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entendu, que la soudure de ces différents types de configurations

linéaires, n'entraîne pas la formation d'un second contour

fermé.

§ 2. La matrice A.

Il est possible de caractériser un réseau à l'aide d'une
certaine matrice, introduite par M. Veblen1 sous le nom de

matrice A.
Soit un réseau comprenant a0 sommets et ax arêtes. Les

frontières de chacune des a1 arêtes sont constituées par deux
sommets pris parmi les a0 sommets considérés. Numérotons
sommets et arêtes dans un ordre arbitraire et désignons:

les sommets par aj, a*

et les arêtes par aj, a*, -, aï,
a

a
ao
i

Soit maintenant iL un nombre qui est égal à 1 si le sommet

a° est frontière de l'arête a* et qui est nul dans tous
les autres cas. Rangeons ces nombres en un tableau
rectangulaire de a0 lignes et ax colonnes en admettant que la ligne
de rang i corresponde au sommet a' tandis que la colonne
de rang j correspond à l'arête a) Le tableau ainsi formé
est la matrice A.

L'on peut remarquer que dans cette matrice:
1° chaque colonne renferme deux nombres rh égaux à 1

et deux seulement, car elle correspond à une arête qui a par
définition ses extrémités distinctes.

2° la quantité de nombres t\^. égaux à 1 que renferme une
ligne indique le degré du sommet correspondant, soit le nombre

d'arêtes qui aboutissent à ce sommet. Ainsi la ligne qui
correspond à un sommet libre ne contient qu'un seul nom-

a

a

Matrice A a; <<«
a;/i 1 o ;o o

a; 0 1 1 lo 0

K 1 0 1 !0 0

a; 0 o o ;
1 o

a; 0 o oll 1

s 0 o o;o 1/

Fig. 1. Réseau non connexe.

1 O. Veblen : Loc. cit. i.
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bre r\]j différent de zéro; celle qui correspond à uu sommet
de degré 2 en contient deux, etc.

Si d'une part, à un réseau correspond une matrice A,
de l'autre, à une matrice A qui renferme des nombres zéro
et un, et qui satisfait à la condition 1° ci-dessus, correspond
un réseau bien déterminé. Une matrice A peut donc servir
à définir un réseau.

Lorsqu'un réseau n'est pas connexe, il est possible de
numéroter ses éléments, sommets et arêtes, de telle façon que
la matrice A correspondante apparaisse aussi comme formée
de matrices séparées. Nous nous bornerons à mettre ce fait
en évidence à l'aide de l'exemple fig. 1.

§ 3. Les propriétés de la matrice A.

Nous disons qu'un déterminant est extrait de la matrice A,
s'il est formé de certaines colonnes et d'autant de lignes de

cette matrice.
Pour rechercher la valeur d'un déterminant extrait de la

matrice A, comme pour déterminer le rang de celle-ci, on
est conduit à effectuer des opérations arithmétiques qui peuvent

se résumer de la façon suivante :

1° additionner deux lignes ou deux colonnes entre elles,
2° multiplier les termes d'une ligne ou d'une colonne par

un certain facteur.
Nous admettrons alors que les combinaisons des nombres

rL qui en résultent, seront toujours réduites selon le
module 2. En d'autres termes, nous n'aurons à appliquer que
les quatre genres d'addition :

1+1 0, 1 + 0=1, 0+1 1, 0 + 0 0

et les quatre genres de multiplication :

0.1 0, 0.0 0 1.1=1, 1.0=0,
De cette façon, non seulement les nombres rL mais

encore tous ceux qui en résulteront par suite des combinaisons
1° et 2° ne prendront pour valeur que zéro ou un.

Il est particulièrement intéressant de rechercher la valeur
d'un déterminant dont les lignes et les colonnes correspondent

respectivement aux sommets et aux arêtes de chacun
des types de configurations linéaires connexes que nous avons
définis plus haut. A ce propos, on remarquera que le nom-
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