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MEMOIRES DE UI SOCIÉIÉ OAUDOISE DES SCIENCES NATURELLES

N« 25 1932 Vol. 4, N° 2

Les réseaux cubiques
et

Le problème des quatre couleurs
PAR

Jules CHUARD

(Mémoire présenté à. la séance du 3 février 1932,

publié avec l'appui financier de la Société Académique Vaudoise)

INTRODUCTION

Le Problème des quatre couleurs, souvent aussi dénommé:
Théorème des quatre couleurs, s'est acquis une juste renommée

parmi les questions d'Analysis Situs, tant par la simplicité
de son énoncé, que par les difficultés qui se sont révélées à

l'occasion de sa résolution.
On a constaté, d'une façon expérimentale, que quatre

couleurs ont toujours été suffisantes jusqu'ici, pour colorier les

différents pays d'une carte terrestre,. de telle manière que deux

pays voisins soient pourvus de couleurs distinctes. Il y a lieu
d'ajouter que l'on entend par pays voisins, des pays qui ont
une ligne frontière commune. S'ils ne se touchent qu'en un
point, autrement dit s'ils n'ont qu'une borne commune, ils
ne sont pas considérés comme voisins et peuvent par conséquent

recevoir la même couleur.
La question suivante s'est alors posée :

Des régions de forme arbitraire et en nombre quelconque
étant disposées sur une sphère (ou sur un plan) sera-t-il
possible dans tous les cas imaginables d'effectuer le coloriage
de ces régions à l'aide de quatre couleurs seulement

Tel est l'énoncé d'un problème qui a été proposé au monde

mathématicien par le professeur Cayley, le 13 juin 1878,
dans une séance de la Société mathématique de Londres. On

en parlait certes antérieurement, mais son origine ne paraît
pas pouvoir être indiquée d'une façon précise.
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n 7,

Dès lors, un grand nombre de spécialistes ont consacré â

l'étude de cette question de sérieuses méditations. C'est ce qui
explique qu'à l'heure actuelle sa bibliographie comporte une
cinquantaine de mémoires, sans que l'on soit pour autant

parvenu à la justifier ou à l'infirmer.
Il est curieux de constater que le même problème posé

sur un tore, autrement dit sur un anneau, soit une surface
plus compliquée que la sphère, est résolu depuis fort
longtemps. On a montré en effet que, dans les cas les plus
compliqués, sept couleurs sont nécessaires et suffisantes pour
assurer le coloriage de la carte dans les conditions requises.

Mais si l'on en revient au problème de la carte sur une
sphère, on doit reconnaître que les diverses publications, dont
on vient de rappeler la grande variété, ne furent pas inutiles.
Elles ont permis de déblayer le terrain, en ce sens que peu
à peu l'on a acculé la difficulté dans un type de carte d'un
caractère nettement défini. Cette carte est alors dénommée:
carte minima, carte normale, ou aussi carte appartenant au
cas difficile.

Une carte minima a ceci de particulier que chaque borne
sert de frontière commune à trois pays distincts et à trois
seulement. L'ensemble des frontières constitue alors un
système de lignes qui est connu sous le nom de réseau cubique.
Or, tandis que nos prédécesseurs, en ce domaine^ ont eu plus
spécialement en vue des méthodes de coloriage proprement
dites, nous nous sommes résolument écarté de cette voie, pour
nous attacher à l'étude des propriétés des réseaux cubiques,
des réseaux cubiques tracés sur une sphère, et enfin, de ceux
qui sont fournis par les cartes minima.

C'est en lisant la brochure de M. Veblen, que l'idée nous
vini d'aborder cette étude. Nous avons été frappé par1 la

simplicité des résultats auxquels conduit l'application de la
méthode de cet auteur en ce qui concerne la réduction d'un
réseau cubique donné en un réseau linéaire et un réseau
quadratique, ainsi que de l'importance que présente, au point de

vue du coloriage, une classification des réseaux quadratiques
issus de cette réduction. Ce début nous a d'ailleurs valu une
Note à l'Académie des Sciences de Paris.

Mais cette méthode, malgré des avantages incontestés, ne

nous a pas permis de résoudre l'ensemble des difficultés que
comporte la question. Pour en venir à bout, nous nous vîmes
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dans l'obligation, à un moment donné, de faire intervenir des

propriétés assez peu connues des arbres linéaires et superficiels.

Nous justifions ainsi, d'une façon affirmative, le problème
des quatre couleurs, en indiquant du même coup une
méthode de coloriage> qui convient aux cartes minima. Les
différents pays de la carte sont répartis en deux arbres superficiels

distincts, grâce à un contour fermé unique, qui
rencontre tous les sommets du réseau cubique donné. Et comme
deux couleurs suffisent pour distinguer les pays de chaque
arbre superficiel, la carte elle-même est coloriée à l'aide de

quatre couleurs.
Il est clair que si la carte originale n'appartient pas au

cas difficile, on commencera par lui faire subir les
transformations d'usage, qui la rendront carte minima, c'est-à-dire
apte à recevoir l'application de notre méthode. Après quoi,
par une série d'opérations inverses, on reviendra à la carte
donnée, laquelle sera entièrement coloriée à l'aide de quatre
couleurs.

Pendant la préparation de ce travail, nous avons fait les

communications orales suivantes :

1. Société vaudoise des Sciences naturelles, séances du 5 juil¬
let 1922, 3 décembre 1924, 3 février 1932.

2. Société mathématique suisse, séances du 26 août 1922,
6 mai 1923.

3. Colloque mathématique des Universités de la Suisse ro¬
mande, à Genève, le 17 février 1923.

4. Cercle mathématique de Lausanne, séance du 20 juin 1930.
La Note qui a paru dans les Comptes Rendus de

l'Académie des Sciences, en date du 8 janvier, est intitulée:
Quelques propriétés des réseaux cubiques tracés sur une

sphère.
La bibliographie, dont nous nous sommes servi, est

restreinte. Il convient de citer :

1. O. Veblen: An Application of modular Equations in Ana¬

lysis Situs, (Annals of Mathematics, Princeton, 1912).
2. A. Errera: Du coloriage des cartes et de quelques ques¬

tions d'Analysis Situs (Paris, 1921).
3. Jules Chuard: Questionsxd'Analysis Situs (Rendiconti del

Circolo Matematico di Palermo, 1922).
A ces ouvrages, nous ajouterons les deux fascicules XVIII
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et XLI du Mémorial des Sciences mathématiques qui donnent
un aperçu très complet sur l'état de la question au moment
de leur publication. Le second, en particulier, mentionne
43 auteurs et 53 travaux sur le problème des quatre couleurs.
Il nous dispensera de faire d'autres citations.
4. A. Sainte-Lagüe: Les Réseaux. Fascicule XVIII. 1926.
5. A. Sainte-Lagüe : Géométrie de situation et jeux.

Fascicule XLI. 1929.

§ 1. Les Réseaux.

Nous avons défini antérieurement ce que l'on entend par
configuration linéaire 1 ou réseau. Rappelons-en brièvement
les fondements.

Une arête est un segment linéaire, soit un arc de courbe
de Jordan, ou encore un lien simple ouvert. Elle est limitée
à ses extrémités par deux points appelés sommets. Les sommets
font partie de l'arête qu'ils limitent, mais ils sont dits points
extérieurs, par opposition aux autres points de l'arête, lesquels
sont dits points intérieurs.

Tout ensemble d'arêtes, en nombre fini, tel qu'un point
intérieur de l'une n'appartienne jamais à une autre arête de

l'ensemble, constitue ce que l'on nomme une configuration
linéaire, un réseau ou un assemblage (graph, en anglais).

Nous désignerons par a1 le nombre de ses arêtes et par
<x0 celui de ses sommets. Le réseau est alors dit d'ordre a0

On entend par degré d'un sommet, le nombre des arêtes
du réseau qui aboutissent à ce sommet. Un sommet de

degré 1 sera dit sommet libre. Il sera dit de liaison, lorsque
son degré est supérieur à 1. Nous conviendrons encore de

nommer bifurcation un sommet (de liaison) dont le degré
est égal à 3.

Si tous les sommets d'un réseau ont le même degré, le
réseau est dit homogène. Un réseau homogène du premier
degré est appelé réseau linéaire. Il ne renferme que des sommets

libres. Il est donc représenté par un certain nombre
d'arêtes isolées. Et puisque chaque arête a pour frontière deux

sommets, on a l'égalité
«o =v2 ai

1 J. Chuard : Loc. cit. 3.
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Un réseau homogène du second degré est un réseau
quadratique. Chacun de ses sommets sert de liaison à deux arêtes
du réseau. Celui-ci comporte ainsi un ou plusieurs contours
fermés, isolés les uns des autres. Il est tel que l'on a l'égalité:

Un réseau homogène du troisième degré est dit cubique.
Chacun de ses sommets est une bifurcation. On a ainsi l'égalité:

3 a9 2 %

Un réseau homogène d'ordre ao et de degré k decomposable

en deux réseaux de même ordre ao et de degrés m
et n tels que l'on ait m -f- n k est nommé réductible.
Dans le cas contraire, il est irréductible ou primitif.

Disons encore qu'un réseau est dit connexe si, étant donnés

deux sommets quelconques de celui-ci, il est possible de

trouver un certain nombre d'arêtes du réseau telles que l'on
puisse, en suivant ces arêtes, passer de l'un des sommets
considérés à l'autre. Si cette opération n'est pas réalisable,
le réseau est dit: non connexe.

D'après Petersen, une feuille est une partie d'un réseau
maintenue en connexion avec l'ensemble par une arête unique,

laquelle est alors appelée isthme.
Il est intéressant de mentionner le théorème suivant, connu

sous le nom de théorème de Petersen, dont la démonstration
se trouve dans plusieurs des ouvrages cités par M. Sainte-
Lagüe. Nous l'admettrons donc sans autre.

Un réseau cubique irréductible possède au moins trois
feuilles.

De ce théorème, on déduit le suivant, d'une portée tout
aussi générale, et d'une application plus immédiate:

Un réseau cubique, sans feuille, est toujours réductible.
Ajoutons enfin que la réductibilité d'un réseau cubique

s'opère de manière à faire apparaître, d'une part un réseau

linéaire, et de l'autre un réseau quadratique. Parfois le
réseau quadratique est lui-même réductible en deux réseaux
linéaires. Si cela est, le réseau cubique initial est alors
réductible en trois réseaux linéaires. Cette dernière propriété
est connue sous le nom de théorème de Tait.

Il est utile de définir quatre types de configurations lineai-
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res connexes qui se rencontrent dans les réseaux et dont nous
ferons un grand usage.
a) Contour fermé. Un contour fermé est un réseau quadratique

connexe.
Le nombre des arêtes d'un contour fermé est égal à celui

de ses sommets. Ce nombre sera au minimum égal à 2,

car nous admettrons qu'une arête a toujours ses deux extrémités

distinctes. On pourrait concevoir un contour fermé qui
ne serait constitué que par une seule arête dont les extrémités

seraient confondues en un sommet unique. Si nous ne
le faisons pas, c'est que nous n'y voyons aucun avantage et

que, par contre, un inconvénient se révélerait dans l'emploi
des matrices que nous définissons plus loin.
b) Contour ouvert. Si d'un contour fermé, on supprime une
ou plusieurs arêtes reliées les unes aux autres, on obtient un
contour ouvert.

Un contour ouvert de n — 1 arêtes renferme n sommets.
c) Arbre linéaire. Un arbre linéaire est une configuration
linéaire connexe qui ne renferme aucun contour fermé.

Un arbre linéaire comprend n — 1 arêtes reliant entre
eux n sommets donnés. Ces n — 1 arêtes constituent un nombre

minimum d'arêtes nécessaires à la liaison des n sommets.
Bien souvent on désigne brièvement un arbre linéaire sous

le nom d'aròre.
Un contour ouvert est un arbre d'une forme spéciale,

caractérisée par la présence de deux sommets libres et de

n — 2 sommets de liaison qui sont tous de degré 2 En
général, un arbre a plusieurs sommets libres et des sommets
de liaison d'un degré supérieur à 2

Rappelons en passant la proposition suivante, qui est bien

connue : :

Il est possible de transformer en un arbre linéaire un
réseau connexe de a0 sommets et de a1 arêtes, par la
suppression de \i arêtes convenablement choisies,

m a± — a0 + 1

d) Contour bouclé. Une configuration linéaire connexe ayant
un égal nombre de sommets et d'arêtes, et qui n'est pas un
contour fermé, est un contour bouclé.

Un contour bouclé résulte de l'association d'un contour
fermé et d'un ou plusieurs arbres linéaires, à la condition bien
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entendu, que la soudure de ces différents types de configurations

linéaires, n'entraîne pas la formation d'un second contour

fermé.

§ 2. La matrice A.

Il est possible de caractériser un réseau à l'aide d'une
certaine matrice, introduite par M. Veblen1 sous le nom de

matrice A.
Soit un réseau comprenant a0 sommets et ax arêtes. Les

frontières de chacune des a1 arêtes sont constituées par deux
sommets pris parmi les a0 sommets considérés. Numérotons
sommets et arêtes dans un ordre arbitraire et désignons:

les sommets par aj, a*

et les arêtes par aj, a*, -, aï,
a

a
ao
i

Soit maintenant iL un nombre qui est égal à 1 si le sommet

a° est frontière de l'arête a* et qui est nul dans tous
les autres cas. Rangeons ces nombres en un tableau
rectangulaire de a0 lignes et ax colonnes en admettant que la ligne
de rang i corresponde au sommet a' tandis que la colonne
de rang j correspond à l'arête a) Le tableau ainsi formé
est la matrice A.

L'on peut remarquer que dans cette matrice:
1° chaque colonne renferme deux nombres rh égaux à 1

et deux seulement, car elle correspond à une arête qui a par
définition ses extrémités distinctes.

2° la quantité de nombres t\^. égaux à 1 que renferme une
ligne indique le degré du sommet correspondant, soit le nombre

d'arêtes qui aboutissent à ce sommet. Ainsi la ligne qui
correspond à un sommet libre ne contient qu'un seul nom-

a

a

Matrice A a; <<«
a;/i 1 o ;o o

a; 0 1 1 lo 0

K 1 0 1 !0 0

a; 0 o o ;
1 o

a; 0 o oll 1

s 0 o o;o 1/

Fig. 1. Réseau non connexe.

1 O. Veblen : Loc. cit. i.
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bre r\]j différent de zéro; celle qui correspond à uu sommet
de degré 2 en contient deux, etc.

Si d'une part, à un réseau correspond une matrice A,
de l'autre, à une matrice A qui renferme des nombres zéro
et un, et qui satisfait à la condition 1° ci-dessus, correspond
un réseau bien déterminé. Une matrice A peut donc servir
à définir un réseau.

Lorsqu'un réseau n'est pas connexe, il est possible de
numéroter ses éléments, sommets et arêtes, de telle façon que
la matrice A correspondante apparaisse aussi comme formée
de matrices séparées. Nous nous bornerons à mettre ce fait
en évidence à l'aide de l'exemple fig. 1.

§ 3. Les propriétés de la matrice A.

Nous disons qu'un déterminant est extrait de la matrice A,
s'il est formé de certaines colonnes et d'autant de lignes de

cette matrice.
Pour rechercher la valeur d'un déterminant extrait de la

matrice A, comme pour déterminer le rang de celle-ci, on
est conduit à effectuer des opérations arithmétiques qui peuvent

se résumer de la façon suivante :

1° additionner deux lignes ou deux colonnes entre elles,
2° multiplier les termes d'une ligne ou d'une colonne par

un certain facteur.
Nous admettrons alors que les combinaisons des nombres

rL qui en résultent, seront toujours réduites selon le
module 2. En d'autres termes, nous n'aurons à appliquer que
les quatre genres d'addition :

1+1 0, 1 + 0=1, 0+1 1, 0 + 0 0

et les quatre genres de multiplication :

0.1 0, 0.0 0 1.1=1, 1.0=0,
De cette façon, non seulement les nombres rL mais

encore tous ceux qui en résulteront par suite des combinaisons
1° et 2° ne prendront pour valeur que zéro ou un.

Il est particulièrement intéressant de rechercher la valeur
d'un déterminant dont les lignes et les colonnes correspondent

respectivement aux sommets et aux arêtes de chacun
des types de configurations linéaires connexes que nous avons
définis plus haut. A ce propos, on remarquera que le nom-
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bre des sommets d'un contour fermé ou d'un contour bouclé

est égal à celui de ses arêtes. Par contre, dans un contour
ouvert et dans un arbre, le nombre des sommets surpasse
d'un celui des arêtes. Or un déterminant a un nombre égal de

lignes et de colonnes. Il est donc nécessaire, pour établir la

correspondance qui doit exister entre une de ces configurations

linéaires et un déterminant, de négliger un sommet. Nous
abandonnerons ainsi momentanément un sommet libre.
Remarquons que ce faisant on n'altère pas la nature de la
configuration considérée. Il n'est peut-être pas inutile d'ajouter
que si l'on avait supprimé un sommet de liaison, on aurait
fractionné l'arbre en deux ou plusieurs parties, chacune d'elles

étant encore un arbre amputé d'un sommet. Il y aurait
alors lieu de rechercher la valeur du déterminant correspondant

à chaque arbre partiel, pour en déduire celle du
déterminant qui correspond à l'arbre considéré. C'est la règle du
développement de Laplace qui interviendrait dans ce cas.

Les propositions suivantes sont fondamentales :

Proposition I. La valeur de tout déterminant extrait de la
matrice A est zéro ou un.

C'est la conséquence naturelle de la convention que toutes

les opérations se font suivant le module 2.

Proposition II. Tout déterminant correspondant à un contour
fermé est nul.

Dans chaque ligne (colonne) du déterminant, il y a deux
nombres ni égaux à 1, les autres étant nuls. La somme de

toutes les lignes (colonnes) est identiquement nulle (mod. 2).
Le déterminant est donc nul.

Proposition III. Tout déterminant qui correspond à un contour

bouclé est nul.
On sait qu'un contour bouclé renferme un contour fermé.

Imaginons qu'il y ait p arêtes dans le contour bouclé et que
n de celles-ci contribuent à la formation du contour fermé.
Numérotons tout d'abord les éléments du contour fermé de
1 à n puis les éléments restants du contour bouclé de n + 1

à p Le déterminant qui en résulte prend une forme particulière,

et il suffit de lui appliquer la règle de Laplace pour
constater qu'il est nul.
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Proposition IV. Tout déterminant qui correspond à un contour

ouvert est égal à 1.

K

aa°.

a; a; a;
1 1

a. as a,
a", 1 0 1 0 0 0
a°2 1 1 0 0 0 0
ao 0 1 1 I 0 0
a: 0 0 0 I I I

a°s 0 0 0 0 I 0

a; ooo 0 0 I

Fig. 2. — Contour bouclé.

Il est toujours possible de disposer de la notation des

éléments d'un contour ouvert de façon que, lorsque l'on
parcourt cette configuration d'un bout à l'autre, on rencontre
successivement:

¦"2 l n-l
Imaginons que l'on supprime le sommet a°. Le déterminant
qui correspond au contour ouvert ainsi tronqué est tel que
les termes de sa diagonale principale aient pour valeur l'unité,
tandis que ceux qui se trouvent placés au-dessus de cette
diagonale sont nuls. Le déterminant est donc bien égal à 1.

Si l'on avait abandonné un sommet de liaison, le contour
ouvert se serait partagé en deux autres contours ouverts ayant
le même caractère que celui que nous venons d'examiner. Les
déterminants correspondant à chacun d'eux seraient égaux à 1,
et il en serait ainsi du déterminant d'ordre n —- 1 en vertu
de la règle de Laplace.

a' a1 a1 a1
1 "î "3 **4

I 0 0 0
I I 0 0

olio
0 0 11

Fig. 3. — Contour ouvert.

Proposition V. Tout déterminant qui correspond à un arbre
linéaire est égal à 1.

Une notation spéciale des éléments de l'arbre facilite
singulièrement la démonstration.
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Un arbre renferme plusieurs sommets libres. Désignons l'un
d'eux par aj et soit aj l'unique arête qui aboutit à a*

Imaginons que l'on supprime momentanément ces éléments: sommet
et arête. La configuration qui subsiste est encore un arbre.
Soient a* un de ses sommets libres et a£ l'arête aboutissant
à a' Supprimons ces éléments, il subsiste encore un arbre.
On peut poursuivre le raisonnement qui précède jusqu'à
épuisement des arêtes; la dernière, soit la n—lème sera limitée
par les sommets a°n_1 et aun Par ce procédé chaque arête se

trouve limitée par le sommet de même rang et par un autre
sommet d'un rang postérieur.

Si maintenant l'on supprime le sommet a°, le déterminant
qui correspond à cet arbre a tous ses termes de la diagonale
principale égaux à 1, tandis que ceux qui se trouvent placés
au-dessus de cette diagonale sont nuls. Sa valeur est donc
égale à 1.

a,

Fig. 4.

a; a; < < a; a; a;

a: 1 0 0 0 0 0 0

al 0 1 0 0 0 0 0
a°3 1 1 1 0 0 0 0

a; 0 0 0 1 0 0 0

a; 0 0 0 0 1 0 0

a°6 0 0 0 0 1 1 0

a; 0 0 1 1 0 1 1

re linéaire.

Remarque. Il n'est peut-être pas inutile de dire que la
valeur d'un déterminant ne dépend pas de la .notation choisie.
Car modifier la notation des sommets ou des arêtes revient
à intervertir certaines lignes entre elles ou certaines colonnes
entre elles. Ce sont là des opérations qui n'altèrent pas la
valeur absolue d'un déterminant, la seule qui nous intéresse
ici.

Proposition VI. Le rang de la matrice A d'un réseau connexe
d'ordre a0 est a0 — 1

En effet, si le réseau est connexe, il existe au moins
un arbre, formé de a0 — 1 arêtes, qui relie entre eux les

a0 sommets. A cet arbre correspond un déterminant d'ordre
»o — 1 qui est égal à 1. Le rang de la matrice A est donc
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au moins égal à a„ — 1 Mais, puisque chacune des colonnes

de cette matrice contient deux nombres ni égaux à 1, la
somme de toutes ses lignes est identiquement nulle. Son rang
est donc bien supérieur à a0 ; il est a0 — 1

§ 4. Equations et solutions.

M. Veblen a imaginé d'associer à chaque ligne de la
matrice A une équation linéaire et homogène. Rappelons que
la ligne de rang i de cette matrice comprend les nombres :

"n ' % ' .' "<a,

Envisageons donc at inconnues Xj et écrivons :

(1) £* + >£*,+ + 4, •*«, 0 (mod. 2)

i 1, 2 o0

Il existe a0 équations de la forme (1). Elles constituent
un système de a0 équations linéaires et homogènes aL inconnues.

Nous nommerons ce système: le système (1).
Chaque inconnue Xj du système (1) est liée à l'arête de

même indice. La valeur qu'elle peut prendre, comme d'ailleurs
son coefficient, est toujours un entier réduit selon le module 2.

Lorsque Xj=l, nous conviendrons de dire que l'arête aj
est prise tout particulièrement en considération, ou qu'elle
est parcourue une fois dans n'importe quel sens. Si au
contraire, Xj 0 nous dirons que l'on a momentanément négligé
l'arête as) Cela revient à mettre en évidence, dans une
opération déterminée, les arêtes du réseau qui sont marquées
d'une valeur 1, tandis que l'on fait abstraction de celles qui
sont marquées d'un zéro.

Le système (1) a le rang de la matrice de ses coefficients,
c'est-à-dire a0 — 1

Résoudre le système (1), c'est rechercher la valeur de a0 — 1

de ses inconnues en fonction des autres; mieux, c'est composer

un système fondamental de solutions. Dans ce but, nous
allons effectuer sur les lignes et les colonnes de la matrice A
certaines opérations arithmétiques que nous préciserons en
indiquant une méthode de résolution.

L'on prend a0 — 1 lignes de la matrice A et l'on
permute, cas échéant, quelques-unes de ses colonnes de façon
que le déterminant d'ordre a„ — 1 qui comprend les a0 — 1

premières colonnes, soit différent de zéro. Il est d'ailleurs
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toujours permis de supposer que la notation des arêtes a été
choisie de telle manière que ces permutations ne soient pas
nécessaires. Désignons par A ce déterminant.

Par des combinaisons linéaires de lignes, on peut remplacer
le déterminant A par un autre A' dans lequel les seuls

termes qui ne sont pas nuls, se trouvent placés le long de sa

diagonale principale. Ce but est toujours accessible, puisque
chaque colonne du déterminant A renferme un ou au maximum

deux nombres n^ égaux à 1.

Si maintenant, l'on écrit une équation linéaire et homogène

avec chacune des lignes de la matrice ainsi transformée,
on obtient un système d'équations (2) qui est équivalent au
système (1). Mais dans le système (2), on trouve immédiatement

la valeur des a0 — 1 premières inconnues en fonction
des inconnues restantes. Celles-ci sont d'ailleurs au nombre
de n ax — a0 + 1 En particulier, on obtient une solution
du système (2), partant du système (1), en attribuant à

l'inconnue xr a0 < r < Oj la valeur 1 tandis que l'on pose

,rs 0 s a0 a0 + 1 r —. 1, r + 1,... 04

Ce procédé permet de déduire ^ solutions, en nombres
zéro el un, du système (1), qui diffèrent toutes entre elles
au moins par la valeur de l'inconnue xr Ces solutions sont
linéairement indépendantes. Et comme toutes les autres
solutions du système (1) peuvent s'obtenir à l'aide de celles-ci

par des combinaisons linéaires, il s'en suit que le système
de ces solutions est un système fondamental de solutions du
système (1).

Si l'on dispose des valeurs de ces solutions dans un tableau
rectangulaire de at lignes et de u colonnes, on forme une
matrice de solutions que, par analogie avec ce qui est dit
ci-dessus, nous nommerons matrice fondamentale de solutions.
Chaque ligne d'une matrice de solutions correspond à une
inconnue Xj et chaque colonne à une solution.

Pour un système d'équations (1) déterminé, il n'existe

pas seulement une matrice fondamentale de solutions. Au
contraire, tout ensemble de u solutions linéairement
indépendantes forme un système fondamental et donne lieu à

une matrice fondamentale. Celle que nous avons obtenue plus
haut se distingue des autres par le fait que le déterminant d'ordre

fi qui est constitué par ses fi colonnes et ses u dernières
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lignes ne présente des termes différents de zéro que suivant
sa diagonale principale. C'est là une cqnséquence du procédé
de résolution adopté.

Si l'on désire obtenir l'ensemble des solutions du
système (1), on doit envisager toutes les combinaisons possibles
de ces n solutions entre elles (OàO,làl,...,fiàjm). Le
total de ces solutions est ainsi la somme des coefficients du
binôme, soit 2P C'est donc un nombre fini.

On aurait pu choisir d'autres méthodes de résolution du
système (1), et parvenir différemment à l'établissement d'un
système fondamental de solutions. Nous avons envisagé celle
qui précède parce qu'elle conduit à une interprétation
géométrique simple de ses résultats.

En effet, au déterminant A qui est égal à 1, correspond
un arbre linéaire. Cet arbre comprend les arêtes a* &\ ,'-. .¦'.,

aao-i °[ui relient entre eux les a0 sommets du réseau. Si l'on
associe à cet arbre n'importe laquelle des autres arêtes, on
le transforme en un contour bouclé, lequel renferme un contour

fermé unique. Or c'est précisément ce que l'on fait
lorsqu'on considère la solution particulière xr= 1 Mais nous
allons voir que du même coup, tous les embranchements
arborescents disparaissent pour ne plus laisser subsister que
le contour fermé.

Remarquons tout d'abord qu'un contour bouclé présente
nécessairement un sommet libre. Soit a£ ce sommet, par
lequel ne passe qu'une arête du contour bouclé. Désignons cette
arête par aj„. La solution considérée satisfait à toutes les équations

du système (1), donc en particulier à l'équation de

rang m. Mais dans celle-ci, seule la valeur xm serait égale
à 1. Les autres quantités Xj sont nulles puisqu'elles correspondent

à des arêtes qui ne font pas partie du contour bouclé.
Cette équation ne serait donc pas satisfaite. Pour qu'elle le
soit, il est nécessaire que xm soit égale à zéro et que par suite
l'arête aj, qui aboutit au sommet libre a{J du contour bouclé
disparaisse.

Cette amputation se poursuit tant qu'il existe un sommet
libre au contour bouclé. Il ne subsiste plus finalement qu'un
contour fermé. L'inconnue Xj correspondant à chacune des
arêtes de ce contour est marquée d'un 1, tandis que toutes
les autres inconnues sont nulles. Dans l'équation de rang i
du système (1), les Xj seront toutes nulles si le sommet a'
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n'appartient pas au contour fermé; l'équation sera donc
identiquement satisfaite. Si, au contraire, a" est un sommet de

ce contour, deux.Xj et deux seulement prendront la valeur 1,
les autres étant nulles. L'équation sera satisfaite (mod. 2).

Ces considérations conduisent aux propositions suivantes :

Proposition VII. A chaque solution du système fondamental
que nous avons obtenu plus haut correspond un contour fermé
unique.

Proposition VIII. Réciproquement à tout contour fermé
correspond une solution du système (1) (en nombres zéro et un).

Les fi solutions d'un système fondamental étant linéairement

indépendantes, nous conviendrons de dire que les \x

contours fermés correspondants sont linéairement indépendants.
On peut ainsi parler indifféremment de la solution ou du contour

qui lui correspond.
Il est parfois possible d'envisager simultanément sur un

réseau deux (ou plusieurs) contours fermés distincts. A chacun

d'eux correspond une solution du système (1). Il en sera
de même de leur ensemble, d'où la proposition :

Proposition IX. A toute solution du système (1), correspond
un ou plusieurs contours fermés.

Ajoutons encore que deux contours fermés qui
correspondent à une même solution ne peuvent avoir une arête

commune. Si en effet c'était le cas, l'inconnue Xj correspondant
à cette arête prendrait la valeur 1 pour l'un et pour

l'autre des deux contours, soit en tout deux fois. Mais comme
2 est congru à zéro (mod. 2), Xj doit s'annuler. De la sorte
l'arête aj ne peut faire partie à la fois de deux contours fermés

correspondant à une même solution.
Remarque. Pour que )n solutions constituent un système

fondamental de solutions du système (1), il n'est pas nécessaire

qu'à chacune d'elles corresponde un contour fermé
unique; il suffit qu'elles soient linéairement indépendantes. Mais
ce qui précède montre que l'on peut dans chaque cas former
un système fondamental ayec n solutions telles que chacune
d'elles corresponde à un seul contour fermé.

Nous appliquerons ces considérations au cas du tétraèdre :

a0 4 ax 6
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K

a4

a°.

I 0 0 0 I I

0 I o x[ lo
001 loi
I I I 0 0 0

Fig. 5. — Le Tétraèdre.

On en déduit le système (1) :

(1)

et par suite

Xt. + + x6 + x6 0 ]

*2 + + «4 + X5 =0
#3 + Xi + + X6 0

#1 + X2 + »3 =0

l a?i — xb + x6 i

< x2 aj4 + xb > (mod. 2)
* 3% 37^ —r— *4— -Xc

(mod. 2)

aj4 + + a;6

L'ensemble des solutions du système (1) est contenu dans
le tableau :

3
2 3 3 2

01231121
xt
X2

Xi

0 0 1 1 1 1 0' 0

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

§ 5. Configurations superficielles.

Nous avons étudié jusqu'ici quelques propriétés des

réseaux envisagés comme systèmes .de lignes, indépendamment
des surfaces sur lesquelles ils peuvent être tracés. La nature
de la surface toutefois qui supporte un réseau ne saurait
demeurer indifférente aux propriétés de ce dernier. Car tel
réseau que l'on rencontre sur une surface d'un certain genre,
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ne se retrouve pas sur une surface d'un autre genre. Il y a

donc un intérêt évident à étudier les propriétés d'un réseau

en rapport avec celles de la surface qui le supporte. C'est une
telle étude que nous allons aborder dans les pages suivantes.

Sans restreindre la généralité du sujet, on peut faire quelques

conventions qui sont de nature à préciser les formes
avec lesquelles on désire travailler.

Un réseau tracé sur. une surface la subdivise en un certain

nombre de régions que nous désignerons indifféremment
sous le nom de faces ou de pays. La surface ainsi subdivisée

prend le nom de polyèdre ou celui de carte.
Dans la suite, nous admettrons que :

1° Les surfaces considérées dans cette étude sont des
surfaces fermées bilatères qui ne présentent pas de lignes singulières.

2° Une face est toujours simplement connexe. Elle est
limitée par un contour fermé unique. Nous dirons que ce
contour fait partie de la face qu'il limite, mais que ses points
sont extérieurs à la face, par opposition aux autres points
de celle-ci, qui sont dits: points intérieurs.

Il résulte de la façon dont un polyèdre a été obtenu qu'un
point intérieur d'une face n'appartient jamais à une autre face.
Deux faces contiguës ont en commun les points extérieurs
qui font partie d'une ou de plusieurs arêtes de leur frontière.

Nous conviendrons encore de dire que tout ensemble de

faces telles qu'un point intérieur de l'une n'appartienne
jamais à une autre face de l'ensemble, est une configuration
superficielle. L'étude de ces dernières n'est guère avancée. On

peut cependant l'entreprendre dans le même esprit que celle
des configurations linéaires. C'est ce que nous avons fait
dans un travail déjà cité: Questions d'Analysis situs.
Rappelons-en les fondements.

Considérons tout d'abord une face isolément. Sa frontière
comprend un certain nombre d'arêtes. Chacune de celles-ci

n'appartient pour l'instant qu'à une face. Nous dirons que
ces arêtes sont de degré 1 ou aussi que ce sont des arêtes
libres.

Soient maintenant deux faces soudées entre elles le long
d'une arête commune. Cette arête appartient à la fois aux
deux faces. C'est une arête de liaison; elle est de degré 2.

mémoires se. nat, 25 6
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Toutes les autres arêtes de la frontière de l'une ou de l'autre
des deux faces sont demeurées des arêtes libres.

On peut concevoir des configurations superficielles dans

lesquelles une arête sert de liaison à un nombre de faces

supérieur à deux. On y est conduit tout naturellement lorsque

l'on étudie les exemples cités par Poincaré dans ses

Compléments à l'Analysis Situs, et que l'on cherche à illustrer
géométriquement les coefficients de torsion d'une variété d'un
espace à quatre (ou plus) dimensions. Mais cette disposition
ne se présente pas avec des faces d'un polyèdre de l'espace
usuel. Nous n'aurons donc pas l'occasion de l'envisager dans

cette étude.

Il sera ainsi entendu que, quoiqu'il existe des arêtes de

liaison d'un degré supérieur, nous n'étudierons ici que des

configurations superficielles dont les arêtes de liaison sont
de degré 2.

Ajoutons encore qu'une configuration superficielle est dite
connexe si, étant données deux faces quelconques de la
configuration, il existe un certain nombre de faces et d'arêtes de

liaison telles, que l'on puisse, en se déplaçant sur ces faces
et en traversant ces arêtes, tracer sur la configuration une
ligne continue qui relie un point intérieur de la première
face à un point intérieur de la seconde.

Ainsi la connexion d'une configuration superficielle est
différente de celle d'un réseau. Par exemple, un réseau peut
être connexe sans que la configuration superficielle à laquelle
il sert de frontière le soit. C'est ce que nous montrons dans
la fig. 6 : la configuration superficielle comprend deux faces
et quatre arêtes; elle n'est pas connexe. Par contre le réseau,
formé de quatre arêtes et deux sommets, est connexe.

Nous nous proposons maintenant de définir quelques
types de configurations, superficielles connexes.

a) Chaine fermée. Une chaine fermée est un ensemble de

faces tel que chacune d'elles soit contigue à deux faces de
l'ensemble et à deux seulement.

Imaginons qu'une chaîne fermée se compose de n faces.
Ces faces sont soudées les unes aux autres le long de n arêtes
de liaison. Les autres arêtes de leurs frontières sont des arêtes
libres. Elles constituent entre elles deux contours fermés.

OAri AAUyt <tiytylA.
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Dans les six figures -7 à 12, les arêtes de liaison sont
marquées en traits renforcés.

b) Nœud superficiel. Nous réservons ce nom à une chaine
fermée dont toutes les arêtes de liaison convergent en un
même sommet.

La frontière d'un nœud superficiel ne comprend qu'un
contour fermé.

ï

Fig. 6.
Configuration superficielle

non connexe.

N

Fig. 7.
Chaîne fermée.

Fig. 8.
Nœud superficiel.

c) Chaine ouverte. Si d'une chaine fermée ou d'un nœud
superficiel, on supprime une ou plusieurs faces en connexion,
on forme une chaine ouverte.

On constate que la suppression de la première face
transforme deux arêtes de liaison en arêtes libres et que la
disparition de chaque face subséquente entraîne celle d'une arête
de liaison. Il y a donc dans une chaîne ouverte une arête de

liaison de moins qu'elle ne comprend de faces. De plus, la

frontière d'une chaîne ouverte se compose d'un seul contour
feimé.

d) Arbre superficiel. Un arbre superficiel est une configuration

superficielle connexe qui ne renferme ni nœud superficiel,

ni chaine fermée.

Fig. 9. — Chaîne ouverte. Fig. 10. — Arbre superficiel.
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Si un arbre superficiel comprend n faces, celles-ci sont
maintenues en connexion par n — 1 arêtes de liaison. Sa frontière

comprend un seul contour fermé. Une chaîne ouverte
est un arbre superficiel d'une forme particulière.

e) Chaine bouclée. Une chaîne bouclée résulte de la composition

d'une chaîne fermée et dun ou de plusieurs arbres
superficiels. Il est toutefois entendu qu'aucune nouvelle chaîne
fermée ne doit naître de ces soudures.

Une chaîne bouclée possède le même nombre d'arêtes de

liaison que de faces. Sa frontière comprend deux contours
fermés.

m
Fig. 11. — Chaine bouclée. Fig. 12. — Nœud bouclé.

f) Nœud bouclé. La configuration superficielle précédente
devient un nœud bouclé si, à la chaîne fermée on substitue un
nœud superficiel.

Le nœud bouclé a les mêmes caractères qu'une chaîne
bouclée, sauf qu'il est limité par un seul contour fermé.

Le but de cette étude étant le coloriage des cartes, il est
naturel que nous recherchions le nombre de couleurs qui sont
nécessaires pour colorier chacun des types de configurations
superficielles que nous venons de définir. Considérons-les
successivement :

1° Chaîne fermée et nœud superficiel. Le nombre des
faces d'une pareille configuration peut être pair ou impair. S'il
est pair, on peut assigner à chaque face un numéro 1 ou un
numéro 2, et ceci de façon que toute face marquée 1 soit
contigue à deux faces marquées 2, et inversement. Les faces
de même indice n'étant pas contiguës, le coloriage est possible
à l'aide de deux couleurs. (Exemple, fig. 8.)

Si le nombre des faces est impair, il est possible d'opérer
comme ci-dessus, sauf pour une face qui se trouve contigue
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à la fois à une face marquée 1 et à une face marquée 2.
Une troisième couleur est donc nécessaire pour colorier cette
face. (Exemple, fig. 7.)

2° Chaîne ouverte et arbre superficiel. Dans un arbre
superficiel, on peut noter d'un indice 1 une face quelconque.
Toutes les faces qui lui sont contiguës seront marquées d'un
indice 2 ; puis on reprendra l'indice 1 pour toutes les faces

qui sont contiguës aux faces marquées 2, etc. Cette opération
peut se poursuivre jusqu'à épuisement des faces, car l'arbre
superficiel ne contient aucune chaîne fermée, de sorte que
l'on ne revient jamais au point de départ. Deux couleurs
suffisent donc à assurer le coloriage soit d'un arbre superficiel,
soit d'une chaîne ouverte. (Exemples, fig.9 et 10.)

3° Chaîne bouclée et nœud bouclé. On commence par
colorier les faces de la chaîne fermée ou du nœud superficiel,
puis on s'attaque à celles des arbres superficiels qui lui sont
soudés. Cette dernière opération n'offre aucune particularité.
Seul le nombre des faces de la chaîne fermée est important.
Suivant qu'il est pair ou impair, il faudra utiliser deux ou
trois couleurs. (Exemples, fig.'11 et 12.)

En résumé, l'on peut dire que deux couleurs sont
suffisantes pour colorier les faces de l'un ou de l'autre des types
de configurations superficielles que nous venons de définir,
sauf lorsque la dite configuration renferme une chaîne fermée
ou un nœud superficiel d'un nombre impair de faces, cas qui
nécessite l'emploi de trois couleurs. Il est important de bien
constater que les embranchements arborescents, quel que soit
leur nombre ou leur étendue, ne compliquent en aucune façon
le problème du coloriage.

§ 6. La matrice B.

Nous considérons un polyèdre quelconque de l'espace usuel,
qui satisfait aux conditions énoncées plus haut. Soient aL et a2

les nombres respectifs de ses arêtes et de ses faces. De la
même façon que l'on a établi la matrice A d'un réseau, on

peut définir une nouvelle matrice, la matrice R de ce polyèdre.
L'on introduit à ce propos un nombre njfc qui est égal à 1 si

l'arête a] fait partie de la face a|, sinon le nombre r\jk est nul.
L'on dispose ces nombres t\L en un tableau rectangulaire de

«x lignes de a2 colonnes, de telle façon que la iigne de rang
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j corresponde à l'arête aj et que la colonne de rang k corresponde

à la face a£. Ce tableau est la matrice R

Deux constatations sont immédiates:
1° Puisque chaque arête du polyèdre est une arête de

liaison, soit de degré 2, chaque ligne de la matrice R contient
deux termes égaux à 1, tous les autres étant nuls.

2° Dans chaque colonne, les seuls termes qui ne sont

pas nuls sont ceux qui correspondent aux arêtes faisant partie
de la frontière de la face envisagée. Or ces arêtes constituent
un contour fermé.

L'on peut se proposer d'étudier les propriétés de la
matrice R de la même façon que l'on a obtenu celles de la
matrice A- Là encore on conviendra de réduire toutes les opérations
arithmétiques suivant le module 2.

Il en résulte que la valeur de tout déterminant extrait de
la matrice R est égale soit à 1, soit à zéro.

Si l'on désire connaître la valeur du déterminant qui
correspond à l'un des types de configurations superficielles
envisagés plus haut, il faut admettre que cette correspondance
a lieu, d'une part entre les lignes du déterminant et les arêtes
de la dite configuration, et de l'autre, entre les colonnes du

premier et les faces de la seconde.
A ce propos, nous devons remarquer que dans une chaîne

ouverte, de même que dans un arbre superficiel, le nombre
des faces est supérieur d'une unité à celui des arêtes de liaison.

Pour rétablir l'égalité entre ces deux nombres, il est
nécessaire de négliger une face. Si cette suppression s'opère sur
une face qui est soudée à l'ensemble le long d'une seule
arête de liaison, la configuration qui reste est encore connexe
et se présente sous la forme d'un arbre superficiel sur lequel,
en plus des arêtes de liaison, une arête libre est prise en
considération d'une façon particulière. Si l'on enlève une autre

face, on morcelle l'arbre superficiel en deux ou plusieurs
fragments du type ci-dessus. Il suffira donc d'examiner le

premier cas.
Nous nous bornerons enfin à énoncer les résultats

intéressants, sans nous attarder à des démonstrations qui sont
immédiates, et qui de plus sont en tous points calquées sur
celles du § 3. C'est ainsi que l'on trouve que :

Tout déterminant qui correspond à :

1° une chaîne fermée ou bouclée, est nul;
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2° un nœud superficiel ou bouclé, est nul;
3° une chaine ouverte ou un arbre superficiel, est égal à 1.

En outre, puisque le polyèdre considéré est connexe, il est

possible, et cela de diverses manières, de le transformer en

un arbre superficiel unique, celui-ci comprenant les a2 faces
du polyèdre soudées entre elles le long de a2 — 1 arêtes de
liaison. Et puisque le déterminant d'ordre a2 — 1 qui lui
correspond est égal à l'unité, le rang de la matrice R est

au moins égal à ce nombre. Mais ce rang ne peut pas être
supérieur, car chaque ligne de la matrice R contient deux
termes égaux à 1, et deux seulement. La somme des a2
colonnes est donc identiquement nulle (mod. 2). On a par suite
la proposition :

Le rang de la matrice B est égal à a2 — 1

Mais la matrice R peut encore être envisagée à un autre
point de vue. En effet, nous avons vu que chacune de ses

colonnes caractérise un contour fermé, soit la frontière de la
face correspondante. Elle définit donc une solution du
système (1), en nombres zéro et 1. Et comme cette matrice
comprend a2 colonnes, elle fournit le moyen d'écrire immédiatement

a2 solutions du système (1). Son rang étant a2— 1,
on en conclut que parmi ces a2 solutions, a2 — 1 sont
linéairement indépendantes, et peuvent concourir à la formation
d'un système fondamental de solutions.

Une circonstance particulière se présente dans le cas de

la sphère, car on a en vertu du théorème d'Euler

a0 -r- al + a2 2

OU a2 — 1 tt] — a0 + 1 n

ce qui prouve que l'on peut former un système fondamental
de solutions du système (1) uniquement à l'aide de a2— 1

colonnes de la matrice R.

Exemple. Nous considérons un polyèdre caractérisé par :

a0 10 sommets, at 15 arêtes, a2 7 faces (fig. 13).
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a:

a

a1
14

Fig. 13

< < a2 a*
3 4

2 2 2
a a a

S f 7

Matrice E a; 1 1 0 0 0 0 0

ai 1 0 1 0 0 0 0

M atrice A a43 1 0 0 1 0 0 0

a'
< 2 3 < a; < < S 9

a1 a4
» u <«<

a:
a1.

1

1

0

0

0 0

0 0

1 0 0
0 1 0

a: 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 ai 0 1 1 0 0 0 0

al 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 aï 0 1 0 0 0 i 0

a? 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 ai 0 0 1 1 0 0 0

a: 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 a; 0 0 0 1 1 0 0

a°s 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 a;0 0 0 0 0 1 1 0
a°» 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 aï, 0 1 0 0 0 0 1

a; 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 aï, 0 0 1 0 0 0 1

a; 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 a!3 0 0 0 1 0 0 1

a°, 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 a**. 0 0 0 0 1 0 1

a; 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 aïs 0 0 0 0 o i r
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Tableau de l'ensemble des solutions du système (1).

345645 6 56 0

234563456456566 2 2223 3 34 4 5

1234561111122223334451111111111
1 1100000111111110 0 00 00 00 0 0111111
2 101000101111000111000 0 1110 0 0 111
3 10 0 10 0 110 110 10 0 10 0 110 10 110 110 0 1

4 100 0 1011101001001010 11101101010
5 10 0 0 0 111110 0 0 0 10 0 10 111110 110 10 0
6 0110001100001111110000111111000
7 0 100011000111100010111110001011
8 0011000110011000111101100011110
9 0001100011001101100110110 111011

10 0000110001100110 11110 0 011010110
11 010000100001111000000111100 00 0 0

12 00100001000100 0 1110001000111000
13 0001000010001001001100100100110
14 0000100001000100101010010010101
15 000 0 0100001000100101100010010 11

Tableau de l'ensemble des solutions du système (1).
(Suite.) 6

5 6 6 6 6 6 5

456 5 66 5 6665666644 5 5554
456566566633344544554 4555333444 3

333445445522222233343 3 3442222 3 32

__ 2222223334111111111122 2 231111121
1 11111100000000001111111100 0 0 0110
2 11100011100001110001111010001010
3 10011011010110010010110110010010
4 0101011011101010 0 100101110100010
5 001011011111010 0 100 0 011111000010
6 0 0 0 1111110 0 0 0 1111110 0 0 0 110 0 0 110 0

7 1101000 111110100011110001100010 0

8 0111100 0 110111100011001100 0 11000
9 1 1 0 0 1.1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0

10 0 1111 0 1100011110 11001 1000110 0 0 00
11 111111000011111100001 11101111011
12 11100011101110001110 1110 11110111
13 100110 1.1 01 10011011011 10 11110 1111
14 010101101101010110 11101111011111
15 00101101110010110111011110111111***** ***** «
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§ 7. Réscalux cubiques tracés sur une sphère.

Les propositions que nous venons d'établir sont très
générales. Elles s'adaptent à des réseaux dont il n'était pas
nécessaire de préciser la forme. Il est cependant particulièrement

intéressant, pour le but que nous visons, de les appliquer

à des réseaux cubiques tracés sur une sphère. C'est ce

que nous allons examiner.
Il n'est pas inutile de rappeler que si un réseau cubique

comprend an sommets et at arêtes, ces nombres sont liés entre

eux par les égalités suivantes :

- - «,-«„
Si de plus, ce réseau est tracé sur une sphère qu'il

transforme en un polyèdre comprenant encore a2 faces simplement
connexes, le théorème d'Euler permet d'écrire:

a2 — 1 aL — a0 + 1 (J.

Considérons un tel polyèdre et imaginons que l'on ail
établi les deux matrices A et R, en correspondance, la
première avec ses sommets et ses arêtes, la seconde avec ses

arêtes et ses faces. De la matrice A on déduit le système
d'équations linéaires et homogènes ,(1), dont on forme un
système fondamental de solutions à l'aide de n colonnes de

la matrice R. Il n'y a donc pas lieu de se préoccuper de la
forme du système (1), puisque l'on dispose d'emblée de ses

solutions.
Cependant ici, une remarque s'impose. Suivant une

méthode propre à l'Analysis situs, on sait que l'on peut
procéder à l'extension de l'une des faces du polyèdre considéré,
n'importe laquelle, tout en rétrécissant au besoin les autres,
et ceci de telle façon qu'elles viennent s'appliquer sur la face
étirée. Cette dernière seule est ainsi masquée, les autres
demeurent toutes visibles. Or lorsque l'on décrit le système
fondamental de solutions, on peut précisément négliger celle des

colonnes de la matrice R qui correspond à la face cachée.
Partant de ce système fondamental, on obtient l'ensemble

des solutions du système (1) en combinant de toutes les

manières possibles, d'abord 1 à 1, puis 2 à 2, 3 à 3,
ses u colonnes. Leur nombre est égal à 2" — 1 si l'on fait
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abstraction de la solution identiquement nulle, qui d'ailleurs
ne nous intéresse pas ici. Cette méthode a justement été ap-.
pliquée à l'exemple qu'illustre la figure 13. Alors u était
égal à 6. Nous avons indiqué le tableau des 2e — 1 solutions
obtenues en partant des six premières colonnes de la
matrice R.

Ainsi que nous l'avons vu plus haut, à chaque solution
du système (1) correspond un contour fermé ou un ensemble

de contours fermés. Cette propriété entraîne, dans le cas
des réseaux cubiques, une proposition intéressante :

Deux contours fermés correspondant à la même solution
du système (1) ne peuvent pas se rencontrer.

La rencontre ne serait possible en un sommet du réseau

que si par celui-ci passaient quatre arêtes, car la même arête
ne peut appartenir à deux contours fermés distincts. Si en
effet, cette dernière éventualité se présentait pour l'arête a^
la quantité xm serait égale à 2 =0 (mod. 2), d'où l'on
conclurait que cette arête n'appartient à aucun des deux contours.-

D'autre part, les réseaux que nous considérons ne
renferment aucun isthme. En vertu du théorème de Petersen,
ils sont réductibles en un réseau quadratique et un réseau
linéaire. Mais un réseau quadratique est représenté par un
ou plusieurs contours fermés. Il correspond donc à une
solution du système (1). Et comme un tel réseau comprend
un nombre égal d'arêtes et de sommets, soit a0 la solution
correspondante comprendra a0 valeurs des Xj égales à 1, les

ax — a0 valeurs qui restent étant nulles. Il s'en suit la

proposition :

A chaque réseau quadratique contenu dans le réseau
cubique considéré correspond une solution du système (1) qui
comprend a0 valeurs'des Xj égales à 1.

Grâce au théorème de Petersen, nous savons que de
pareilles solutions existent. Remarquons en passant que ce sont
celles qui possèdent un nombre maximum de valeurs Xj égales

à 1, ceci en vertu du fait que le polyèdre renferme a0

sommets et de la propriété des réseaux quadratiques que
nous venons de rappeler. De plus, le nombre total des

solutions du système (1) étant égal à 2f- — 1 il n'y a qu'à
prélever dans cet ensemble les solutions qui sont marquées
de an quantités Xj égales à 1, pour obtenir tous les réseaux

quadratiques qui sont contenus dans le réseau cubique envi-
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sage. On a ainsi un moyen de déceler toutes les réductions
possibles, d'où la proposition :

Le nombre des réductions d'un réseau cubique donné est

égal au nombre de solutions du système (1) qui comprennent

a0 valeurs Xj égales à 1.

Une question vient ici tout naturellement à l'esprit '¦

Le nombre n étant donné, quel est le nombre des réductions

que comporte le réseau cubique considéré?
Il n'apparaît pas que la réponse en soit aisée. Son

importance, pour la suite de nos déductions, n'étant pas
essentielle, nous ne nous y attarderons guère. Nous nous
bornerons simplement à constater que, sous cette forme, la question

manque de précision. Il existe un général plusieurs
polyèdres dont le nombre des faces est le même, mais qui se

distinguent les uns des autres par la nature de ces faces. Le
nombre y. relatif à ces polyèdres est invariable, tandis que
le nombre des réductions possibles varie d'un polyèdre à l'autre.

Nous en donnerons pour preuve les quelques exemples
ci-dessous qui correspondent tous au cas ja 6 Le dernier
est celui que nous avons étudié plus haut, fig. 13. Nous
avions alors, dans le tableau complet des solutions, marqué
d'un * celles qui définissent les différents réseaux quadratiques.

• * •
Il est possible de classer les réseaux quadratiques qui

sont issus de la réduction d'un réseau cubique, en trois types,
de la façon suivante :

Nous dirons qu'un réseau quadratique est du-:
Premier type, s'il est représenté par un contour fermé unique.
Second type, s'il comprend deux ou plusieurs contours fer¬

més, chacun d'eux renfermant un nombre pair d'arêtes

(ou de sommets).
Troisième type, s'il comprend deux ou plusieurs contours

fermés, parmi lesquels il en est qui renferment un nom-
• bre impair d'arêtes.
Du moment que a0 est un nombre pair, on peut ajouter

de suite que, dans ce dernier cas, le nombre des contours
fermés qui renferment un nombre impair d'arêtes est lui-
même pair.

Dans les planches I à VI, nous avons accompagné chaque

réseau quadratique d'un indice I, II ou III correspondant
à son type.
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©Ö®©
Planche I. — Six réseaux quadratiques.

®TO©
Planche 2. — Sept réseaux quadratiques.

Planche 3. — Huit réseaux quadratiques.
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Planche i. — Neuf réseaux quadratiques.

IA /I »

i \ /T i

Planche S. — Dix réseaux quadratiques.

Planche 6. — Onze réseaux quadratiques.



JULES CHUARD. — LES RÉSEAUX CUBIQUES 71

L'importance de ces types de réseaux quadratiques
apparaît lorsque l'on se place au point de vue du coloriage du
polyèdre. A cet effet, nous allons regarder chacun de ces
réseaux comme une coupure et examiner ce qui en résulte
relativement au morcellement de la sphère.

Premier type. La surface de la sphère, autrement dit
celle du polyèdre, se trouve partagée en deux parties
nettement distinctes. Ni l'une, ni l'autre de ces parties ne peut
renfermer une chaine fermée, car la présence d'une telle
chaîne entraînerait l'existence d'un second contour fermé. Elles
ne peuvent pas davantage contenir de nœud superficiel, puisque

tous les sommets sont sur la frontière. Ce sont donc
des arbres superficiels.

Ainsi un contour fermé unique qui passe par tous les

sommets du réseau a pour effet de grouper les différentes
faces du polyèdre en deux arbres superficiels. Et comme
deux couleurs suffisent à colorier différemment les faces d'un
tel arbre, quatre couleurs assureront certainement le coloriage
du polyèdre dans son entier.

Second type. Chaque contour fermé étant regardé comme
une coupure, leur ensemble morcellera la surface de la sphère
en un certain nombre de régions, les unes limitant des arbres
superficiels, les autres des chaînes fermées ou bouclées.

Considérons l'un de ces arbres superficiels. Sa frontière
est un contour fermé qui renferme un nombre pair de
sommets. Certains de ces sommets sont reliés entre eux par des

arêtes de liaison des faces de l'arbre superficiel envisagé. Mais
ces sommets-là sont toujours en nombre pair. Il en résulte

que les sommets situés sur la frontière de cet arbre, mais

qui ne font pas partie des arêtes de liaison de ses faces, sont
aussi en nombre pair. Or c'est précisément par ces derniers
sommets que passeront les arêtes de liaison de la chaîne
fermée qui entoure le dit arbre superficiel. Il s'en suit que la
chaîne fermée renfermera un nombre pair de faces.

Le même raisonnement se poursuivrait à l'égard des

autres chaînes fermées, qui toutes renfermeront un nombre pair
de faces.

Imaginons maintenant que l'on attribue l'indice 1 à l'une
quelconque des régions que nous venons d'examiner. On
attribuera l'indice 2 à toutes les régions qui sont en connexion
avec la première, puis l'indice 1 à toutes celles qui sont en
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connexion avec la région 2, et ainsi de suite. On est certain,
de cette façon, d'épuiser toutes les régions de la sphère.

Nous savons que deux couleurs suffisent à assurer le
coloriage d'un arbre superficiel ou d'une chaîne fermée, si
celle-ci renferme un nombre pair de faces. C'est précisément
le caractère des différentes régions que nous venons de mettre

en évidence. Nous sommes donc encore en droit de
conclure que quatre couleurs suffiront à assurer le coloriage de
l'ensemble des faces du polyèdre.

Troisième type. La répartition de la surface de la sphère
en régions d'indices 1 et 2 est toujours possible. Mais ici
il existera des chaînes fermées comprenant un nombre
impair de faces, dont le coloriage nécessitera trois couleurs.
On ne pourra plus affirmer que par ce moyen on a encore
le loisir-de colorier les différentes faces du polyèdre avec quatre
couleurs. Cela pourra avoir lieu dans certains cas particuliers,

mais cela ne sera plus possible en général.
En conclusion de ce qui précède, nous dirons que la

présence d'un seul réseau quadratique du premier ou du
second type suffit à assurer le coloriage des différentes faces
des polyèdres considérés à l'aide de quatre couleurs. Pour
que cette opération soit impossible, il est nécessaire que tous
les réseaux quadratiques soient du troisième type.

Planche VII. — Exemple de M. de la Vallée-Poussin.
Un réseau quadratique de chaque type.

La présence dans l'une quelconque des régions que nous
avons affectées plus haut d'un indice 1 ou 2 d'une ou
plusieurs ramifications superficielles arborescentes ne complique
en aucune façon le problème du coloriage. La difficulté
provient uniquement des chaînes fermées qui renferment un nombre

impair de faces.
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Dans l'exemple que nous donnons, planche VII, dû à M. de
la Vallée-Poussin 1, nous indiquons un représentant de chaque
type de réseau quadratique.

'
i

§ 8. Le problème de la carte.

Une carte de forme arbitraire étant donnée sur une sphère,
les propositions suivantes sont connues2:

1) Le coloriage d'une carte se ramène à celui d'une autre

carte, dont tous les sommets sont de degré trois, et dont
le nombre des pays n'a pas augmenté.

L'ensemble des arêtes frontières constitue alors un réseau

cubique.
Au point de vue du coloriage, on ne restreint pas la portée

du problème, dans chacun des cas suivants :

2) Le réseau cubique considéré est connexe. Il ne
comprend donc pas des pièces séparées.

3) Ce réseau cubique ne renferme pas de boucle. Sinon
une arête n'appartiendrait à aucune frontière.

4) La frontière commune à deux pays voisins se compose
d'une seule arête.

C'est ainsi que nous excluons des réseaux cubiques que
nous allons examiner, des particularités telles que celles qui
sont représentées planche VIII.

>-#K >^H
Planche Vili. — Particularités qui sont exclues de nos réseaux cubiques.

Les restrictions que nous venons d'apporter aux réseaux

cubiques que nous examinerons dorénavant, on ne le répétera
jamais assez, ne diminuent en rien la généralité du problème
du coloriage de la carte. Le réseau qui subsiste est
précisément celui d'une carte minima, d'une carte normale, ou
d'une carte qui appartient au cas difficile. Si par conséquent,
l'on parvient à colorier cette carte minima à l'aide de qua-

1 Cf. A. Errera : Loc. cit. 2, page 13.
a Cf. par exemple A. Errera : Loc. cil. page 34,

MÉMOIRES SC. NAT. 25 7
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tre couleurs, l'on sera certain, à plus forte raison, d'être à

même de colorier n'importe quelle autre carte.
Dans ce but, nous nous proposons d'établir la proposition

suivante, qui est fondamentale :

Dans un réseau cubique, qui satisfait aux conditions 1),
2), 3), 4), il existe au moins un réseau quadratique du
premier type.

Cette proposition peut encore s'énoncer comme suit :

Dans un réseau cubique, qui satisfait aux conditions 1),
2), 3), 4), il existe au moins un contour fermé unique qui
passe par l'ensemble des sommets du réseau.

Cette proposition, disons-nous, est fondamentale, car elle
résout ipso facto le problème proposé. Nous avons vu, en
effet, au § 7, que ce réseau quadratique sépare les différents
pays de la carte en deux arbres superficiels distincts. El
comme le coloriage de chacun d'eux nécessite deux couleurs
seulement, celui de l'ensemble est assuré avec quatre couleurs.
C'est, là le nœud de la question, sur lequel nous allons porter

toute notre attention dans les paragraphes qui suivent.
Remarquons encore que, sur .un réseau cubique remplis-

sanl les conditions requises, il peut exister plusieurs réseaux

quadratiques du premier type. Nous n'avons pas à en
rechercher le nombre. Il nous suffira uniquement de justifier
l'existence de l'un d'entre eux.

Planche IX. — Comment se comporte un réseau quadratique du premier type
en présence d'un triangle.

' Une carte minima, dans les conditions où nous nous trouvons,

ne renferme pas de pays à moins de trois côtés. Mais
elle peut comprendre des triangles, des quadrilatères,, des

pentagones, La présence de pays de forme triangulaire n'est

pas indispensable pour le but que nous poursuivons, savoir
la justification de l'existence d'un réseau quadratique du
premici'3 type. On peut momentanément faire disparaître ces

pays-là, en effaçant une des arêtes de leur frontière. Et si sur
le réseau cubique ainsi amputé, il existe un réseau quadrati-
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C

que du premier type, cela signifie que ce dernier existait déjà
sur le réseau cubique préalablement donné. C'est d'ailleurs
ce que nous faisons voir par les dessins de la Planche IX.

Fig. 2. Le contour fermé passe par les trois sommets
du triangle.

Fig. 3. Le contour fermé ne rencontre que deux sommets.
Fig. 4. Une petite déformation a permis d'atteindre le

troisième sommet.
Nous admettrons ainsi une nouvelle restriction :

5) Les pays d'une carte minima comprendront au moins
quatre côtés.

Certains auteurs sont encore allés plus loin dans ce
domaine, puisque la carte normale de M. Errera, par exemple,
ne comprend pas de pays de moins de cinq côtés. Nous
n'avons pas jugé à propos d'adopter ces restrictions, du
moment que des cartes qui renferment des quadrilatères (celle
de M. de la Vallée-Poussin, par exemple) rendent impossible
le coloriage par la méthode des chaînes de Kempe.

§ 9. Arbres linéaires et superficiels.
Nous avons vu que l'on transforme un réseau donné en

un arbre linéaire par la suppression d'un certain nombre
d'arêtes convenablement choisies. Lorsque le réseau comprend
a0 sommets et at arêtes, le nombre des arêtes qu'il faut
supprimer est égal à |a :

H «i — «o+l
L'arbre lui-même comprend a0 — 1 arêtes.
On transforme par analogie un polyèdre en un arbre

superficiel. Le nombre des faces du polyèdre étant a2, ces faces

sont maintenues en connexion par la présence de a2 — 1 arêtes

de liaison. Il suffit de supprimer les autres, ou, ce qui
revient au même, de les considérer comme faisant partie d'une

coupure, pour que le polyèdre devienne un arbre superficiel.
Mais en vertu du théorème d'Euler, on a :

u a2 — 1 «t -^ »o + 1

On a donc la possibilité de faire apparaître sur une sphère,
simultanément les deux arbres: linéaire et superficiel. C'est
là une propriété bien connue, que nous énoncerons comme
suit :

Sur une ¦ sphère, la frontière, de tout arbre superficiel com-
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posé de l'ensemble des faces du polyèdre, est un arbre linéaire.
Réciproquement, sur une sphère, tout arbre linéaire de

a0 — 1 arêtes est la frontière d'un arbre superficiel composé
de la totalité des faces du polyèdre.

Cette réciproque est une conséquence du principe
fondamental de l'arbre linéaire: celui-ci rencontre tous les sommets

du réseau sans cependant constituer de contour fermé.
Si donc l'on assimile un tel arbre à une coupure, cette
coupure ne morcelle pas la surface qui demeure ainsi d'un seul

tenant. Les a2 faces du polyèdre ne peuvent être maintenues
en connexion que suivant a2 — 1 arêtes de liaison. Elles
forment ainsi un arbre superficiel.

Cette propriété est spécifique de la sphère. Nous aurons
l'occasion de le rappeler plus loin, lorsque nous dirons quelques

mots des réseaux tracés sur d'autres surfaces.

Il est clair que l'on pourrait envisager, sur le réseau
considéré, des arbres linéaires qui renferment moins de a„ — 1

arêtes. Ces arbres n'offrent pas d'intérêt pour le but que
nous poursuivons, aussi les négligerons-nous complètement.

Nous nous occuperons donc essentiellement des arbres
linéaires qui comprennent a0 — 1 arêtes, n'oubliant pas que
si ces arbres sont assimilés à des coupures, ils ne morcellent
pas la surface de la sphère et. constituent la frontière d'un
arbre superficiel qui comprend la totalité des faces du
polyèdre considéré.

Le nombre de ces arbres n'est en général pas connu.
Nous ne pensons pas qu'il soit nécessaire de le rechercher.
On constate qu'il grandit très rapidement avec |J.. Ce que
nous désirons, par contre, c'est de fixer une manière de les
classer.

A ce propos, nous remarquons que, par rapport à un tel
arbre, un sommet quelconque du réseau est: soit de degré 1,

sommet libre; soit de degré 2, sommet servant de liaison à

deux arêtes; soit de degré 3, sommet que nous avons désigné

plus haut sous le nom de bifurcation. Et si nous

comparons différents arbres linéaires d'un même réseau,

nous constatons bien vite qu'ils diffèrent entre eux par
le nombre de leurs bifurcations, nombre qui varie entre
des limites que nous allons déterminer. Le nombre des
bifurcations que renferme un arbre linéaire sera donc le moyen
de classement que nous nous proposons d'adopter. -
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Dans les diverses opérations que comporte ce classement,
nous aurons souvent l'occasion de parler des u arêtes qui
servent de liaison aux faces de l'arbre superficiel. Parfois,
c'est telle ou telle arête qui interviendra, parfois ce sera leur
ensemble. Aussi, pour ne pas alourdir notre exposé, nous
préférons leur donner une désignation en convenant de les
dénommer arêtes conjointes. Leur ensemble sera le système
des arêtes conjointes, ou plus brièvement le système conjoint.
Ainsi, à chaque arbre de a0—-1 arêtes, correspond un
système conjoint qui comprend a2 — 1 arêtes.

Un examen même sommaire d'un arbre linéaire suffit pour
constater qu'aucune arête conjointe n'aboutit à une bifurcation,

car, dans ce cas, les trois arêtes du réseau font partie
de l'arbre linéaire. Par suite, le nombre des bifurcations de
cet arbre est en relation étroite avec la disposition des arêtes

conjointes. Il esl d'autant plus grand que ces arêles
aboutissent à un plus petit nombre de sommets. Il sera maximum
quand elles aboutiront au nombre minimum de sommets
qu'elles peuvent atteindre. *

Disons d'emblée que la présence d'une bifurcation dans
le système conjoint est manifestement impossible, car elle
entraînerait l'existence d'un nœud superficiel parmi les faces

qui composent l'arbre superficiel, ce qui ne se peut pas. Il
n'y a donc pas d'arbre linéaire dans le système conjoint. Par
conlre, on peut y rencontrer un ou plusieurs contours
ouverts ou fermés. Les contours ouverts peuvent d'ailleurs fort
bien être constitués par une seule arête. Les arêtes du système
.conjoint aboutiront à un nombre minimum de sommets dans
le cas. et dans ce cas seulement, où elles forment un ou
plusieurs contours fermés. Elles ne rencontrent alors que u
sommets. Les a0 —- u. sommets qui restent sont autant de
bifurcations de l'arbre linéaire correspondant. Or ce nombre vaut:

a0 — |a 2u — 2 — H H —-2

Tel est le nombre maximum de bifurcations d'un arbre linéaire.
Nous conclurons par la proposition :

Le nombre maximum de bifurcations que peul renfermer
un arbre linéaire reliant entre eux les a0 sommets d'un réseau

cubique est u — 2

Passant à l'autre extrémité, nous démontrerons la proposition

suivante :
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Le nombre minimum de bifurcations d'un de ces arbres
est zéro.

Eii effet, si ces (l*. arêtes étaient complètement séparées
les unes des autres, elles constitueraient un réseau linéaire,
partant affecteraient 2 |n sommets. Or le nombre de ces des-
niers a0 est égal à 2 n — 2 Dans ces conditions, le système
conjoint ne peut être représenté par un réseau linéaire. Deux
au moins de ses sommets servent de liaison à des arêtes
conjointes. Et si précisément il y en a deux, l'arbre linéaire
envisagé n'a que deux sommets libres; il ne présente aucune
bifurcation, c'est un contour ouvert.

En principe, il est donc possible de concevoir n — 1 types
d'arbres linéaires qui se différencient les uns des autres par
le nombre de leurs bifurcations, ce nombre variant enlre
fi — 2 et zéro.

Il est clair que jusqu'ici nous n'avons rien prouvé
relativement à l'existence effective des arbres de ces diverses
catégories. Ce que nous savons, c'est qu'il existe des arbres linéaires

de a0 — 1 arêtes qui relient entre eux les a0 sommets du
reseau considéré. Et nous venons de voir la possibilité que
nous avons d'une répartition de ces arbres en nous basant

sur le nombre de leurs bifurcations.
Nous nous proposons de montrer que si l'on part de l'un

quelconque d'entre eux, il est possible d'en obtenir d'autres
qui présentent un nombre moindre de bifurcations. C'est là
ce que nous entendrons par: la réduction des bifurcations
d'un arbre donné.

Ajoutons en passant qu'un arbre linéaire du dernier type
a deux sommets libres et aucune bifurcation; un arbre du

type précédent a trois sommets libres et une bifurcation, et
ainsi de suite, d'où la proposition :

Un arbre linéaire. qui renferme k bifurcations a aussi
k + 2 sommets libres.
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REDUCTION DES BIFURCATIONS

§ 10. Examen d'un cas concret.

Les propriétés des réseaux cubiques sur lesquelles nous
désirons baser notre démonstration sont en général peu
connues. Il nous paraît donc indiqué d'en poser les bases sui
un exemple concret. Mais, nous avons hâte de le dire, cet
exemple n'a pas été choisi d'une façon spéciale de manière
à rendre aisée la méthode que nous avons en vue. Tout au
contraire, c'est en étudiant l'exemple de M. de la Vallée-
Poussin, tel qu'il est représenté planche VII, que nous en
avons" découvert la forme. Sous un nombre restreint
d'éléments, il renferme, ainsi que nous le verrons dans la suite,
les mêmes difficultés qu'un autre réseau cubique du cas
difficile dont le nombre des éléments serait pius grand.

Ce réseau, fig. 1, pl. X, a les caractéristiques suivantes:

a0 18 sommets, at 27 arêtes, a2 11 faces, u- 10

II renferme des arbres linéaires, tels que ceux que nous avons
examinés plus haut, qui peuvent être répartis en 9 classes.
Nous indiquons, fig. 2 à 10, planche X, un exemple d'arbre
de chaque classe. Les arêtes faisant partie des arbres respectifs

ont été marquées d'un trait renforcé.

10

Planche X. — Les différentes classes d'arbres linéaires que renferme
un réseau cubique donné.

L'arbre linéaire, fig. 2, planche X, comporte 8 bifurcations.

On constate que le système conjoint se compose de

deux contours fermés. On transforme cet arbre en un con-
tour bouclé en lui adjoignant n'importe quelle arêle con-
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jointe, par exemple l'arête a En effet, la configuration linéaire
qui en résulte comprend un contour fermé, précisément celui
qui délimite l'aire couverte de hachures. Si l'on supprime l'une
quelconque des arêtes qui appartiennent à ce contour fermé,
un arbre linéaire réapparaît. Or remarquons que l'on peut
supprimer, si l'on veut, l'une des arêtes b ou b' l'arbre qui
apparaît dans ces conditions ne compte plus que 7 bifurcations.

Mais si l'on convient de supprimer soit l'arête 6", soit
l'arête b'", c'est un arbre de 6 bifurcations qui surgit.

A l'arbre linéaire de la fig. 3, convenons d'associer l'arête c,
puis de supprimer l'arête d, on obtient l'arbre de la figure 4.

Associons à ce dernier l'arête e et supprimons l'arête /, on
aboutit à l'arbre de la fig. 4, et ainsi de suite.

Dans chaque exemple, nous avons couvert de hachures
l'aire qui apparaît chaque fois que l'on associe une arête
conjointe à l'arbre linéaire existant. ».

C'est à ce passage d'un arbre comportant k bifurcations
à un arbre qui n'en compte plus que k — 1 ou k — 2 que
nous avons donné le nom de réduction des bifurcations de
l'arbre considéré. Cette réduction des bifurcations a pour nous
une grande importance.

Il convient de remarquer que dans le choix des réductions
que nous avons opérées planche X, nous n'avons été guidé
par aucune considération d'ordre théorique. Dans chaque figure,
plusieurs voies s'offraient à nous; c'est au hasard que nous
avons fixé l'une d'elles.

Arrêtons-nous un instant sur l'arbre de la fig. 10, planche

X, que nous reproduisons fig. 1, planche XL II ne
comporte aucune bifurcation, c'est donc un contour ouvert. Soient
P et Q ses deux sommets libres. A chacun d'eux aboutissent
deux arêtes conjointes. Convenons d'appeler r et r' celles qui
aboutissent au sommet Q. Associons au contour ouvert PQ
l'arête r, nous créons à la fois un contour bouclé et une
bifurcation. Pour supprimer cette dernière, sans revenir en
arrière, nous ne pouvons que faire disparaître l'arête s. Cela

nous amène à un nouveau contour ouvert, contour qui est

limité par les sommets P et Qt (fig. 2).
On passe dans les mêmes conditions du contour PQt au

contour PQ2, en associant l'arête t et en supprimant l'arête u

(fig. 3), puis au contour PQS (fig. 4). On s'aperçoit main-
tenanl que les deux sommets P et Q3 limitent la même arête
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du réseau. En les réunissant, on forme un contour fermé qui
passe par tous ses sommets, autrement dit un réseau quadratique

du premier type.
Revenons au point de départ, fig. 1, planche XI, et

associons (fig. 5) l'arête r', nous nous voyons dans l'obligation
de supprimer l'arête s'. Nous aboutissons alors au contour
PQ' qui met en évidence un autre réseau quadratique du
premier type.

Enfin, on peut agir à l'égard du sommet P comme on
vient de le faire pour le sommet Q. Pour ne pas allonger,
nous nous bornerons à constater que l'on aboutit aux deux
contours ouverts QP,- et QPt qui sont représentés fig. 7 et 8,
planche XL Nous constatons que, dans le cas particulier, les
réseaux quadratiques qui en résultent sont ceux que nous
avons déjà obtenus.

Planche XI. — Passage d'un contour Z à un contour V.

L'importance des contours ouverts tels que ceux qui sont
représentés par les fig. 4, 6, 7 et 8, planche XI, est capitale

pour le but que nous poursuivons. Il suffit en effet
que l'un seul d'entre eux existe, sur le résea-u cubique donné,

pour que l'on puisse conclure à l'existence d'un réseau
quadratique du premier type. Il est donc nécessaire de les

distinguer nettement de tous les autres contours ouverts, c'est

pourquoi nous adopterons les définitions suivantes :

Un contour ouvert qui passe par l'ensemble des sommets
du réseau cubique considéré, dont les sommets libres limitent
la même arête, est un contour V.

Tout autre contour ouvert, passant par l'ensemble des sommets

du réseau, est un contour Z.
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C'est ainsi que les fig. 1, 2, 3, 5, planche X, représentent

des contours Z, tandis que les fig. 4, 6, 7, 8,
représentent des contours V.

Nous conviendrons enfin de désigner sous le nom d'opération

double le passage du contour PQ au contour PQt ou
de ce dernier à PQ2, ou, d'une manière générale, du contour

PQ; au contour PQ,+i
Une opération double comporte, connue son nom l'indique,

deux opérations: 1) l'association d'une arête conjointe,
ce qui a pour effet de faire apparaître une bifurcation, 2) la

suppression d'une arête de façon à faire disparaître la
bifurcation. Comme dans ce dernier cas, il s'agit de ne pas revenir

en arrière, il n'y a jamais d'ambiguïté dans le choix
de l'arête que l'on supprime, laquelle appartient toujours au
contour fermé qui résulte de la première opération. De plus,
les deux arêtes, celle que l'on associe et celle que l'on
supprime, sont contiguës.

RÉDUCTION DES BIFURCATIONS
y

g 11. Cas général.

Il nous paraît maintenant possible de nous attaquer au
cas général.

Nous considérons un réseau cubique, tracé sur une sphère,
qui satisfait aux conditions exposées au § 8. Nous faisons
apparaître sur ce réseau un arbre linéaire qui relie entre eux
la totalité des sommets. Cet arbre appartient à l'une des classes

dont nous avons constaté l'existence au § 9. Admettons
qu'il renferme k bifurcations. Deux questions se posent d'emblée,

que nous allons examiner successivement.
Première question. Quelles sont les conditions nécessaires et

suffisantes que doit remplir l'arbre ainsi obtenu, pour que
l'on puisse réduire le nombre de ses bifurcations?

La réponse à cette question est immédiate: // faut et il
suffit que deux sommets libres de l'arbre limitent la même
arête du réseau.

En effet, par l'adjonction de cette arête, on transforme
l'arbre en un contour bouclé, lequel renferme, nous le savons,
un contour fermé. Ce dernier est réuni aux autres arêtes
du contour bouclé en des points qui sont des bifurcations.
Si alors on supprime une arête qui rencontre l'une de ces
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bifurcations, tout en faisant partie du contour fermé, la
configuration linéaire qui en résulte est encore connexe, c'est-à-dire
d'un seul tenant; c'est un arbre linéaire qui ne comprend
plus que k — 1 bifurcations. Comme il peut se faire que
l'arête supprimée aboutisse à deux bifurcations, il arrive que
le nombre de celles-ci soit d'un seul coup diminué de deux
unités.

Nous admettrons maintenant que toutes les réductions
possibles ont été effectuées, cela d'ailleurs sans qu'il fût nécessaire

de choisir d'avance un plan de travail. Nous entendons

par là que, au gré de notre fantaisie, nous avons opéré une
première réduction, puis une seconde, etc., sans la moindre
préoccupation du meilleur choix possible. Il est clair que.
ce que nous entendons par meilleur choix, c'est celui qui
conduirait à un contour Z, ou, mieux encore, à un contour V.
Nous sommes donc en présence d'un arbre linéaire qui
présente h bifurcations, tel que deux de ses sommets libres ne
limitent jamais la même arête. Dans ces conditions, nous
posons une:
Deuxième question. Est-il possible de transformer cet arbre
de façon à le rendre réductible

Le moyen approprié, pour répondre à cette question, est
à la fois simple et varié. Il est simple, car ayant choisi un
des sommets libres de l'arbre considéré, nous effectuerons
une série d'opérations doubles. Il est varié, car si la première
série de ces opérations est irréductible, nous avons le loisir
de procéder à une seconde série, à une troisième, en partant

d'un sommet libre de n'importe quelle figure qui est
issue des transformations antérieures. Cela donne une grande
variété de moyens.

Le but que l'on se propose d'atteindre, en utilisant toutes
ces opérations doubles, est de remplacer l'arbre donné par
un autre, dont deux sommets libres limitent la même arête
du réseau. Alors, en vertu de la réponse à la première question,

la réduction est immédiate.
Il convient ici de faire une constatation. Le problème de

réductibilité d'un arbre linéaire est le même que celui qui
consiste à passer d'un contour Z à un contour V. Or un
arbre a d'autant plus de sommets libres, que le nombre de

ses bifurcations est plus élevé. S'il se réduit à un contour
ouvert, il n'a plus que deux sommets libres. Les possibilités
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que l'on a de faire en sorte que ces sommets limitent la
même arête du réseau, sont certainement moindres que celles
dont on dispose dans le cas d'un arbre quelconque, puisque
le nombre des sommets de l'ensemble du réseau n'a pas va-*

rié, tandis que celui des sommets libres de l'arbre est plus
grand. Telles sont les raisons pour lesquelles nous examinerons

avec de plus amples détails les séries de transformations
qui doivent conduire d'un contour Z à un contour V. Et si

nous parvenons à en justifier la possibilité, nous aurons du
même coup justifié la possibilité de la réduction des
bifurcations de tout arbre linéaire du réseau.

Nous désignons encore, comme précédemment, par P et Q
les sommets libres d'un contour Z et commençons par effectuer

une première série de transformations qui laissent P

invariable. Des sommets Ql5 Q2, Q3, apparaissent ainsi,
Deux cas sont à considérer :

1) Un des sommets Qk se trouve à l'extrémité de l'une
des arêtes qui aboutissent au sommet P. Le contour Z est

devenu un contour V; la série de transformations est dite
réductible. '

2) Un des sommets Qfc occupe la position initiale Q le

contour Z ayant une forme identique à celle du début. La
série de transformations est irréductible; les différents sommets

Q,- constituent un cycle.
Cette dernière éventualité étant admise, le sommet Q

demeure fixe. Une nouvelle série de transformations conduit
aux sommets P1; P2, Cette série est réductible ou non.
Imaginons qu'elle soit irréductible. Partant du contour PQt et
laissant Qj invariable, on passe de P à P^, P2, Pg, ;.

Et si ces sommets constituent encore un cycle, on partira du
contour PQ2, laissant Q2 fixe, on' passera de P à Pi', P2,
L'inexistence d'un contour \, soit d'un réseau quadratique
du premier type, est liée à la persistance de séries irréductibles.

Rappelons à ce propos que nous entendons par série
réductible une série de transformations qui conduisent d'un
contour Z à un contour V, et série irréductible, une série dans

laquelle les sommets P/, respectivement Qh constituent un
cycle, le contour Z reprenant sa forme originale.

De ce qui précède, il résulte que dans un réseau cubique
qui satisfait aux conditions du § 8:
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1) l'existence d'une seule série réductible permet de
réduire d'une unité, éventuellement de deux, le nombre des

bifurcations d'un arbre linéaire donné. '

2) l'existence d'une seule série réductible permet de passer

d'un contour Z à un contour V.
3) l'existence d'un contour V assure celle d'un réseau

quadratique du premier type. "" :

10 12

14 1513

Planche XII. —¦ Une série de transformations irréductible.

cX H s'agit maintenant d'examiner les conditions d'existence
d'une série irréductible.

Mais auparavant, nous pensons qu'il n'est pas inutile, ceci

pour fixei les idées, d'en donner "deux exemples. Nous re-
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prenons, à- eet effet, le type de carte de la planche X, à

propos de laquelle sont reproduites les transformations des

planches XII et XIII.

4 6

1210

15

Planche XIII.

13 >*—^14
Une autre série de transformations irréductible.

Il faut remarquer d'emblée que, lorsque l'on s'est engagé
dans la- *©ie des transformations d'un contour Z, on n'en

peut suivre qu'une seule. Celle-ci» sans doute, n'est pas connue

d'avance; elle n'en existe pas moins d'une façon unique
car, à moins de détruire l'arête que l'on vient d'associer (ce

qui n'aurait aucun sens), il ne se présente jamais d'indécision

sur le choix des arêtes que l'on associe ou supprime.
Cette constatation a son importance.
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De plu», chaque opération double fait apparaître un contour

fermé qui limite une aire simplement connexe. Cette
aire se compose toujours d'un arbre superficiel, lequel peut
se réduire à une chaine ouverte ou même à une face
unique. Elle se modifie, s'agrandit ou se rétrécit, lorsque l'on
passe d'un contour Z au suivant. Le plus souvent, ces
modifications ne paraissent pas obéir à une loi. Pourtant, dans
le cas d'une série irréductible, l'existence de cette loi est

indispensable. Imaginons un instant qu'elle n'existe pas. Du
sommet P qui est fixe partent deux arêtes conjointes qui
aboutissent à deux sommets du réseau L et M. Du sommet

Q l'on passe successivement aux différents sommets Q;
(i.= 1, 2, 3. et comme dans la succession de ces points
aucun cycle ne se révèle, il n'y a pas de raison pour que
l'un d'eux ne puisse pas coïncider soit avec le sommet M, soit
avec L, mais alors la série est réductible.

La loi qui préside à l'existence d'une série irréductible
apparaît de prime abord sous la forme d'un cycle de points.
Dans la suite des sommets Q,- (i 0, 1,2,3, n), Q„
coïncide avec Q0 lequel n'est autre que Q. Mais ce cycle
exige plus qu'une simple coïncidence des sommets Q„ et Q.

Pour qu'il existe réellement, il faut encore que toutes les

arêtes du contour ouvert aient repris leur position initiale.
Les différentes arêtes du réseau cubique considéré qui

permettent de souder entre eux les sommets Q,- d'un certain
cycle, constituent une configuration linéaire à laquelle nous
convenons de donner le nom de tracé T. Or le tracé T ne
doit pas être regardé comme une simple juxtaposition d'arêtes.
C'est plutôt une ligne continue qui se referme et qui est
orientée dans le sens qui va de Q; à Q,+i- Et si cette ligne
passe plusieurs fois par la même arête, celle-ci est comptée
autant de fois qu'elle a été parcourue.

Sur la ligne qui caractérise un tracé T, les différents
sommets Q,- occupent une position caractóristiqEte.- Rappelons
à ce prope» que Ton passe de Qt à Q,+i par le moyen d'une
opération double dans laquelle interviennent deux arêtes
contiguës, l'une étant l'arête que l'on associe et l'autre celle que
l'on supprime. Le sommet qui les réunit toutes deux n'est

pas et ne peut pas être un sommet Q,-, d'où la conséquence :

Entre deux sommets consécutifs Q,- d'un tracé T il existe
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toujours un sommet du réseau qui n'est pas pris en considération.

•> En outre, si la série est irréductible, le contour Z doit se

transformer en lui-même. Il est par suite nécessaire que toute
arête qui a été préalablement associée, devienne à son tour
une arête que l'on supprime, et inversement. Cela revient à

dire que dans le tracé T, chaque arête doit être parcourue au
moins une fois dans chaque sens.

Enfin, comme nous l'avons déjà vu, dans chaque opération
double, on crée un contour fermé (pour le détruire sitôt après)
qui délimite une aire simplement connexe. Le déplacement
que l'on effectue sur le tracé T permet d'orienter chacune
de ces aires. En général, lorsque l'on passe de l'une d'elles
à la suivante, l'orientation change de sens. Cette propriété se
manifeste chaque fois que les deux aires consécutives ont en
commun la face sur laquelle s'appuie le tracé T Mais il
arrive aussi que les faces composant les aires qui
correspondent à deux transformations consécutives ne soient pas
communes. Ce fait produit une rupture dans la cadence des

orientations, rupture qui devra réapparaître, mais en sens

inverse, au moment précis où, en suivant le tracé T, on repassera
à cet endroit.

Dans ces conditions, le tracé T ne doit pas être regardé
simplement comme un fil continu et isolé, mais bien au
contraire, comme un fil soudé aux différentes aires qui
apparaissent dans chaque opération double. Ces aires, comme d'ailleurs

la sphère elle-même, sont simplement connexes. Si elles
font partie d'une série irréductible, elles se succèdent de telle
façon que leurs orientations respectives se détruisent les unes
les autres. On ne s'expliquerait pas, en effet, que des aires

également orientées s'empilent les unes sur les autres, constituant

ainsi des nappes distinctes sur une surface de connexion
aussi simple que la sphère.

Il est évident que l'on pourrait envisager un tracé T dans
ses rapports avec une série réductible. Dans ce cas, aucun
caractère distinctif ne sera à signaler. Toutes les fantaisies
sont admissibles, du moment que l'on sera arrêté dans ces

opérations par la présence d'un contour V
Si nous résumons ce que nous savons d'un tracé T nous

sommes en droit de dire : •

Le tracé T d'une série, réductible ou non, est représenté
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par un fil continu qui est parcouru constamment dans le
même sens. Ce fil se compose d'un certain nombre d'arêtes
du réseau donné. Sur ce fil, entre deux sommets consécutifs
Qi et Qi+i se trouve toujours intercalé un troisième sommet
du réseau qui n'appartient pas à la série des points Q t.

Si la série est irréductible, le fil est un contour fermé.
Chaque arête du réseau qui appartient au tracé T est
parcourue deux fois, une fois dans un sens, une fois en sens

opposé.

Q,

Ni f
Planche XIV.

^ Q4

Jonclion d'un tracé T.

II reste enfin à examiner les conditions dans lesquelles
le fil qui constitue un tracé T revient sur des arêtes déjà
parcourues. Cette jonction peut se faire de deux façons
différentes, suivant qu'elle s'opère sur un sommet Q( ou sur un
sommet intermédiaire. Mais avant de faire cette distinction,
il convient de remarquer qu'en chaque sommet du tracé T
il y a:
1. une arête qui appartient au contour Z,
2. une arête que l'on a supprimée (du contour bouclé pré¬

cédent),
3. une arête que l'on a associée (pour former le contour

bouclé suivant).
Les arêtes indiquées sous 2 et 3 font déjà partie du tracé

T Si donc il y a une jonction en ce sommet, celle-ci ne

peut avoir lieu que par l'arête 1. Et comme cette arête appartient

au contour Z c'est par une suppression et non pas par
une association que la jonction peut s'effectuer.
a) La jonction a lieu en un sommet Q,-.

Le fil qui constitue le tracé T se présente dans la disposition

du schéma fig. 1, planche XIV. Faisant retour au
sommet Q; par une arête que l'on supprime, il doit en repartir
à l'aide d'une arête que l'on associe. Mais lors du premier

MÉMOIRES SC, NAT, 25 S
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passage on a associé l'arête qui contribue â former le contour

que l'on est en train de fermer. La seule arête qui
demeure disponible est précisément celle qui n'appartient pas
à ce contour fermé. On s'en éloigne donc en sens contraire
de celui qui a été suivi lors du premier passage, détruisant
ainsi l'effet antérieurement produit. On conçoit fort bien que
si cela se produit une seconde fois dans les mêmes conditions,
on réussira à se retrouver dans la position initiale du contour
Z, préalablement envisagé,
b) La jonction a lieu en un sommet intermédiaire.

La disposition du tracé T est représentée fig. 2, planche
XIV. Dans ce cas l'ar-ête qui a été supprimée fors du premier
passage, appartient au contour qui 'Se ferme. En l'associant
maintenant, on s'engage sur un chemin déjà parcouru avec
la même orientation. Ce caractère ne saurait convenir à une
série irréductible puisqu'il n'a pas pour effet de détruire ce

qui a été créé lors du premier passage. Il nous permettra
précisément de déceler la présence d'une série réductible.

Dans ces conditions, la question capitale qui nous préoccupe

peut se condenser dans la proposition suivante:
Sur un réseau cubique tracé sur une sphère, satisfaisant

aux conditions du § 8, il est impossible qu'il n'y ait que
des séries de transformations irréductibles.

Pour la démontrer, nous partons d'un contour Z dont
les extrémités sont les sommets P et Q Nous admettons que
les deux séries de transformations que l'on obtient en laissant

P puis Q fixes, soient irréductibles. Afin de distinguer
les différents tracés T dont il va être question, nous conviendrons

d'affecter de l'indice p le tracé T qui résulte de la

fixité du sommet P et de l'indice q celui qui correspond
à la fixité du sommet Q Ainsi le tracé Tp est jalonné
par les sommets Q Qt ", Q2 Q/, qui sont les extrémités

de contours Z Chacun de ces sommets peut à son tour
être regardé comme fixe. C'est alors le sommet P qui se

déplace en suivant des tracés T, Tt T2 Tt sur
lesquels on rencontrera les sommets suivants :

sur Tq
sur T„
sur T

¦7»

P P P

P P' P'

p, p;\ p;\ etc.
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Les tracés Tqi partent tous du sommet P. Ils empruntent
tous une partie du tracé Tg puisqu'à partir de P on a

chaque fois associé la même arête. Mais comme le sommet
fixe Qi diffère d'une série à l'autre, ils doivent suivre des voies
différentes. Mais si toutes les séries sont irréductibles, ces
voies finissent par se souder au premier tracé T? tout au
moins dans le voisinage du sommet P

A l'égard des sommets où s'opère l'écartement des tracés
Tg. on ne peut formuler aucune règle. Cela provient du fait
que, selon notre hypothèse, deux faces contiguës n'ont en
commun qu'une seule arête et qu'en outre ces faces sont des

polygones d'au moins quatre côtés. Il s'en suit que le champ
d'action des tracés T?/ n'est limité en aucune façon sur
l'ensemble du réseau. Cette constatation est très importante ainsi

que nous le verrons au paragraphe suivant, car il peut arriver
que, dans des réseaux cubiques qui n'appartiennent pas au
cas difficile, ces tracés ne puissent emprunter qu'un ensemble
bien déterminé d'arêtes du réseau considéré.

Il est d'autre part un fait connu que les réseaux qui
ont une forme régulière, tels que ceux que nous représentons:
planche XV, possèdent un grand nombre de réseaux quadratiques

du premier type. Ce n'est donc pas sur ces réseaux

que l'on recherchera uniquement des séries irréductibles.

Planche XV. — Réseaux de forme régulière.

Rappelons enfin que ce qui caractérise plus spécialement
une série irréductible, c'est la forme particulière de son tracé
Tq Les sommets, libres des différents contours Z se succèdent

sur un tel tracé avec une cadence régulière, de deux en deux
sommets. De plus chaque arête est parcourue une fois dans

un sens et une fois en sens contraire.
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Si donc toutes les séries envisagées étaient irréductibles,
il serait nécessaire que tous les tracés Tq. finissent par se

rejoindre, la jonction s'opérant en l'un des sommets Pf du
premier. Mais on doit prendre garde que la forme de chaque
tracé dépend de déplacements qui s'effectuent autour de faces

••.Q

Q...

'5 ....-'&4 p

'SQ..

....¦- 9

10 12

-'13 ' '14
Planche XVI. — Les tracés T.

qui ont tantôt un nombre pair, tantôt un nombre impair
d'arêtes et cela avec une variété de moyens qui n'a d'égale
que celle que l'on a mise à compliquer la forme du réseau
donné. On comprendrait, à la rigueur, que cette cadence ne
soit pas troublée dans le cas d'un réseau qui présente toutes
les garanties de symétrie voulues. Mais nous venons de voir
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que précisément dans ce cas il n'y a pas lieu de rechercher
des séries irréductibles, puisque l'on est certain d'avance de

rencontrer un réseau quadratique du premier type. Cette
cadence ne se justifie pas, et à fortiori ne se réalise pas.

Fig. 14. — Carte de 52 pays. Fig. 15. — Carte de 47 pays.

Exemples de M. Ebrera.

Fig. 16. — Carte de 30 pays. Fig. 17. — Carte de 36 pays.

Fig. 18. — Carte de 28 pays

Exemples de M. Reynolds.
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Nous indiquons, à titre d'exemple, planche XVI', les
différents tracés Tg. qui résultent de l'application de la méthode

que l'on vient de développer à la planche XII.
Conclusion. Il est reconnu, d'une façon indiscutable, que

si l'on sait. colorier une carte dont la frontière est un réseau

cubique qui satisfait aux conditions restrictives du § 8, on
est capable du même coup de colorier une carte dont les

frontières sont quelconques. Or, dans les pages qui précèdent,
nous avons montré pourquoi, sur les réseaux cubiques considérés,

on doit nécessairement rencontrer une série réductible,
partant mettre en évidence un contour V et par suite un réseau

quadratique du premier type.
A titre de renseignement, nous faisons suivre ces pages

de la reproduction des exemples cités par MM. Errera et

Sainte-Lagüe dans les ouvrages que nous avons rappelés plus
haut, exemples qui constituent chaque fois une irréductibilité

en regard des méthodes adoptées par leurs auteurs
respectifs. Sur chacun d'eux, un réseau quadratique du premier
type est représenté par un trait renforcé.

§ 12. A propos d'un cas d'exception.
Nous considérons ici des réseaux cubiques dans lesquels

certaines faces contiguës ont en commun deux arêtes et nous
allons examiner relativement aux transformations d'un contour
Z, la région qui est comprise entre ces deux faces.

4Dt $>. ."<&
Planche XVII.

Il n'est pas inutile que nous fixions les idées sur un
exemple concret. C'est ainsi que nous envisageons le réseau

partiel, fig.l, planche XVIL II est entendu que les arêtes

qui aboutissent aux commets A et R, complètent un réseau
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cubique que nous n'avons pas jugé à propos de dessiner.
Le fait que les faces de cette région sont des quadrilatères
n'offre rien de particulier.

Nous admettons qu'un contour Z, après avoir passé par
le sommet A, se termine au sommet R. Nous constatons
qu'après avoir effectué quelques opérations doubles, nous
revenons au sommet R, sans nous être arrêté sur le sommet A.
Ce dernier sommet n'est pas un des sommets que l'on prend
spécialement en considération sur le tracé T. Ainsi le tracé T
pénètre dans la région considérée par le sommet R et il en

repart au même sommet.
On comprend aisément que le tracé T ne puisse faire

étape sur le sommet A, car ce dernier sommet n'est abordé
qu'à l'aide d'une arête que l'on associe et par suite l'arête
que l'on supprime nous transporte en un autre sommet.

Il s'en suit que le tracé T ne peut attaquer cette région
qu'en y entrant au sommet R. C'est là une obligation très

importante que nous ne rencontrons jamais dans le cas
général. Car alors chaque contour fermé est relié avec les
autres parties du réseau par trois arêtes, ou plus, de sorte qu'il
peut toujours être attaqué par deux sommets au moins.

C'est ce qui explique le fait que, si un réseau cubique
contient suffisamment de régions de cette espèce, il soit fort
possible qu'il ne renferme aucun contour V, et par suite
aucun réseau quadratique du premier type.

T «''> ,' î*-. T a't • '".-.
,' I • '• \ / ; «

"• '•
>...' : -.y .'..y : v :

x<:...x-"2 N4J.L/3 ^kJJy*
Planche XVIII.

Il est à peine besoin de remarquer que la forme du
réseau à l'intérieur du contour fermé qui passe par les sommets

A et R, ne joue aucun rôle. Le cas le plus simple est
celui dans lequel ce contour fermé ne limite qu'une seule face.
Nous en donnons un exemple fig. 1, planche XVIII. Les
autres figures de cette planche indiquent divers tracés T de ce

réseau qui ne renferme pas de réseau quadratique du premier
type.
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Remarque. — Cet exemple nous a été conununiqué par
M. Errera à la suite d'une communication que nous avons
faite à la Société Mathématique Suisse. Il n'appartient pas
au cas difficile et ne saurait aucunement infirmer notre théorie,

car il est exclu par la restriction 4). Le coloriage, à l'aide
de quatre couleurs, est d'ailleurs aisé.

Il suffit de transformer légèrement cet exemple, en lui
adjoignant une arête de plus, pour faire immédiatement
apparaître un réseau quadratique du premier type, ainsi que
le prouve la fig. 19.

Fig. 19.

§ 13 A propos d'un autre moyen d'étudier les réseaux cubiques.

Lorsque nous avons entrepris cette étude, l'existence d'un
réseau quadratique du premier type a immédiatement fait l'objet

de nos plus vives préoccupations. De suite, elle s'est affirmée

avec une singulière netteté. Nous pensions alors l'établir
en nous basant sur les propriétés des équations de M. Veblen,
ou plutôt sur celles du système fondamental de solutions. Cet
essai n'a pas été concluant. Il n'est cependant pas inutile
d'indiquer la voie dans laquelle nous nous étions engagé.

Les quantités a0, ax, a2 et par suite y étant fixées, il
existe différents polyèdres qui ne se distinguent les uns des

autres que par la forme de leurs faces. Les matrices R de

ces polyèdres ne sont pas sans marquer une certaine parenté
puisqu'elles se composent toutes de at lignes et de a2 colonnes.

Rappelons que dans une ligne d'une telle matrice, deux
éléments sont égaux à 1, tous les autres étant nuls. Dans
ces conditions, il devient intéressant d'envisager une
matrice qui comprend suffisamment de lignes pour que toutes
les dispositions possibles de ces éléments soient prises en
considération. On forme ainsi une matrice surcomplète dont le
nombre des colonnes est toujours a2, mais dont celui des

lignes est devenu V2 a2 (a2 — 1) • Or il suffit de supprimer
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dans des conditions convenables un nombre déterminé de lignes
de cette matrice surcomplète, et au besoin d'en répéter
quelques-unes, pour dégager la matrice R de l'un ou l'autre des

polyèdres qui comprennent at faces.
A ce propos, deux cas sont à considérer suivant qu'il est

nécessaire ou non de répéter une ou plusieurs lignes. Admettons

qu'il n'y ait pas de répétition. Les at lignes de la
matrice R sont toutes distinctes. Pour les obtenir, il est nécessaire

de supprimer v lignes de la matrice surcomplète, v étant
égal à :

v 1/2 a2 a2 — 1 — at
i/2 a2 - 3 a2 - 4

Dans le polyèdre ainsi caractérisé, deux faces ont au maximum

une arête commune.
Lorsque dans une matrice R des lignes sont identiques,

cela signifie que des faces du polyèdre correspondant ont en
commun deux ou plusieurs arêtes. Or, dans ce domaine, tous
les degrés d'arbitraire sont possibles. Il n'est par conséquent
pas aisé d'établir une théorie qui s'adapte à l'ensemble des

matrices qui rentrent dans cette catégorie. D'ailleurs ce cas
n'est pas intéressant, pour le but que nous nous étions
proposé, à savoir: le coloriage des faces d'un polyèdre. C'est la
raison pour laquelle nous l'avons ostensiblement laissé de côté.
Voilà comment nous avons été conduit à poser la restriction

4) aux conditions du § 8, disant que dans un polyèdre
considéré, deux faces contiguës n'ont qu'une seule arête
commune.

Planche XIX.

A titre d'exemple, nous avons représenté des réseaux de
7 faces dans les planches I à VI. Ceux qui satisfont à la
condition que nous venons de rappeler sont fixés par les planches

II, IV et VI. Nous les répétons dans les figures 1, 2, 3,

planche XIX, en numérotant leurs faces d'une façon arbitraire.
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La matrice surcomplète de 7 faces a la teneur suivante :

1.2 1 1 0 0 0 0 0
1.3 1 0 1 0 0 0 0
1.4 1 0 0 1 0 0 0

1,5 1 0 0 0 1 0 0
1.6 1 0 0 0 0 1 0
1.7 1 0 0 0 0 0 1

2.3 0 1 1 0 0 0 0
2.4 0 1 0 1 0 0 0
2.5 0 1 0 0 1 0 0
2.6 0 1 0 0 0 1 0
2.7 0 1 0 0 0 0 1

3.4 0 0 1 1 0 0 0

3.5 0 0 1 0 1 0 0

3.6 0 0 1 0 0 1 0
3.7 0 0 1 0 0 0 1

4.5 0 0 0 1 1 0 0
4.6 0 0 0 1 0 1 0
4.7 0 0 0 1 0 0 1

5.6 0 0 0 0 1 1 0
5.7 0 0 0 0 1 0 1

6.7 0 0 0 0 0 1 1

Le nombre v est ici égal à 6

Qn obtient la matrice R de la fig. 1, planche XIX, en

supprimant les lignes

2.3 2.4 2.5 3.5 3.6 4.6

celle de la fig. 2 en supprimant les lignes

1.6 1.7 2.5 2.6 3.4 3.6

et finalement celle de la fig. 3, en supprimant les lignes

1.7 2.4 2.5 3.5 3.6 4.6

On se rappelle d'autre part, que l'on passe d'une
matrice R à celle d'un système fondamental de solutions, par la

suppression de l'une de ses colonnes. Si alors l'on associe

entre elles les p. colonnes qui restent, de toutes les manières

possibles, en réduisant les nombres obtenus suivant le mo-
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dule 2;r on forme l'ensemble de toutes les solutions que possède

le système d'équations linéaires et homogènes (1).
Ce travail peut aussi s'effectuer sur les colonnes d'une

matrice surcomplète, après omission de l'une d'elles. On constitue

ainsi un grand tableau de 2!1 — 1 colonnes et de
1/2 a2 <x2 — 1 lignes, duquel on déduira celui de l'ensemble

des solutions d'un système (1), par la suppression des
v lignes dont il vient d'être question.

Il resterait à fixer les conditions auxquelles doit satisfaire
le choix des v lignes que l'on supprime. Nous ne voulons
cependant pas nous y attarder, quoique les considérations qui
découlent de cette étude ne soient pas dépourvues d'intérêt.
Seulement, nous n'avons pas réussi à trouver le moyen de

distinguer les réseaux quadratiques du premier type des
autres réseaux quadratiques. Telle est la raison pour laquelle
nous avo;is cherché une autre voie, celle des arbres linéaires
et superficiels.

§ 14. Réseaux cubiques tracés sur un tore.

Cette question ne nous retiendra pas longuement, car le

problème du coloriage des pays d'une carte dessinée sur un
tore est connu. On sait qu'il faut 7 couleurs. Mais ce qu'il
nous importe de faire voir, c'est qu'il serait impossible
d'appliquer au tore les méthodes que nous venons de développer
à l'égard de la sphère.

Le théorème d'Euler, généralisé pour le tore, donne en
effet la relation suivante :

a0 + a2 al

Il s'en suit que la frontière de tout arbre superficiel qui
comprend les a2 faces, est une configuration linéaire de

«o+l sommets. Or celle-ci n'est pas un arbre linéaire. Elle
renferme au contraire deux contours fermés linéairement
indépendants. La recherche d'un contour fermé unique qui
passerait par l'ensemble des sommets est ici chose illusoire.

* * *

Ce résultat négatif s'affirme avec plus de netteté encore,
si au lieu du tore on envisage des surfaces d'un ordre de

connexion plus élevé. Soit P cet ordre de connexion. La frontière

de tout arbre superficiel composé de la totalité des faces
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renferme P— 1 contours fermés linéairement indépendants,
ainsi que le montre la relation

o0 — «i + a2 3 — P
ou

a. — a2 — 1 a0 -f- P — 2 a0 — 1 + P — 1
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