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NEMOIRES E LA SOCIETE ONUDOISE DES SEIFNCES BATUREGLES

No 25 1932 , Vol. 4, No 2

Les réseaux cubiques
: et
Le probléme des quatre couleurs

PAR

Jules CHUARD

(Mémoire présenté a la séance du 3 féorier 1932,
publié avec Uappui financier de la Sociéié Académique Vaudoise)

—

INTRODUCTION

Le Probléme des quatre couleurs, souvent aussi dénommé:
Théoréme des quatre couleurs, s'est acquis une juste renom-
mée parmi les questions d’Analysis Situs, tant par la simplicité
de son énoncé, que par les difficultés qui se sont révélées a
- l'occasion de sa résolution.

On a constaté, d’'une facon expérimentale, que quatre cou-
leurs ont toujours été suffisantes jusqu'ici, pour colorier les
différents pays d’une carte terrestre,.de telle maniére que deux
pays voisins soient pourvus de couleurs distinctes. Il y a lieu
d’ajouter que 'on entend par pays voisins, des pays qui ont
une ligne frontiére commune. S’ils ne se touchent quen un
point, autrement dit s’ils n’ont qu'une borne coinmune, ils
ne sont pas considérés comme voisins et peuvent par consé-
quent recevoir la méme couleur.

La questlon suivante s’est alors posée :

Des régions de forme arbitraire et en nombre quelconque
étant disposées sur une sphére (ou sur un plan) sera-t-il pos-
sible dans tous les cas imaginables d’effectuer le coloriage
de ces régions a Uaide de quatre couleurs seulement?

Tel est 1'énoncé d’un probléme qui a été proposé au monde
mathématicien par le professeur Cayley, le 13 juin 1878,
dans une séance de la Société mathématique de Londres. On
en parlait certes antérieurement, mais son origine ne parait
pas pouvoir étre indiquée d’'une fagon précise.
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—

3 : Y
Dés lors, un grand nombre de spécialistes ont consacré 3
I'étude de cette question de sérieuses méditations. C’est ce qui
explique qu’'a I'heure actuelle sa bibliographie comporte . une
cinquantaine de mémoires, sans que l'on soit pour autant
parvenu a la justifier ou a l'infirmer.

Il est curieux de constater que le méme probléme posé
sur un tore, autrement dit sur un anneau, soil une surface
plus compliquée que la sphére, est résolu depuis fort long-
temps. On a montré en effet que, dans les cas les plus com-
pliqués, sept couleurs sont nécessaires et suffisantes pour as-
surer le coloriage de la carte dans les conditions requises.

Mais si 'on en revient au probléme de la carte sur une
sphére, on doit reconnaitre que les diverses publications, dont
on vient de rappeler la grande variété, ne furent pas inutiles.
Elles ont permis de déblayer le terrain, en ce sens que peu
a peu l'on a acculé la difficulté dans un type de carte d'un
caractére nettement défini. Cette carte est alors dénommée:
carte minima, carte normale, ou aussi carte appartenant au
cas difficile. ,

Une carte minima a ceci de particulier que chaque borne
sert de frontiére commune & trois pays distincts et a trois
seulement. L’ensemble des frontiéres constitue alors un sys-
teme de lignes qui est connu sous le nom de réseau cubique.
Or, tandis que nos prédécesseurs, en ce domaine, ont eu plus
spécialement en vue des méthodes de coloriage proprement
dites, nous nous sommes résolument écarté de cette voie, pour
nous attacher a l'étude des propriétés des réseaux cubiques,
des réseaux cubiques tracés sur une sphére, et enfin, de ceux
qui sont fournis par les cartes minima.

C’est en lisant la brochure de M. Veblen, que l'idée nous
vinl d’aborder cette étude. Nous avons été frappé par la
simplicité des résultats auxquels conduit I'application de la
méthode de cet auteur en ce qui concerne la réduction d’un
réseau cubique donné en un réseau linéaire et un réseau qua-
dratique, ainsi que de l'importance que:présente, au point de
vue du coloriage, une classification des réseaux quadratiques
issus de cette réduction. Ce début nous a d’ailleurs valu une
Note a I’Académie des Sciences de Paris.

Mais cette méthode, malgré des avantages incontestés, ne
nous a pas permis de résoudre l’ensemble des difficultés que
comporte la question. Pour en venir a bout, nous nous vimes
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dans l'obligation, 4 un moment donné, de faire intervenir des
propriétés assez peu connues des arbres linéaires et superfi-
ciels. | o F

Nous justifions ainsi, d’'une fagon affirmative, le pi‘obléme
des quatre couleurs, en indiquant du méme coup une mé-
thode de coloriage: qui convient aux cartes minima. Les dif-
férents pays de la carte sont répartis en deux arbres superfi-
ciels distincts, grice & un contour . fermé unique, qui ren-
contre tous les sommets du réseau cubique donné. Et comme
deux couleurs suffisent pour distinguer les pays de chaque
arbre superficiel, la carte elle-méme est coloriée a 1'aide de
quatre couleurs.

Il est clair que si la carte originale n’appartient pas au
cas difficile, on commencera par lui faire subir les trans-
formations d'usage, qui la rendront carte minima, c’est-a-dire
apte A recevoir l'application de notre méthode. Aprés quoi,
par une série d’opérations inverses, on reviendra a la carte
donnée, laquelle sera entiérement coloriée a l'aide de quatre
couleurs. . .

Pendant la préparation de ce travail, nous avons fait les
communications orales suivantes :

1. Société vaudoise des Sciences naturelles, séances du 5 juil-
let 1922, 3 décembre 1924, 3 février 1932.
2. Société mathématique suisse, séances du 26 aoGt 1922,

6 mai 1923.

3. Colloque mathématique des Universités de la Suisse ro-

mande, & Genéve, le 17 février 1923.

4. Cercle mathématique de Lausanne, séance du 20 juin 1930.

La Note qui a paru dans les Comptes Rendus de I'Aca-
démie des Sciences, en date du 8 janvier, est intitulée:

Quelques propriétés des réseaux cubiques tracés sur une
sphére. ' ‘

La bibliographie, dont nous nous sommes servi, est res-
treinte. Il convient de citer :

1. O. VeBLEN: An Application of modular Equations in Ana-
lysis Situs, (Annals of Mathematics, Princeton, 1912).
2. A. Errera: Du coloriage des cartes et ‘de quélques ques-
tions d’Analysis Situs (Paris, 1921).
3. JuLes CHuarp: Questions d’Analysis Situs (Rendiconti del
Circolo Matematico di Palermo, 1922).
A ces ouvrages, nous ajouterons les deux fascicules XVIII
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et XLI du Mémorial des Sciences mathématiques qui donnent
un apercu trés complet sur I'état de la question au moment
de leur publication. Le second, en particulier, mentionne
43 auteurs et 53 travaux sur le probléme des quatre couleurs.
Il nous dispensera de faire d’autres citations.
4. A. Sainte-Laciie: Les Réseauz. Fascicule XVIII. 1926.
5. A. Sainte-Lacie: Géométrie de situation et jeuw.
Fascicule XLI. 1929.

§ 1. Les Réseaux.

Nous avons défini antérieurement ce que 1'on entend par
configuration linéaire1 ou réseau. Rappelons-en briévement
les fondements.

Une aréte est un segment linéaire, soit un arc de courbe
de Jordan, ou encore un lien simple ouvert. Elle est limitée

a ses extrémités par deux points appelés sommets. Les sommets
font partie de I'aréte qu’ils limitent, mais ils sont dits points
extérieurs, par opposition aux autres points de I'aréte, lesquels
sont dits points intérieurs. |

Tout ensemble d’arétes, en nombre fini, tel qu'un point
intérieur de l'une n appartlenne jamais A une autre aréte de
'ensemble, constitue ce que l'on nomme une configuration
linéaire, un réseau ou un assemblage (graph en -anglais).

Nous désignerons par o, le nombre de ses arétes et
ay celui de ses sommets. Le réseau est alors dit d’ordre o,

On entend par degré d’un sommet, le nombre des arétes
du réseau qui aboutissent a4 ce sommet. Un sommet de de-
gré 1 sera dit sommet libre. 1l sera dit de liaison, lorsque
son degré est supérieur a 1. Nous conviendrons encore de
nommer bifurcation un sommet (de liaison) dont le degré
est égal a 3.

Si- tous les sommets d'un réseau ont le méme degré, le
réseau est dit homogéne. Un réseau homogéne du premier
degré est appelé réseau linéaire. Il ne renferme que des som-
mets libres. Il est donc représenté par un certain nombre
d’arétes isolées. Et puisque chaque aréte a pour frontiére deux
sommets, on a l'égalité

0y =,2 ay

t J. CHuarp : Loc. cit. 3.
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-

Un réseau homogéne du second degré est un réseau qua-
dratique. Chacun de ses sommets sert de liaison & deux arétes
du réseau. Celui-ci comporte ainsi un ou plusieurs contours
fermés, isolés les uns des autres. Il est tel que l'on a 1'égalité:

Un réseau homogene du troisiéme degré est dit cubzque
Chacun de ses sommets est une bifurcation. On a ainsi I'éga-
lité:

o o= 20,

Un réseau homogeéne d’ordre oo et de degré k, décompo-
sable en deux réseaux de méme ordre ap et de degrés m
et n, tels que l'on ait m-+n=k, est nommé réductible.
Dans le cas contralre il est zrreduct:ble ou pnmztzf

Disons encore qu’un réseau est dit connexe si, étant don—
nés deux sommets quelconques de celui-ci, il est possible de
trouver un certain nombre d’arétes du réseau telles que l'on
puisse, en suivant ces arétes, passer de l'un des sommets
considérés a l'autre. Si cette opération n’est pas réahisable,
le réseau est dit: non connezxe. |

D’aprés Petersen, une feuille est une partie d'un réseau
maintenue en connexion avec l’ensemble par une aréte uni-
que, laquelle est alors appelée isthme. -

11 est intéressant de mentionner le théoréme suivant, connu
sous le nom de théoréme de Petersen, dont la démonstration
se trouve dans plusieurs des ouvrages cités par M. Sainte-
Lagiie. Nous I'admettrons donc sans autre.

Un réseau cubique irréductible posséde au moins trois
feuilles. :

De ce théoréme, on déduit le suivant, d’une portée tout
aussi générale, et d’une application plus immeédiate:

Un réseau cubique, sans feuille, est toujours réductible.

Ajoutons enfin que la réductibilité d’'un réseau cubique
s'opére de maniére A faire apparaitre, d’'une part un réseau
linéaire, et de l'autre un' réseau quadratique. Parfois le ré-
seau quadratique est lui-méme réductible 'en deux réseaux
linéaires. Si cela est; le réseau cubique initial est alors ré-
ductible en trois réseaux linéaires. Cette derniére proprlete
est connue sous le nom de théoréme de Tait.

"Il est utile de définir quatre types de configurations linéai-
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res connexes qui se rencontrent dans les réseaux et dont nous
ferons un grand usage. . .k E

a) Contour fermé. Un contour ferme est un réseau quadmtt-
que connexe.

Le nombre des arétes d'un contour fermé est égal a ce-
lui de ses sommets. Ce nombre sera au minimum égal a 2,
car nous admettrons qu'une aréte a toujours ses deux extré-
mités distinctes. On pourrait concevoir un contour fermé qui
ne serait constitué que par une seule aréte dont les extré-
mités seraient confondues en un sommet unique. Si nous ne
le faisons pas, c'est que nous n’y voyons aucun avantage et
que, par contre, un inconvénient se révélerait dans lemp101
des matrices que nous définissons plus loin.

b) Contour ouvert. Si d’un contour fermé, on supprime une
ou plusieurs arétes reliées les unes aux autres, on obtient un
contour ouvert. :

Un contour ouvert de n — 1 arétes renferme n sommets.
c) Arbre linéaire. Un arbre linéaire est une configuration
linéaire connexe qui ne renferme aucun contour fermé.

Un arbre linéaire comprend n — 1 arétes reliant entre
eux n sommets donnés. Ces n — 1 arétes constituent un nom-
bre minimum d’arétes nécessaires a la liaison des n sommets.

Bien souvent on désigne briévement un arbre linéaire sous
le nom d’arbre.

Un contour ouvert est un arbre d'une forme spéciale,
caractérisée par la présence de deux sommets libres et de
n — 2 sommets de liaison qui sont tous de degré 2. En gé-
néral, un arbre a plusieurs sommets libres et des sommets
de liaison d’'un degré supérieur a 2.

Rappelons en passant la proposition su:vante qui est bien
connue :: :

Il est poss:ble de transformer en un - arbre linéaire un
réseau connexe de oo sommets et de o, arétes, par la sup-
pression de p arétes convenablement choisies,

p=o0; —a++1.

d) Contour bouclé. Une configuration linéaire connexe ayant
un égal -nombre de sommets et d’arétes, et qui n’est pas un
contour fermé, est un contour bouclé.

Un contour bouclé résulte de I'association d’un contour
fermé et d’'un’ou plusieurs arbres linéaires, a la condition bien
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entendu, que la soudure de ces différents types de configu-
rations linéaires, n’entraine pas la formation d'un second con-
tour fermé.

§ 2. La matrice A.

Il est possible de caractériser un réseau a l'aide d'une
certaine matrice, introduite par M. Veblen! sous le. nom de
matrice A.

Soit un réseau comprenanl oy sommets et a, arétes. Les
frontiéres de chacune des a, arétes sont constituées par deux
sommets pr1s parm1 les oy sommets considérés. Numérotons
sommets et arétes dans un ordre arbitraire et désignons:

les sommets par a, aj, ..... 1 - SO ; Al
et les arétes par al, 31 ..... ,al, ... , a; .

Soit maintenant r; un nombre qul est égal a 1 s1 le som-
met aj est frontiére de l'aréte aj et qui est nul dans tous
les autres cas. Rangeons ces nombres en un tableau rectan-
gulaire de o, lignes et a, colonnes en admettant que la ligne
de rang i corresponde au sommet aj , tandis que la colonne
de rang j correspond & l'aréte aj . Le tableau ainsi formé
est la matrice A. |

L’on peut remarquer que dans cette matrice:

1o chaque colonne renferme deux nombres ,n}j égaux a 1
et deux seulement, car elle correspond a4 une aréte qui a par
définition ses extrémités distinctes.

20 la quantité de nombres nj; égaux a 1 que renferme une
ligne indique le degré du sommet correspondant, soit le nom-
bre d’arétes qui aboutissent a4 ce sommet. Ainsi la ligne qui
correspond a4 un sommet libre ne contient qu'un seul nom-

Matrice A . a, a,a,3a.a

a, a0
| 1o li0o0

' AL

s a; 0
ailo

Fig. 1. — Réseau non connexe.

' O. VeEBLEN : Loc. cit. 1.
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bre n;; différent de zéro; celle qui correspond a un sommet
de degré 2 en contient deux, etec.

Si d’une part, a un reseau correspond une matrice A,
de l'autre, a une matrice A qui renferme des nombres zéro
et un, et qui satisfait a la condition 1o ci-dessus, correspond
un réseau bien déterminé. Une matrice A peut donc servir
a définir un réseau.

Lorsqu'un réseau n’est pas connexe, il est possible de nu-
méroter ses éléments, sommets et arétes, de telle fa(;on que
la matrice A correspondante apparaisse aussi comme formeée
de matrices separees Nous nous bornerons a mettre ce falt
en évidence a l'aide de l'exemple fig. 1.

§ 3. Les pr—opriétés de la matrice A.

Nous. disons qu’un déterminant est extrait de la matrice A,
s'il est formé de certaines colonnes et d’autant de lignes de
cette matrice.

Pour rechercher la valeur d’'un déterminant extrait de la
matrice A, comme pour déterminer le rang de celle-ci, on
est conduit & effectuer des opérations arithmétiques qui peu-
vent se résumer de la facon suivante :

lo additionner deux lignes ou deux colonnes entre elles,

20 multiplier les termes d’une ligne ou d'une colonne par
un certain facteur.

Nous admettrons alors que les combinaisons des nom-
bres »; qui en résultent, seront tou;ours réduites selon le mo-
dule .2. En d’autres termes, nous n’aurons a appliquer que
les quatre genres d’addition :

1+1=0, 140=1, 04+1=1, 04+0=0
et les quatre genres de multiplication :
0.1=0, 00=0 1.1=1, 1.0=0,

De cette facon, non seulement _les nombres r,}j , mais en-
core tous ceux qui en résulteront par suite des combinaisons
1o et 20 ne prendront pour valeur que zéro ou un.

Il est particuliérement intéressant de rechercher la valeur
d’un déterminant dont les lignes et les colonnes correspon-
dent respectivement aux sommets et aux arétes de chacun
des types de configurations linéaires connexes que nous avons

définis plus haut. A ce propos, on remarquera que le nom-
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.

bre des sommets d'un contour fermé ou d'un contour bou-
clé est égal a celui de ses arétes. Par contre, dans un contour
ouvert et dans un arbre, le nombre des sommets surpasse
d'un celui des arétes. Or un déterminant a un nombre égal de
lignes et de colonnes. Il est donc nécessaire, pour établir la
correspondance qui doit exister entre une de ces configura-
tions linéaires et un déterminant, de négliger un sommet. Nous
abandonnerons ainsi momentanément un sommet libre. Re-
marquons que ce faisant on n’altére pas la nature de la con-
figuration considérée. Il n’est peut-étre pas inutile d’ajouter
que si l'on avait supprimé un sommet de liaison, on aurait
fractionné I'arbre en deux ou plusieurs parties, chacune d’el-
les étant encore un arbre amputé d’'un sommet. Il y aurait
alors lieu de rechercher la valeur du déterminant correspon-
dant & chaque arbre partiel, pour en déduire celle du déter-
minant qui correspond a l'arbre considéré. C’est la régle du
développement de Laplace qui interviendrait dans ce cas.
Les propositions suivantes sont fondamentales :

Proposition 1. La valeur de tout déterminant extrait de la
matrice A est zéro ou un.

C’est la conséquence naturelle de la convention que tou-
tes les opérations se font suivant le module 2.

Proposition I1. Tout déterminant correspondant d un contour
fermé est nul.

Dans chaque ligne (colonne) du déterminant, il y a deux
nombres n; égaux a 1, les autres étant nuls. La somme de
loutes les lignes (colonnes) est identiquement nulle (mod. 2).
Le déterminant est donc nul.

Proposition Ill. Tout déterminant qui correspond d un con-
tour bouclé est nul.

On sait qu’un. contour bouclé renferme un contour fermé.
Imaginons qu’il y ait p arétes dans le contour bouclé et que
n de celles-ci contribuent & la formation du contour fermé.
Numérotons tout d’abord les éléments du contour fermé de
1 & n, puis les éléments restants du contour bouclé de n -1
a p. Le déterminant qui en résulte prend une forme particu-
liére, et il suffit de lui appliquer la régle de Laplace pour
constater qu’il est nul.
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Proposition 1V. Tout déterminant qui correspond d un con-
tour ouvert est égal a 1.

a; ||
as|!
ajlo 1 1il oo
~a;lo o o:l
a;{o o oo
ajlo 0 0:0

Fig. 2. — Contour bouclé.

Il est toujours possible de disposer de la notation des
éléments d'un contour ouvert de facon que, lorsque l'on par-
couri cette configuration d’un bout a l'autre, on rencontre
successivement: ' '

al

0
a 2?7,

0 1
°, ad, ..... , a

e 2 ,ag ;
Imaginons que l'on supprime le sommet a,. Le déterminant
qui correspond au contour ouvert ainsi tronqué est tel que
les termes de sa diagonale principale aient pour valeur l'unité,
tandis que ceux qui se trouvent placés au-dessus de cette
diagonale sont nuls. Le déterminant est donc bien égal a 1.
Si 'on avait abandonné un sommet de liaison, le contour
ouvert se serait partagé en deux autres contours ouverts ayant
le méme caractére que celui que nous venons d’examiner. Les
déterminants correspondant & chacun d’eux seraient égaux a 1,
et il en serait ainsi du déterminant d’ordre n — 1, en vertu

de la régle de Laplace.

Fic. 3. — Contour ouvert.

Proposition V. Tout déterminant qui correspond a un arbre
linéaire est égal a 1.

Une notation spéciale des éléments de l'arbre facilite sin-
guliérement’ la démonstration.
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Un arbre renferie plusieurs sommets libres. Désignons P'un
d’eux par a; et soit a; 'unique aréte qui aboutit a a . Ima-
ginons que I'on supprime momentanément ces éléments: sommet
et aréte. La configuration qui subsiste est encore un arbre.
Soient a; un de ses sommets libres et a; l'aréte aboutissant
a a) . Supprimons ces éléments, il subsiste encore un arbre.
On peut poursuivre le raisonnement qui’ précéde jusqu’'a épui-
sement des arétes; la derniére, soit la n — léme sera limitée
par les sommets a’_, et a . Par ce procédé chaque aréte se
trouve linitée par le sommet de méme rang et par un autre
sommet d’un rang posterleur

Si maintenant I'on supprime le sommet a’, le déterminant
qui correspond & cet arbre a tous ses termes de la diagonale
principale égaux & 1, tandis que ceux qui se trouvent placés
au-dessus: de cette diagonale sont nuls. Sa valeur est donc
égale a 1.

-
-
-
-
L

a""I az a3 a: as as a‘1
a; |l ooooo0o0
a; (ol oo o000
|l Il 1l oooo
a,|loool|l ooo
atjlooool oo
elooool o
ajool | oI |

Fic. 4. — Arbre lindaire.

Remarque. 11 n’est peut-éire pas inutile de dire que la va-
leur d'un déterminant ne dépend pas de la .notation choisie.
Car modifier la notation des sommets ou des arétes revient
a intervertir certaines lignes entre elles ou certaines colonnes
entre elles. Ce sont la des opérations qui n’altérent pas la
valeur absolue d'un déterminant, la seule qui nous intéresse
icl.

Proposition VI. Le rang de la matrice A d’un réseau connezxe
d’ordre o, est ay— 1.

En effet, si le réseau est connexe, il existe au moins
un arbre, formé de o, — 1 arétes, qui relie entre eux les
ao sommets. A cet arbre correspond un déterminant d’ordre

— 1 qui est égal & 1. Le rang de la matrice A est donc
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au moins égal a o, — 1. Mais, puisque chacune -des colon-
nes de cette matrice contient deux nombres ny; égaux a 1; la
somme de toutes ses lignes est identiquement nulle. Son rang
est -donc bien érieur a o, ; il est ayg — 1.

§ 4. Equations et solutions.

M. Veblen a imaginé d’associer a chaque ligne de la ma-
trice A une équation linéaire et homogéne. Rappelons que
la ligne de rang i de cette matrice comprend les nombres :

(1) i X vy Ty .. + fy, Ty, =0 (mO(,i,‘ 2)
(==L, ,2, 5500 s O )

Il existe o, équations de la forme (1). Elles constituent
un systéme de o, équations linéaires et homogénes «, incon-
nues. Nous nommerons ce systéme: le systéme (1).

Chaque inconnue z; du systéme (1) est liée a l'aréte de
méme indice. La valeur qu’elle peut prendre, comme d’ailleurs
son coefficient, est toujours un entier réduit selon le module 2

Lorsque z;=1, nous conviendrons de dire que l'aréte a;
est prise tout particuliérement en considération, ou qu’elle
est parcourue une fois dans n'importe quel sens. Si au con-
traire, £; = 0 nous dirons que l'on a momentanément négligé
Paréte aj. Cela revient 4 mettre en évidence, dans une opé-
ration déterminée, les arétes du réseau qui sont marquées
d’une valeur 1, tandis que l'on fait abstraction de celles qui
sont marquées dun zéro.

Le systéme (1) a le rang de la matrice de ses coefflclents,
c’est-a-dire oy — 1.
~ Résoudre le systéme (1), c’est rechercher la valeur de o, — 1
de ses inconnues en fonction des autres; mieux, c’est compo-
ser un systéme fondamental de solutions. Dans ce but, nous
allons effectuer sur les lignes et les colonnes de la matrice A
certaines opérations arithmétiques que nous préciserons en in-
diquant une méthode de résolution. '

L’on prend a; — 1 lignes de la matrice A et l'on per-
mute, cas échéant, quelques-unes de ses -colonnes de facon
que le déterminant d’ordre o, — 1, qui comprend les a; — 1
premiéres colonnes, soit différent de zéro. Il est d’ailleurs
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toujours permis de supposer que la notation des arétes a été
choisie de telle maniére que ces permutations ne soient pas
nécessaires. Désignons par A ce déterminant. '

Par des combinaisons linéaires de lignes, on peut rempla-
cer le déterminant A par un autre A’ dans lequel les seuls
termes qui ne sont pas nuls, se trouvent placés le long de sa
diagonale principale. Ce but est toujours accessible, puisque
chaque colonne du déterminant A renferme un. ou au maxi-
mum deux nombres nj ‘égaux a 1.

Si maintenant, lon écrit une équation linéaire et homo-
géne avec chacune des lignes de la matrice ainsi transformée,
on obtient un systéme d’équations (2) qui est équivalent au
systéme (1). Mais dans le systeme (2), on trouve immédia-
tement la valeur des oy — 1 premiéres inconnues en fonction
des inconnues restantes. Celles-ci sont d’ailleurs au nombre
de p=o0a; —a;+ 1. En particulier, on obtient une solution
‘du systéme (2), partant du systéme (1), en attribuant a l'in-
connue z, (oy<r<a;) la valeur 1, tandis que l'on pose

I'SZO (S:GO,GO+.1,...,r""-l,r_l—lyo--:a'l‘)'

Ce procédé permet de déduire p solutions, en nombres
zéro et un, du systéme (1), qui différent toutes entre elles
au moins par la valeur de l'inconnue z, . Ces solutions sont
linéairement indépendantes. El comme toutes les autres so-
lutions du systéme (1) peuvent s'obtenir 4 l'aide de celles-ci
par des combinaisons linéaires, i1l s’en suit que le systéme
de ces solutions est un systéme fondamental de solutions du
systéme (1). |

Si I'on dispose des valeurs de ces solutions dans un tableau
rectangulaire de o, lignes et de pu colonnes, on forme une
matrice de solutions que, par analogie avec ce qui est dit
ci-dessus, nous nommerons matrice fondamentale de solutions.
Chaque ligne d'une matrice de solutions correspond a une
inconnue z; et chaque colonne a une solution.

Pour un systéme d’équations (1) déterminé, il n’existe
pas seulement une matrice fondamentale de solutions. Au
contraire, tout ensemble de p solutions linéairement indé-
pendantes forme un systéme fondamental et donne lieu a
une matrice fondamentale. Celle que nous avons obtenue plus
haut se distingue des autres par le fait que le déterminant d’or-
dre p qui est constitué par ses p colonnes et ses p derniéres
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lignes ne présente des termes différents de zéro que suivant
sa diagonale principale. C'est la une conséquence du procédé
de résolution adopté.

Si l'on désire obtenir l'ensemble des solutions du -sys-
ttme (1), on doit envisager toutes les combinaisons’ possibles
de ces p solutions entre elles (0a0,1a1l,...,pap). Le
total de ces solutions est ainsi la somme des coefflments du
binome, soit 2. C’est donc un nombre fini.

On aurait pu choisir d’autres méthodes de resolutlon du
systéme (1), et parvenir différemment a I’établissement d’un
systtme fondamental de solutions. Nous avons envisagé celle
qui précéde parce qu’elle conduit a une interprétation géo-
métrique simple de ses résultats.

En effet, au déterminant A qui est égal a 1, correspond
un arbre linéaire. Cet arbre comprend les arétes al, al,....,
‘aL,_, qui relient entre eux les o, sommets du réseau. Si l'on
associe a cet arbre n’importe laquelle des autres arétes, on
le transforme en un contour bouclé, lequel renferme un con-
tour fermé unique. Or c’est précisément ce que I'on fait lors-
quon considére la solution particuliére xz,= 1. Mais nous
allons voir que du méme coup, tous les embranchements ar-
borescents disparaissent pour ne plus laisser subsister que
le contour fermé.

Remarquons tout d’abord qu’'un contour bouclé présente
nécessairement un sommet libre. Soit a) ce sommet, par le-
quel ne passe qu'une aréte du contour bouclé. Désignons cette
arétc par a},. La solution considérée satisfait a toutes les équa-
tions du systtme (1), donc en particulier a l'équation de
rang m . Mais dans celle-ci, seule la valeur x, serait égale
a 1. Les autres quantités x; sont nulles puisqu’elles correspon-
dent 4 des arétes qui ne font pas partie du contour bouclé.
Cette équation ne serait donc pas satisfaite. Pour qu’elle le
soit, il est nécessaire que x, soit égale a zéro et que par suite
Paréte a}, qui aboutit au sommet libre aj du contour bouclé
disparaisse. ‘

Cette amputation se poursuit tant qu’il existe un sommet
libre au contour bouclé. 11 ne subsiste plus finalement qu’un
contour fermé. L’inconnue x; correspondant a chacune des
ardtes de ce contour est marquée d'un 1, tandis que toutes
les autres inconnues sont nulles. Dans I'équation de rang i
du systéme (1), les z; seront toutes nulles si le sommet af
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n’appartient pas au contour fermé; l'équation sera donc iden-
tiquement satisfaite. Si, au contraire, a/ est un sommet de
ce contour, deux z; et deux seulement prendront la valeur 1,
les autres étant nulles. L’équation sera satisfaite (mod. 2).
Ces considérations conduisent aux propositions suivantes :

Proposition VII. A chaque solution du systéme fondamental
que nous avons obtenu plus haut correspond un contour fermé
unique.

Proposition VIII. Réciproquement @ tout contour fermé cor-
respond une solution du systéme (1), (en nombres zéro et un).

Les p solutions d’un systéme fondamental étant linéaire-
ment indépendantes, nous conviendrons de dire que les p
conlours ]‘ermés correspondants sont linéairement indépendants.
On peut ainsi parler indifféremment de la SOlllthll ou du con-
tour qui lui' correspond. :

Il est parfois possible d’envisager simultanément sur un
réseau deux (ou plusieurs) contours fermés distincts. A cha-
cun d’eux correspond une solution du systéme (1). Il en sera
de méme de leur ensemble, d'ou la proposition :
Proposition 1X. A toute solution du systéme (1), correspond
un ou plusieurs contours fermés. :

Ajoutons encore que deux contours fermés qui corres-
pondent & une méme solution ne peuvent avoir une aréte
commune. Si en effet c’était le cas, 'inconnue x; correspon-
dant i cette aréte prendrait la valeur 1 pour l'un et pour
I'autre des deux contours, soit en tout deux fois. Mais comme
2 est congru a zéro (mod. 2), x; doit s’annuler. De la sorte
aréte a; ne peut faire partie 4 la fois de deux contours fer-
més correspondant a une méme solution.

Remarque. Pour que p solutions constituent un systéme
fondamental de solutions du systéme (1), il n’est pas néces-
saire qu’'a chacune d’elles corresponde un contour fermé uni-
que; il suffit qu’elles soient linéairement indépendantes. Mais
ce qui précéde montre que 'on peut dans chaque cas former
un systéeme fondamental ayec p solutions telles que chacune
d’elles corresponde & un seul contour fermé.

Nous appliquerons ces considérations au cas du tétraédre :
Uy == 4 y Oy = 6.
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t A
2,8,3,3,3,3,
ai [l oool I}
a; jol o lo
(ool I ol
& |l 1 1ooo
Fic. 3. — Le Tétraédre.
On en déduit le systéme (1) :
. .'171+ +$5+-’L’3=0 \
, T+ +txTit w5 =0 "
1) ¢ 2 e mod. 2
W o +a o+ ag=0 (M4 P)
Xy T Tz -+ T =0
et par suite :
\$1= L5+ T

$ g= Ty + Ty ( (mod. 2)
/ Tyg==XTy+ -+ X S

L’ensemble des solutions du systéme (1) est contenu da‘ﬁs
le tableau : '

2 3 3 2

012 3 112 1
¢, |0 0 1 1 11 0.0
2, 10 1 1 0 0 1 1 0
z, |0 1 01 1 0 1 0
2, {0 1 0 0 1 1 0 1
z, |0 0 1 0 1 0 1 1
'z |0 0 01 0 1 1 1

§' 5. Configurations superficielles.

Nous avons étudié jusqu'ici quelques propriétés des ré-
seaux envisagés comme systémes .de lignes, indépendamment
des surfaces sur lesquelles ils peuvent étre tracés. La ndture
de la surface toutefois qui supporte un réseau ne saurait
demeurer indifférente aux propriétés de ce dernier. Car tel
réseau que l'on rencontre sur une surface d'un certain genre,
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ne se retrouve pas sur une surface d'un autre genre. Il y a
donc un intérét évident a étudier les propriétés d'un réseau
en rapport avec celles de la surface qui le supporte. C'est une
telle étude que nous allons aborder dans les pages suivantes.

Sans restreindre la généralité du sujet, on peut faire quel-
ques conventions qui sont de nature a préciser les formes
avec lesquelles on désire travailler. ’

Un réseau tracé sur.une surface la subdivise en un cer-
tain nombre de régions que nous désignerons indifféremment
sous le nom de faces ou de pays. La surface ainsi subdivisée
prend le nom de polyédre ou celui de carte.

Dans la suite, nous admettrons que : '

1o Les surfaces considérées dans cette étude sont des sur-
faces fermées bilatéres qui ne présentent pas de lignes singu-
liéres. | |

20 Une face est toujours simplement connexe. Elle est
limitée par un contour fermé unique. Nous dirons que ce
contour fait partie de la face qu’il limite, mais que ses points
sont extérieurs a la face, par opposition aux autres points
de celle-ci, qui sont dits: points intérieurs.

Il résulte de la facon dont un polyédre a été obtenu qu’un
point intérieur d’une face n’appartient jamais a une autre face.
Deux faces contigués ont en commun les points extérieurs
qui font partie d'une ou de plusieurs arétes de leur fron-
tiere. _ '

Nous conviendrons encore de dire que tout ensemble de
faces telles qu'un point intérieur de l'une n’appartienne ja-
mais 4 une autre face de l’ensemble, est une configuration
superficielle. L’étude de ces derniéres n’est guére avancée. On
peut cependant l'entreprendre dans le méme esprit que celle
des configurations linéaires. C'est ce que nous avons fait
" dans un travail déja cité: Questions d’Analysis situs. Rap-
pelons-en les fondements.

Considérons tout d’abord une face isolément. Sa frontiére
comprend un certain nombre d’arétes. Chacune de celles-ci
n’appartient pour linstant qu’'a une face. Nous dirons que
ces arétes sont de degré 1 ou aussi que ce sont des arétes
libres. " |

Soient maintenant deux faces soudées entre elles le long
d’'une aréte commune. Cette aréte appartient a la fois aux
deux faces. C’est une aréte de liaison; elle est de degré 2.

MEMOIRES SC. NAT, 23 6



58 MEMOIRES DE LA SOC. VAUD. DES SCIENCES NATURELLES

Toutes les autres arétes de la frontiére de I'une ou de lautre
des deux faces sont demeurées des arétes libres.

On peut concevoir des configurations superficielles dans.
lesquelles une aréte sert de liaison & un nombre de faces
supérieur 4 deux. On y est conduit tout naturellement lors-
que l'on étudie les exemples cités par Poincaré dans ses Com-
pléments a I'’Analysis Situs, et que l'on cherche a illustrer
geometrlquement les coefficients de torsion.d’une variété d’un
espace 4 quatre (ou plus) dimensions. Mais cette disposition
ne se présente pas avec des faces d'un polyédre de l'espace
usuel. Nous n’aurons donc pas l'occasion de l'envisager dans
cette étude. :

Il sera ainsi entendu que, quoiqu'il ex1ste des arétes de
liaison d'un degré supérieur, nous n’étudierons ici que des
configurations superficielles dont les arétes de liaison sont
de degré 2. |

Ajoutons encore qu "une conflguratlon superficielle est dite
connexe si, étant données deux faces quelconques de la confi-
guration, il existe un certain nombre de faces et d’arétes de
liaison telles, que l'on puisse, en se déplagant sur ces faces
et en traversant ces arétes, tracer sur la configuration une
ligne continue qui relie un point intérieur de la premiére
face a un point intérieur de la seconde.

Ainsi la connexion d'une configuration superficielle esl
différente de celle d'un réseau. Par exemple, un réseau peut
étre connexe sans que la configuration superficielle a laquelle
il sert de frontiére le soit. C’est ce que nous montrons dans
la fig. 6: la configuration superficielle comprend deux faces
et quatre arétes; elle n’est pas connexe. Par contre le réseau,
formé de quatre arétes et deux sommets, est connexe.

Nous nous proposons maintenant de définir quelques ty-
pes de configurations. superficielles connexes.

a) Chaine fermée. Une chaine fermée est un ensemble de
faces tel que chacune d’elles soit contiqgué d deux faces de
U'ensemble et @ deux seulement.

Imaginons qu'une chaine fermée se compose de n faces.
Ces faces sont soudées les unes aux autres le long de n arétes
de liaison. Les autres arétes de leurs frontiéres sont des arétes
libres. Elles constituent entre elles deux contours fermés.

o /.)Odj/
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Dans les six figures .7 a 12, les arétes de liaison sont
marquées en traits renforcés.

b) Neud superficiel. Nous réservons ce nom d une chaine
fermée dont toutes les aréles de liaison convergent en un
méme sommet. : _

La frontiére d'un nceud superficiel ne comprend qu’un
contour fermé. : |

Fig. 6. Fic. 7. Fie. 8.
Configuration superfi- Chaine fermée, : Neeud superficiel.
ciellc non connexe.

c) Chaine ouverte. Si d’une chaine fermée ou d’un neeud su-
perficiel, on supprime une ou plusieurs faces en connexion,
on forme une chaine ouverte.

~ On constate que la suppression de la premiére face trans-

forme deux arétes de liaison en arétes libres et que la dis-
g - r A ] : A

parition de chaque face subséquente entraine celle d’une aréte
de haison. Il y a donc dans une chaine ouverte une aréte de
liaison de moins qu’'elle ne comprend de faces. De plus, la
frontiére d’une chaine ouverte se compose d'un seul contour
fermé. |

d) Arbre superficiel. Un arbre superficiel est une configura-
tion superficielle connexe qui ne renferme ni nceud superfi-
ciel, ni chaine fermée.

Fig. 9. — Chaine ouverte, Fig. 10. — Arbre superficiel.
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Si un arbre superficiel comprend n faces, celles-ci sont
maintenues en connexion par n — 1 arétes de liaison. Sa fron-
tiere comprend un seul contour fermé. Une chaine ouverte
est un arbre superficiel d’'une forme particuliére. |

e) Chaine bouclée. Une chaine bouclée résulte de la composi-
tion d’une chaine fermée et d’'un ou de plusieurs arbres su-
perficiels. 1l est toutefois entendu qu’aucune nouvelle chaine
fermée ne doit naitre de ces soudures.

Une chaine beuclée posséde le méme nombre d’arétes de
liaison que de faces. Sa frontiére comprend deux contours
fermeés. |

Fiec. 11. — Chaine bouclée. -F[G. 12. — Nceud bouclé.

f) Neeud bouclé. La configuration superficielle précédente de-
vient un neeud bouclé si, a la chaine fermée on substitue un
neeud superficiel.

Le noceud bouclé a les mémes caractéres qu'une chaine
bouclée, sauf qu’il est limité par un seul contour fermé.

Le but de cette étude étant le coloriage des cartes, il est
naturel que nous recherchions le nombre de couleurs qui sont
nécessaires pour colorier chacun des types de configurations
superficielles que nous venons de définir. Considérons-les suc-
cessivement : :

1o Chaine fermée et nceud superficiel. Le nombre des
faces d’une pareille configuration peut étre pair ou impair. S’il
est pair, on peut assigner a chaque face un numéro 1 ou un
numéro 2, et ceci de facon que toute face marquée 1 soil
contigué A deux faces marquées 2, et inversement. Les faces
de méme indice n’étant pas contiguds, le coloriage est possible
a I'aide de deux couleurs. (Exemple, fig. 8.)

Si le nombre des faces est impair, il est possible d’opérer
comme ci-dessus, sauf pour une face qui se trouve contigué
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a la fois a une face marquée 1 et & une face marquée 2.
Une troisiéme couleur est donc nécessaire pour colorier cette
face. (Exemple, fig. 7.)

20 Chaine ouverte et arbre superficiel. Dans un arbre su-
perficiel, on peut noter d'un indice 1 une face quelconque.
Toutes les faces qui lui sont contigués seront marquées d’un
indice 2 ; puis on reprendra l'indice 1 pour toutes les faces
qui sont contigués aux faces marquées 2, etc. Cette opération
peut se poursuivre jusqu'a épuisement des faces, car l'arbre
superficiel ne contient aucune chaine fermée, de sorte que
I'on ne revient jamais au point de départ. Deux couleurs suf-
fisent donc a assurer le coloriage soit d’un arbre superficiel,
soit d'une chaine ouverte. (Exemples, fig.9 et 10.)

30 Chaine bouclée et neceud bouclé. On commence par
colorier les faces de la chaine fermée ou du nceud superficiel,
puis on s’attaque a celles des arbres superficiels qui lui sont
soudés. Cette derniére opération n’offre aucune particularité.
Seul le nombre des faces de la chaine fermée est important.
Suivant qu’il est pair ou impair, il faudra utiliser deux ou
irois couleurs. (Exemples, fig.-11 et 12.)

En résumé, l'on peut dire que deux couleurs sont suffi-
santes pour colorier les faces de l'un ou de l'autre des types
de configurations superficielles que nous venons de définir,
sauf lorsque la dite configuration renferme une chaine fermée
ou un nceud superficiel d’'un nombre impair de faces, cas qui
nécessite 'emploi de trois couleurs. Il est important de bien
constater que les embranchements arborescents, quel que soit
leur nombre ou leur étendue, ne compliquent'en aucune fagon
le probléme du coloriage. | '

§ 6. La malrice B.

Nous considérons un polyédre quelconque de I'espace usuel,
qui satisfait aux conditions énoncées plus haut. Soient a; et o,
les nombres respectifs de ses arétes et de ses faces. De la
méme facon que l'on a établi la matrice A d'un réseau, on
peut définir une nouvelle matrice, la matrice B de ce polyédre.
L'on introduit & ce propos un nombre nj qui est égal a 1 si
I'aréte 31 fait partie de la face aj;, sinon le nombre lek est nul.
L’on dispose ces nombres 1, en un tableau rectangulaire de
a, lignes de «, colonnes, de telle facon que la ligne de rang
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J corresponde i l'aréte a; et que la colonne de rang corres-
ponde a la face ag. Ge tableau est la matrice B .

Deux constatations sont immédiates:

1o Puisque chaque aréte du polyédre est une aréte de
liaison, soit de degré 2, chaque ligne de la matrice B contient
deux termes égaux a 1, tous les autres -étant nuls.

20 Dans chaque colonne, les seuls termes qui ne sont
pas nuls sont ceux qui correspondent aux arétes faisant partie
de la frontiére de la face envisagée. Or ces arétes constltuent
un contour fermé.

L’6on peut se proposer d’étudier les propriétés de la ma-
trice B de la-méme fagon que I'on a obtenu celles de la ma-
trice A. La encore on conviendra de réduire toutes les opérations
arithmétiques ‘suivant le module 2.

Il en résulte que la valeur de tout détermznant extrait de
la matrice B est égale soit @ 1, soit a zéro.

Si I'on désire connaitre la valeur du déterminant qui cor-
respond a l'un des types de configurations superficielles en-
visagés plus haut, il faut admettre que cette correspondance
a lieu, d’une part entre les lignes du déterminant et les arétes
de la dite cOnfiguration, et de l'autre, euntre les colonnes du
premier et les faces de la seconde. |

A ce propos, nous devons remarquer que dans une chaine
ouverte. de méme que dans un arbre superficiel, le nombre
‘des faces est supérieur d’'une unité a celui des arétes de liai-
son. Pour rétablir 1’égalité entre ces deux nombres, il est né-
cessaire de négliger une face. Si cette suppression s’opére sur
une face qui ‘est soudée a l'ensemble le long d'une seule
aréte de liaison, la configuration qui reste est encore connexe
et se présente sous la forme d'un arbre superficiel sur lequel
en plus des arétes de liaison, une aréte libre est prise en
considération d’une facon particuliére. Si 1'on enléve une au-
tre face, on morcelle I'arbre superficiel en deux ou plusieurs
fragments du type ci-dessus. Il suffira donc d’examiner le
premier cas.

Nous nous bornerons enfin a énoncer les résultats inté-
ressants, sans nous attarder & des démonstrations qui sont
-immédiates, et qui de plus sont en tous points calquées sur
celles du § 3. C'est ainst que l'on trouve que :

Tout délerminant qui correspond d :

10 une chaine. fermée ou bouclée, est nul;
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20 un nceud superficiel ou bouclé, est nul;

30 une chaine ouverte ou un arbre superficiel, est égal a 1.

En outre, puisque le polyédre considéré est connexe, il est
possible, et cela de diverses maniéres, de le transformer en
un arbre superficiel unique, celui-ci comprenant les a, faces
du polyédre soudées entre elles le long de a, — 1 arétes de
liaison. Et puisque le déterminant d'ordre «; — 1 qui lui
correspond est égal a l'unité, le rang de la matrice B est
au moins égal a4 ce nombre. Mais ce rang ne peut pas éire
supérieur, car chaqué ligne de la matrice B contient deux
termes égaux 4 1, et deux seulement, La somme des oy co-
lonnes est donc identiquement nulle (mod. 2). On a par suite
la proposition : _

Le rang de la matrice B est égal a oy — 1.

Mais la matrice B peut encore étre envisagée a un autre
point de vue. En effet, nous avons vu que chacune de ses
colonnes caractérise un contour fermé, soit la frontiére de la
face correspondante. Elle définit donc une solution du sys-
téme (1), en nombres zéro et 1. Et comme cette matrice com-
prend o, colonnes, elle fournit le moyen d’écrire immeédia-
tement o, solutions du systtme (1). Son rang étant oy — 1,
on en conclut que parmi ces o, solutions, a, — 1 sont linéai-
rement indépendantes, et peuvent concourir a la formation
d’un systéme fondamental de solutions.

Une circonstance particuliére se présente dans le cas de
la sphére, car on a en vertu du théoréme d'Euler

Qg Oy F g =2
ou a; — 1 =a]_a,0—|—]_=p,

ce qui prouve que l'on peut former un systéeme fondamental
de solutions du systéme (1) uniquement & l'aide de a, — 1
colonnes de la matrice B.
Exemple. Nous considérons un polyédre caractérisé par :
@y = 10 sommets, o, = 15 arétes, a, =7 faces (fig. 13).
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s

Tableau de Uensemble des solutions du systéme (1).

34564565660
2345634564565662222333445
1234561111122223334451111111111

WS =

[Halite <BICN B o Bt BN

e T = T Y
Ot v QO O = O

Tableau de l'ensemble des solutions du systéme

e QO W

1100000111111110000000000111111
1010001011110001110000111000111
1001001101101001001101011011001
1000101110100100101011101101010
1000011111000010010111110110100
0110001100001111110000111111000
0100011000111100010111110001011
00110001100110001111061100011110
0001100011001101100110110111011
0000110001100110111100011010110
01000010000111100060001111000000
0010000100010001110001000111000
0001000010001001001100100100110
0000100001000100101010010010101
0000010000100010010110001001011

(Suite.)

DS e OO
[l \= - e

— L W TN
WO
— R e LT

jay

1
1
0
0
0
1
0
1
0
1
1
1
0
0

= DN QOO
i =R =]
b D = O
- (Nt
S [t
< QO = S0
.| wWorS
o = OV OO
=T S NI U
S | = D)W N
fa ol Nl
o DN e O
o o A= 5] W
o O M OO
bt [ s QA2 O
Pk -0 TS
| e OT SR
- N GO e O

—
<o

11100000110
1100011100001110001111010001010
0011011010110010010110110010010
1010110111010100100101110100010
0101101111101001000011111000010
00111111000011111100001100011060
1010001111101000111100011000100
1111000110111100011001100011000¢0
1001101101100110110011000110000
1111011000111101100110001100000
1111100001111110000111101111011
1100011101110001110111011110111
0011011011001101101110111101111
1010110110101011011101111011111
0101101110010110111011110111111
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§ 7. Réseaux cubiques fracés sur une sphére.

Les propositions que nous venons d’établir sont trés gé-
nérales. Elles s’adaptent & des réseaux dont il n’était pas né-
cessaire de préciser la forme. Il est cependant particuliére-
ment intéressant, pour le but que nous visons, de les appli-
quer a des réseaux cublques tracés sur une sphere Clest ce
que nous allons examiner.

Il n'est pas inutile de rappeler que si un réseau cubique
comprend o, sommets et o, arétes, ces nombres sont liés en-
tre eux par les égalités suivantes :

Si de plus, ce réseau est tracé sur une sphére qu’il trans-
forme en un polyédre comprenant encore a, faces simplement
connexes, le théoréme d’Euler permet d’écrire:

e—1l=0a —oy+1=p

Considérons un tel polyédre et imaginons que l'on ait
établi les deux matrices A et B, en correspondance, la pre-
miére avec ses sommets et ses arétes, la seconde avec ses
arétes et ses faces. De la matrice A on déduit le sysiéme
d’équations linéaires et homogénes (1), dont on forme un
systéme fondamental de solutions & l'aide de p colonnes de
la matrice B. Il n’y a donc pas lieu de se préoccuper de la
forme du systéme (1), puisque I'on dispose d’emblée de ses
solutions. o

Cependant ici, une remarque s’impose. Suivant une mé-
thode propre a 1’Analysis situs, on sait que l'on peut pro-
céder A l'extension de l'une des faces du polyé&dre considéré,
n’impofte laquelle, tout en rétrécissant au besoin les autres,
et ceci de telle facon qu’elles viennent s'appliquer sur la face
étirée. Cette derniére seule est ainsi masquée, les autres de-
meurent toutes visibles. Or lorsque l'on décrit le systéme fon-
damental de solutions, on peut’ précisément négliger celle des
colonnes de la matrice B qui correspond a la face cachée.

Partant de ce systtme fondamental, on obtient l’ensem-
ble des solutions du syst¢tme (1) en combinant de toutes les
maniéres possibles, d’abord 1 a 1, puis 2 a4 2, 3 a 3, ...
ses p colonnes. Leur nombre est égal a 2* — 1, si l'on fait
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abstraction de la solution identiquement nulle, qui d’ailleurs
ne nous intéresse pas ici. Cette méthode a justement été ap-
pliquée a l'exemple qu’illustre la figure 13. Alors p étaii
égal a 6. Nous avons indiqué le tableau des 26 — 1 solutions
" obtenues en partant des six premiéres colonnes de la ma-
trice B. ‘

Ainsi que nous l'avons vu plus haut, a chaque solution
du systéme (1) correspond un contour fermé ou un ensem-
ble de contours fermés. Cette propriété entraine, dans le cas
des réseaux cubiques, une proposition intéressante :

Deux contours fermés correspondant d la méme solution
du systéme (1) ne peuvent pas se rencontrer.

La rencontre ne serait possible en un sommet du réseau
que si par celui-ci passaient quatre arétes, car la méme aréte
ne peut appartenir & deux contours fermés distincts. Si1 en
effet, cette derniére éventualité se présentait pour l'aréte a
la quantité z, serait égale & 2 =0 (mod. 2), d’o 'on con-

clurait que cette aréte n’appartient 4 aucun des deux contours.:

D’autre part, les réseaux que  nous considérons ne ren-
ferment -aucun isthme. En vertu du théoréme de Petersen,
ils sont réductibles en un réseau quadratique et un réseau
linéaire. Mais un réseau quadratique est représenté par un
ou plusieurs contours fermés. Il correspond donc a une so-
lution du systéme (1). Et comme un tel réseau comprend
un nombre égal d’arétes et de sommets, soit a,, la solution
correspondante comprendra o, valeurs des z; égales a 1, les
a, — ay valeurs qui restent étant nulles. Il s’en suit la pro-
position : ;

A chaque réseau quadratique contenu dans le réseau cu-
bique considéré correspond une solution du systéme (1) qui
comprend o, valeurs des x; égales a 1. '

Gréce au théoréme de Petersen, nous savons que de pa-
reilles solutions existent. Remarquons en passant que ce sont
celles qui possédent un nombre maximum de valeurs z; éga-
les & 1, ceci en vertu du fait que le polyédre renferme «,
sommets et de la propriété des réseaux quadratiques que
nous venons de rappeler. De plus, le nombre total des so-
lutions du systéme (1) étant égal & 2¢ — 1, il n'y a qu'a
prélever dans cet ensemble les solutions qui sont marquées
de o, quantités x; égales a 1, pour obtenir tous les réseaux
quadratiques qui sont contenus dans le réseau cubique envi-
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sagé. On a ainsi un moyen de déceler toutes les réductions
possibles, d’ou la proposition : . ,

Le nombre des réductions d’'un réseau cubique donné est
égal au nombre de solutions du systéme (1) qui compren-
nent «, valeurs x; égales a 1.

Une question vient ici tout naturellement a D'esprit :

Le nombre p étant donné, quel est le nombre des réduc-
tions que comporte le réseau cubique considéré?

Il n’apparait pas que la réponse en soit aisée. Son im-
portance, pour la suite ‘de nos déductions, n’étant pas es-
sentielle, nous ne nous y attarderons guére. Nous nous bor-
nerons simplement A constaler que, sous cette forme, la ques-
tion manque de précision. Il existe un général plusieurs po-
lyédres dont le nombre des faces est le méme, mais qu se
distinguent les uns des autres par la nature de ces faces. Le
nombre p relatif a ces polyédres est invariable, tandis que
le nombre des réductions possibles varie d'un polyédre a ’autre,

Nous en donnerons pour preuve les quelques exemples
ci-dessous qui correspondent tous au cas p = 6. Le dernier
est celui que nous avons étudié plus haut, fig. 13. Nous -
avions alors, dans le tableau complet des Soluti_ons, marqué

d’un * celles qui définissent les différents réseaux quadratiques.
* * %

Il est possible de classer les réseaux quadratiques qui
sont issus de la réduction d’un réseau cubique, en trois types,
de la fagon suivante : o

Nous dirons qu'un réseau quadratique est du-:
Premier type, s'il est représenté par un contour fermé unique.
Second type, s'il comprend deux ou plusieurs contours fer-

més, chacun d’eux renfermant un nombre pair d’arétes

(ou de sommets). _ | '
Troisiéme type, s’il comprend deux ou plusieurs contours

fermés, parmi lesquels il en est qui renferment un nom-

-bre impair d arétes.’

Du moment que o, est un nombre pair, on peut ajouter
de suite que, dans ce dernier cas, le nombre des contours
fermés qui renferment un nombre impair d’arétes est lui-
méme pair. -

Dans les planches I a V1, nous avons accompagné cha-
que réseau quadratique d'un indice I, II ou III correspon-
dant a son type.
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Prancue I. — Six réseaux quadratiques.

PLancrHE 2. — Sept réseaux quadratiques.

HAPAD

Prancur 3. — Huit réseaux quadraligues.
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L’importance de ces types de réseaux quadratiques ap-

parait lorsque 'on se place au point de vue du coloriage du
polyédre. A cet effet, nous allons regarder chacun de ces
réseaux comme une coupure et examiner ce qui en résulte
relativement au morcellement de la sphére.
- Premier type. La surface de la sphére, autrement dit
celle du polyédre, se trouve partagée en deux parties net-
tement -distinctes. N1 l'une, ni l'autre de ces parties ne peut
renferme_r une chaine fermée, car la présence d'une telle
chaine entrainerait I'existence d’'un second contour fermé. Elles
ne peuvent pas davantage contenir de nceud superficiel, puis--.
que tous les sommets sont sur la frontiére. Ce sont donc
des arbres superficiels.

Ainsi un contour fermé unique qui passe par tous les
sommets du réseau a pour effet de grouper les différentes
faces du polyédre en deux arbres superficiels. Et comme
deux couleurs suffisent a colorier différemment les faces d’un
tel arbre, quatre couleurs assureront certainement le coloriage
du polyédre dans son entier.

Second type. Chaque contour fermé étant regardé comme
une coupure, leur ensemble morcellera la surface de la sphére
en un certain nombre de régions, les unes limitant des arbres
superficiels, les autres des chaines fermées ou bouclées.

Considérons l'un de ces arbres superficiels. Sa frontiére
est un contour fermé qui renferme un nombre pair de som-
mets. Certains de ces sommets sont reliés entre eux par des
arétes de liaison des faces de l'arbre superficiel envisagé. Mais
ces sommets-1a. sont toujours en nombre: pair. Il en résulte
‘que les sommets situés sur la frontidre de cet arbre, mais
qui ne font pas partie des arétes de liaison de ses faces, sont
aussi en nombre pair. Or c'est précisément par ces derniers
sommets que passeront les arétes de liaison de la chaine fer-
mée qui entoure le dit arbre superficiel. Il s’en suit que la
chaine fermée renfermera un nombre pair de faces.

Le méme raisonnement se poursuivrait i l'égard des au-
tres chaines fermées, qui toutes renfermeront un nombre pair
de faces.

Imaginons maintenant que l'on attribue l'indice 1 & l'une
quelconque des régions que nous venons d’examiner. On at-
tribuera I'indice 2 a toutes les régions qui sont en connexion
avec la premiére, puis l'indice 1 & toutes celles qui sont en
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connexion avec la région 2, et ainsi de suite. On est certain,
deé cette fagon, d’épuiser toutes les régions de la sphére.

Nous savons que deux couleurs suffisent a assurer le co-
loriage d'un arbre superficiel ou d'une chaine fermée, si cel-
le-ci renferme un nombre pair de faces. C'est précisément
le caractére des différentes régions que nous venons de met-
tre en évidence. Nous sommes donc encore en droit de con-
clure que quatre couleurs suffiront a assurer le coloriage de
I'ensemble des faces du polyédre.

Troisiéme type. La répartition de la surface de la sphere
en régions dindices 1 et 2 est toujours possible. Mais ici
il existera des chaines fermées comprenant un nombre im-
pair de faces, dont le coloriage nécessitera trois couleurs.
On ne pourra plus affirmer que par ce moyen on a encore
le loisir-de colorier les différentes faces du polyédre avec quatre
couleurs. Cela pourra avoir lieu dans certains cas particu-
liers, mais cela ne sera plus possible en général.

En conclusion de ce qui précéde, nous dirons que la pré-
sence d'un seul réseau quadratique du premier ou du se-
cond type suffit a assurer le coloriage des différentes faces
des polyédres considérés a l'aide de quatre couleurs. Pour
que cette opération soit impossible, il est nécessaire que tous
les réseaux quadratiques soient du troisiéme type.

Prancre VIL — Exemple de M. de la Vallée-Poussin.
Un réscau quadratique de chaque type.

La présence dans l'une quelconque des régions que nous
avons affectées plus haut d'un indice 1 ou 2 d'une ou plu-
sieurs ramifications superficielles arborescentes ne complique
en aucune facon le probléme du coloriage. La difficulté pro-
vient uniquement des chaines fermées qui renferment un nom-
bre impair de faces. |
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‘Dans l'exemple que nous donnons, planche VII, da a M. de
la Vallée-Poussin 1, nous indiquons un representant de chaque
type de réseau quadrauque

§ 8. Le probleme de la carle.‘

Une carte de forme arbitraire étant donnée sur une sphere
les propositions suivantes sont connues?:

‘1) Le coloriage d’une.carte se raméne a celui d’une au-
tre carte, dont tous les sommets sont de degré trois, et dont
le nombre des pays n'a pas augmenté.

L’ensemble des arétes frontiéres constitue alors un réseau
cubique. _

Au point de vue du coloriage, on ne restreint pas la por-
tée du probléme dans chacun des cas suivants : :

2) Le réseau cubtque considéré est connere. 1l ne com-
prend donc pas des piéces séparées.

3) Ce réseau cubique ne renferme pas de boucle. Sinon
une aréte n’appartiendrait a aucune frontiére.

4) La frontiére commune a deux pays voisins se compose
d'une seule aréte.

C’est ainsi que nous excluons des réseauy "cubiques qué
nous allons examiner, des particularités telles que celles qm
sont représentées planche VIII. '

O) +p< =2

PrancHE VI, — Particularités qui sont exclues de nos réscaux cubiques:

Yo

Les restrictions que. nous venons dapporter aux reéseaux
cublques que nous examinerons dorénavant, on ne le répétera
jamais assez, ne diminuent en rien la généralité du probleme
du coloriage de la carte. Le réseau qui subsiste est préci-
sément celui d’une carte minima, d’une carte normale, ou
d’'une carte qui appartient au cas difficile. Si par conséquent,
'on parvient a colorier cetie carte minima & l'aide de qua-

£ (‘I‘ A. ERRERA : Loc cit. 2, paoe 15.
~ .2 Cf. par exemple A. ErrEra : Loc. cil. page 34,

-1
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tre couleurs, 'on sera certain, a plus forte raison, d’étre a
méme de colorier n'importe quelle autre carte.

Dans ce but, nous nous proposons d’établir la proposi-
tion suivante, qui est fondamentale :

Dans un réseau cubique, qui satisfait aux conditions 1),
2}, 3), 4), il existe au moins un réseau quadratique du pre-
mier type. ‘

Cette proposition peut encore s’énoncer comme suit :

Dans un réseau cubique, qui satisfait aux conditions 1),
2), 3), 4), il existe au moins un contour fermé unique qui
passe par {'ensemble des sommets du réseau.

Cette proposition, disons-nous, est fondamentale, car elle
résout ipso facto le probléme proposé. Nous avons vu, en
effet, au § 7, que ce réseau quadratique sépare les différents
pays de la carte en deux arbres superficiels distincts. Et
comme le coloriage de chacun d'eux nécessite deux couleurs
seulement, celui de l'ensemble est assuré avec quatre couleurs.
C'est 1a le neeud de la question, sur lequel nous allons por-
ler toute notre attention dans les paragraphes qui suivent.

Remarquons encore que, sur .un réseau cubique remplis-
sanl les conditions requises, il peut exister plusieurs réseaux
quadratiques du premier type. Nous n’avons pas & en re-
chercher le nombre. Il nous suffira uniquement de justifier
I'existence de l'un d’entre eux.

TTYY

PrancHE [X. — Comment se comporte un réseau quadratique du premier type
en présence d’'un triangle.

* Une carte minima, dans les conditions ou nous nous trou-
"vons, ne renferme pas de pays & moins de trois cotés. Mais
elle peut comprendre des triangles, des quadrilatéres, des pen-
tagones, ... . La présence de pays de forme triangulaire n’est
pas indispensable pour le but que nous poursuivons, savoir
la justification de I'existence d'un réseau quadratique du pre-
nifei’ type. On peut momentanément faire disparaitre ces
pays-13, en effacant une des arétes de leur frontiére. Et si sur
le réseau cubique ainsi amputé, il existe un réseau quadrati-
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que du premier type, cela signifie que ce dernier existait déja
sur le réseau cubique préalablement donné. C'est d’ailleurs
ce que nous faisons voir par les dessins de la Planche IX.

Fig. 2. Le contour fermé passe par les trois sommets

du triangle. -

Fig. 3. Le contour fermé ne rencontre que deux sommets.

Fig. 4. Une petite déformation a permls dattemdre le

troisiéme sommet.

Nous admettrons ainsi une nouvelle restriction :

- b) Les pays d'une carte minima comprendront au moins
quatre cotés. ‘

Certains auteurs sont encore allés plus loin dans ce do-
maine, puisque la carte normale de M. Errera, par exemple,
ne comprend pas de pays de moins de cinq cotés. Nous
n’avons pas jugé a propos d’adopter ces restrictions, du mo-
ment que des cartes qui renferment des quadrilatéres (celle
de M. de la Vallée-Poussin, par exemple) rendent impossible
le coloriage par la méthode des chaines de Kempe.

§ 9. Arbres linéaires et superficiels.

Nous avons vu que l'on transforme un réseau donné en
un arbre linéaire par la suppression d'un certain nombre
~d’aréles convenablement choisies. Lorsque le réseau comprend
ay sommets et «, arétes, le nombre des arétes qu’il faut sup- .
primer est égal a p :

p=o0a; — o +1

L’arbre lui-méme comprend a, — 1 arétes.

On transforme par analogie un polyédre en un arbre su-
perficiel. Le nombre des faces du polyédre étant a,, ces faces
sont maintenues en connexion par la présence de ay —1 aré-
tes de liaison. Il suffit de supprimer les autres, ou, ce qui
revient au méme, de les considérer comme faisant partie d'une
coupure, pour que le polvédre devienne un arbre superficiel.

Mais en vertu du théoréme d’Euler, on a:

p=0y—1l=0; —a;+1

On a donc la possibilité de faire apparaitre sur une sphére,
simultanément les deux arbres: linéaire et superficiel. C'est
la une propriété bien connue. que nous énoncerons .comme
suit : .

Sur une.sphére, la frontiére de tout arbre superficiel com-
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posé de l'ensemble des faces du polyédre, est un arbre linéaire.

Réciproquement, sur une sphére, tout arbre linéaire de

— 1 arétes est la frontiére d’un arbre superficiel compose
de la totalité des faces du polyédre.

Cette réciproque est une conséquence du principe fonda-
mental de l'arbre linéaire: celui-ci rencontre tous les som-
mets du réseau sans cependant constituer de contour fermé.
Si donc I'on assimile un tel arbre a une coupure, cette cou-
pure ne morcelle pas la surface qui demeure ainsi d’'un seul
tenant. Les o, faces du polyédre ne peuvent étre maintenues
en connexion que suivant o, — 1 arétes de liaison. Elles for-
ment ainsi un arbre superficiel. |

Cette propriété est spécifique de la sphére. Nous aurons
'occasion de le rappeler plus loin, lorsque nous dirons quel-
ques mots des réseaux tracés sur d’autres surfaces.

Il est clair que 'on pourrait envisager, sur le réseau con-
sidéré, des arbres linéaires qui renferment moins de o) — 1
arétes. Ces arbres n’offrent pas d’intérét pour le but que
nous poursuivons, aussi les négligerons-nous complétement.

Nous nous occuperons donc essentiellement des arbres
linéaires qui comprennent , — 1 arétes, n’oubliant pas que
si ces arbres sont assimilés & des coupures, ils ne morcellent
pas la surface de la sphére et constituent la frontiére d'un
~arbre superficiel qui comprend la totalité des faces du po-
lyédre considéré.

Le nombre de ces arbres n’est en général pas connu.
Nous ne pensons pas qu’il soit nécessaire de le rechercher.
On constate qu’il grandit trés rapidement avec p. Ce que
nous désirons, par contre, c’est de fixer une maniére de les
classer. _
A ce propos, nous remarquons que, par rapport d un tel
arbre, un sommet quelconque du réseau est: soit de degré 1,
sommel libre; soit de degré 2, sommet servant de liaison a
deux arétes; soit de degré 3, sommet que nous avons dési-
gné plus haut sous le nom de ©bifurcation. Et si nous
comparons différents arbres linéaires d’'un méme réseau,
nous constatons bien vite qu’ils différent entre eux par
le nombre de leurs bifurcations, nombre qui varie entre
des limites que nous allons déterminer. Le nombre des bifur-
cations que renferme un arbre linéaire sera donc le moyen
de classement que nous nous proposons d’adopter. -
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- “Dans les diverses opérations que comporte ce classement,
nous aurons souvent I'occasion de parler des p arétes qui
servent de liaison aux faces de l'arbre superficiel. Parfois,
c'est telle ou telle aréte qui interviendra, parfois ce sera leur
ensemble. Aussi, pour ne pas alourdir notre exposé, nous
préférons leur donner une désignation en convenant de les
dénommer " arétes conjointes. Leur ensemble sera le systéme
des arétes conjointes, ou plus briévement le systéme conjoint.
Ainsi, a chaque arbre de o, — 1 arétes, correspond un sys-
téme conjoint qui comprend o, — 1 arétes. :
- Un examen méme sommaire d’un arbre linéaire suff1t pour
constater qu ‘aucune aréte conjointe n’aboutit ‘4 une bifurca-
tion, car, dans ce cas, les trois arétes du réseau font partie
de I'arbré linéaire. Par suite, le nombre des bifurcations de
cet arbre est en relation étroite avec la disposition des arétes
conjointes. Il est d’autant plus grand que ces aréles abou-
tissent a4 un plus petit nombre de sommets. Il sera maximum
quand -elles aboutiront au nombre minimum de sommets
qu’elles peuvent atteindre. , 2

Disons d’emblée que la présence d'une bifurcation dans
le systéme conjoint est manifestement impossible, car elle
entrainerait l'existence d’'un néeud superficiel parmi les faces
qui composent l'arbre superficiel, ce qui ne se peut pas. Il
n'y a donc pas d’arbre linéaire dans le systéme conjoint. Par
contre, on peut y rencontrer un ou plusieurs contours ou-
verts ou fermés. Les contours ouverts peuvent d’ailleurs fort
bien étre constitués par une seule aréte. Les arétes du systéme
conjoint aboutironf 4 un nombre minimum de sommets dans
le cas. et dans ce cas seulement, ou elles forment un ou plu-
sieurs contours fermés. Elles ne rencontrent alors que p som-
mets. Les o, — p sommets qui restent sont autant de bifur-
cations de 1'arbre linéaire correspondant. Or ce nombre vaut:

o —p=2p —2—p=p—2

Tel est le nombre maximum de bifurcations d’un arbre linéaire.
Nous conclurons par la proposition :

Le nombre maximum de bifurcations que peut renfermer
un arbre linéaire reliant entre euxr les o, sommets d’'un réseau
cubique est pn— 2.

Passant a4 l'autre extrémité, nous démontrerons la proposi-
tion suivante :
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Le nombre minimum de bifurcations d’un de ces arbres
est zéro. , | ‘

En effet, si ces p arétes étaient complétement séparées
les unes des autres, elles constitueraient un réseau linéaire,
partant affecteraient 2 u sommets. Or le nombre de ces des-
niers o, est égal a 2 w — 2. Dans ces conditions, le systéme
conjoint ne peut étre représenté par un réseau linéaire. Deux
au moins de ses sommets servent de liaison a des arétes con-
jointes. Et s1 précisément il y en a deux, l'arbre linéaire
envisagé n'a que deux sommets libres; il ne présente aucune
bifurcation, c’est un contour ouvert. _ '

En principe, il est donc possible de concevoir p — 1 types
d’arbres linéaires qui se différencient les uns des autres par
le nombre de leurs ‘bifurcations, ce nombre variant entre
p— 2 et zéro.

Il est clair que jusqu’ici nous n’avons rien prouvé relati-
vement a. l'existence effective des arbres de ces diverses caté-
gories. Ce que nous savons, c’est qu’il existe des arbres linéai-
res de o, — 1 arétes qui relient entre eux les ap sommets du
reseau considéré. Et nous venons de voir la possibilité que
nous avons d'une répartition de ces arbres en nous basant
sur le nombre de leurs bifurcations. - .

Nous nous proposons de montrer que si 'on part de 1'un
quelconque d’entre eux, il est possible d’en obtenir d’autres
qui présentent un nombre moindre de bifurcations. Clest la
ce que nous entendrons par: la réduction des bifurcations
d’un arbre donné.

Ajoutons en passant qu’un arbre linéaire du dernier type
a deux sommets libres et aucune bifurcation; un arbre du
type précédent a trois sommets libres et une bifurcation, et
ainsi .de suite, d’ou la proposition :

Un arbre linéaire. qui renferme k bifurcations a aussi
k4 2 sommets libres.
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REDUCTION DES BIFURCATIONS
§ 10. Examen d’'un cas concret.

~ Les propriétés des réseaux cubiques sur lesquelles nous
désirons baser notre démonstration sont en général peu con-
nues. Il nous parait donc indiqué d’en poser les bases sur
un exemple concret. Mais, nous avons hate de le dire, cet
exemple n’a pas été choisi d'une facon spéciale de maniére
a rendre aisée la méthode que nous avons en vue. Tout au
contraire, c’est en étudiant 'exemple de M. de la Vallée-
Poussin, tel qu'il est représenté planche VII, que nous en
avon$ découvert la forme. Sous un nombre restreint d’élé-
ments, il renferme, ainsi que nous le verrons dans la suite,
les mémes difficultés qu'un autre réseau cubique du cas dif-
ficile dont le nombre des éléments serait plus grand.

Ce réseau, fig. 1, pl. X, a les caractéristiques suivantes:

“op = 18 sommets, o, = 27 arétes, o, = 11 faces, pu = 10.

Il renferme des arbres linéaires, tels que ceux que nous avons
examinés plus haut, qui peuvent é&tre répartis en 9 classes.
Nous indiquons, fig. 2 a 10, planche X, un exemple d’arbre
de chaque classe. Les arétes faisant partie des arbres respec-
tifs ont été marquées d'un trait renforcé.

Prancur X. — Les différentes classes d'arbres linéaires que renferme
un réseau cubique donné.

L’arbre linéaire, fig. 2, planche X, comporte 8 bifurca-
tions. On constate que le systéme conjoint se compose de
deux contours fermés. On transforme cet arbre en un con-
tour bouclé en lui adjoignant n’importe quelle aréte con-
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jointe, par exemple I'aréte a . En effet, la configuration linéaire
qui en résulte comprend un contour fermé, précisément celui
qui délimite 1'aire couverte de héchures. Si 'on supprime l'une
quelconque des arétes qui appartiennent a ce contour fermé,
un arbre linéaire réapparait. Or remarquons que l'on peut
supprimer, si l'on veut, 'une des arétes b ou b’ 1'arbre qui
apparait dans ces conditions ne compte plus que 7 bifurca-
tions. Mais si 'on convient de supprimer soit l'aréte b”, soit
I'aréte b'”, c’est un arbre de 6 bifurcations qui surgit.

A Parbre linéaire de la fig. 3, convenons d’associer 'aréte c,
puis de supprimer l'aréte-d, on obtient 'arbre de la figure 4.
Associons a°ce dernier 'aréte e et supprimons laréte f, on
aboutit & I’arbre de la fig. 4, et ainsi de suite.

Dans chaque exemple, nous avons couvert de héchureé
aire qui  apparait chaque fois que l'on associe une aréte
con_]omte a larbre linéaire existant. . »

C’est a ce passage d'un arbre comportant & bifurcations
a_un arbre qui n’en .compte plus que £k — 1 _ou k — 2 que
nous avons donné le nom. de réduction des bifurcations de
larbre considéré.. Cette réduction des bifurcations a pour nous
une grande importance. :

Il convient de remarquer que dans le chonc des reduchons
que nous avons opérées planche X, nous n’avons été guidé
par aucune considération d’ordre théorique. Dans chaque figure,
plusieurs voies s’offraient & nous; c'est au hasard ‘que_nous
avons fixé l'une d’elles.

Arretons _nous un instant sur I'arbre de la fig. 10, plan-—
che X, que nous reproduisons fig. 1, planche XI. Il ne com-
porte aucune bifurcation, c’est donc un contour ouvert. Soient
P et Q ses deux sommets libres. A chacun d’eux aboutissent
deux arétes conjointes. Convenons d’appeler r et r’ celles qui
aboutissent au sommet Q. -Associons au contour ouvert PQ
I'aréte r, nous créons a la fois un contour bouclé et une bi-
furcation. Pour supprlmer ceite derniére, sans revenir en ar-
riére, nous ne pouvons que faire disparaitre l'aréte s. Cela
nous améne & un nouveau contour ouvert, contour qui est
limité par les sommets P et Q, (fig. 2).

On passe dans les mémes conditions du contour PQ, au
contour P(Q),, en associant l’aréte ¢ et en supprimant l'aréte u
(fig. 3), puis au contour PQ, (fig. 4). On s’apercoit main-
tenant que les deux sommets P et Q, limitent la méme aréte
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du réseau. En les réunissant, on forme un-contour fermé qui
passe par tous ses sommets, autrement dit un réseau gquadra-
tique du premier type. - : .
- Revenons au point de départ, fig. 1, planche XI, et asso-
cions (fig. 5) laréte r’, nous nous voyons dans l'obligation
de supprimer l'aréte s’. Nous aboutissons alors au contour
PQ’ qui met en évidence un autre réseau quadratique du
premier type. R -
Enfin, on peut agir a l’égard' du sommet P comme on
vient de le faire pour le sommet Q. Pour ne pas allonger,
nous nous bornerons & constater que -I’on aboutit aux deux
contours ouverts QP; et QP, qui sont représentés fig. 7 et 8,
planche XI. Nous constatons que, dans le cas particulier, les
réseaux quadratiques qui en résultent sont ceux que nous
avons déja obtenus. | ' f

PraNcHE XI. — Passage d'un contour Z & un contour V.

' "y

" L'importance des contours ouverts tels que ceux qui sont
représentés par les fig. 4, 6, 7 et 8, planche XI, est capi-
tale pour le but que nous poursuivons. Il suffit en effel
que I'un'seul d’entre eux existe, sur le réseau cubique donné,
pour que 'on puisse conclure a Iexistence d’un réseau qua-
dratique du premier type. Il est donc nécessaire de les dis--
tinguer nettement de tous les autres contours ouverts, c’est
pourquoi nous adopterons les définitions suivantes : o
~ Un contour ouvert qui passe par Uensemble des sommets
du réseau cubique considéré, dont les sommets libres limiten!
la méme aréte, est un contour V.

" Tout autre contour ouvert, passant par U'ensemble des som-
mets du réseau, est un contour Z.
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C'est ainsi que les fig. 1, 2, 3, 5, planche X, représen-
tent des contours Z, tandis que les fig. 4, 6, 7, 8, repré-
sentent des contours V.

Nous conviendrons enfin de désigner sous le nom d opéra-
tion double le passage du contour PQ au contour PQ, ou
de ce dernier a PQ,;, ou, d’une maniére générale, du con-
tour PQ; au contour PQ;, .

Une opération double comporte, comme son nom I'indi-
que, deux opérations: 1) 1’association d'une aréte conjointe,
ce qui a pour effet de faire apparaitre une bifurcation, 2) la
suppression d'une aréte de facon a faire disparaitre la bifur-
cation, Comme dans ce dernier cas, il s’agit de ne pas reve-
nir en arriére, il n'y a jamais d’ambiguité dans le choix
de l'aréte que l'on supprime, laquelle appartient toujours au
contour fermé qui résulte de la premiére opération. De plus,
les deux arétes, celle que l'on associe et celle que I'on sup-
prime, sont contigués.

REDUCTION DES BIFURCATIONS
§ 11. Cas général. 3

Il nous parait mamtenant possible de nous attaquer au
cas général.

Nous considérons un réseau cubique, tracé sur une sphére,
qui satisfait aux conditions exposées au § 8. Nous faisons
apparaitre sur ce réseau un arbre linéaire qui relie entre eux
~la totalité des sommets. Cet arbre appartient & l'une des clas-
ses dont nous avons constaté lexistence au § 9. Admettons
qu’il renferme k bifurcations. Deux questions se posent d’em-
blée, que nous allons examiner successivement.

Premiére question. Quelles sont les conditions nécessaires et
suffisantes que doit remplir Uarbre ainsi obtenu, pour que
Uon puisse réduire le nombre de ses bifurcations?

La réponse a cette question est immédiate: Il faut et il
suffit que deux sommets libres de Uarbre limitent la méme
aréte du réseau. ,

En effet, par 'adjonction de cette aréte, on transforme
I’arbre en un contour bouclé, lequel renferme, nous le savons,
un contour -fermé. Ce dernier est réuni aux autres arétes
du contour bouclé en des points qui sont des bifurcations.
Si alors on supprime une aréte qui rencontre l'une de ces
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bifurcations, tout en faisant partie du contour fermé, la con-
figuration linéaire qui en résuite est encore connexe, c’est-a-dire
d'un seul tenant; c’est un arbre linéaire qui ne comprend
plus que %k — 1 bifurcations. Comme il peut se faire que
Varéte supprimée aboutisse a deux bifurcations, il arrive que
le nombre de celles—m soit d'un seul coup diminué de deux
unités.

Nous admettrons maintenant que toutes les réductions pos-
sibles ont été effectuées, cela d’ailleurs sans quil fit néces-
saire de chmsu‘ d’avance un plan de travail. Nous entendons
par li que, au gré de notre fantaisie, nous avons opéré une
premiére réduction, puis une seconde, etc., sans la moindre
préoccupation du meilleur choix possible. Il est clair que.
ce que nous entendons par meilleur choix, c’est celui qui
conduirait 4 un contour Z, ou, mieux encore, & un contour V.
Nous sommes donc en présence. d’'un arbre linéaire qui pré-
sente h bifurcations, tel que deux de ses. sommets libres ne
limitent jamais la  méme aréte. Dans ces conditions, nous
posons une: ~
Deuxiéme question. Est-il possible de transformer cet arbre
de facon a le rendre réductible ? ,

Le moyen approprié, pour répondre a cette question, est
a la fois simple et varié. Il est simple, car ayant choisi un
des sommets libres de 1'arbre considéré, nous effectuerons
une série d’opérations doubles. Il est varié, car si la premiére
sériec de ces opérations est irréductible, nous avons le loisir
de procéder a4 une seconde série, & une troisi¢me, ... , en par-
tant d’'un sommet libre de n’'importe quelle figure qui est
issue des transformations antérieures. Cela donne une grande
variété de moyens. i

Le but que 'on se propose d’atteindre, en utilisant toutes
ces opérations doubles, est de remplacer l'arbre donné par
un autre, dont deux sommets libres limitent la méme aréte
du réseau. Alors, en vertu de la réponse 4 la premiére ques-
tion, la réduction est immédiate.

Il convient ici de faire une constatation. Le probléme de
réductibilité d'un arbre linéaire est le méme que celui qui
consiste & passer d’'un contour Z a un contour V. Or un ar-
bre a d’autant plus de sommets libres, que le nombre de
ses bifurcations est plus élevé. S’il se réduit a un contour
ouvert, il n'a plus que deux sommets libres. Les possibilités
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que l'on a de faire en sorte que ces sommets limitent la
‘méme aréte du réseau, sont certainement moindres que celles
dont on dispose dans le cas d'un arbre quelconque, puisque
le nombre des sommets de l'ensemble du réseau n’a pas va-
rié, tandis que celul des sommets libres de l'arbre est plus
grand. Telles sont les raisons pour lesquelles nous examine-
rons avec de plus amples détails les séries de transformations
qui doivent conduire d'un contour Z a un contour V. Et si
nous parvenons a en justifier la possibilité, nous aurons du
méme coup justifié la possibilité de la réduction des bifur-
cations de tout arbre linéaire du réseau. :

Nous désignons encore, comme précédemment, par P et Q
les . sommets libres d’'un contour Z et commencons par effec-
tuer une premiére série de transformations qui laissent P
invariable. Des sommets Q;, Q. Q; ..., apparaissent ainsi,
Deux cas sont a .considérer : : ‘

1) Un des sommets Q, se trouve & l'extrémité de l'une
des arétes qui aboutissent. au sommet P. Le contour Z' est
devenu un contour V; la série de transformations est dite
réductible. J ,

2) Un des sommets Q, occupe la position initiale Q, le
contour Z ayant une forme identique & celle du début. La
série de transformations est irréductible; les différents som-
mets Q; constituent un cycle. :

Cette derniére &ventualité étant admise, le sommet. Q de-
meure fixe. Une nouvelle série de transformations conduit
aux sommets P,, P;, ... Cette série est réductible ou non. Ima-
ginons - qu’elle soit irréductible. Partant du contour PQ, et
laissant Q, invariable, on passe de P a P}, I}, P;,....
Et si ces sommets constituent encore un cycle, on partira du
contour PQ,, laissant Q, fixe, on' passera de P a P, PJ, ...
L’'inexistence d’un contour V, soit d'un réseau quadratique
du premier type, est liée a la persmtance de séries irréducti-
bles.

Rappelons a ce propos que nous entendons par série ré—
ductible une série de transformations qui conduisent d’un
contour Z a un contour V, et série irréductible, une série dans
laquelle les sommets P;, respectivement (Q;, constituent un
cycle, le contour Z reprenant sa forme originale.

De ce qui précéde, il résulte que dans un réseau cubique
qui satisfait aux conditions du § 8:
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1) lexistence d’une seule série réductible permet de ré-
duire d’une unité, éventuellement de deux, le - nombre des
bifurcations d’un arbre linéaire donné. '7' -

2) lexistence d’une seule série réductible permet de pas-
ser d’'un contour Z a un contour V.

8) Ulexzistence: d'un. contour V assure celle d'un réseau
quadratique du premier type. sl A

Prancuge XII. — Une série de transformations irréductible.
Yoo 0 v, : :
w7 11 's’agit ‘maintenant d’examiner les conditions d’existence
d'une série irréductible.

... Mais auparavant, nous pensons qu'il n’est pas inutile, ceci
pour fixer les idées, d’en donner deux exemples. Nous re-
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prenons, a eet effet, le type de carte de la planche X,' a
propos de laquelle sont reproduites les transfermations des
planches XII et XIII. o ' :

"/

10

Prancug XIII. — Une autre série de transformations irréduclible,

?) N
u 12 - .
DI@)

I faut remarquer d’emblée que, lorsque I'on s'est engagé
dans lax veie des transformations d’'un contour Z, on n’en
peut suivre qu'une seule. Cele-€i, sans doute, n'est pas con-
nue d'avance; elle n’en existe pas moins d'une fagon unique
car, & moins de détruire l'aréte que l'on vient d’associer (ce
qui n’aurait aucun sens), il ne se présente jamais d’indéci-
. sion sur le choix des aréles que ['on associe ou supprime.
Cette constatation a son importance.
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De plus, chaque opération double fait apparaitre un con-
tour fermé qui limite .une aire simplement connexe. Cette
aire se compose toujours dun arbre superficiel, lequel peut
se réduire a4 une chaine ouverte ou méme a une face uni-
que. Elle se modifie, s’agrandit ou se rétrécit, lorsque 1'on
passe d’'un contour Z au suivant: Le plus souvent, ces mo-
difications ne paraissent pas obéir & une loi. Pourtant, dans
le cas d'une série irréductible, 'existence de cette loi est in-
dispensable. Imaginons un instant qu’elle n’existe pas. Du
sommet P qui est fixe partent deux arétes conjointes qui
aboutissent 4 deux sommets du réseau L et M. Du som-
met Q l'on passe successivement aux différents sommets Q,
(i=1,2, 3....) et comme dans la succession de ces points
aucun cycle ne se révéle, il n'y a pas de raisom peur gque
I'un d’eux ne puisse pas ceincider sort  avec le sommet M, soit
avec L, mais alors la série est réductible. h

La loi qui préside a l'existence d'une série irréductible
apparait de prime abord sous la forme d'un cycle de points.
Dans la suite des sommets Q; (i=0,1,2,3, ..., n), Q,
coincide avec Q, lequel n’est -autre que Q. Mais ce cycle
exige plus qu’une simple coincidence des sommets Q, et Q.

Pour qu’il existe réellement, il faut encore que toutes les
arétes du contour ouvert aient repris leur position initiale.

Les différentes arétes du réseau cubique considéré qui
permettent de souder entre eux les sommets. Q; d'un certain
cycle, constituent une configuration linéaire a laquelle nous
convenons de donner le nom de tracé T. Or le tracé T ne
doit pas étre regardé comme une simple juxtaposition d’arétes.
Clest plutot une ligne continue qul se referme et qui est
orientée dans le sens qui va de Q; & Q;y. Et si cette ligne
passe plusieurs fois par la méme aréte, celle-ci est comptee
autant de fois qu’elle a été parcourue.

Sur la ligne qui caractérise un tracé T, les différents

sommets (); occupent une position cacactérishiquer Rappelons
& ce propes que 'on passe de Q; & Q, 4 par le moyen d'une
opération double dans laquelle interviennent deux arétes con-
tigués, I'une étant ’aréte que 'on associe et l'autre celle que
'on supprlme Le sommet qui les réunit toutes deux n’est
pas et ne peut pas étre un sommet Q;, d'ou la conséquence :

Entre deux sommets conséeutifs Q; d’un tracé T, il existe
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toujours un sommet du réseau qut n’est pas pris en considé-
ration. B2y :

. En outre, si la série est 1rreduct1ble le contour Z doit se
transformer en lui-méme. 1l est par suite nécessaire que toute
aréte qui a été préalablement associée, devienne.a son tour
une aréte que l'on supprime, et inversement. Cela revient a
dire que dans le tracé T, chaque aréte d01t étre parcourue au
moins une fois dans chaque sens. TN

Enfin, comme nous ’avons déja vu, dans chaque operatlon
double, on crée un contour fermé (pour le détruire sitot apreés)
gqui délimite une aire simplement connexe. Le déplacemenit
que Ton effectue sur le tracé T permet d’orienter chacune
de ces aires. En général, lorsque I'on passe de l'une d’elles
a la suivante, l'orientation change de sens. Cette propriété se
manifeste chaque fois que les deux aires consécutives ont en
commun la face sur laquelle s’appuie le tracé T. Mais il
arrive aussi que les faces composant les aires qui corres-
pondent a deux transformations consécutives ne soient pas
communes. Ce fait produit une rupture dans la cadence des
orientations, rupture qui devra réapparaitre, mais en sens in-
verse, au moment précis ou, en suivant le tracé T, on repassera
a cet endroit. , : _

Dans ces conditions, le tracé T ne doit pas étre regardé
simplement comme un fil continu et isolé, mais bien au
contraire, comme un fil soudé aux différentes aires qui appa-
raissent dans chaque opération double. Ces aires, comme d’ail-
leurs la sphére elle-méme, sont simplement connexes. S1 elles
font partie d’une série irréductible, elles se succédent de telle
facon que leurs orientations respectives se détruisent les unes
les autres. On ne s’expliquerait pas, en effet, que des aires
également orientées s’empilent les unes sur les autres, consti-
tuant ainsi des nappes distinctes sur une surface de connexion
aussi simple que la spheére.

Il est évident que l'on pourrait envisager un tracé T dans
ses rapports avec une série réductible. Dans ce cas, aucun
caractére distinctif ne sera a signaler. Toutes les fantaisies
sont admissibles, du moment que l'on sera arrété dans ces
opérations par la présence d'un contour V.

Si nous résumons ce que nous savons d’un tracé T, nous
sommes en droit de dire : SR -

Le tracé T d'une série, reductzble ou non, est represente
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par un fil continu qui est parcouru constamment dans le
méme sens. Ce fil se compose d’'un certain nombre d’arétes
du réseau donné. Sur ce fil, entre deuxr sommets consécutifs
Qi et Q;yq, se trouve toujours intercalé un troisiéme sommet
du réseau qui n’appartient pas d la série des points Q;.

Si la série est irréductible, le fil est un contour fermé.
Chaque aréte du réseau qui appartient au tracé T est par-
courue deux fois, une fois dans un sens, une fois en sens
opposé. |

1 Qq

Prancue X1V. — Jonclion d'un tracé T.

Il reste enfin & examiner les conditions dans lesquelles
le fil qui constitue un tracé T revient sur des arétes déja
parcourues. Cette jonction peut se faire de deux facons dif-
~férentes, suivant qu’elle s’opére sur un sommet Q; ou sur un
sommet intermédiaire. Mais avant de faire cette distinction,
il convient de remarquer qu'en chaque sommet du tracé T
il y a: -

1. une aréte qui appartient au contour Z,

2. une aréte que l'on a supprimée (du contour bouclé pré-
cédent),

3. une aréte que l'on a associée (pour former le contour
bouclé suivant).

Les arétes indiquées sous 2 et 3 font déja partie du tracé
T. Si donc il y a une jonction en ce sommet, celle-ci ne
peut avoir lieu que par l'aréte 1. Et comme cette aréte appar-
tient au contour Z, c’est par une suppression et non pas par
une association que la jonction peut s’effectuer.

a) La jonction a lieu en un sommet Q;.

Le fil qui constitue le tracé T se présente dans la dispo-
sition du schéma fig. 1, planche XIV. Faisant retour au
sommet Q; par une aréte que I’on supprime, il doit en repartir
4 l'aide- d'une aréte que l'on associe. Mais lors du premier

MEMOIRES SC, NAT, 2% 3
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passage on a associé l'aréte qui contribue a formeér le- con-
tour que l'on est en train de fermer. La seule aréte qui
demeure disponible est précisément celle qui n’appartient pas
a ce contour fermé. On s’en éloigne donc en sens contraire
de celui qui a été suivi lors du premier passage, déiruisant
ainsi l'effet antérieurement produit. On congoit fort bien que
si cela se produit une seconde fois dans les mémes conditions,
on réussira 4 se retrouver dans la position initiale du contour
Z, préalablement envisagé.

b) La jonction a lieu en un sommet intermédiaire.

La disposition du tracé T est representee fig. 2, plan(‘he
XIV. Dans ce cas lar-ete qui a été suppr{mee Tors™ du premier
passage, appartlent au contour qui-se ferme. En I’associant
maintenant, on s’engage sur un chemin déja parcouru avec
la méme orientation. Ce caractére ne saurait -convenir a une
série 1rwéductible puisqu’il n’a pas pour effet de détruire ce
qui a été créé lors du premier passage. Il nous permetira
précisément de déceler la présence d'une série réductible.

Dans ces conditions, la question capitale qui nous préoc-
cupe peut se condenser dans la proposition suivante:

Sur un réseau cubique tracé sur une sphére, sat'isfaisant
aux conditions du § 8, il est impossible qu’il n’y ait que
des séries de transformations irréductibles. .

Pour la démontrer, nous partons d’un contour Z dont
les extrémités sont les sommets P et Q. Nous admeitons que
les deux séries de transformations que l'on obtient en lais-
sant P puis Q fixes, soient irréductibles. Afin de distinguer
les différents tracés T dont il va étre question, nous convien-
drons d’affecter de l'indice p le tracé T qui résulte de la
fixité du sommet P, et de l'indice g celui qui correspond
a la fixité du sommet Q. Ainsi le tracé T, est jalonné
par les sommets Q, Q,;, Q,, ..., Q;, ..., qui sont les extré-
mités de contours Z . Chacun de ces sommets peut a son tour
étre regardé comme fixe. C'est alors le sommet P qui se
déplace en suivant des tracés T, T,, T,, ..., T;, ..., sur
lesquels on rencontrera les sommets suivants :

sur Tq P B s Py sanss
sur l‘q’ Py Pis P wians
sur Tq: I D A , etc.
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Les: tracés T, partent tous du sommet P . Ils empruntent
tous une partie du tracé T,:, puisqu'a paftir de P on a
chaque fois associé la méme -aréte. Mais comme le sommet
fixe- Q; différe d’une série a I’autre, ils doivent suivre des voies
différentes. Mais si toutes les séries sont irréductibles, ces
voies finissent par se souder au premier tracé'Tq , tout au
moins dans le voisinage du sommet P. . = |

A l'égard des sommets ou s'opére l'écartement des tracés
T4 on ne peut formuler aucune régle. Cela provient du fait
que, selon notre hypothése, deux faces contigués n’ont en
commun qu'une seule aréte et qu'en outre ces faces sont des
polygones d’au moins quatre cotés. Il s’en suit que le champ
d’action des. tracés T, n’est limité en aucune facon sur l'en-
semble du réseau. Cette constatation est trés importante ainsi
que nous le verrons au paragraphe suivant, car il peut arriver
que, dans des réseaux cubiques qui n’appartienment pas au
~cas difficile, ces tracés ne puissent emprunter qu’un ensemble
bien déterminé d’arétes du réseau considéré.

Il est d’autre part un fait connu que les réseaux qui
onl une forme réguliére, tels que ceux que nous représentons:
planche XV, possédent un grand nombre de réseaux quadra-
tiques du premier type. Cé n'est donc pas sur ces réseaux
que l'on recherchera uniquement des séries irréductibles.

1 2

PrancHE XV. — Réseaux de forme réguliére.

Rappelons enfin que ce qui' caractérise plus spécialement
une série irréductible, c¢’est la forme particuliére de son . tracé
T, . Les sommets libres des différents contours Z se _succeédent
sur un tel tracé avec une cadence réguliére, de deux en deux
sommets. De plus chaque aréte est parcourue une fois dans
un sens et une fois en sens contraire. :
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Si donc toutes les séries envisagées étaient irréductibles,
il serait nécessaire que tous les tracés T, finissent par se
rejoindre, la jonction s’opérant en l'un des sommets P; du
premier. Mais on doit prendre garde que la forme de chaque
tracé dépend de déplacements qui s'effectuent autour de faces

PrancHE XVI. — Les tracés T.

qui ont tantét un nombre pair, tantét un nombre impair
d’arétes et cela avec une variété de moyens qui n’a degale
que celle que l'on a mise & compliquer la forme du réseau
donné. On comprendrait, & la rigueur, que cette cadence ne
soit pas troublée dans le cas d'un réseau qui présente toutes
les garanties de symétrie voulues. Mais nous venons de voir
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que précisément dans ce cas il n’y a pas lieu de rechercher
des séries irréductiblés, puisque l'on est certain d’avance de
rencontrer un réseau quadratique du premier type. Cette ca-
dence ne se justifie pas, et a fortiori ne se réalise pas.

Fic. 14. — Carte de 52 pays. Fic. 15. — Carte de 47 pays.
Exemples de M. ERrERa. -

~ (__— \D
N ~ ) :L \1N7D

Fie. 16. — Carte de 30 pays. Fic. 17. — Carte de 36 pays.

Fic. 18. — Carte de 28 pays

Exemples de M. REvxoLps.
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Nous indiquons, a titre d’éxemple, planche XVI; les dif-
férents tracés T, qui résultent de’ I'application de' la méthode
que -'on vient de "développer & la planche XII.

Conclusion. 11 :est reconnu. d'une facon indiscutable, que
si 'on sait. colorier une carte dont la frontiére est un réseau
cubique qui satisfait aux conditions restrictives du § 8, on
est ,c’a'pabl'e du méme coup de colorier une carte dont les
frontiéres sont quelconques. Or, dans les pages qui précédent,
nous avons montré pourquoi, sur les réseaux cubiques consi-
dérés, on doit nécessairement rencontrer une série réductible,
partant mettre en évidence un contour V et par su;lte un réseau
quadratique du premier type. ‘

A titre de renseignement, nous falsons sulvre ces pages
de la reproduction des exemples cités par “MM. Errera et
Sainte-Lagiie dans les ouvrages que nous avons rappelés plus
haut, exemples qui constituent chaque fois une irréductibi-
lité. en. regard des. méthodes adoptées par leurs auteurs res-
pectifs. Sur chacun d’eux, un réseau quadratique du premier
type est représenté par un trait renforcé.

§12. A propos d'un cas d’exception.

Nous considérons ici des réseaux cubiques dans lesquels
certaines faces contigués ont en commun deux arétes et nous
allons examiner relativement aux transformations d’un contour
Z, la région qui est comprise entre ces deux faces.

" PLANCHE XVII; i

Il n'est pas inutile que nous fixions les idées sur un
exemple concret. C’est ainsi que nous envisageons le réseau
partiel, fig.1, planche XVIL, Il est entendu que les arétes
qui aboutissent aux_sommets A et B complétent un réseau
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cubique que nous  n’avons pas jugé a propos de dessiner.
Le fait que les faces de cette reglon sont des quadrilatéres
n'offre rien de partlcuher

~+ Nous admettons qu’un contour Z; apres avolr passé par
le‘ sommet A, se termine au sommet B. Nous constatons
qu’aprés avoir effectué quelques opérations doubles, nous re-
venons au sommet B, sans nous étre arrété sur le sommet A.
Ce dernier sommet n’est pas un des sommets que I'on prend
spécialement en considération sur le tracé T. Ainsi le tracé T
pénétre dans la région considérée par le sommet B et il en
repari au méme sommet. ‘

On comprend aisément que le tracé T ne puisse faire
étape sur le sommet A, car ce dernier sommet n’est abordé
qu'a laide d’une aréte que:l'on associe et par suite l'aréte
que I'on supprime nous transporte en un autre sommmet.

Il s’en suit que le tracé T ne peut attaquer cette région

qu'en y entrant au sommet B. C’est la une obligation trés
importante que nous ne rencontrons jamais dans le cas gé-
néral. Car alors chaque contour fermé est relié avec les au-
tres parties du réseau par trois arétes, ou plus, de sorte qu’il
peut toujours étre attaqué par deux sommets au moins.
- Cest ce qui explique le fait que, si un réseau cubique
contient suffisamment de régions de cette espice, il soit fort
possible qu'il ne renferme aucun contour V, et par suite
aucun. réseau quadratique du premier type.

Praxcue XVIII.

_ Il est a peine besoin de remarquer que la forme du ré-
seau A l'intérieur du contour fermé qui passe par les som-
mets A et B, ne joue aucun role. Le cas le plus simple est
celui dans lequel ce contour fermé ne limite quune seule face.
Nous en donnons un exemple fig. 1, planche XVIII. Les au-
tres: figures de cette planche indiquent divers tracés T de ce
réseau qui ne renferme pas de réseau quadratique du premier

type.
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Remarque. — Cet exemple nous a été communiqué par
M. Errera a la suite d'une communication que nous avons
faite a la Société Mathématique Suisse. Il n’appartient pas
au cas difficile et ne saurait aucunement infirmer notre théo-
rie, car il est exclu par la restriction 4). Le coloriage, a I'aide
de quatre couleurs, est d’ailleurs aisé. -

Il suffit de transformer légérement cet exemple, en' lui
adjoignant une aréte de plus, pour faire immédiatement ap-
paraitre un réseau quadratique du premier type, ainsi que
le prouve la fig. 19.

Fre. 19.

§ 13 A propos d’'un autre moyen d’étudier les réseaux cubiques.

Lorsque nous avons entrepris cette étude, l'existence d’un
réseau quadratique du premier type a immédiatement fait 1'ob-
jet de nos plus vives préoccupations. De suite, elle s’est affir-
mée avec une singuliére netteté. Nous pensions alors 1'établir
en nous basant sur les propriétés des équations de M. Veblen,
ou plut6t sur celles du systéme fondamental de solutions. Cet
essai n’a pas été concluant. Il n’est cependant pas inutile d’in-
diquer la voie dans laquelle nous nous étions engagé.

Les quantités a,, o,, o, et par suite p étant fixées, il
existe différents polyédres qui ne se distinguent les uns des
autres que par la forme de leurs faces. Les matrices B de
ces polyédres ne sont pas sans marquer une certaine parenté
puisqu’elles se composent toutes de a, lignes et de a, colon-
nes. Rappelons que dans une ligne d'une telle matrice, deux
éléments sont égaux a 1, tous les autres étant nuls. Dans
ces conditions, il devient intéressant d’envisager une ma-
trice qui comprend suffisamment de lignes pour que toutes
les dispositions possibles de ces éléments soient prises en con-
sidération. On forme ainsi une matrice surcompléte dont le
nombre des colonnes est toujours a,, mais dont celui des
lignes est devenu % ay (0 — 1) . Or il suffit de supprimer
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dans des conditions convenables un nombre déterminé de lignes
de cette matrice surcompléte, et au besoin d'en répéter quel-
ques-unes, - pour dégager la matrice B de l'un ou l'autre des
polyédres qui comprennent o, faces.

A ce propos, deux cas sont a considérer suivant qu’il est
nécessaire ou non de répéter une ou plusieurs lignes. Admet-
tons qu’il n’y ait pas de répétition. Les a, lignes de la ma-
trice B sont toutes distinctes. Pour les obtenir, il est néces-
saire de supprimer v lignes de la matrice surcompléte, v étant
égal a:

v=1/2o.2(a2-—-1)—'a1

— % (a;—8) (o, —4)

Dans le polyédre ainsi caractérisé, deux faces ont au maxi-
mum une aréte commune, .

Lorsque dans une matrice B des lignes sont identiques,
cela signifie que des faces du polyédre correspondant ont en
commun deux ou plusieurs arétes. Or, dans ce domaine, tous
les degrés d’arbitraire sont possibles. Il n’est par conséquent
pas aisé d’établir une théorie qui s'adapte a 'ensemble des
matrices qui rentrent dans cette catégorie. D’ailleurs ce cas
n'est pas intéressant, pour le but que nous nous étions pro-
posé, a savoir: le coloriage des faces d'un polyédre. C'est la
raison pour laquelle nous I’avons ostensiblement laissé de coté.
Voild comment nous avons été conduit a poser la restric-
tion 4) aux conditions du § 8, disant que dans un poiyédre
considéré, deux faces contiqués n’ont qu’'une seule aréte com-

KRV
1 A AP

Prancne XIX.

A titre d’exemple, nous avons représenté des réseaux de
7 faces dans les planches I a VI. Ceux qui satisfont a la
condition que nous venons de rappeler sont fixés par les plan-
ches II, IV et VI. Nous les répétons dans les figures 1, 2, 3,
planche XIX, en numérotant leurs faces d'une facon arbitraire.
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La matrice -surcompléte de 7 faces a la teneur suivante :

.2 110 0 0 0 O
1.3 1. 0.1.0 0 0 O
1.4 1 00 1 0O0O
5 1.0 00 1 0 O
16 1 0 0 0 0 1 0
1.7 1 000 001
23 0 1 1 0 0 0 O
24 0 1 0 1 0 0 0
256 0 1 0 0 1 0 O
26 0 1 0 0 0 1 0
27 0 1 0 0 0 0 1
34 0 01 10 0 0
35 0 0 1 0 1 0 O
36 0 0°1 0 0 1 0
37 0 0 1.0 0 0 1
45 0 0 0 1 1.0 O
46 0 0 0 1 0 1 0
47 0 00 I 0 O 1
56 0 0 0 0 1 1 0
57 0 0 0 0 1 0 1
67 0 0 0 0 0 1 1

Le :n()mbre v est 1ci égal aob.
| ‘QOn obtient la matrice B de la fig. 1, planche XIX, en
supprimant les lignes |
2.3 24 25 35 36 4.6
celle de la fig. 2 en supprimant les lignes
16 1% 25 2.6 34 3.6

et finalement celle de la fig. 3, en supprimant les lignes
1.7 24 25 35 3.6 46 "

* % %

On se rappelle d’autre part, que l'on passe d'une ma-
+rice B a celle’d’'un systéme fondamental de solutions, par la
suppression de l'une de ses colonnes. Si alors l'on associe
entre elles-les p colonnes qui restent, de toutes les maniéres
possibles, en réduisant les nombres obtenus suivant le ‘mo-
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dule” 2; on forme l'ensemble de toutes les solulions que pos-
séde le systéme d’équations linéaires et homogénes (1).

Ce ‘travail peut aussi s'effectuer sur les colonnes d'une
matrice surcompléte, aprés omission de l'une d’elles. On cons-
titue ainsi un- grand. tableau de 2¢ — 1_colonnes et de
Yg ag (g — 1) lignes, duquel on déduira celui de 1'ensem-
ble des solutions d'un systéme (1), par la suppression des
v lignes dont il vient d’étre question.

Il resterait a fixer les conditions auxquelles doit satisfaire
le choix des v lignes que l'on supprime. Nous ne voulons ce-
pendant pas nous y attarder, quoique les considérations qui
découlent de cette étude ne soient pas dépourvues d’intérét.
Seulement, nous n’avons pas réussi a trouver le moyen de
distinguer les réseaux quadratiques du premier type des au-
tres réseaux quadratiques. Telle est la raison pour laquelle
nous avons cherché une autre voie, celle des arbres linéaires
et superficiels.

§ 14. Réseaux cubiques tracés sur un tore.

- Cette question ne nous retiendra pas longuement, car le
probléme du coloriage des pays d'une carte dessinée sur un
tore est connu. On sait qu’il faut 7 couleurs. Mais ce qu'il
nous importe de faire voir, c’est qu’il serait impossible d’ap-
pliquer au tore les méthodes que nous venons de développer
a I'égard de la sphére.

Le théoréeme d'Euler, généralisé pour le tore, donne en
effel la relation suivante :

O — Oy = Oy

Il1 s’en suit que la frontiére de tout arbre superficiel qui
comprend les o, faces, est une configuration linéaire de
@y + 1 sommets. Or celle-ci n’est pas un arbre linéaire. Elle
renferme au contraire deux contours fermés linéairement in-
dépendants. La recherche d'un contour fermé unique qui pas-
serait par l’ensemble des sommets est ici chose illusoire.

® ok ok

Ce résultat négatif s’affirme avec plus de netteté encore,
si au lieu du tore on envisage des surfaces d'un ordre de con-
nexion plus élevé. Soit P cet ordre de connexion. La fron-
titre de tout arbre superficiel composé de la totalité des faces
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renferme P'— 1 contours fermés linéairement indépendants,
ainsi que le meontre la relation -

O — @+ 0g=3—P
ou

o, — (g —1)=0ay+P—2=0a— 1+ (P—1).
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