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au moins égal a o, — 1. Mais, puisque chacune -des colon-
nes de cette matrice contient deux nombres ny; égaux a 1; la
somme de toutes ses lignes est identiquement nulle. Son rang
est -donc bien érieur a o, ; il est ayg — 1.

§ 4. Equations et solutions.

M. Veblen a imaginé d’associer a chaque ligne de la ma-
trice A une équation linéaire et homogéne. Rappelons que
la ligne de rang i de cette matrice comprend les nombres :

(1) i X vy Ty .. + fy, Ty, =0 (mO(,i,‘ 2)
(==L, ,2, 5500 s O )

Il existe o, équations de la forme (1). Elles constituent
un systéme de o, équations linéaires et homogénes «, incon-
nues. Nous nommerons ce systéme: le systéme (1).

Chaque inconnue z; du systéme (1) est liée a l'aréte de
méme indice. La valeur qu’elle peut prendre, comme d’ailleurs
son coefficient, est toujours un entier réduit selon le module 2

Lorsque z;=1, nous conviendrons de dire que l'aréte a;
est prise tout particuliérement en considération, ou qu’elle
est parcourue une fois dans n'importe quel sens. Si au con-
traire, £; = 0 nous dirons que l'on a momentanément négligé
Paréte aj. Cela revient 4 mettre en évidence, dans une opé-
ration déterminée, les arétes du réseau qui sont marquées
d’une valeur 1, tandis que l'on fait abstraction de celles qui
sont marquées dun zéro.

Le systéme (1) a le rang de la matrice de ses coefflclents,
c’est-a-dire oy — 1.
~ Résoudre le systéme (1), c’est rechercher la valeur de o, — 1
de ses inconnues en fonction des autres; mieux, c’est compo-
ser un systéme fondamental de solutions. Dans ce but, nous
allons effectuer sur les lignes et les colonnes de la matrice A
certaines opérations arithmétiques que nous préciserons en in-
diquant une méthode de résolution. '

L’on prend a; — 1 lignes de la matrice A et l'on per-
mute, cas échéant, quelques-unes de ses -colonnes de facon
que le déterminant d’ordre o, — 1, qui comprend les a; — 1
premiéres colonnes, soit différent de zéro. Il est d’ailleurs
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toujours permis de supposer que la notation des arétes a été
choisie de telle maniére que ces permutations ne soient pas
nécessaires. Désignons par A ce déterminant. '

Par des combinaisons linéaires de lignes, on peut rempla-
cer le déterminant A par un autre A’ dans lequel les seuls
termes qui ne sont pas nuls, se trouvent placés le long de sa
diagonale principale. Ce but est toujours accessible, puisque
chaque colonne du déterminant A renferme un. ou au maxi-
mum deux nombres nj ‘égaux a 1.

Si maintenant, lon écrit une équation linéaire et homo-
géne avec chacune des lignes de la matrice ainsi transformée,
on obtient un systéme d’équations (2) qui est équivalent au
systéme (1). Mais dans le systeme (2), on trouve immédia-
tement la valeur des oy — 1 premiéres inconnues en fonction
des inconnues restantes. Celles-ci sont d’ailleurs au nombre
de p=o0a; —a;+ 1. En particulier, on obtient une solution
‘du systéme (2), partant du systéme (1), en attribuant a l'in-
connue z, (oy<r<a;) la valeur 1, tandis que l'on pose

I'SZO (S:GO,GO+.1,...,r""-l,r_l—lyo--:a'l‘)'

Ce procédé permet de déduire p solutions, en nombres
zéro et un, du systéme (1), qui différent toutes entre elles
au moins par la valeur de l'inconnue z, . Ces solutions sont
linéairement indépendantes. El comme toutes les autres so-
lutions du systéme (1) peuvent s'obtenir 4 l'aide de celles-ci
par des combinaisons linéaires, i1l s’en suit que le systéme
de ces solutions est un systéme fondamental de solutions du
systéme (1). |

Si I'on dispose des valeurs de ces solutions dans un tableau
rectangulaire de o, lignes et de pu colonnes, on forme une
matrice de solutions que, par analogie avec ce qui est dit
ci-dessus, nous nommerons matrice fondamentale de solutions.
Chaque ligne d'une matrice de solutions correspond a une
inconnue z; et chaque colonne a une solution.

Pour un systéme d’équations (1) déterminé, il n’existe
pas seulement une matrice fondamentale de solutions. Au
contraire, tout ensemble de p solutions linéairement indé-
pendantes forme un systéme fondamental et donne lieu a
une matrice fondamentale. Celle que nous avons obtenue plus
haut se distingue des autres par le fait que le déterminant d’or-
dre p qui est constitué par ses p colonnes et ses p derniéres
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lignes ne présente des termes différents de zéro que suivant
sa diagonale principale. C'est la une conséquence du procédé
de résolution adopté.

Si l'on désire obtenir l'ensemble des solutions du -sys-
ttme (1), on doit envisager toutes les combinaisons’ possibles
de ces p solutions entre elles (0a0,1a1l,...,pap). Le
total de ces solutions est ainsi la somme des coefflments du
binome, soit 2. C’est donc un nombre fini.

On aurait pu choisir d’autres méthodes de resolutlon du
systéme (1), et parvenir différemment a I’établissement d’un
systtme fondamental de solutions. Nous avons envisagé celle
qui précéde parce qu’elle conduit a une interprétation géo-
métrique simple de ses résultats.

En effet, au déterminant A qui est égal a 1, correspond
un arbre linéaire. Cet arbre comprend les arétes al, al,....,
‘aL,_, qui relient entre eux les o, sommets du réseau. Si l'on
associe a cet arbre n’importe laquelle des autres arétes, on
le transforme en un contour bouclé, lequel renferme un con-
tour fermé unique. Or c’est précisément ce que I'on fait lors-
quon considére la solution particuliére xz,= 1. Mais nous
allons voir que du méme coup, tous les embranchements ar-
borescents disparaissent pour ne plus laisser subsister que
le contour fermé.

Remarquons tout d’abord qu’'un contour bouclé présente
nécessairement un sommet libre. Soit a) ce sommet, par le-
quel ne passe qu'une aréte du contour bouclé. Désignons cette
arétc par a},. La solution considérée satisfait a toutes les équa-
tions du systtme (1), donc en particulier a l'équation de
rang m . Mais dans celle-ci, seule la valeur x, serait égale
a 1. Les autres quantités x; sont nulles puisqu’elles correspon-
dent 4 des arétes qui ne font pas partie du contour bouclé.
Cette équation ne serait donc pas satisfaite. Pour qu’elle le
soit, il est nécessaire que x, soit égale a zéro et que par suite
Paréte a}, qui aboutit au sommet libre aj du contour bouclé
disparaisse. ‘

Cette amputation se poursuit tant qu’il existe un sommet
libre au contour bouclé. 11 ne subsiste plus finalement qu’un
contour fermé. L’inconnue x; correspondant a chacune des
ardtes de ce contour est marquée d'un 1, tandis que toutes
les autres inconnues sont nulles. Dans I'équation de rang i
du systéme (1), les z; seront toutes nulles si le sommet af
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n’appartient pas au contour fermé; l'équation sera donc iden-
tiquement satisfaite. Si, au contraire, a/ est un sommet de
ce contour, deux z; et deux seulement prendront la valeur 1,
les autres étant nulles. L’équation sera satisfaite (mod. 2).
Ces considérations conduisent aux propositions suivantes :

Proposition VII. A chaque solution du systéme fondamental
que nous avons obtenu plus haut correspond un contour fermé
unique.

Proposition VIII. Réciproquement @ tout contour fermé cor-
respond une solution du systéme (1), (en nombres zéro et un).

Les p solutions d’un systéme fondamental étant linéaire-
ment indépendantes, nous conviendrons de dire que les p
conlours ]‘ermés correspondants sont linéairement indépendants.
On peut ainsi parler indifféremment de la SOlllthll ou du con-
tour qui lui' correspond. :

Il est parfois possible d’envisager simultanément sur un
réseau deux (ou plusieurs) contours fermés distincts. A cha-
cun d’eux correspond une solution du systéme (1). Il en sera
de méme de leur ensemble, d'ou la proposition :
Proposition 1X. A toute solution du systéme (1), correspond
un ou plusieurs contours fermés. :

Ajoutons encore que deux contours fermés qui corres-
pondent & une méme solution ne peuvent avoir une aréte
commune. Si en effet c’était le cas, 'inconnue x; correspon-
dant i cette aréte prendrait la valeur 1 pour l'un et pour
I'autre des deux contours, soit en tout deux fois. Mais comme
2 est congru a zéro (mod. 2), x; doit s’annuler. De la sorte
aréte a; ne peut faire partie 4 la fois de deux contours fer-
més correspondant a une méme solution.

Remarque. Pour que p solutions constituent un systéme
fondamental de solutions du systéme (1), il n’est pas néces-
saire qu’'a chacune d’elles corresponde un contour fermé uni-
que; il suffit qu’elles soient linéairement indépendantes. Mais
ce qui précéde montre que 'on peut dans chaque cas former
un systéeme fondamental ayec p solutions telles que chacune
d’elles corresponde & un seul contour fermé.

Nous appliquerons ces considérations au cas du tétraédre :
Uy == 4 y Oy = 6.
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t A
2,8,3,3,3,3,
ai [l oool I}
a; jol o lo
(ool I ol
& |l 1 1ooo
Fic. 3. — Le Tétraédre.
On en déduit le systéme (1) :
. .'171+ +$5+-’L’3=0 \
, T+ +txTit w5 =0 "
1) ¢ 2 e mod. 2
W o +a o+ ag=0 (M4 P)
Xy T Tz -+ T =0
et par suite :
\$1= L5+ T

$ g= Ty + Ty ( (mod. 2)
/ Tyg==XTy+ -+ X S

L’ensemble des solutions du systéme (1) est contenu da‘ﬁs
le tableau : '

2 3 3 2

012 3 112 1
¢, |0 0 1 1 11 0.0
2, 10 1 1 0 0 1 1 0
z, |0 1 01 1 0 1 0
2, {0 1 0 0 1 1 0 1
z, |0 0 1 0 1 0 1 1
'z |0 0 01 0 1 1 1

§' 5. Configurations superficielles.

Nous avons étudié jusqu'ici quelques propriétés des ré-
seaux envisagés comme systémes .de lignes, indépendamment
des surfaces sur lesquelles ils peuvent étre tracés. La ndture
de la surface toutefois qui supporte un réseau ne saurait
demeurer indifférente aux propriétés de ce dernier. Car tel
réseau que l'on rencontre sur une surface d'un certain genre,
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