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MENOIRES DE LA SOCIETE OAUDOISE DES SEIENCES NATURELLES

No 18 | 1929 Vol. 3, No 3

Sur les courbes binomiales
PAR
Sophie PICCARD

(Présenté a la séance du 20 février 1929.)

INTRODUCTION

C’est en cherchant i résoudre certains problémes posés par
le calcul des probabilités et la statistique qu’on est conduit
a envisager les courbes binomiales dont nous allons nous oc-
cuper dans ce travail. Les principaux résultats en ont été don-
nés dans une note insérée aux Comptes rendus de UAcadémie
des Sciences de Paris, T. 186, 1928, p. 1687.

Partons du probléme classique des épreuves répétées traité
par Jacques Bernoulli. Supposons qu'on fasse s épreuves com-
portant deux événements contradictoires A et B de probabi-
lités constantes p et g et soit = le nombre possible de réali;
sations de ’événement A au cours de ces épreuves. (Ce nom-
bre peut prendre toutes les valeurs entiéres comprises au sens
large entre o et s et les probabilités correspondantes P(x) sont
respectivement égales aux termes du binéme (g -+ p)*, puisque

[}x qs-—x

p s!

(2) = x!(s—z)!
Il en résulte, rappelons-le, que P(x) satisfait & 1’équation fonc-
tionnelle |
(o) g(z+1) P (z41) = p (s—=z) P(a)

La loi de répartition des probabilités P(x) peut étre repré-
sentée soit par des masses égales 4 P(z) concentrées en s |1
points =0, 1, ...s de l'axe des z, soit par s-1 points
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d’abscisses x et d’ordonnées P(x). La loi de repartltlon des
prebabilités est discontinue. |

Mais on sait combien il peut étre utile dans certaines re-
cherches théoriques, aussi bien qu’en statistique, de passer du
discontinu au continu, en remplacant la succession discréte de
points représentant une loi de probabilité par une courbe con-
tinte passant par ces points, ce qui conduit & un probléme
d’interpolation.

Dans le cas qui nous occupe, une solution élégante de ce

probléme s’obtient a partir de la fonction caractéristique au
sens de M. P. Lévy
o(w) = (q + pe™)y

en posant!
(1) [ o(w)e—x¥ dw

La fonction y ainsi définie est développable en séries de
M. Charlier, utilisées fréquemment, comme on sait, en sta-
tistique mathématique. Malheureusement, on ne connait pas ’ap-
proximation qu’on obtient en arrétant ces séries & I'un de leurs
premiers termes.

Une solution plus immédiate, et & certains égards plus sim-
ple et plus commode, s’obtient en remplacant dans l'expres-
sion de P(z) les factorielles z!,(s—z)! par T'(x}1) ect
I'(s—x-1). L’interpolation est alors réalisée par la fonc-
ton

a» . S! X 75—X
(2 YT Tt D Te—zstn 7

déja utilisée, parfois implicitement, dans certaines recherches
de calcul des probabilités et de statistique.

Lorsque p=q =14, la courbe (2) coincide avec (1), elle
s'en écarte pour p=q.

La fonction y ainsi définie se calcule a l'aide de la for-
muie de Stirling et bien que les développements qu’on obtient
au moyen de cette formule ne seoient pas convergents, il est
“possible d’évaluer I'erreur commise avec une approximation en
général suffisante dans la pratique.

S. D. WicHsELL, Contributions to the analytical theory of sampling, Archiv
for Matematlk Astronomi och Fysik, Bd. 17, N° 19 (1923), p. 1-46. Ce travail
se rattache au mémoire de M. CHARLIER : Die slrenge Form des Bernoullischen
Theorems, ibid., Bd. 5, N° 13 (1909). p.p. I-22.
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D’autre part, et cette propriété en facilite singuliérement
I'étude et l'apparente davantage a P(z), la fonction y satis-
fail aussi a I'équation fonctionnelle (o).

C’est 4 I'étude des courbes (2) que sera consacré notre ira-
vail. ' : ’

Ces courbes, que nous appelons courbes binomiales, jouent,
nous l'avons dit, un réle considérable en statistiqué et a ce
point de vue leur étude a été poussée assez loin 1.

Dans ce travail, nous nous placons & un point de vue dif-
férent. Ce qui nous intéresse surtout, ce sont les propriétés
asymptotiques. de -la fonction"’y et de certaines fonctions de s
définies & partir de y.

Nous commencons, dans les deux premiers chapitres, par
faire 1'étude des variations de la fonction y, et, aprés avoir
généralisé une formule de M. R. Frisch retrouvée par M. de
Montessus de Ballore, nous envisageons lintégrale

ry dx

qui joue un role essentiel dans cette recherche. Nous mon-

trons que la différence S
a4t

"Jym—1
—1 - :
tend plus rapidement vers o que n'importe quelle puissance

de—l- .
s

A

s+1

Cette propriété importante de l'intégrale ydr, ainsi

| = §
qu'une partie des résultats du chapitre I. ont déja été éta-
blis par M. D. Mirimanoff dans une note récente *. Nous avons
cru devoir reproduire ici son analyse, en la complétant sur

quelques points qu’il n’avait fait qu'effleurer.

1 Voir p. ex. R. pE MonTEssus DE BALLORE, La formule fondamentale de la
statistique, Annales de la Société scientifique de Bruxelles, 1927, pp. 103-115.

2 L’enseignement mathématique, t, XX VI, 1927, pp. 287-293.
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Nous montrerons dans le chapitre III que la proprlete des

intégrales
[ ydx
-4

dont il vient d’étre question s’étend aux intégréles

A

[ yat

-

Ia variable I étant I'écart ¢ — sp et la limite X un nombre de

la forme s*, ou k est un nombre positif compris au sens

étroit entre 1 et 1. _
On trouvera dans le chapitre suivant I'étude du développe-

ment de la fonction y suivant les puissances croissantes de

1
\/qu qu'on obtient a l'aide de la formule de Stirling. En dé-

signant par ¢ I’écart réduit —=—, nous montrons que les coef-
g P \/2qu qu ,

ficients de ce développement, abstraction faite du facteur e—*

sont des polynémes en t qu'on peut calculer de proche en
proche. D’autre part, le reste vérifie une inégalité curieuse
4 l'aide de laquelle nous avons pu établir une propriété im-
. portanie de ces polyndmes qui nous a été signalée par M. D.
Mirimanof{.

CuariTrRE 1.

Etude des variations de la fonction y(x).
Forme des courbes binomiales.

§ 1. Généralités.

Ainsi que nous l'avons dit dans l'introduction, nous en-
tendons par courbes binomiales les courbes définies par une
équation’ de la forme

s!
(1)

F(:z:—l—l)l"(s—x—l—l)P e

ou s est un nombre entier >0, p et g deux nombres posi-
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tifs liés par la relation p +'q=1. Dans l'étude de la fonction
y =y (x). nous ne sortirons pas du domaine réel et, pour
fixer les idées, nous supposerons p<q.

Lorsque r est un nombre entier m compris au sens large
entre o et s, la valeur correspondante y(m) de y(x) est égale
a la probabilité pour qu'un événement A de probabilité cons-
tante p se réalise m fois au cours de s épreuves.

Aux valeurs m=0, 1,...s correspondent s+ 1 points
M,, M,,... M; de la courbe binomiale. Rappelons que

" |

Zy(m)=1.

b4

m=0

Transformons l'équation (1) en faisant usage des propri.é-
tés classiques de la fomction T (x). '

a) Fzy=(x—1)T (zx—1)
et b) (@)L (1—2)=——

Par application successive de la premiére de ces proprié-
tés, on obtient:

T(s—at1)=(s—a)(s—1—a)... (—a) [(—z)
Par application de la seconde propriété, on trouve

b1

T(z+1)T (—z)=—

sin Tz
L’équation (1) devient, en tenant compte de ces relations

o s ! sin nx
(2}

/ y=(s——a:)(s-—1—~x)...(1—-x)xrt e

Déterminons les zéros de la fonction y(z)..Le produit
s! pf g™ étant =0 quel que soit z, les zéros de y sont
ceux de sinwmz, sauf £=0,1,...s. Par conséquent, y s’an-
nule pour t=—1,—2,... —m,...etpourx=s4+1,s+2,
...s+14m,... m étant un nombre entier positif quelcon-
que. o
Ces zéros déterminent sur l'axe des z une infinité d’in-
tervalles: l'intervalle iy=( —1,s+41), que nous appellerons
I'intervalle central, la suite d’intervalles iy = (s +k,s 4+ k1)
et la suite i_y=(—k—1,—k), ou k est un nombre en-
tier quelconque > 1.

Un point d'un intervalle iy a pour abcisse s+ k4 ¢, ou
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e est un nombre compris entre 0 et 1. A une valeur donnée
de ¢ correspond une série de points que nous appellerons
points homologues de ces intervalles.

Un point d’un intervalle i_; a pour abscisse — 1 —k 4 .
Les points homologues de ces intervalles seront encore ceux
qui correspondent i une méme valeur de .

Montrons que la fonction y(z) est positive dans lmter-
valle i; et qu'elle est alternativement négative et positive dans
les intervalles l+(2k__1), i (k=1,2,..)

En effet, soit d’abord = un nombre quelconque intérieur
a lintervalle iy. On sait que I' (z) >0 pour z>0. Donc
I (x-+1) ainsi que I" (s—x 1) sont positifs dans iy et il
en est dc méme de y en vertu de l'équation (1).

Considérons maintenant la valeur de z correspondant a un
point quelconque de l'intervalle iy_;,. En posant

r=s84+2k—14¢,
y (@) =y (s+2%—1+)

( - 1)S+2k—1 s ! sin J'[aps+?k“'1+5 q-—2k+1—s
— T B 1T FFO T HF—TFo7
s! sin me ps+2k—-1+= q—2k+1—

= (=1 2k —1+¢€)...(s+F2k—1+e)n <0

On voit de méme que l'ordonnée d’un point quelconque de
Pintervalle i_ g est <O.
Passons maintenant a I'intervalle iy . En posant

z=s8-+2k+ ¢,

. (— 1)% s ! sin me ps+2+: g—2%—
T @I N RS =

On demnntre de méme que y >0 en un point quelcon'que
de lintervalle i_,, .

Du reste, ces inégalités résultent immeédiatement des pro-
priétés classiques de la fonction T (x).

Par conséquent, la courbe (1) est une courbe sinueuse se
composant d’une infinité d’arcs o, (partle centrale), o, o
correspondant aux mtervalles bo; Bis Fics

Etudions les variations de ces arcs lorsque % augmente in-
définiment. Nous distinguerons deux cas

Cas 1. p<q

il vient

on trouve
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Dans ce cas, les arcs o, s’aplatissent de plus en plus. Suppo-
sons, en effet, que x parcourt une suite s % ¢ de points
homologues et montrons que la suite correspondante des |y
est décroissante et qu’elle tend vers 0. Partons de I'égalité

s | sin me psthte g—k—

yE+k+el= G GFite T kFon

Lorsque k-»>co, sinne ne varie pas, pstk+: ¢=%=rest une fonc-
tion décroissante de k, puisque p < q, et comme le dénomi-
nateur augmente indéfiniment avec k, le premier membre est
unc fonction décroissante de k tendant vers 0. La propriété
esl établie.

Les arcs o_j, au contraire, s’amplifient indéfiniment a par-
tir d’'un certain rang, lorsque k~>oco. Posons x = —k —1-}¢.

Il vient
by (—k — 18]
s | sin me p—k—l+: gs+hkti—:

T GTkti—c) Gtk—5 .. kti—e)=

d’ou

s | sin ne p g \sHetH—
ly(_k_1+e)|>(S+k+1—=8)3+1r(;)

i a* .
el comme une fraction de la forme —5, ot a>>1, augmente
indéfiniment a partir d’'un x suffisamment grand, lorsque z—» =,
les arcs o_, s’amplifient indéfiniment.

Cas 2. , p=gq

Dans ce cas, la courbe est symétrique par rapport a la
; $ . g &
droite #= 5. En effet, h étant un nombre positif (uelcon-
que, on a (éq. 1)
s !

y(ngh):y(%“—”’) = r(§+-h+1)r<f—h+1) (%)

2

ra

or la suite |y (x + k - ¢)| est décroissante et tend vers o. Donc
les o, et les o_, saplatissent indéfiniment lorsque k—»>= .
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§ 2. Etude de la partie centrale.

Nous avons vu que la fonction y(z) est positive dans 1'in-
. tervalle central. Nous allons montrer maintenant qu'elle a dans
cel intervalle un maximum et un seul; ce maximum est at-
teint pour une valeur de la variable comprise entre sp —q et
sp - p- ,

Théoréme 1. — Si la fonction X =L est positive en un

point z =z, de 'intervalle central, la fonction y(x) est crois-
sante dans l'intervalle (— 1, z5). Si X(z,) <0, y(z) est dé-
croissante dans lintervalle (z,, s+ 1).

Démonstration. — Prenons la dérivée logarithmique des
deux membres de l'équation (1). On a en posant

r'(x)
T(a)

X=0(s—2+1)—@(+1)—log 7

— ()

) ) d
Considérons la dérivée I

On a

%:--@'(s—x—l—l)—d)’(m—]—l).

Or la fonction ¥ (u) =@’ (u) est positive pour u >0 et
comme dans 'intervalle central les deux arguments ( s— x - 1)
et (z+-1) sont positifs, la dérivée - est négative et par
conséquen! X est une fonction décroissante de z dans cet in-
tervalle. Si donc la fonction X est positive pour &=z, elle
est positive pour x <z, et par conséquent y est une {onction
croissante de x dans l'intervalle (— 1, x,). La premiére par-
tic du théoréme se trouve ainsi démontrée. On démontre de
méme la seconde partie.

Théoréme 2. — La fonction y(x) est croissante dans 1'in-
tervalle (—1, sp—gq), elle est décroissante dans l'intervalle

(sp-+p, s+1).

Démonsiration. — 11 suffit de montrer qué X >0 pour
X=sp—q et que X<<0 pour x=sp- p.
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Rappelons la propriété suivante de la fonction @ (x): lors-
que m est un nombre entier,

@(x—|—-m)—‘l)($)=%7+},—_%'__1+":a;-|——;1:_1

Or
X(sp—q)=@(sqg+q-+1)—@ (3p+p)—*log;-],~

Dans cette formule, la différence des argumvents de @ est

égale a
sq+q+1—sp—p=s(q—p)+ %4
Soit m le plus grand entier inférieur ou égal a cette dif-
férence. m vérifie 1'inégalité
s(g—p)t+2q—1<<m<s(q—p)+2q
La fonction ® (u) étant une fonction croissante de u>> o,
on a
®(sq+q+1) — @ (sp+p) = (m+sp+p) — P (sp+p)
Mais ‘
® (m+sp+p)—P(sp+p)
1 1 | 1
=5 tp Twrpri T TpEm—1

Or la somme

1 +' 1
sp+p ' " sp-p+m—1

est supérieure a '
sp+p+m

dx
X
sp+p

et d’autre part
sp+p+m

f@f = log (s p+p+m) — log (sp +- p)

sp+p .
>log [sp+p+s(qg—p)+29—1]|— log (sp+ p)
ou encore
sp+p+m
dx sq+q q sq+q __ ¢
= 108 o T8 T T T )

sp+p
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Donc | :
D (sq+q+1)—(sp+p)>log et X (sp—g) >0,
c.q.f.d.

Passons maintenant i la démonstration de la seconde par-
tic du théoréme.

On a

X(SP+p)=‘1’(8q~P+1)—®(sp+p+1)—log]g,

La différence des arguments de @ est égale dans ce cas a
$(g—p)—2p. Soit m le plus petit entier supérieur ou égal
a cette différence. Le nombre m vérifie 1l'inégalité

s(@—p)—2p<m<s(¢g—p)—2p+1

On trouve par un raisonnement identique au précédent

sp+p+m
dix
‘I’(sq—p+1)—¢(8p+p+l)<f—_§
Mais o
sp+p+m
d.r
f—xi=log(8P+p+m)—log(3p+p)
sp+p 5
<log[sp+p+s(g—p) —2p+1] —log (sp 4 p)
q—!-q_l q
Bsp+p °8;

On a donc bien X (sp 4 p) <0, ce qu’il fallait démontrer.

Corollaire. — Comme X est une fonction toujours décrois-
sanle de x dans l'intervalle central et comme X (sp —q) >0
et X (sp-+p)<<0, il en résulte que X s’annule en un point
unique de D'intervalle central et par conséquent, en vertu de
ce qui précéde, y posséde dans cet intervalle un naximum
el un seul, ce maximum étant compris entre z=sp —q et

Z=Sp+p-
Remarque. — Dans le cas de p=q =1, la fonction y(x)

: 8 £ s
passe par le maximum pour x=_ en vertu de la symétrie.
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§ 3. Généralisation d’'une formule de MM. Frisch
et R. de Montessus de Ballore. '

Introduisons maintenant 1'écart [ —=x — sp. L’équation (1)
s'écrit
s !
.

A N R VR e et VL

M. Ragnar Frisch?, en 1924 et 1925, et indépendamment
de lui M. de Montessus de Ballore2, en 1927, ont donné des
formules importantes permettant de calculer de proche en pro-
che en proche les valeurs moyennes des différentes puissances
de ’écart | compris entre deux limites données. Nous allons
généraliser celle de ces formules qui donne la valeur moyenne
de la premiére puissance de l'écart 3.

Remplacons dans !'équation (3) I par !4 1. Il vient

sqg—I

Y =T (sp+ I+ 2T (sq—1D)

Mais, en vertu de la premiére propriété citée de la fonction T,

Ol a
I'(sp+1+2)=(sp+1+1) (Tsp+1+1)

et de méme

(4) g PP+ gsa—i-1

L(sq—1+4+1)=(sq — )T (sq — 1)
On a donc la relation suivante

__sq—1l p
, GRS B A
quon peut écrire

(5) spqyt — plyt — spqyi+1—q (L +1) 141 =0
Multiplions les deux membres de (5) par dl et intégrons
entre les limites =1, et I=1I0,—1. Il vient

(6)

’l""'l 13—1 l:"‘l 12—1

spq fyzdl——p fl:f/zdl—sm [yz+1 dl—q f(l+1) yi+1dl =0
;: o/ [ 5 L %3

L L L

1 Biometrika, 1925, p. 1;70.

2 Annales de la Société scientifique de Bruxelles, 2¢ partie, mémoires 1927,
pp. 103-115.

$ Cf. L’enseignement mathématique, loc. cit.
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Désignons les quatre intégrales qui figurent au premier
membre de cette équation respectivement par J,, J,, J; et J,.
On a d’une part

II 2
J, =spq /yldl—qu [y;dl
I L1

2_——p[ly:dl+p [.lyzdl

l,—1

d’autre part

L+1

J3=—1spg fy;dl———qu /yzdl—l—qu [ytdl
L1 1, N

+1

J4 —mqj ly;dl-—ﬂq‘j lyzdl—‘—q.j lydl
L+l

On en déduit, en remplacant dans I'équation (6) J,, J, J,
et J, par les expressions obtenues

L4+1
9pq fyldl ——wlj y;dl —p [.lyzdl+p [lyzdl—q [.lygdl
I,—1 I—
L+
+q [tpdt=0

b
Or p-+g=1; on peut donc écrire

L+

1+1
7 J ly,dl_-qu J y,dl—'—q.j ly,dl——quJ y,dl+pfly;dl

[’-‘1 13—1

C'est la formule de MM. Frisch et de Montessus de Bal-
lore généralisée.
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CuariTre 1II.
s-_{v-l
Etude de lintégrale J ydz .

-1
§ 1. Introduction.

Dans ce chapitre, nous ferons I'étude de Vintégrale

s+1
[ ydx

L 3

-
Nous allons montrer que la différence

s+1
[ ydr —1

—1
tend plus rapidement vers 0 qu'une puissance quelconque de
3 lorsque s augmente indéfiniment; d’une facon plus pré-

cise, pour tout n
s+1

(8) J.ydw—1=o (Si-n)

o étant le symbole de M. Landau (voir le § suivant).
s+1
Interprétation géométrique. — L’intégrale J ydz est
—1
l'airec A, comprise entre la partie centrale de la courbe bi-
nomiale et 'axe des z. Inscrivons dans cette partie de la courbe
la ligne polygonale partant du peint (— 1,0), ayant pour som-
mets successifs les points My, M;,...M; et aboutissant an point
(s + 1,0). L’aire comprise entre cette ligne polygonale et 1’'axe
des « est égale a l'unité. Le premier membre de (8) ecst donc
la différence des deux aires. \
- Pour établir la formule (8), nous envisagerons d’abord le cas
de p=gq=1. Nous passerons ensuite au cas de p<q.
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§ 2. Rappel de quelques propriétés du symbole
de M. Landau.

- Rappelons que la formule
1
© o= (z)
signifie
lim s2.f(s)=0.

s—» x)
Dans ce travail, nous aurons & nous appuyer sur les pro-
pristés suivantes du symbole de M. Landau, dont la démons-
tration est immédiate. |

a) Si les fonctions f,(s) et fy(s) vérifient la relation (9)
il en est de méme de leur somme f,(s) - fs(s),

b) Si f(s) vérifie (9), il en est de méme de s"f(s), r étant
un nombre réel quelconque.

¢) Si |fy(s)|<<|fu(s)! & partir d’une certaine valeur de s
et si f,(s) vérifie (9), il en est de méme de fy(s) .

d) Une fonction f(s) de la forme Z ot a>0, a>1 vé-

as’
rifie toujours la relation (9).
Démonstration. — En effet

log'%:sloga—nlogs—loga»—l—oo,

lorsque s augmente indéfiniment.

§ 3. Cas de p=q=1;.

Démontrons d’abord le lemme suivant:
- Lemme. — Si p=q =13, l'intégrale
. o
'fydx

[®
— Q0

est égale a l'unité. ,
Démonstration. — Lorsque p= q = 1}, I'équation (2) s’écrit

s | sin nx

Y =3 G—a)(s—1—a)... 1—a) =
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Décomposons la fraction

1
s—z)(s—1—2)...(1—2)x

en éléments simples; on a

1 1
1 &l 1)
P ————; e P -+ et
-t (— 1)s-1
ooty
Il vient en conséquence
+ oo
QSfyd:v
+oc + o + oo
[ sinmx (— 1)1l sin g sin nx
_"f T dx+"'+(s—i)!i!fm—w de+...+(=1) fﬁ:——wmdr
— o0 —co — 0

Evaluons les intégrales qui figurent dans le second mem-
bre de cette égalité. Elles se raménent immédiatement a I'in-

tégralc
+ %0

sin .x
dx
X

- Qo

qui, comme on le sait, est égale a m.

En effet
+ = + o0 + oo
' »
sin 1L 1 sin X 1 sin &
de = - dnx = - —dr'=1,
nxr ~ ¥ 4 ™ xr
—_ —_ 00 — 0
de sorte qu’en posant, pour i=1, 2,...s, in —nx=—1', on

a d’'une maniére générale

+ + oo

sin mx — {)yH sin &’ ,
f.——— dr = ( ) — dx’ = (— 1)it1
i — "I ~ T

— o0 —_—r
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On a par conséquent

+ oo
s ! 2s
[rao— g st oty e ==
c.q.f.d.
Reprenons maintenant I'intégrale
s+1
J ydr =A,.

-1

Montrons d’abord que A, est supérieur & l'unité. En effet,
en posant '

s+2
— [‘yd:z:_——fydm A2--J ydac.-—fyd:c
s+1 s+2
s+i41
Ay = (— 1) ['yd:r*—(—l)‘ [ydw
s+i —i-1
nous pouvons écrire |
+ o0

9) [ydm=A0—2A1—1—2A2—...=1

Or A A>A >,
puisque les arcs oy s’aplatissent de plus en plus, lorsque k ->

(cf. ch. I, § 1).
L’égalité (9) peut s’écrire
—2[(Ar —Ap) + (A5 — Ay +...] =1

Tous les termes entre crochets étant positifs, il en est de
méme dc¢ leur somme. On a donc bien A;>1, c.q.f.d.
Montrons maintenant que

ot a >0 et a>1.
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Partons encore, a cet effet, de I'égalité (9).
Elle peut s’écrire

— 2 R (A Bgd T e

Tous les termes entre parenthéses étant positifs, on a

Ay—2A, <1
ou encore
Ay —1<T2A,
Or
s+2 542 :
2, — 2 d 2 s! Siln T T d
- yar=— (s—z) (s—1—a)...(1—=x) = **
s+1 s+1

Posons f(x) = sinnz

B} = (s—z)(s—1—2)...(1—x)2

s 1 — (__1\s zY
={—1) (w—s)...(w——l)w—( 1)* ¢ ()] |

Désignons (— 1)s+1 f(x) par f,(z) et |p(x)| par @,(z)
Ces deux fonctions f,(z) et ¢,(x) sont positives, = variant
de s+1a s+ 2.
On obtient ainsi pour 2A; I'expression
2 s+2
24, = 5 [ 6@ 0 (o) da
e

- Désignons par M le maximum de la fonction ¢,(z) dans
* I'intervalle (s+1, s+ 2). On voit tout de suite que

M =i+ 1) = 5y

En effet, ¢,(x) est une fonction décroissante de z dans
I'intervalle (s-+1, s+ 2), car il en est de méme de cha-
que facteur -

(i=0,1, 2...5)

x—1

On a donc l'inégalité

s+2 I
2.s!(—1)sH1 : |
A<y aFDI. [Sm."_"”dx
s+1

MEMOIRES SC. NAT. 18 7
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o encore
4
M< FEF
car
s+2
(—1)s+t / sin nx de = (— 1)stl [— cos nsz+2 2
sh
et comme
Ay, —1<T2A,
il vient
Ay, —1< >
0 2 (3 -+ 1) 28
Or
4 om
=GFD

En posant donc o =0,41 et a=2 on a bien
Ay —1< f c.q. f.d.

Mais en vertu de la propriété d)

Il en résulte que

en vertu de c¢) et le théoréme est démontré.

§ 4. Cas de p<q.

Par définition,
s+1

AO i [.yda:
~1
C’est une fonction de p que nous de31gnerons par A, (p).
On a vu (§ 3) que

SHRE

Il suffit donc de montrer que

A (p) — 40 (3) =o (&)
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Appliquons a cette différence le théoréme des accrmase
ments finis

Ag (P)—_Ao(%) = (p 2) Ryl Jg;: B gyt

ol

1 1, 1 1
Posons

1 |
'z—l—e(p )—-pl 1—p1=4qu;

y ayant pour expression
! —
Y= TEFDIL(s—=zF1) re

la dérivée de Ao (p) par rapport i p sera

s+1

dAo(p) _ slap*lgs*
Cdp I‘(a:—l—l)l‘(s——-a:—l—l)

-1

s+1

s! (s —z) p* g5 —*—1
T(zx+4+1) F(s~—w—{—1)

-1

Posons x=sp-41.

dr =dl siz=—1,l=—1—sp
siz=s+1,l=sq}1.

Il vient |
sq+1 sq+1 sq+1
dA [
ﬁ%if%‘twdl 4= ,dl__——fly,dl
—1—sp —1—sp —1—sp

Appliquons & cette derniére intégrale la formule de Frisch-
de Montessus de Ballore généralisée

sq+1 sq+1
dAo(p)__SJ g+ [zy,dz —sJ y;dl—l—— ['zy,dz
—~1~3p —1 sp
sq+1
dl=1J,+J,

- l_sp
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. .
2+ varie de — ! a 0, y,croit
p P

[ variant de —1 —sp a — sp,
de 0 a ¢ . Donc J; <CO0.

l variant de sq a sq4-1, s¢ ! -

décroit de O a ~7° y: dé-

croit de p* 4 0. Donc J,>0.
Montrons que |J,|>1J,. ,
A cet effet, posons l=—sp—e(0<e<1), dans J,.

La fonction sous le signe d’intégration s’écrit alors
gn g

o — stp— ¢t (_:=
- T'(1—e) T (s+14¢) Tp
Dans J, posons l=sq-}¢. |
La fonction sous le signe d’'intégration s’écrit
" __ st poteg= = &
" I'(s4+1+eT(1—e) ¢

Considérons le rapport des modules de u’ et u”

u

I u’ I qs+1+2=

[u| — pstite
Comme ce rapport est supérieur a 1 pour tout &, on a bien

[J4]>Js
Donc

dA, (p)
el par conséquent

Ay(p) — Aq G) < (p — %) i

-
R 1

—J -J dl < = ¢
1<p K. <pq

—1—sp

(1Y (1 L
Ao(p) — Ao (2) < (5 —‘P) 57
Mais en vertu de la propriété d)
1 il_ s — 0 i
2 )p =%\

il en est donc de méme de Ay(p) — A, (%), c.q. f. d.

Or

Donc
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Cuaritre III

'
Etude de l'intégrale [ yidl.

¢
§ 1. Introduction.

s+1
La propriété de l'intégrale ydx que nous venons d’éta-
—1

X
blir s’étend aux intégrales [ Yudl, ou X est un nombre de

-2
la forme s*, l'exposant k étant un nombre quelconque véri-
3 9 r ",y 1- ]
fiant I'inégalité 3 +<_k <1. Nous montrerons, en effet, qu'on

a encore

(10) fy;dl'——lm——o(gi;l)

Nous pourrons supposer que l'intervalle (— X\, )\) le long
dunquel est prise notre intégrale, est intérieur a 'intervalle cen-
tral, puisque A <1+ sp, pour s suffisamment grand.

Nous commencerons par établir un lemme.

§ 2. Un lemme.

Lemme : Pour tout ! tel que |I|<\ et & partir d'un s suf-
fisamment grand, y, vérifie I'inégalité

t2

(11) n << = 5y
\/ 2nspq
ol ¢ est une constante et ¢ 1’écart réduit
l

V2spq
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Démonstration. — Nous partirons de l'expression suivante
de y; donnée récemment par MM. D. Mirimanoff et R. Do-
vaz !

1 ~ B4F@+GO)
12 = —— ,
- ' Vo ¢
) F
ou t (t) .
o2 | Ye— 2ptz +2p22 W2 | 1p— 9qtz 1222 .
Vspq (W2 Vg ey
Vspg o Vspg
0 0
G(t)=u(s)—u(sp+1l)—u(sqg—1)
et
1 g
u(8) = 135 ~ 3605 ¥ 1)
Posons

X =F(t) + G(t)

Il suffit de montrer que
t2
eX < ce?

-

Soit t= ———. Nous commencerons par montrer que (:(t)<Z0
V2spq
pour [{j<7 et s suffisamment grand.

Observons qu’on peut écrire
1 | 1 (A 1
1~ —1 9
sp -+ (1+tq\/2) sq Sq(i—tp£>
Vspy Vspq

Or & tout nombre positif € si petit soit-il, on peut faire
correspondre un s, tel que, pour s>s,

1
1— 1
| e< TQ\/2<
Vspg
(a) 1
l— 14
‘<.1_'rp\/2< e
Vspg

1 Comptes rendus, t. 185, 1927, p- 827.
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Ces inégalités sont encore vérifiées si l'on remplace © par
un nombre quelconque ¢ positif ou nul <<t (). Nous pou-
vons écrire par conséquent

t 1 P
1931)(1 ®) ~ Tasg T 360(sp)? T 360(sq)s L T )

\
G(t) <125~

Or quel que soit t<t, le signe de G(t), pour s suffi-

. | 1
samment grand, est celui de 5= — g - Donc G(t) <0,

pour ¢ positif ou nul <t. Mais cette inégalité a encore lieu
pour ¢ négatif tel que |{|]<t. En effet, remplacer ¢t par —¢
revient & permuter p et ¢ dans l'inégalité précédente. Le ré-
sultat subsiste. |

Pour démontrer notre lemme, il suffit donc d’établir !'iné-
gahité

12
eF® < ce?

Or, en vertu des inégalités (a), nous pouvons écrire, pour
£ >0

F(t) < 5‘_{3 A 4+ <) f : 5‘1}29 J (2ptz — 2pz2) dz

t

Q\/Z (1— s dz w2 [ 2qtz — 2q2?) dz
a1 )] st P | 0t - 202)

ou bien, aprés quelques simplifications,
2 ( —q¢ =, q—p )
F(t 5 £2
)< +5+15
qu’on peut écrire
F(t) <<aiz+ b,

' 1
a et b tendant vers 0 avec <

Or, pour s suffisamment grand et € suffisamment petit, le
signe de a est celui de ¢ — p, tandis que le signe de b est
celui de p—q. S1 donc p==q, a est positif et b négatif (puis-
que nous supposons p < q) et par conséquent F(t) < af?, ou
o >'a. En posant o =1/, il vient, pour ¢t >0 et s suffisam-
ment grand ,

1 Pour t = 0, on remplacera le signe <_ du c6té de 1 par = .
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t2

F(t) << g ou ef® < e®

Lorsque t<C0, F(t) vérifie une inégalité qui s’obtient de
la précédente en remplacant ¢ par son module |£| et en per-
mutant p et g . Il vient alors, en supposanttoujours p==q.

CF(t) <ats b,
ol a<C0 et b>0, pour s suffisamment grand et & suffisam-
men! petit. D'ou F(t) <b et par suite

. . eF® < c
en posant ¢ =e® , et 'on voit que pour s suffisamment grand
on peut poser c=1-495, ou d est un nombre aussi petit
qu'on veut. |
Comme F(0) =0, il en résulte que pour |[t|<T, on a tou-

jours
eX < ce%
si p=£=q.
Dans le cas de p=gq, l'expression de F(t) se simplifie et
I'on constate facilement qu'on a le droit de poser ¢ =1. L’iné-
galité (11) est donc établie.

Corollaire. — Comme F(t) a le signe de a pour = —r et
s suffisamment grand, F(—t) <0 et I'on a le droit de poser
.¢=1 dans la formule (11). Par conséquent

-1

l ——

1l en résulte qu'on a

Pour établir cette formule, il suffit de montrer que

<3 el
F=o(3)

ou que
21
lim sPe” 2 —o.
S—>»c0 "
T
Mais, en posant e=2k —1 et s* =0, le produit s?e”®
n a
s’écrit ot e 4P4
D’ou
-2 ;
T o n
log e? ss"=,— — — logo
bpg g
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el comme

- >

§ 3. Théoréme: J y’dl— 1=o0 (:—n)

-2

Démonstration. — Nous avons montré (ch. II) que
sa+1 |
' 1
Jyat—1—o (S_)
—1-—sp ‘

L’intégrale qui figure au premier membre de (10) peut
s'écrire

sg+1 sq+1
f yidl — J yidl — f yidl — / yidi
—1-sp —1-sp

Pour établir le théoréme en question, il suffit donc de
montrer qu'on a séparément

A 1 sq;{-l 1
J yldl =0 (S—") et J yldl = 0 (?')
Iy

—1—sp

Montrons d’abord qu'il en est ainsi de la seconde de ces
' : sqg+1
intégrales. Elle est- inférieure & f lyidl . Appliquons &

LN

cette intégrale la formule de R. Frisch-de Montessus de Bal-
lore généralisée. Il vient

sq+1 1 A+ sq+1 ' sq+1
f bys dl = spq f yidl+q f o, J— [ yidl + p[ lyidl
sq sq

Désignons les quatre intégrales qui figurent dans le se-
cond membre de cette équation respectivement par «, B, Y
el d. _
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Pour que l'on ait
sq+1

’ 1
u[ ndl = o (gi)
. .

il suffit qu’il en soit de méme de a, B, y et 5.

1

Montrons que si a =o0 (;3:) 1l en est de méme des trois

aulres intégrales.
En effet, on a
ol A

[ mar<o1) [
b by

Donc, X 1 étant inférieur & s pour s suffisamment grand,
1 ) | cris
B=o0 (s‘_") si a=0 (3—") en vertu des propriétés b) et ¢)
(ch. I, § 2.)

D’autre part
a1 sq:i—l

J' ydl> |yl
/

b

car [ variant de p 4 sq 1, y, est toujours décroissante (ch.I,
§ 2) el de plus p<X<(sq pour s suffisamment grand. Il

, 1\ . 1
en resulte que y=o @) sie=o (5

Enfin
sg+1 sg=+1
[ Iydl < (sq 4 1) [ yidl
sq sq

f | 1 ; A
el comme sq-+1<(s,d=0 o) en meme temps que «, en

vertn des propriétés b) et c).
Il nous reste donc a montrer que
' A

A 2

Or y, étant toujours décroissante dans l'intervalle (A, X 1)
on a

A1
| f ydl <y
A
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. 1 . .
Maisy, = o (9) en vertu du lemme du § 2 de ce chapitre; il
en est donc de méme de

sg+1

ydl, c.q.f.d.

i

Montrons maintenant que

—A
(1
f -’/ldl:"_(?)

—-1-sp
On »
—3 —i
¢ [ yldl<— f. lyldl
_lisp —1—sp

Ev vertu de la propriété ¢), il suffit de montrer que

—
1
[ lydl = o (.-S‘T')

—1-sp

Appliquons & cette intégrale la formule de MM. Frisch-de
Montessus de Ballore généralisée. Il vient

-—2 ‘ ";S et 4 ) —3
f lyidl = spq / yidl+q f lydl — spq [ ydl+p [ Lyl
—1—sp f —1-sp —1-sp ——1 —i—1

== $pqY’ -+ qd" —spqo’ + pp’
En vertu des propriétés a) et b), il suffit, pour que
’D" 1
b/ lyldl=0 (E)
—1—sp
que 'on ait séparément

1 1 1 1
cor(2). v () rn(E) e

» h. | sy r L] . 1
Montrons que les trois derniéres propriétés ont lieu si o’ = O(S_”

Nous avons vu, en effet, que la fonction y,; est toujours crois-
sante dans l'intervalle (—1—sp,— q) . D’autre part, pour s
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suffisamment grand, on a —sp<—X<{—gq. De 13 résulte
—

I'inégalité
| ly,dl ' < (A1) [ yidl ‘

—i=1 - . S

1 5 d
Par conséquent f’ = 0(:@) sl &’'= 0 (s_%') en vertu de b) et ¢).

Ensuite on a
—sp

[. yldl<f yudl

—l—sp —i—1

car —sp<_— X et —X<_— q pour s suffisamment grand, y,
croissant toujours lorsque ! varie de —1—spa —gq.

1
Par conséquent, Yy’ = 0(;,-,) avec o’
Enfin

—sp —Sp

Iflyldl’<(1+sp) bf yzdl’

—1—sp —1-—sp

. 1y . z
Donc si a'=o0 (;;l il en est de méme de ¥’
Il nous reste 4 montrer que

—_h 1
o[‘ y;dl=0 (;E)

—-——1

Comme y, est toujours croissante dans l'intervalle (—\—1,—X)
on a

’

skl

[ pdt <y,
-
Mais
1
Y=o (.S'”)
Donc

—
f ytdl.zo ('}17,) en .vertu de c).

sl
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Par suite
A
1
[-y’dl— 1=0 (;,) , ¢.q. . d.
Remarque. — La démonstration du théoréme précédent est
; 1 .
plus simple dans le cas oi p=gqg= 5. Dans ce dernier

cas y; peut étre mise sous la forme indiquée par M. D. Mi-

rimanoff!,
¢

2 B4 | z—2t22 223
yl == — € , Ou f e 2
8 1 2z2

et §=u(s)—u(%fl3 — u(%—l)

- CuariTrE IV

o . 1
Déveleppement de y suivant les puissances croissantes de ——

Vspq
§ 1. Introduction.

En partant de la formule (12) que nous avons envisagée
dans le chapitre précédent, il est facile de développer y sui-
vant les puissances croissantes de

L
Vspg — o’
o désignant 1'écart quadratique moyen y/spg.

Posons
L = P,(t) , P,(t Pn 4
4= c\/2-:(i+ ni Fc%)_*_ ()+cn+1)

Nous montrerons dans ce chapitre que les coefficients P; ()
sont des polyndmes en ¢ qui peuvent étre calculés de proche
en proche. Nous établirons d’autre part une propriété impor-
tanic de E, qui nous sera utile dans la suite.

! Comptes rendus 182, 1926, p. 1119.
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§ 2. Développement de F(t) + G(t) suivant

; 1
les puissances de - .

-

Nous supposerons dans ce qui suit que la variable ¢ véri-

5

s , , )
fie TVinégalité [f] gt:ﬁ , I'exposant k étant toujours un
nombre compris au sens étroit entre 13 et 1.

Posons
) O +em=20 4 m0y +"'"” + 5

Montrons que les coefficients n;(¢) (i=1,2, ... n) sont des po-
Iyndmes en t et que e, vérifie & partir d’'un s suffisamment
grand l'inégalité

(14) len| <Volt +Y1 P14 oo + 10

o1 Yo. Yi, -.- Yy Sont des nombres non négatifs et ¢ un nom-
bre entier qui ne dépendent pas de s, mais varient avec n.

Pour établir cette propriété du développement de F(t) --G(¢t),
il suffit de 1’établir séparément pour les développements de
F(1) et des différents termes de G(t).

Considérons d’abord le développement de F(t). Supposons
£t >0. On a

¢

F(t) = -P_\@ Yy — 2ptz 4 2p2® |
K ’ f 1 — l’\/2 -

t

R T
— q\/sz 1o 2th4_—2<12 d”—Ul—rU
|1 f/\/

0

0

La premiére de ces intégrales peut s’écrire, en développant

1 : : ; /9
suivant les puissances croissantes de ZV2 ,

g V2 ?
v.-£( [ F - wtes)

t
n+1 1 . 1 5
-+ (p\/n?l f [o " —2pts” ;‘ 202" o
L V2,
)

0
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On voit que les coefficients des L (i=1, 2, ... n) sont des

cl

polyndomes en t. Quant au reste, son module est inférieur a

t
an | p\/i ,
0 o

Mais & partir d'un s suffisamment grand, —~——1—\/—§- <2, el par
' P
1] —"21—2

conséquent, le module du reste est inférieur a

(p\/2)n+1[ n+1 2 (2n + 5) ptnt3
n+1 Zn—{—i_‘_(n—i—2)(n—l—3)]

11 cst donc bien de la forme

in . . ;. .
a0 ou | n| est inférieur a

la valeur d’un certain polyndéme en f{, dont le degré et les
coefficients, qui sont des nombres non négatifs, sont indépen-
dants de s.

D’une facon analogue, on démontre que le développement

suivant les puissances de - de l'intégrale U, qui s’écrit

-
g

TN IR W)
=z (=)= [zz <z+1><z+2>]

¢
(= s @2 f g 2" — 2qizn+ 4 22n
n+1 9
’ 14 l‘c/—2 2

0

posséde les mémes propriétés. Il suffit de faire remarquer que
le module du reste est inférieur a la valeur d’'un certain po-
lyndme en ¢ qu'on obtient en remplacant dans ce reste tous

. 1 i
les termes par leurs modules et ——= par 1. Le degré et

A

g

les coefficients de ce polyndéme sont encore indépendants de s.
Donc la propriété en question est vraie de F(t) pour £ > 0.
Lorsque <0, F(t) =F(—|t|) peut étre mis, chapitre III, § 2,

sous Ja forme:
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|2

. _ pV2 Yo — 2p|tle +2p2?
F(—|t]) = f o

0

B e b2
A c ‘/ 1 — q\/?..
0

Par un raisonnement semblable au précédent, on arrive au
méme résultat, seulement dans ce cas |g,| est inférieur a4 un
polynéme en |t]. |

Passons maintenant a G(t).

On a
G(t) =u(s) —u(sp+1) —u(sq — 1)

Or, en vertu de la formule de Stirling, quel que. soit le
nombre entier k

B, 1 — 1)k-1B 1
15) u(s)— —— — B L +"'“'LA((2"—)1) 4
4 (—1)*0Beyy, 1
2% 1) (2% F2)

B,. B,,... étant les nombres de Bernoulli et 9 un nombre
positif inférieur a 1.

Supposons que k soit le nombre entier le plus petit vé-
rifiant lmegahte 2(2k+1)>n En écrivant

_ (pgy¥ _ (pg)
S‘ (spq) %

on obtient le développement de u(s) suivant les puissances

. 1 .. 1.
croissantes de - - Les coefficients des 5 (i=1,2,...n) dans
ce développement sont des constantes. Le reste s’écrit

A=1%0Bgy1  (pg)**1 (= D*0Beyq (pg)*+t 1 1
(2k+1) (2k+2) 2% — (2k+1)(2k+2) ¢ oo

ou d est un entier = 0.

. .. 1 ) .
On voit que le module du coefflm_ent de s est inférieur

a une constante, dont le choix est indépendant de s. I.a pro-
priété est donc vraie de u(s).
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Pour montrer qu’elle est vraie de u(sp-1), envisageons
le développement |

1 B, 1
(16) u (sp+1) = BepFD 34 GpLlp + ...

(— 1)%0, Byys 1
T T @+2)  (prHFA

‘et montrons que la propriété en question est vraie pour cha-
que terme de (16).

Or, pour m=13, ... ,

& = (e ravam) = =)

Il U Y D L (2 %) RPN 70 i
o™ : c Tl o =0 a""‘l(’l—i—gt—\—/—i)

h étant le nombre entier le plus petit vérifiant I'inégalité
2m 4+ h -+ 1>n.

11 est évident que les coefficients de 3 (t=1,2,...n) du
développement de (ST}F—WE sont des polynémes en ¢ et quant

au reste, c’est la somme des termes en = o ou j>n. En rem-
' G
1

placant dans chacun de ces termes o/ par o"t! et — ———

| qty/2
ERLL
: G
par 1, (dans le cas de.t > 0), ou par 2, (dans le cas de t <_0),
et le numérateur par son module, on voit que le reste est de

la forme % , ou |e,| vérifie une inégalité de la forme (14).

Quant & =
(—1%0, By 1
@ T 1) (k42 (spF DFH
lc module de
1 g2+

(sp + D%+ — i (1 _‘|‘_'qt\/ §>2k+1
[

MEMOIRES SC. NAT. 18 8
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2k+1 ( q)2k+1

est inférieur a pren gl sit>0, et a —a 0 9 t<<0, et on

voit que la loi est vérifiée pour u(sp+1).

Le méme raisonnement s’applique & u(sq — 1) qui a pouar
expression

N P B, 1
G A Y ey )l Al gy )
(— 1)*6,BrH1 1
TET) T g hFH

o 'on peut écrire
1 L pm _pm . ( 1 )m
(sq—=0m™ — (spg—lg)™ — ™\, _ pty/2

G

La propriété énoncée se trouve ainsi établie.

§ 3. Développement de y suivant les puissances

“croissantes de - .
G

Posons F(t) +G(t) =X
L’équation (12) devient
T

Développons eX par la formule de Maclaurin. Il vient

eX =1 '}_ + . "1 +(nX++;)l &X; 081,

eX

Remplagons X par son développement (13); en réunissant

les termes en 1 17,. .. 1,, , on obtlent
s’ g G
(17 1+PI (t)+P2(t)+ L+ P, (t)+ n+l
P;(t) est la somme des coefficients des termes en ;1;.‘
(0 <<i<n), qu figurent dans }1(, }2(!2 ,- ..X Donc P;(t) est

un polynéme en t.
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Pour former E, il faut prendre I’ensemble des termes des
; : |

» ' 1  ; ;
il dont le degré en - est supérieur 4 n et y ajouter

- " Xn+1 9%
(n4-1)!

Les premiers termes forment soit des polyhémes en f, soil
des polynémes en ¢ multipliés par des puissances de ¢,. Donc

‘ i
la valeur absolue de.la partie de E, qui provient des }L—(' est

inférieure & partic d’un 's suffisamment grand a celle d’un po-
lynéme de la forme

(18) Co [N+ Caft N1 .. + C,

Ientier N et les nombres non négatifs C,, C;,... Gy ne dé-
pendant pas de s.
Envisageons maintenant 1’expression

Xn+1 9x

: (1)1 °
On a
1 oo en
X<t o4 Lol
ol x; est un polyndme en ¢ que l'on obtient de =, en y rem-
placant les termes par leurs modules.

On voit que . ‘
[X|n+1 e
(n4 1)1 ol

ol |o| est inférieur & un polyndme de la forme (18).
Nous avons vu d’autre part (chapitre III, §2) que pour
tout [t]<t et s suffisamment grand, X vérifie 'inégalité
. _ 5
eX < ce?
A fortiori '
0
e¥X < ce

Il en résulte que E, vérifie bien une inégalité de la forme

1 .
(19) IEal << €2 [Colt +Cylt[N " ... 4-Cn]
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§ 4. Calcul de proche en proche des polynémes P(/).

Rappelons que les polynémes P;(f) peuvent étre calculés
de proche en proche i I'aide de la relation

(20) in b | Pi—l + 211:2 P,_‘_g —f-— 311:3 Pi__3_ + + iﬂi P,
Or |

Py =1 |
Py =m=2Ug—p) [%2 = %]
Ty = i;—(102%412)——2 E (o o+ )er—g—1
= — '—: (1— 3gp) -+§~(1—2Pq) LB
On en tire:

Py = Ql (myPy -+ 2my)
=£§ (9—p)— ti:‘ 12(q — pF+pg} + 2 (2 —2pg) +H—
— tg (1—4pq) — § (2—7pq) +t2(:zi —2pq) + pq[;
On pourra calculer de méme les polynémes P;, P,,....
Lorsque p=¢q, les calculs se simplifient ; y étant dans ce cas

une fonction paire de ¢, les. polynémes de rangs impairs sont
nuls, en particulier P,(f) =0, tandis que

l 1
PZ(’):"_12‘|‘4 16

CaaPITRE V
Une propriété des polyndmes P;(t) .

§ 1. Introduction.

Les formules établies dans les chapitres précédents vont nous
permetire de démontrer une propriété curieuse des polyno-

mes P;(f) .

Soil P(t) un polynéme en t, P(¢) =§a,-t".
1=0
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Envisageons l'intégrale

t;
| J =2 P(1)dt
ty
Montrons qu'on a
£ t,
. ~ ) .,
7 [‘e'**" P(t)dt=c [e‘” dt -+ [e—““’ Q(t)]
1 ! £,
tl , t| .

Q(¢) étant un autre polynéme en ¢ et ¢ une constante.
En effet
fs ) ty - )
- n . n )
[eoPydi= [t Zatdi=Fa, [ v
. . i=0 "

i=0
ty ty ) >

Mais ' : 3
f’z - ta
@) [erddi=—1, f e~ -1 (— 12)

k b

t,

1 . ty i-*i-['
- ! A P _ -2 ji—2]¢
—[ 2t’ e ]+ 7 e~ H—=2d¢

t
t

On obtient ainsi une formule de récurrence par l'application
successive de laquelle on démontre la propriété énoncée.
Montirons que

o
6= — J e~ P(t)dt .

S

Eu effet

1 +o +

\_/: [e—ﬂ P(t)dt=\% [e—ﬂ dt
car

[e-2 Q@] "=0

+a
_fe-“ dt =1,

D’autre part
1

v

a1
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on a donc bien

C=——F= _ﬂptdt
'1:4/ (t) c.q.f.d.

—

Or — f —2P(t)dt est la valeur moyenne de P(i), en

-supposant que t obéit & la loi de Gauss. Nous 1’appellerons
la valeur moyenne gaussienne de P(t) et la représenterons par
le symbole M[P(t)]. Nous pouvons donc écrire

M[P(t)] =c.

Nous allons montrer que les valeurs moyennes gaussien-
nes des polynomes P;(t) sont nulles quel que soit ..

Remarque. — Ceci explique pourqum dans les expre'-mons
de la probabilit¢ P;> d’un écart compris entre I, et I, qu'on
obtient du developpement de y du chapitre precedent par - ap-
plication de la formule sommatoire, d’Euler-Maclaurin, 1'inté-

grale
t

72-_ f e—dt ne figure que dans le premier terme 1.
T e

§ 2, Quelqués’ propriétés de la valeur moyenne
gaussienne d’un polyndéme.

L S
M[P(#)] =
On a
g , 1
J e-8 P(1) di = o (3_)
ou - o
L sk

T = — e o)
V2spg  \2spq
En effet, dans ce cas

x ]

f =% P(1) dt=[Q(t)e~"] = [e—ﬂ Zobiti]

— ) —_—

1 Cf. Comptes rendus, 182, 1926, p. 1118 (8).
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11 suffit de montrer que
o e—m]' — 5 (%1)

[# e‘ﬁ]: = 2l p=A

pour i impair.
Or

-

Considérons donc le produit

1 ' i stk—1 -
st de—? — Sik+n—§ e—

—_ g
(V2pq) "
Prenons le logarithme de

s2k—1 , i
e 5pg S—(tk+n-—§)

on obtient
sk-1

r i
Sog (Lk—f—n—i) log s .

Comme k> 1/, cette différence tend vers l'infini avec s. Son
inverse tend, par conséquent, vers zéro lorsque s augmente in-
définiment, ce qui démontre la propriété énoncée.

2) Pour que M[P(t)]=0, il suffit qu'on ait

T

lim [ e-® P(t)dt=0
S$—»w

—
v

En effet, la variable T tendant vers l'infini avec s, on a

1
a© L4

[ Pdi=lim [e=#P(1)dt=0 .
_; (s—+°°)_u= .
d’ou M[P(t)]=0, c.q.f.d.
3) On a | _
1) (i—3)...1
M[P(t)]=c=Za; (i ) (2lk )
ou

o<i=2k<n.

Pour établir cette propriété, utilisons la formule de ré-
currence (21).

Si i est pair, i = 2k, on a par application successive de cette
formule:
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L5

t

ty
[t s
1

t s

— [_ % (i—1 e_t2]3+ (i_z"i) [_. % H=3 e—ﬂ] +. ..

f t

L= (—3)..3 [_%te_,,]‘Jr (i—1)(i—3)...

k=1 9k

Si i est impair, i=2k 41, on a

1,
/e—ﬂtidt
B
1 “ =) .
N N s e BT Ut ) IR SO gy
—[ 5 tile ]—} 3 [ st e ]+
1, ’ t,

i fe‘f’(/f

t

2k

L) (i —3)... 4 [_%tze_ﬂ]Jr (i—1)(i—3)...

ty

En résumé, pour i pair, on a

ty

Iy
L2 e
t,

e—ﬂtt’dt:[q:e’m]:‘l L& — 1) (l_3 1 fe— dt

t

Pour i impair. on a
£,

[e—” tdt =|[qie ﬂ]:’

t

ol g; est un polynéme en ¢ de degré (i — 1).
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105
On a, par thséqlient,

iy

1y

[ P(yde=[Q()e=*]l: 4 ¢ f et di
t

ty
ou

Q(t) = ayqo + a,9; + ... + angn

et ot ¢=M[P(?)] est bien de la forme annoncée.

§ 3. Lemme 1.

2 fe~ﬂ Jt—lr=pl =
Ve s
Démonstration. — On a

=

[e o}

= =
— e Bdl—1=— — | e dL.
V2 V-

-
T

Envisageons le module du second membre.

On a tout d’abord, en intégrant par parties et supposant
z>0:

o o]

S T8 )
feramg-} [

L%
X -

o
|

t Cette formule n'est qu'un cas particulier de la suivante :

[+ 4]
e—x? i 1.3
2 dt = _— —_—— _—
1[6— dt = 55 1 2w2+(2$2),: i
X

1.3.5.. .(2n—3)€
(21

a0

_ 1.3.5..;(2n_~nfe~.~u
e :

2n {2n

dt

X
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On a donc, puisque l'intégrale au -second. membre .est po-
sitive :
Qo

X

En appliquant cette derniére propriété, on trouve

2 f"" "
—= e dt<
\/ﬂt

e.—12
Vac

Or nous avons vu (v. § 2) que

e = o (;l—,!)

Donc a fortiori

On a donc bien

L i |
= [ at—1=0(5) ,c.q.f.d.

[ 3
=%

§ 4. Lemme 2.

L’intégrale

T

[.e—” E, dt

[ =
-—

est bornée pour s suffisamment grand, d’une maniére plus
précise

3

fe‘”m E,dt=0(1).

—

Rappelons que la formule f(s) =0]g(s)], ou g(s) est une
7 s)]
8(s)

a partir d'une valeur suffisamment grande de la variable s.

fonction positive de s, signifie que le quotient est borné
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Démonstration. — On a

T

J

—

et B, (t)dtl < f e2|E, (t)|dt
B < [' 5 [comN + Gl CN] i

en vertu de l'inégalité (19), a partir d'un s suffisamment
grand. '

Mais

< i

=5 S e_'t_“l i |
fe [C.,]th-|—...+CN] dt _26f > [c Ny +CN] d

Faisons dans cette derniére intégrale le changement de va-
t

riable V—E == fr
Il vient
- 7
9 f s [c,, N CN]dt —2y2 [ P(r) dt
0 0

P(t") désignant un polynome en .
IM'aprés ce qu'on a vu au début de ce chapitre, on a

2v2 [v :“"“P(t’)dt' =2y/2 [.Q(t’) gt ]v:— 2yZM [P(£)] fs e—2dt

Mais cette derniére expression est une fonction bornée de s.

- On a donc bien

T

f e E, (t)dt =0(1) ,
il c.q.f.d

Conséquence.

lim 1 [e“”E,, di=20,
E—>®) T o ‘
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§ 5. Valeurs moyennes gaussiennes des polynémes P;(t).

Théoréme. — Les valeurs moyennes gaussiennes de tous les
polynémes P,(t) (i=1, 2...) sont nulles.

Démonstration. — On a M [P,(1)]=0 en vertu de la for-
mule 3) du §2 de ce chapitre.

. 1—4 5.3.1 2 —T9pg 3 1
M[P2(t)J= 91)6]_ 2% 3 £ 9

3 1 — 1
—l—(zt—2pq>§+pq12 =0

en faisant usage de la méme formule.
Supposons que la propriété soit vraie de P (¢), ... Pa_y(/).
Montrons qu’elle est encore vraie de P,(¢).

Partons i cet effet du développement de y suivant les puis-

i . r r - r 4
sances de - considéré dans le chapitre précédent.
o

e—t2

P Py n En
\/21 (1+ l(t)+ 2("')_{_ + = lgf) E U'(It)+cn+1)

MU]tlpllOIlS tous les termes de ce développement par ondl
et intégrons entre les limites — A, 4 X. Il vient

s A

n  ydl—= 5" f—tw ! f—tzp Hdl 4 .
’ fy u\/27; ¢ +G\/ T = 1() —I—
-

£
—k

X IS

+- \/Z:[ e (Bl + \/7' f e~ Py (t)dl

1S

1 [‘ 5
1 — [ e~®E,dl
62\/ 2 o "
-

Remplagons dans toutes les intégrales du second membre
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[ par \/20t. Il vient

A

= “ -1 i ;
/ydl_ _fe-”dt—}—'sn\/- [Pyt + ...
T ™ e

—1 —_ —

+§:f 2P,y ()dl 4 - \/_ [P, (1)t

—_

1 ['
+ —_— e-m E dt
GV'RL "

Faisons maintenant tendre s vers l'infini.
En vertu des propriétés établies au § 3, chapitre III et
au § 3, chapitre V, on a

- 1 [‘dlﬂ—b e~ s | — 0
(S—l';nm)o y Vu g

—

De méme, en vertu des hypothéses faites sur les valeurs
moyennes gaussiennes des polynémes P,(t), 1=1,2,...,n—1)
et en vertu de la propriété 1, §2 de ce chapitre

lim — fe—”P,-(t)dt:O (i=12..,n—1).
C (s =) ®) \/w 'y
Enfin
lim [e—”E dt =0 ,
(8§ —» o) 6\/u 'S

comme on I'a vu dans le § 4 de ce chapitre.
Donc

lim [Py ()t =0
(§—» ) \/ﬂ'
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el, par conséquent, M [P, (t) ]=0, en vertu de la propriété 2),
§ 2 dc ce chapitre, c.q.f.d.

Cette propriété des polynémes P,(f) va certainement per-
mettre d’approfondir I'étude des courbes binomiales et peut-
~ étrc méme de faire un rapprochement entre le développement
envisagé dans ce chapitre et 'une des séries de M. Charlier.
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