quel sens. Si au
contraire, Xj 0 nous dirons que l'on a momentanément négligé
l'arête as) Cela revient à mettre en évidence, dans une
opération déterminée, les arêtes du réseau qui sont marquées
d'une valeur 1, tandis que l'on fait abstraction de celles qui
sont marquées d'un zéro.

Le système (1) a le rang de la matrice de ses coefficients,
c'est-à-dire a0 — 1

Résoudre le système (1), c'est rechercher la valeur de a0 — 1

de ses inconnues en fonction des autres; mieux, c'est composer

un système fondamental de solutions. Dans ce but, nous
allons effectuer sur les lignes et les colonnes de la matrice A
certaines opérations arithmétiques que nous préciserons en
indiquant une méthode de résolution.

L'on prend a0 — 1 lignes de la matrice A et l'on
permute, cas échéant, quelques-unes de ses colonnes de façon
que le déterminant d'ordre a„ — 1 qui comprend les a0 — 1

premières colonnes, soit différent de zéro. Il est d'ailleurs
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toujours permis de supposer que la notation des arêtes a été
choisie de telle manière que ces permutations ne soient pas
nécessaires. Désignons par A ce déterminant.

Par des combinaisons linéaires de lignes, on peut remplacer
le déterminant A par un autre A' dans lequel les seuls

termes qui ne sont pas nuls, se trouvent placés le long de sa

diagonale principale. Ce but est toujours accessible, puisque
chaque colonne du déterminant A renferme un ou au maximum

deux nombres n^ égaux à 1.

Si maintenant, l'on écrit une équation linéaire et homogène

avec chacune des lignes de la matrice ainsi transformée,
on obtient un système d'équations (2) qui est équivalent au
système (1). Mais dans le système (2), on trouve immédiatement

la valeur des a0 — 1 premières inconnues en fonction
des inconnues restantes. Celles-ci sont d'ailleurs au nombre
de n ax — a0 + 1 En particulier, on obtient une solution
du système (2), partant du système (1), en attribuant à

l'inconnue xr a0 < r < Oj la valeur 1 tandis que l'on pose

,rs 0 s a0 a0 + 1 r —. 1, r + 1,... 04

Ce procédé permet de déduire ^ solutions, en nombres
zéro el un, du système (1), qui diffèrent toutes entre elles
au moins par la valeur de l'inconnue xr Ces solutions sont
linéairement indépendantes. Et comme toutes les autres
solutions du système (1) peuvent s'obtenir à l'aide de celles-ci

par des combinaisons linéaires, il s'en suit que le système
de ces solutions est un système fondamental de solutions du
système (1).

Si l'on dispose des valeurs de ces solutions dans un tableau
rectangulaire de at lignes et de u colonnes, on forme une
matrice de solutions que, par analogie avec ce qui est dit
ci-dessus, nous nommerons matrice fondamentale de solutions.
Chaque ligne d'une matrice de solutions correspond à une
inconnue Xj et chaque colonne à une solution.

Pour un système d'équations (1) déterminé, il n'existe

pas seulement une matrice fondamentale de solutions. Au
contraire, tout ensemble de u solutions linéairement
indépendantes forme un système fondamental et donne lieu à

une matrice fondamentale. Celle que nous avons obtenue plus
haut se distingue des autres par le fait que le déterminant d'ordre

fi qui est constitué par ses fi colonnes et ses u dernières
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lignes ne présente des termes différents de zéro que suivant
sa diagonale principale. C'est là une cqnséquence du procédé
de résolution adopté.

Si l'on désire obtenir l'ensemble des solutions du
système (1), on doit envisager toutes les combinaisons possibles
de ces n solutions entre elles (OàO,làl,...,fiàjm). Le
total de ces solutions est ainsi la somme des coefficients du
binôme, soit 2P C'est donc un nombre fini.

On aurait pu choisir d'autres méthodes de résolution du
système (1), et parvenir différemment à l'établissement d'un
système fondamental de solutions. Nous avons envisagé celle
qui précède parce qu'elle conduit à une interprétation
géométrique simple de ses résultats.

En effet, au déterminant A qui est égal à 1, correspond
un arbre linéaire. Cet arbre comprend les arêtes a* &\ ,'-. .¦'.,

aao-i °[ui relient entre eux les a0 sommets du réseau. Si l'on
associe à cet arbre n'importe laquelle des autres arêtes, on
le transforme en un contour bouclé, lequel renferme un contour

fermé unique. Or c'est précisément ce que l'on fait
lorsqu'on considère la solution particulière xr= 1 Mais nous
allons voir que du même coup, tous les embranchements
arborescents disparaissent pour ne plus laisser subsister que
le contour fermé.

Remarquons tout d'abord qu'un contour bouclé présente
nécessairement un sommet libre. Soit a£ ce sommet, par
lequel ne passe qu'une arête du contour bouclé. Désignons cette
arête par aj„. La solution considérée satisfait à toutes les équations

du système (1), donc en particulier à l'équation de

rang m. Mais dans celle-ci, seule la valeur xm serait égale
à 1. Les autres quantités Xj sont nulles puisqu'elles correspondent

à des arêtes qui ne font pas partie du contour bouclé.
Cette équation ne serait donc pas satisfaite. Pour qu'elle le
soit, il est nécessaire que xm soit égale à zéro et que par suite
l'arête aj, qui aboutit au sommet libre a{J du contour bouclé
disparaisse.

Cette amputation se poursuit tant qu'il existe un sommet
libre au contour bouclé. Il ne subsiste plus finalement qu'un
contour fermé. L'inconnue Xj correspondant à chacune des
arêtes de ce contour est marquée d'un 1, tandis que toutes
les autres inconnues sont nulles. Dans l'équation de rang i
du système (1), les Xj seront toutes nulles si le sommet a'
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n'appartient pas au contour fermé; l'équation sera donc
identiquement satisfaite. Si, au contraire, a" est un sommet de

ce contour, deux.Xj et deux seulement prendront la valeur 1,
les autres étant nulles. L'équation sera satisfaite (mod. 2).

Ces considérations conduisent aux propositions suivantes :

Proposition VII. A chaque solution du système fondamental
que nous avons obtenu plus haut correspond un contour fermé
unique.

Proposition VIII. Réciproquement à tout contour fermé
correspond une solution du système (1) (en nombres zéro et un).

Les fi solutions d'un système fondamental étant linéairement

indépendantes, nous conviendrons de dire que les \x

contours fermés correspondants sont linéairement indépendants.
On peut ainsi parler indifféremment de la solution ou du contour

qui lui correspond.
Il est parfois possible d'envisager simultanément sur un

réseau deux (ou plusieurs) contours fermés distincts. A chacun

d'eux correspond une solution du système (1). Il en sera
de même de leur ensemble, d'où la proposition :

Proposition IX. A toute solution du système (1), correspond
un ou plusieurs contours fermés.

Ajoutons encore que deux contours fermés qui
correspondent à une même solution ne peuvent avoir une arête

commune. Si en effet c'était le cas, l'inconnue Xj correspondant
à cette arête prendrait la valeur 1 pour l'un et pour

l'autre des deux contours, soit en tout deux fois. Mais comme
2 est congru à zéro (mod. 2), Xj doit s'annuler. De la sorte
l'arête aj ne peut faire partie à la fois de deux contours fermés

correspondant à une même solution.
Remarque. Pour que )n solutions constituent un système

fondamental de solutions du système (1), il n'est pas nécessaire

qu'à chacune d'elles corresponde un contour fermé
unique; il suffit qu'elles soient linéairement indépendantes. Mais
ce qui précède montre que l'on peut dans chaque cas former
un système fondamental ayec n solutions telles que chacune
d'elles corresponde à un seul contour fermé.

Nous appliquerons ces considérations au cas du tétraèdre :

a0 4 ax 6
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Fig. 5. — Le Tétraèdre.

On en déduit le système (1) :

(1)

et par suite

Xt. + + x6 + x6 0 ]

*2 + + «4 + X5 =0
#3 + Xi + + X6 0

#1 + X2 + »3 =0

l a?i — xb + x6 i

< x2 aj4 + xb > (mod. 2)
* 3% 37^ —r— *4— -Xc

(mod. 2)

aj4 + + a;6

L'ensemble des solutions du système (1) est contenu dans
le tableau :

3
2 3 3 2

01231121
xt
X2

Xi

0 0 1 1 1 1 0' 0

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

§ 5. Configurations superficielles.

Nous avons étudié jusqu'ici quelques propriétés des

réseaux envisagés comme systèmes .de lignes, indépendamment
des surfaces sur lesquelles ils peuvent être tracés. La nature
de la surface toutefois qui supporte un réseau ne saurait
demeurer indifférente aux propriétés de ce dernier. Car tel
réseau que l'on rencontre sur une surface d'un certain genre,
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