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HÉMOIRES DE UI SOCIE OABDBISE DES SCIENCES NATURELLES

N« 18 1929 Vol. 3, N° 3

Sur les courbes binotniales
PAR

Sophie PICCARD

(Présenté à la séance du 20 février 1929.)

INTRODUCTION

C'est en cherchant à résoudre certains problèmes posés par
le calcul des probabilités et la statistique qu'on est conduit
à envisager les courbes binomiales dont nous allons nous
occuper dans ce travail. Les principaux résultats en ont été donnés

dans une note insérée aux Comptes rendus de l'Académie
des Sciences de Paris, T. 186, 1928, p. 1687.

Partons du problème classique des épreuves répétées traité

par Jacques Bernoulli. Supposons qu'on fasse s épreuves
comportant deux événements contradictoires A et B de probabilités

constantes p et q et soit x le nombre possible de
réalisations de l'événement A au cours de ces épreuves. Ce nombre

peut prendre toutes les valeurs entières comprises au sens

large entre o et s et les probabilités correspondantes P(x) sont
respectivement égales aux termes du binôme (q A-p)s, puisque

P(*)= ,/! v, p*qs~x
x (s — x)

Il en résulte, rappelons-le, que P(x) satisfait à l'équation
fonctionnelle

(o) q(x + V) P (x + 1) p (s-x) P(x)

La loi dc répartition des probabilités P(x) peut être représentée

soit par des masses égales à P(x) concentrées en s -\- 1

points x 0, 1, ...s de l'axe des x, soit par s -\-1 points
MÉMOIRES SC. NAT. 18. 6
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d'abscisses x et d'ordonnées P(x). La loi de répartition des

probabilités est discontinue.
Mais on sait combien il peut être utile dans certaines

recherches théoriques, aussi bien qu'en statistique, de passer du
discontinu au continu, en remplaçant la succession discrète de

points représentant une loi de probabilité par une courbe
continue passant par ces points, ce qui conduit à un problème
d'interpolation.

Dans le cas qui nous occupe, une solution élégante de ce

problème s'obtient à partir de la fonction caractéristique au
sens de M. P. Lévy

e(H') (q + pe'«)s
en posant *

(1) y 2~ fo(w)e

La fonction y ainsi définie est développable en séries de
M. Charlier, utilisées fréquemment, comme on sait, en
statistique mathématique. Malheureusement, on ne connaît pas
l'approximation qu'on obtient en arrêtant ces séries à l'un de leurs
premiers termes.

Une solution plus immédiate, et à certains égards plus simple

et plus commode, s'obtient en remplaçant dans l'expression

de P(x) les factorielles x!,(s — x) par T(x-\-l) et
T (s — x -j- 1) L'interpolation est alors réalisée par la fonction

® y== r(x + i) r(«-* + i) ^?s~*'

déjà utilisée, parfois implicitement, dans certaines recherches
de calcul des probabilités et de statistique.

Lorsque p q=1/2> la courbe (2) coïncide avec (1), elle
s'en écarte pour p =j= q

La fonction y ainsi définie se calcule à l'aide de la
formule de Stirling et bien que les développements qu'on obtient
au moyen de cette formule ne soient pas convergents, il est

possible d'évaluer l'erreur commise avec une approximation en
général suffisante datas la pratique.

1 S. D. Wichsell, Contributions to the analytical theory of sampling, Archiv
for Matematik, Astronomi och Fysik, Bd. 17, N° 19 (1923), p. 1-46. Ce travail
se rattache au mémoire dc M. Charlier : Die strenge Form des Bernoullischen
Theorems, ibid., Bd. 5, N» lä(1909). p.p. 1-22.
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D'autre part, et cette propriété en facilite singulièrement
l'étude et l'apparente davantage à P(x), la fonction v satisfait

aussi à l'équation fonctionnelle (a).
C'est à l'étude des courbes (2) que sera consacré notre travail

Ces courbes, que nous appelons courbes binomiales, jouent,
nous l'avons dit, un rôle considérable en statistique et à ce

poinl de vue leur étude a été poussée assez loin1.
Dans ce travail, nous nous plaçons à un point de vue

différent. Ce qui nous intéresse surtout, ce sont les propriétés
asymptotiques.de la fonction'y et de certaines fonctions de s

définies à partir de y.
Nous commençons, dans les deux premiers chapitres, par

faire l'étude des variations de la fonction y, et, après avoir
généralisé une formule de M. B. Frisch retrouvée par M. de
Montessus de Ballore, nous envisageons l'intégrale

s+l

f y dx

qui joue un rôle essentiel dans cette recherche. Nous montrons

que la différence
s+l

dx

-i
tend plus rapidement vers o que n'importe quelle puissance

del.
s

ainsiCette propriété importante de l'intégrale / y dx,

—i

qu'une partie des résultats du chapitre I. ont déjà été établis

par M. D. Mirimanoff dans une note récente2. Nous avons

cru devoir reproduire ici son analyse, en la complétant sur
quelques points qu'il n'avait fait qu'effleurer.

1 Voir p. ex. R. de Montessus de Ballore, La formule fondamentale de la
statistique, Annales de la Société scientifique de Bruxelles, 1927, pp. 103-115.

1 L'enseignement mathématique, t, XXVI, 1927, pp. 287-293.
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Nous montrerons dans le chapitre III que la propriété des

intégrales
s+l

j ydx

dont il vient d'être question s'étend aux intégrales
A

fydl

la variable l étant l'écart x — sp et la limite X un nombre de
la forme sk, où k est un nombre positif compris au sens
étroit entre 1/2 et 1-

On trouvera dans le chapitre suivant l'étude du développement

dc la fonction y suivant les puissances croissantes de
1

1 qu'on obtient à l'aide de la formule de Stirling. En

désignant par t l'écart réduit /^ nous montrons que les

coefficients de ce développement, abstraction faite du facteur e~p
sont, des polynômes en t qu'on peut calculer de proche en
proche. D'autre part, le reste vérifie une inégalité curieuse
à l'aide de laquelle nous avons pu établir une propriété
importante de ces polynômes qui nous a été signalée par M. D.
Mirimanoff.

Chapitre I.

Etude des variations de la fonction y(x).
Forme des courbes binomiales.

§ 1. Généralités.

Ainsi que nous l'avons dit dans l'introduction, nous
entendons par courbes binomiales les courbes définies par une
équation de la forme

(1- y r(x + l)r(s-x + i) pXqS~x

où s est un nombre entier > 0, p et q deux nombres posi-



SOPHIE PICCARD. — SUR LES COURBES BINOMIALES 69

tifs liés par la relation p-\-'q l. Dans l'étude de la fonction

y y (a:), nous ne sortirons pas du domaine réel et, pour
fixer les idées, nous supposerons p < q

Lorsque x est un nombre entier m compris au sens large
entre o et s, la valeur correspondante y(m) de y(x) est égale
à la probabilité pour qu'un événement A de probabilité constante

p se réalise m fois au cours de s épreuves.
Aux valeurs m 0, 1, ...s correspondent s -j-1 points

M0, Mi.-.-Mj de la courbe binomiale. Bappelons que

Ly(m) 1
m=5

Transformons l'équation (1) en faisant usage des propriétés

classiques de la fonction T (x).

a) r (x) (x — i) r (x — l)
et b) T (x) r (1 — x) ~—v ' x ' sin -nx

Par application successive de la première de ces proprié-
lés, on obtient:

T(s — x + l) (s — x)(s — 1— x) (—x) r(— x)
Par application de la seconde propriété, on trouve

i>+ i)r(-*) sm nx

L'équation (1) devient, en tenant compte de ces relations

s sin -nx
_("' r==(s-x)(s-l — x)... (1 —x)x* ff X

Déterminons les zéros de la fonction y (x) Le produit
s p* qs~x étant ^ 0 quel que soit x, les zéros de y sont
ceux de sin s. x, sauf x 0,l,...s. Par conséquent, y s'annule

pour x — 1, — 2 — m et pour x s -|- 1 s -f- 2,
..'. s -f- 1 -f- m m étant un nombre entier positif quelconque.

Ces zéros déterminent sur l'axe des x une infinité
d'intervalles: l'intervalle i0=( — l,s-f-l), que nous appellerons
l'intervalle central, la suite d'intervalles ik (s -f- k s -f- k -f- 1)
et la suite i_k (— k — 1, — k), où k est un nombre
entier quelconque S* 1.

Un point d'un intervalle ik a pour abcisse s -j- k -j- s, où
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s est un nombre cqnopris entre 0 et 1. A une valeur donnée
de s correspond une série de points que nous appellerons
points homologues de ces intervalles.

Un point d'un intervalle i_k a pour abscisse — 1 — k -f- e.

Les points homologues de ces intervalles seront encore ceux
qui correspondent à une même valeur de s.

Montrons que la fonction y (x) est positive dans l'intervalle

i0 et qu'elle est alternativement négative ©t positive dans
les intervalles i±<?k-i), Atat ^ 1, 2

En effet, soit d'abord x un nombre quelconque intérieur
à l'intervalle i0. On sait que T (x) > 0 pour x > 0. Donc
T (x -f-1) ainsi que T (s — x -f-1) sont positifs dans i0 et il
en est de même de y en vertu de l'équation (1).

Considérons maintenant la valeur de x correspondant à un
point quelconque de l'intervalle iat—i- En posant

x =s + 2/c — 1 + 6,
il vient

y'x)=y(s + 2k-l + e)

_ _ l)s+2fc-l s i gin „eps+at-i+^ q-tk+i-i~ — l)s (2fc — 1 + e) (2fc + e)...(a + 2fr —1 + e) n

~l 1; (2k — l_L.e)...(* + 2fe —l + e)n ^
On voit de même que l'ordonnée d'un point quelconque de

l'intervalle i_t2/t—1> est <C0.
Passons maintenant à l'intervalle i2k En posant

x s -\-2k-\-e
on trouve

_ (— l)2* s sin Tie pH-2*+. g-2fc-. ^^"(^c + e) (2fc+l + 6) (s + 2k + s)n ^U-
On démontre de même que y >• 0 en un point quelconque

de l'intervalle i_2t
Du reste, ces inégalités résultent immédiatement des

propriétés classiques de la fonction T (x).
Par conséquent, la courbe (1) est une courbe sinueuse se

composant d'une infinité d'arcs ö0 (partie centrale), zk ej-k
correspondant aux intervalles i0, ik, /_*.

Etudions les variations de ces arcs lorsque k augmente
indéfiniment. Nous distinguerons deux cas

Cas 1. P<9
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Dans ce cas, les arcs ak s'aplatissent de plus en plus. Supposons,

en effet, que x parcourt une suite s -j- /c -f- e de points
homologues et montrons que la suite correspondante des \y\
est décroissante et qu'elle tend vers 0. Partons de l'égalité

i_ 7. i \| s sin ne ps+*+! q~k—i
\y(s + k + e)\- (fc + e) (fc + l + e)... (s + fc + e)*

Lorsque fc->-oo, sin tie ne varie pas, ps+k+s q~k~test une fonction

décroissante de k, puisque p <C q, et comme le dénominateur

augmente indéfiniment avec k, le premier membre est
une fonction décroissante de k tendant vers 0. La propriété
esl établie.

Les arcs a_k, au contraire, s'amplifient indéfiniment à partir
d'un certain rang, lorsque k— *¦ oo. Posons x — k — 1 —|— s..

Il vient

|y(-fc-l + e)|

s sin ns p-*-i+> gs+k+i-,~ (s + fc+1 — e) (s + k — e) (fc + l —e)n
d'où

^ s sin tie p« /«Y+*+1~s

aX

et comme une fraction de la forme -^pj, où a y 1, augmente

indéfiniment à partir d'un x suffisamment grand, lorsque x-y -j-,
les arcs c_k s'amplifient indéfiniment.

Cas 2. p q

Dans ce cas, la courbe est symétrique par rapport à la

droite x ^. En effet, h étant un nombre positif quelconque,

on a (éq. 1)

y (i+*) y (i-h)2 ' " ~ *V2 / ~~ „/sr(2+* + iHî-* + i)G

or la suite |y (x -f- k -\- e) | est décroissante et tend vers o. Donc
les tffc el les <s_k s'aplatissent indéfiniment lorsque fc->- »
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§ 2. Etude de la partie centrale.

Nous avons vu que la fonction y(x) est positive dans
l'intervalle central. Nous allons montrer maintenant qu'elle a dans

cet intervalle un maximum et un seul; ce maximum est
atteint pour une valeur de la variable comprise entre sp — q et

sp-{--p.
y'Théorème 1. — Si la fonction X — est positive en un

point x x0 de l'intervalle central, la fonction y(x) est croissante

dans l'intervalle (—1, x0). Si X(x0)<;0, y(x) est
décroissante dans l'intervalle (x0 s-(-l).

Démonstration. — Prenons la dérivée logarithmique des

deux membres de l'équation (1). On a en posant

r(x) - '

X <D(s —x4-l)-<D(x-fl)—log 2

Considérons la dérivée -r—
dr.

On a

|_0-(,_JÎ|1)_P(I+1).
Or la fonction W (u) <!>' (u) est positive pour n > 0 et

comme dans l'intervalle central les deux arguments s— x -f- 1)
TV

et (as +1) sont positifs, la dérivée y- est négative et par
conséquent X est une fonction décroissante de x dans cet
intervalle. Si donc la fonction X est positive pour x =x0, elle
est positive pour x << x0 et par conséquent y est une fonction
croissante de x dans l'intervalle — 1, x0) La première par-
lie du théorème se trouve ainsi démontrée. On démontre de
même la seconde partie.

Théorème 2. — La fonction y(x) est croissante dans
l'intervalle — 1, sp — q) elle est décroissante dans l'intervalle
(spA-p, s + l).

Démonstration. — Il suffit de montrer que X > 0 pour
X sp — q et que X < 0 pour x sp + p.
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B appelons la propriété suivante de la fonction 0 (x) : lorsque

m est un nombre entier,

$ (X _|_ m) _ O (X) - -j î-r + : r—i
Tv ' ' K ' x ' x +1 ' x + m — 1

Or

X(sp —q)=0(sg + g + l)—<D (sp + p) - log 2

Dans cette formule, la différence des arguments de <& est

égale à

sq + q + i — «P — P s(q — p) + 2ç

Soit m le plus grand entier inférieur ou égal à cette
différence, m vérifie l'inégalité

s (9 — P) + 2q — 1< m < s (q — p) + 2q

La fonction O (u) étant une fonction croissante de u> o,

on a

4> (sq + 9 + 1) — ® (sp + p) > $ (m + sp + p) — O (sp + p)

Mais
<ï> (m + sp + p) — 3> (sp + p)

^L_ + î + î
sp + p sp + p + 1 'sp + p + m — 1

Or la somme

_J_0- + î
sp-fp ' '

sp -|- p + /n — 1

est supérieure à
sp+p+m

/dx
sp+p

et d'autre part

x
sp+p

log(s p+ p + m) — Iog Op + p)

> log [sp + p + s (q — p) + 2g — 1J — log (sp + p)

ou encore
sp+P+m

sq-\-q _q
p

sp+p

sp-tp-t-i"

Ç** > l0g s±±ï log car Ü±5
J oc-

&
sp + p ö p sp + p
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Donc

<D(sg + g + l)-<î>(sp + p)>log | et X(sp-9)>0,
c. q. f. d.

Passons maintenant à la démonstration de la seconde par-
tic du théorème.
On a

X (sp + p) *(sg-p + l)-0(sp + p + l)-log |
La différence des arguments de O est égale dans ce cas à

s (q — p) — 2p. Soit m le plus petit entier supérieur ou égal
à cette différence. Le nombre m vérifie l'inégalité

s (9 — P) — 2P < m < s (q — P) — 2p +1
On trouve par un raisonnement identique au précédent

sp+p+m

* (sq - p + 1) - * (sp + p + 1)<
sp+p

sp-t-p-tm

M aïs

sp+p+m

dx
x

sp+p

sp-t-p-

!'¦ log (sp + p + m) — log (sp + p)

< kg [sp + p + s (q — p) — 2p + 1] — log (sp + p)

log^±i log?8
sp + P ëP

On a donc bien X (sp + p) <C 0 ce qu'il fallait démontrer.

Corollaire. — Comme X est une fonction toujours décroissante

de x dans l'intervalle central et comme X (sp — q) > 0
et X (sp + p) <C 0, il en résulte que X s'annule en un point
unique de l'intervalle central et par conséquent, en vertu de

ce qui précède, y possède dans cet intervalle un maximum
et un seul, ce maximum étant compris entre x sp — q et

x — sp +p
Remarque. — Dans le cas de p q 1/2 la fonction y(x)

passe par le maximum pour x - en vertu de la symétrie.
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•§ 3. Généralisation d'une formule de MM. Frisch
et R. de Montessus de Ballore.

Introduisons maintenant l'écart l x — sp L'équation (1)
s'écrit

<3> * r^+ i + i')r(N-i + i)^" «~
M. Bagnar Frisch1, en 1924 et 1925, et indépendamment

dc lui M. de Montessus de Ballore2, en 1927, ont donné des

formules importantes permettant de calculer de proche en proche

en proche les valeurs moyennes des différentes puissances
de l'écart l compris entre deux limites données. Nous allons
généraliser celle de ces formules qui donne la valeur moyenne
de la première puissance de l'écart 3.

Bemplaçons dans l'équation (3) l par l + l. Il vient

<4> "¦» r(sp + / + 2)r(sq-/) ^l+1 ^-,"i
Mais, en vertu de la première propriété citée de la fonction T,
on a

r(sp + * + 2) (Sp + J + l)(rSp + * + i)
et dc même

r (sq — l + 1) (sq — l)T (sq — l)

On a donc la relation suivante

sq — l p
^=sp + l+lq^

qu'on peut écrire

(5) spqyi — plyi — spqyi+l— q (l + 1) yl+1 — 0

Multiplions les deux membres de (5) par dl et intégrons
entre les limites l lt et l l2 — 1 • Il vient

(6)
/¦-1 /.-1 /.-1 /.-1

spq f yidl — pi lyidl — spq j yt+l dl — q (l + l) Ji+idl 0

u u u u

» Biometrika, 1925. p. 170.
* Annales de la Société scientifique de Bruxelles, 2e partie, mémoires 1927,

pp. 103-115.
s Cf. L'enseignement mathématique, loc. cit.
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Désignons les quatre intégrales qui figurent au premier
membre de cette équation respectivement par Jlt J2, J3 et J4.
On a d'une part

i\ spq i yidl — spq j yidl

2, /,

J2 — p i lyidl + P f lyidl
u-\

d'autre part

h h t'+i
33 — spq j yidl — spq j yidl + spq / yidl

/,+i /¦ f.

i, h li+X

Wdl

it+i i. i.

i, i, «.-t-i

J4 — q / lyidl — qi lyidl + q tyv

On en déduit, en remplaçant dans l'équation (6) Jv J2 J3

et. J4 par les expressions obtenues

'.+1 h

spq \ j yidl— / yidli —p j lyidl + p f lyidl — q j lyidl
h-i it h-i

it+i

+ qjlyidl 0

Or p + q 1 : on peut donc écrire

/.+1 »1+1

(7) / lyidl spq j y.dl + q j ly{dl — spq J ytdl + P f tyidl
h h /, 1,-1 /ä-i

C'est la formule de MM. Frisch et de Montessus de Ballore

généralisée.
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Chapitre II.
s+l

Etude de l'intégrale f ydx.

-i
§ 1. Introduction.

Dans ce chapitre, nous ferons l'étude de l'intégrale

s+l

j ydx

-i
Nous allons montrer que la différence

s+l
/ ydx — 1

-i
tend plus rapidement vers 0 qu'une puissance quelconque de
1

-, lorsque s augmente indéfiniment; d'une façon plus

précise, pour tout n
s+l

(8) jydx-~l o[l-n
-i

o étant le symbole de M. Landau (voir le § suivant).
s+l

Interprétation géométrique. — L'intégrale / ydx est

-i
l'aire A0 comprise entre la partie centrale de la courbe bi-
nomiale et l'axe des x. Inscrivons dans cette partie de la courbe
la ligne polygonale partant du point (— 1,0), ayant pour sommets

successifs les points M0, Mlv..Ms et aboutissant au point
(s + 1,0). L'aire comprise entre cette ligne polygonale et l'axe
des x est égale à l'unité. Le premier membre de (8) est donc
la différence des deux aires. \

Pour établir la formule (8), nous envisagerons d'abord le cas
de p q 1/2 Nous passerons ensuite au cas de p <iq.
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§ 2. Rappel de quelques propriétés du symbole
de M. Landau.

B appelons que la formule

(9) /00=° (£)
signifie

lim sn./(s)=0.
(s—>-«)

Dans ce travail, nous aurons à nous appuyer sur les

propriétés suivantes du symbole de TV1. Landau, dont la démonstration

est immédiate.
cA Si les fonctions /x(s) et /2(s) vérifient la relation (9)

il en est de même de leur somme /t(s) + f2(s)
b) Si /(s) vérifie (9), il en est de même de srf(s) r étant

un nombre réel quelconque.
c) Si \f2(s) | <C|/i(*0! à partir d'une certaine valeur de s

et si /a(s) vérifie (9) il en est de même de /2(s)
y,

d) Une fonction f(s) de la forme — où a > 0, a > 1

vérifie toujours la relation (9).
Démonstration. — En effet

a
log — s log a — n log s — log a —>¦ + oo

S ot

lorsque s augmente indéfiniment.

§ 3. Cas de p q — i/2 •

Démontrons d'abord le lemme suivant:

Lemme. — Si p q 1/2 > l'intégrale
+ 00

'/ ^
est égale à l'unité.

Démonstration. — Lorsque p q l/% l'équation (2) s'écrit

s sin nx
y~2s (s — x) (s — 1 — x) (1 — x) xi\
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Décomposons la fraction
1

(s — x) (s — 1 — x) (1 — x)x

en éléments simples; on a
1

1 _*¦ (* —1)!
/y»

I

(s — x) (s — 1 x) (1 —x) X X 1 X

(_iy-i (-i)'-1
+ (i=JLill + ...+

6"!

I — x s X

Il vient en conséquence
+ 00

2S / ydx

— rx

+ 0C + 00

/ sin nx
1

«r
rfx + -

(—l)/_1.s! / sin -nx
'¦ '

(s — i)lilj ir. — T,r.

+ 0O

rfx+... + (— 1)

-t- rx

I sin nx-1 / dx
J Sil — IzX

Evaluons les intégrales qui figurent dans le second membre

de cette égalité. Elles se ramènent immédiatement à

l'intégrale
+ 30

/ sin x dx
x

qui, comme on le sait, est égale à n.
En effet

+ 00 + 00 +00

/ sin nx
nx

1 Çùn-xx 1 f^^dx> 1
Z J T.X. * J *

de sorte qu'en posant, pour ï 1, 2, ...s, nt —nx — x', on
a d'une manière générale

+ 00 + 0O

r.sinTO dx-J ^ — T.X
(- l)'+i fsin x'

x J x'
— OC — oo

V+i
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On a par conséquent

+ 00

/yrfx=2ijl + s + ...+(^m + + l^|=,l
— QO

c. q. f. d.

Bcprenons maintenant l'intégrale

s+l
/ yete A0.

-1

Montrons d'abord que A0 est supérieur à l'unité. En effet,
en posant

s+2 -1 s+3 -2
Ax — / ydx — / ydx ; A2 / ydx / ydx ;

-2 s+2 -3
S+I+l -1

— 1)' f ydx=( — I)' f ydx;...

s+l -2 s+2 -3
s+M-1 -i

A/

s+i -i-\
nous pouvons écrire

+ 00

1(9) ^ydx A0-2A1 + 2A2

Or A1>A2>A3>...,
puisque les arcs ak s'aplatissent de plus en plus, lorsque fc->-<*

(cf. 'ch. I, § 1).
L'égalité (9) peut s'écrire

A0-2[(A1-A2) + (A3-A4) +...] =1

Tous les termes entre crochets étant positifs, il en est de

même de leur somme. On a donc bien A0 > 1, c. q. f. d.
Montrons maintenant que

*.-!<£
où a > 0 et a > 1.
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Partons encore, à cet effet, de l'égalité (9).
Elle peut s'écrire

A0-2A1 + 2(A2-A3) + 1

Tous les termes entre parenthèses étant positifs, on a

A0 - 2AX < 1

ou encore
A0-K2A!

Or
s+2 s+2

s+l s+l

Posons /(x) sinrcx

<p(x)
(s — x) (s — 1 — x) (1 — x) X

(- l)s 7 V^-7 TT" - l)s I? (*)'lv ' (x — s) (x 1) X V / I t \ / i

Désignons (—l)s+1 f(x) par f-.(x) et |cp(x)| par <px(x)

Ces deux fonctions /i(x) et 9x(x) sont positives, x variant
de s + 1 à s + 2.

On obtient ainsi pour 2A1 l'expression
s+2

2Ai ~_ j ft (x) Vl (x) dx

s+l
Désignons par M le maximum de la fonction fpx(x) dans

l'intervalle (s + 1, s + 2) On voit tout de suite que

M cPl(S + l) IF^îyi
En effet, <Pi(x) est une fonction décroissante de x dans

l'iniervalle (s +1, s + 2) car il en est de même de chaque

facteur
1

-. (i 0, 1, 2... s)
x — i

On a donc l'inégalité
S+2

O s!(_ns+i r-
2A, < 2Î^JTJ)1 J sin*xdx

s+l
HÉMOIRES SC. NAT. 18
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s+2
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ou encore

2A y
4

^Ai< n2(s + l)2s

(_l)s+i / gin .„a. dx (— l)s+i [— cos jra?]^ 2

s+l
et comme

A0-1<2A1
il vient

A i<r 4
0 X ^ 712 (s + i) 2*

Or

^Tî)<0'41
En posant donc a 0,41 et a 2 on a bien

A0 —1< |j, c.q.f.d.

Mais en vertu de la propriété d)

II en résulte que

Ao-l o(i)
en vertu de c) et le théorème est démontré.

§ 4. Cas de p <C 9 •

s+l

^o / yda

Par définition,
s+l

A„ / ydx

-i
C'est une fonction de p que nous désignerons par A0(p).

On a vu (§ 3) que

A0(?)-l o(3
Il suffil donc de montrer que

A0 (p) - A0 (j) ° (jn)



SOPHIE PICCARD. SUR LES COURBES BINOMIALES 83

Appliquons à cette différence le théorème des accroissements

finis

A0(P)-AJ(')^(P-^M^l(E^)i;o<><,.
OÙ

^_i<O;O<J + 0(/,-i)<i
Posons

i 4- » [p —2) Pi; 1 — Pi 91 ;

y avant pour expression

__ s\ x sy— r(x + i)r(s-x + i) P q '

la dérivée de A0(p) par rapport à p sera

s+l

dMp)_ f s\xp*-lq*-*
dp - J r(x + l) r(s-x + i)to

-l s+l

/s! (s —x) px qs'x_1

r(x + l) r(s —x + l)
: -1

Posons x sp + l.
dx dl si x — 1,1 — 1 — sp

si x s + 1, Z sq + 1

Il vient
sq+l sq+1 sq+l

dA0(p) _

dx

dp J
-l—sp

îl±l yi dl-js±=±yidl=^-q § lyidl

Appliquons à cette dernière intégrale la formule de Frisch-
de Montessus de Ballore généralisée

—sp —sp sq+1 sq+1

lïjM sJyldl + i- flyidl-sj yidl + {- f lyidl
—l-sp —1-sp sq sq

-sp sq+1

=J^P±lytdl-JSAfi yidl 3l + h
-l—sp
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sp + l 1
l variant de — 1 — sp k — sp, —-*— varie de à 0, y/croit
de 0 à qs Donc Ji<0.
l variant de sq k sq + 1, décroit de 0 à yt
décroit de ps à 0. Donc J2>>0.

Montrons que |Ji|>J2.
A cet effet, posons l — sp — e(0O<l)> dans J,.
La fonction sous le signe d'intégration s'écrit alors

slp-'qs+'
r(l-e) r(s + l + e) V P

Dans J2 posons l sq + e

La fonction sous le signe d'intégration s'écrit

s! ps+' g" e
u" r(s + l+E)r(l-e) q

Considérons le rapport des modules de u' et u"

\U'\ çS+l+2'

|U"| =j»H-l+*

Gomme ce rapport est supérieur à 1 pour tout e, on a bien

Donc

rfyp)<o
dp

el par conséquent

Ao(p)-A0-(i)<(/>-5)-Ji
Or

Donc

-sp

-h<lfyidl<i-qs
—l—sp

A0(p) - a0- (J)<(l-p)ìpqs
Mais en vertu de la propriété d)

il en est donc de même de A0(p) — A0I s c. q. f. d.
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Chapitre III

Etude de l'intégrale / yidl.
—X

% 1. Introduction.

s+l
lia propriété de l'intégrale / ydx que nous venons d'éta-

-i
x

blir s'étend aux intégrales / yidl, où X est un nombre de
c

—X

la forme sk, l'exposant fc étant un nombre quelconque véri-
1

fiant l'inégalité ^ *< fc <C 1 • Nous montrerons, en effet, qu'on

a encore
x

(10) jyidl-l o{^
—X

Nous pourrons supposer que l'intervalle (— X, X) le long
duquel est prise notre intégrale, est intérieur à l'intervalle central,

puisque X <; 1 + sp pour s suffisamment grand.
Nous commencerons par établir un lemme.

§ 2. Un lemme.

Lemme : Pour tout l tel que |Z|<X et à partir d'un s
suffisamment grand, yt vérifie l'inégalité

c _*?
(il) y < /k—- e 2

y Inspq

où e est une constante et t l'écart réduit

l__
\jlspq
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Démonstration. — Nous partirons de l'expression suivante
de yi donnée récemment par MM. D. Mirimanoff et B. Do-
vaz x

(12) yl=-=L=e-*www,
y Inspq

où F(t)

_PVg ry,-2ptz + 2pz*d_ gy^2 ry2-2qtz + 2qz*dz
\/spq | j _ Py/2

z

"
y/spq I

t _^_
q\J2_ „

u o

G(<) u(s) — u (sp + Z) — u(sq — l)
et

¦M-à-SB? <0<1><1>

Posons
X F(0+G(0

Il suffit de montrer que

ex -< ce 2

Soit t= Nous commencerons par montrer que G(£)<"0
\J2spq V IV-

pour 11 j <; t et s suffisamment grand.
Observons qu'on peut écrire

1 1 1 1

sp 1 + 4JL «y 1 — -^=\ \spq/ \ \spq/
Or à tout nombre positif e, si petit soit-il, on peut faire

correspondre un s. tel que, pour s^> s.

(a)

l-e< L-7^<1
ì _|_ rg^2

\Jspq

i v v2

Comptes rendus, t. 185, 1927, p. 827.
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Ces inégalités sont encore vérifiées si l'on remplace t par
un nombre quelconque t positif ou nul <t(x). Nous pouvons

écrire par conséquent

11 1 1 1

G^ <:12^ ~ 12^3^1 — e) — Î2^+ 360(sp)3+ 360(sq)3^1 + 8)3

Or quel que soit t < x, le signe de G(t) pour s suffi-
1 1

•sarnment grand, est celui de jk- — 7^ Donc G(() < 0,

pour t positif ou nul < r Mais cette inégalité a encore lieu

pour t négatif tel que |£|<t. En effet, remplacer t par —t
revient à permuter p et q dans l'inégalité précédente. Le
résultat subsiste.

Pour démontrer notre lemme, il suffit donc d'établir
l'inégalité

eF(f) < cej

Or, en vertu des inégalités (a), nous pouvons écrire, pour
r>()

_
* _ t

F(t) < ^jÛ (1 + s) f\dz- ^Ù, j (2ptz - 2pz2) dz
\/spq j/ ^ \spqJ

_ t t

- ^l(l-e) \\-dz+^L\' (2qtz-2qz2) dz
\Jspq J * \spqJ

ou bien, après quelques simplifications,

^x^K^ + l +^qu'on peut écrire
F(t)<at2 + b,

1

a et b tendant vers 0 avec -s
Or, pour s suffisamment grand et e suffisamment petit, le

signe de a est celui de q — p, tandis que le signe de 6 est
celui de p — q. Si donc p + q a est positif et b négatif (puisque

nous supposons p < q) et par conséquent F(t) << at2, où
a >- a En posant a i/2 il vient, pour t > 0 et s suffisamment

grand

1 Pour t 0, on remplacera le signe <C du côté de 1 par
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F(0 < ^ ou eF<0 < eT

Lorsque £<0, F(t) vérifie une inégalité qui s'obtient de
la précédente en remplaçant t par son module \t\ et en
permutant p et q Il vient alors, en supposant toujours p + q

F(t)<at* + b,
où a •< 0 et 6 > 0, pour s suffisamment grand et 6 suffisamment

petit. D'où F(t) <C b et par suite
eF«> < c

en posant c eb et l'on voit que pour s suffisamment grand
on peut poser c 1 + o, où & est un nombre aussi petit
qu'on veut.
Comme F(0)=0, il en résulte que pour |Z|<t, on a

toujours

ex <; ce «

si P + 9 •

Dans le cas de p q, l'expression de F(t) se simplifie et
l'on constate facilement qu'on a le droit de poser c 1. L'inégalité

(11) est donc établie.

Corollaire. — Comme F(t) a le signe de a pour t — t et
s suffisamment grand, F(—t)<0 et l'on a le droit de poser
e l dans la formule (11). Par conséquent

-i
i e ~~ï

y±x < \j2nspq
Il en résulte qu'on a

1^ °

Pour établir cette formule, il suffit de montrer que

*--G)
ou que

lim i"e 2 o
S—>-00

Mais, en posant s 2fc — 1 et s: a, le produit .v" e «

n a_

s'écrit oe e *P9

D'où

log e a s-" r log ö
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et comme

lim t— log d oo,!-+»W e ° /
on voit qu'en effet

e"T o (-J c. q. f. d.

§ 3. Théorème: i yldl — l o(—j
—x

Démonstration. — Nous avons montré (ch. II) que
s?+l

J>-i-o(I)
—l—sp

L'intégrale qui figure au premier membre de (10) peut
s'écrire

X sq+1 —X sq+1

i yidl i yidl — i ytdl — l yidl
—x —l—sp —l—sp X

Pour établir le théorème en question, il suffit donc de

montrer qu'on a séparément
X sq+1

j y,d/ o(-J et j y,dl=-o(^j
—l—sp X

Montrons d'abord qu'il en est ainsi de la seconde de ces

s«+l

inlégrales. Elle est inférieure à / lyidl Appliquons à
*.'
X

cette intégrale la formule de B. Frisch-de Montessus de Ballore

généralisée. Il vient

sq+1 X+1 X+1 sq+1 sq+1

/ lyi dl spq yidl + q J lyidl — spq / yidl + P lyidl
X XX sq sq

Désignons les quatre intégrales qui figurent dans le
second membre de cette équation respectivement par «, ß, y
el o.
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Pour que l'on ait
sq+1

j ly,dl o(P)

il suffit qu'il en soit de même de a, ß, y et b

"—<-—. ®"- -* — -*-.
autres intégrales.

En effet, on a
'A+1 X+1

f ly,dl<(X + l) f yidl
t r «.
Il X

Donc, X + 1 étant inférieur à s pour s suffisamment grand,

ß o — si a o — I en vertu des propriétés 6) et c)

(ch. I, '§2.)
D'autre part

i+l sq+1

j yidl> I yidl
\ sq

car l variant de p à sq + 1, yt est toujours décroissante (ch. I,
i§ 2) et de plus p<Z\<Csq pour s suffisamment grand. Il
en résulte que Y o I — si a o I —

Enfin
sq+1 sq+1

f lyidl < (sq + 1) f yidl
sq sq

el comme sq + l<_s ,b o — ] en même temps que a, en

vertu des propriétés 6) et c).
Il nous reste donc à montrer que

H-l

J yidl o(^j
X

Or yi étant toujours décroissante dans l'intervalle (X, X + 1)

on a
-I-+1

f yidl < yx
X
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Mais yx =0 — I en vertu du lemme du § 2 de ce chapitre; il
en est donc de même de

sq+1

f yidl, c. q. f. d.

x

Montrons maintenant que
—x

j yidl o(jn
-l—sp

On a
—i —X

f yidl <- f lyidl
—l-sp —l—sp

Er vertu de la propriété c), il suffit de montrer que

J lyidl °(^n)
-l—sp

Appliquons à cette intégrale la formule de MM. Frisch-de
Montessus de Ballore généralisée. Il vient

—A —sp —Sp —X —X

/lyidl spq I yidl + q I lyidl — spq f yidl + p f lyidl
—l—sp —l-sp —l—sp —x—1 —x—1

spqY + qb' —spqa' + pß'

En vertu des propriétés a) et 6), il suffit, pour que
A

J lyidl o ^-n)
—l—sp

que l'on ait séparément

«' <>(?). P" (i)» r=o(i) et b> o (Ì
Montrons que les trois dernières propriétés ont lieu si a' — oi —

Mous avons vu, en effet, que la fonction yt est toujours croissante

dans l'intervalle (— 1 — sp — q) D'autre part, pour s
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suffisamment grand, on a — sp < — X < — q De là résulte
l'inégalité

—x —x

\J lyidl <(X + 1)| / yidl
-X—1 —X—1

Par conséquent ß' o( — j si a'= o I — j en vertu de 6) et c).

Ensuite on a
—sp —X

I yidl< / yidl
—l—sp —x—1

car — sp < — X et — X < — q pour s suffisamment grand, y t

croissant toujours lorsque l varie de — 1 — sp k — q

Par conséquent, Y o( — j avec a'.

Enfin
—sp

J lwdl
—l—sp

-sp

<(l + sp)|J yidl
—l—sp

Donc si a'= o I — I il en est de même de b'.

Il nous reste à montrer que

J ydl=° (p)
—i-i

Comme y. est toujours croissante dans l'intervalle (—X—1,—X),
on a

M

J yidl < y-x
-x-l

ai s

^ °?
Donc

/ yidl o -^ j en vertu de c).
-A-l
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Par suite

fy'dl-l o(^,c.q.f.d.

Remarque. — La démonstration du théorème précédent est
1

plus simple dans le cas où p q s Dans ce dernier

cas yt peut être mise sous la forme indiquée par M. D. Mi-
rimanoff1.

t

yi \l- e -"""« où / 2 \ — - 2z,— dzy/-e .,„„/ 21 —
o

et l u(s)-u(i + l)-u(t-l)

Chapitre IV

Développement de y suivant les puissances croissantes de
1

\Jspq

§ 1. Introduction.

En partant de la formule (12) que nous avons envisagée
dans le chapitre précédent, il est facile de développer y
suivant les puissances croissantes de

1 1

\Jspq G

u désignant l'écart quadratique moyen \spq.
Posons

Nous montrerons dans ce chapitre que les coefficients P/ (t)
sont des polynômes en t qui peuvent être calculés de proche
en proche. Nous établirons d'autre part une propriété importante

de E„ qui nous sera utile dans la suite.

1 Comptes rendus 182, 1926, p. 1119.
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§ 2. Développement de F(t) + G(t) suivant

les puissances de -

Nous supposerons dans ce qui suit que la variable t véri-
sk

fie l'inégalité [£|<x —j= l'exposant fc étant toujours un
7V/2

nombre compris au sens étroit entre 1/2 et 1.

Posons

(13) F(0+G(0 ^f) + ^-)+... + ^ + a-ä

Montrons que les coefficients nt(t) (i 1, 2, n) sont des

polynômes en t et que e„ vérifie à partir d'un s suffisamment
grand l'inégalité

(14) | M|<To|t|v+T ,]«,»-! + +T,
où Yo • Yi > • • • Yv sont des nombres non négatifs et c un nombre,

entier qui ne dépendent pas de s, mais varient avec n.
Pour établir cette propriété du développement de F(f)+G(<),

il suffit de l'établir séparément pour les développements de

F(t) et des différents termes de G(t).
Considérons d'abord le développement de F(t). Supposons

/>0. On a
t

W2 n rh-2ptz + 2pz*dz
° J l-^2

0

gy/2 /¦tt-2gfe + 2g*»(fe u ö
" J l'-^V2

0
+ -

La première de ces intégrales peut s'écrire, en développant
1 /9

suivant les puissances croissantes de PV z

<7

u -z ^v r1 /l - 2pii+2 1

1_itV 0 [2 1 (i + l(i + 2)\

f
t

+ Xry.n7. i — — J'"*" dZ
(p\/2)n+1 f* y, g — 2ptz"+i + 2pz"+*

1-W2-n+1

0
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1
On voit que les coefficients des -. (i 1,2, n) sont des

polynômes en t. Quant au reste, son module est inférieur à

dyy+l /•'/,y+2ptz"«+2pz"n-
="+1 J ,_a3x

o s
1

Mais à partir d'un s suffisamment grand, j=- <' 2, et par
1 — ^— z

<7

conséquent, le module du reste est inférieur à

0 (ps/2)n+l[l /"+1 2(2n + 5)pi"+3-|
a»+i L 2 « + 1 "ï" (n + 2)(n + 3)J

11 est donc bien de la forme +^j où |s,,| est inférieur à

la valeur d'un certain polynôme en t, dont le degré et les

coefficients, qui sont des nombres non négatifs, sont indépendants

dc s.

D'une façon analogue, on démontre que le développement
1

suivant les puissances de - de l'intégrale U2 qui s'écrit

u - £ iv way r i ü ^ n
U2 -zr- 1) __ L 2 ?: (I- + l) (i + 2) J

t
(q\j2)n+l f '/, z" — 2qtzn+l + 2yz"+2

l + 2^z

possède les mêmes propriétés. Il suffit de faire remarquer que
le module du reste est inférieur à la valeur d'un certain
polynôme en t qu'on obtient en remplaçant dans ce reste tous

1

les termes par leurs modules et — par 1. Le degré et
1+W2P

a

les coefficients de ce polynôme sont encore indépendants de s.

Donc la propriété en question est vraie de F(t) pour t > 0.

Lorsque <<0, F(t) F(—\t\) peut être mis, chapitre III, § 2,

sous la forme:
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l'I

'J i + ^z1 +

^2 /' V,-2g|t|H-2gz» &
z

G0

Par un raisonnement semblable au précédent, on arrive au
même résultat, seulement dans ce cas ^ | est inférieur à un
polynôme en \t\.

Passons maintenant à G(t).
On a

G(t) u(s) — u(sp + 1) — u(sq — Z)

Or, en vertu de la formule de Stirling, quel que soit le
nombre entier fc,

risi u(s)- i B* 1
-a- i t-1)*"16* l(U) u{s) ____._-+-...-+- _____ __

+ (-l)*6Bfc+1 1

(2fc + 1) (2fc + 2) ^2fc+i

Ba, Bg, étant les nombres de Bernoulli et e un nombre
positif inférieur à 1.

Supposons que fc soit le nombre entier le plus petit
vérifiant l'inégalité 2 (2fc + 1) > n En écrivant

Ì ipqY (pqY
s' (spq)' ca

on obtient le développement de u(s) suivant les puissances
1 1

croissantes de - Les coefficients des -, (i 1, 2, n) dans
a a' v '

ce développement sont des constantes. Le reste s'écrit

¦ (-l)*8Bt+1 (pq)^1 _ (-l)t6Bt+1(Wf+l 1 1

(2fc + 1) (2fc + 2) o»2*+i> — (2fc + 1) (2fc + 2)
'

ad
' a»fl

où o! est un entier >0.
1

On voit que le module du coefficient de -^rj est inférieur

à une constante, dont le choix est indépendant de s. La
propriété est donc vraie de u(s).
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Pour montrer qu'elle est vraie de u(sp +1) envisageons
le développement

(16) u(sp + l)= îâ^qpTj -ft- (i^+7p +•••

(-l)*8,Bfc+1 1
"+" (2fc + 1) (2fc + 2)

' (ip+7p*+ï

et montrons que la propriété en question est vraie pour chaque

terme de (16).

Or, pour m 1,3,

_ qm *

(sp _|_ l)m \spq _j_ qts/2spqJ a2m Vt £iv/2
a

W2 _i_ X/-1W{-_-__ a.,_ivm (W2)*+1l__f +... + (_ i)»__^_ +(-l)*+i

/i étant le nombre entier le plus petit vérifiant l'inégalité

2m + h + 1 > n.
1

Il est évident que les coefficients de -¦ (i l,2, n) du

1
développement de :—, sont des polynômes en t et quant

1
^

au reste, c'est la somme des termes en -, où j > n En rem-
ffJ

plaçanl dans chacun de ces termes d par an+l et ¦=

1 |
W2

a

par 1, (dans le cas de t^>0), ou par 2, (dans le cas de t <0),
et le numérateur par son module, on voit que le reste est de

la forme —^j où |e„| vérifie une inégalité de la forme (14).

Ou ant à

(- 1)* 8., Bt+1 1

(2fc + 1) (2fc + 2)
'

(sp + /)2fc+i
le module de

1 q-ik+i

{sp + l)^+i-gn+i^^i+qJ^y+i
MÉMOIRES SC. NAT. 18



98 MÉMOIRES DE LA SOC VAUD. DES SCIENCES NATURELLES

92fc+l _ (2o)2*+l
est inférieur à

n+1 si t >» 0, et à
n+1 si t < 0, et on

voit que la loi est vérifiée pour u (sp + l)

Le même raisonnement s'applique à u(sq — l) qui a pour
expression

u (sq -l)= 12 (sq _7) — 3-4 (sq - Z)3 + •••

(— 1)* O.B*H 1

+ (2fc + 1) (2fc + 2)
'

(sq — Z)2*+i
où l'on peut écrire

1 pm _ pm / 1

(sq — l)m
~ (spq — lq)m g*« Vj _ pt\J%

La propriété énoncée se trouve ainsi établie.

§ 3. Développement de y suivant les puissances
1

croissantes de -
c

Posons F(t) + G(t) X

L'équation (12) devient
e-t-

Développons ex par la formule de Maclaurin. Il vient

e —x I" 1 +•••+ ra! ^(„ + l)!e ,"<*^i-
Bemplaçons X par son développement (13); en réunissant

11 1
les termes en -, -5-,...-—, on obtient

ff ff ff

1
P/(0 est la somme des coefficients des termes en -,

X X2 X'
(0<O'<n), qui figurent dans -r-, -^-,...^j. Donc P/(t) est

un polynôme en t.



SOPHIE PICCARD. — SUR LES COURBES BINOMIALES 99

Pour former E„ il faut prendre l'ensemble des termes des

X' 1

-tt dont le degré en - est supérieur à n et y ajouter

(n+1)!

Les premiers termes forment soit des polynômes en t, soit
des polynômes en t multipliés par des puissances de e„. Donc

X'la valeur absolue de la partie de E„ qui provient des -rj est

inférieure à partir d'un >s suffisamment grand à celle d'un
polynôme de la forme

¦ rr— v -

(18) c0|«|» + Ç1|f|N-H-...+CN,

l'entier N et les nombres non négatifs C0, ^....Cn ne
dépendant pas de s.

Envisageons maintenant l'expression

X"+1 &x
(n+1)

On a

Un

où -k'i est un polynôme en t que l'on obtient de tc; en y
remplaçant les termes par leurs modules.

On voit que
ixr+i _ _«_

(n + 1)!
~~ ff«+i

où |aj est inférieur à un polynôme de la forme (18).
Nous avons vu d'autre part (chapitre III, § 2) que pour

tout \l\ <t et s suffisamment grand, X vérifie l'inégalité

ex < ce«

A fortiori
*2

e8-* < ce*

Il en résulte que E„ vérifie bien une inégalité de la forme

(19) |E„|< e^[C0\tf +C1|«fN-1 + ...+CNÌ



100 MÉMOIRES DE LA SOC VAUD. DES SCIENCES NATURELLES

§ 4. Calcul de proche en proche des polynômes P;(/)-

Bappelons que les polynômes Pf (f) peuvent être calculés
dc proche en proche à l'aide de la relation

(20) iPt xi Pi-! + 2*2 P,_2 + 37i3 P,_3 + + in, P0

Or

P„=l
vt* nPi *i=.y/2t(Ç—p) I

3 — 2

ri*=^(p* + q*)-2^(p> + qs)+P-^

- * (1 - 3qp) aÇ(1 - 2pq) + H_i
On en tire:

P2=2: (niPi+2^2)

=| (9 - P)2 - £ |2 (9 - P)2+ pq\ + *2 (| - 2pg) +^j=1-1

Ç (l-4pq)- ^(2-7M)+«t(|-2M) + £2^1

On pourra calculer de même les polynômes P3, P4,
Lorsque p q les calculs se simplifient ; y étant dans ce cas

une fonction paire de f, les polynômes de rangs impairs sont
nuls, en particulier Pi(f) 0, tandis que

0 A f f lP2(/) - Ï2+ 4 - 16'

Chapitre V

Une propriété des polynômes P/(<) •

§ 1. Introduction.

Les formules établies dans les chapitres précédents vont nous
permettre de démontrer une propriété curieuse des polynômes

l*i (t)
n

Soit P(f) un polynôme en t, P(i)=2a,-/'.
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Envisageons l'intégrale

i e~n P(t)dt
t.

Montrons qu'on a

t. t,
Ce-** P(t)dt c fe-** dt + \ e~'2 Q(ol '

U t,

Q(l) étant un autre polynôme en t et c une constante.
En effet

t> t, t,

fe-*2 P(t)dt /V'2 2 a t t'dt S at fV'2 Mt.' .' 1=0 1=0 '

Mais
U t,.

(21) fe-**tidt== —1/2 fe-**t'-id(—t2)

T— ^ *'-* e-'2?' + ^=i fe-Vt'-Mt
t,

On obtient ainsi une formule de récurrence par l'application
successive de laquelle on démontre la propriété énoncée.
Monlrons que

+00
1

C -L fe-*V(t)dt

En effet
+ao +00

—00 —»

car

D'autre part

-j= fe-**dt=-l,
\J*
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on a donc bien
+,*

c
* fe-»P(t)dt;

\f%J c. q. t. d.

+00

Or -p j e-*2 P(t) dt est la valeur moyenne de P(i), en

— 00

supposant que t obéit à la loi de Gauss. Nous l'appellerons
la valeur moyenne gaussienne de P(t) et la représenterons par
le symbole M[P(()]. Nous pouvons donc écrire

M[P(*)] c.
Nous allons montrer que les valeurs moyennes gaussien-

nes des polynômes P,(£) sont nulles quel que soit i.

Remarque. — Ceci explique pourquoi, dans les expressions
de la probabilité P{* d'un écart compris entre lt et /2 qu'on
obtient du développement de y du chapitre précédent par
application de la formule sommatoire, d'Euler-Maclaurin, l'intégrale

t

7Z.
f e~ndt ne figure que dans le premier terme1.

§ 2. Quelques propriétés de la valeur moyenne
gaussienne d'un polynôme.

I. Si
M[P(*)] 0,

on a

jV«p(od*=o(j
où

"""

/ sk

\j2spq \j2spq
En effet, dans ce cas

T t

fe-*2 P(0 dt =[Q(t)e-**j \e~* î bA
—T —

1 Cf. Comptes rendus, 182, 1926, p. 1118 (8).
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Il suffit de montrer que

[t1 e~t%] r°{K
pour i impair.
Or

[t1 e-*2] — 2t1' e-

Considérons donc le produit

sn jt e_,2

Prenons le logarithme de

\ j s2k—l

e ipq

on obtient

s-(ik+n-~)

rik + n — ly\ log s
2pq

Comme fc > 1/2, cette différence tend vers l'infini avec s. Son
inverse tend, par conséquent, vers zéço lorsque s augmente
indéfiniment, ce qui démontre la propriété énoncée.

2) Pour que M [P(f)] 0, il suffit qu'on ait
T

lim f e-'2 P(t)dt 0
s—V» J

En effet, la variable t tendant vers l'infini avec s, on a

00 T

Ce-*' P(t)dt lim /V" P(t)dt 0

00 —T

d'où M [P(Q] 0 c.q.f.d.
3) On a

M[J>(t)] c Zai (i-l)(^-3).-.l
où

o < i 2fc < n.
Poui établir cette propriété, utilisons la formule de

récurrence (21).
Si i est pair, i 2fc, on a par application successive de cette

formule :
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f'^l'dt

(i —!)(» —3) ...3
2*-i

Si f est impair, i 2fc + 1, on a

/ e-«-** tldt

3 »-«

(t _ i)(i-3)...4 r_ i <2 e_wi+

f,

+ 2*-i

Mais

(t —l)(t —3) ...4.2
2

" " |
' 2*

t, t.

«2

f//

fte-ndtr=ï-^e-t2

En résumé, pour i pair, on a

(2 *2

fe-* f dt [q, e-'2]J; + (^-l)(^-3)...l ^_fl rf/

Pour i impair, on a

t,

fe~n t1 dt [qi e-t*]'^
h

où q, est un polynôme en t de degré (i—1).
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On a, par conséquent,

fe-*' V(t)dt [Q(*)e-'2f + c fe-* dt
U t,

où

Q(0 «o9o + Öl9l + ••• + anqn

et où c M[P(<)] est bien de la forme annoncée.

§ 3. Lemme 1.

-L fr, *_!_„(»)

Démonstration. — On a

j-J***-1—rJ" dt.

Envisageons le module du second membre.

On a tout d'abord, en intégrant par parties et supposant
x>0 :

je--dt=—--2j—dt
X X

' Cette formule n'est qu'un cas particulier de la suivante :

J <r- «' — 2x | »
2a« + (2.x*)« " * (2x*)n-l \

X 00

1.3.5... (2n—lì /'"«-».,T 2F J "ST*
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On a donc, puisque l'intégrale au second membre est
positive :

00 A.f e~**

x

En appliquant cette dernière propriété, on trouve

00

¦L fe-**dt<Ç^
\J-kJ S/KT

Or nous avons vu (v. § 2) que

<" <~' °(?
Donc à fortiori

£-G)
On a donc bien

y/vJ W c.q.f.d.

§ 4. Lemme 2.

L'intégrale

Te-*2 E„ dt

est bornée pour s suffisamment grand, d'une manière plus
précise

fe-*2 E„ dt 0(1)

Bappelons que la formule f(s) 0 [g(s)], où g(s) est une

fonction positive de s, signifie que le quotient } ^ est borné

à partir d'une valeur suffisamment grande de la variable s
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Démonstration. — On a

I fer* E„ (t)dt\ < fe-**\En (t) \dt

< fe~î \c0\t\" + 0,1*1«-» + .+ CN] dt

en vertu de l'inégalité (19), à partir d'un s suffisamment
grand.

Mais

fe-ï[c0\t\" +. .+ CN] dt 2 fe-ì [q, *N+ + cj dt

Faisons dans cette dernière intégrale le changement de va-

t
liable —j= t'.

Il vient
T

2 fè~T ÏC01"+ + Cuidt 2yj2 fe-*'3 P(t') dt'

0 0

P(f') désignant un polynôme en f
D'après ce qu'on a vu au début de ce chapitre, on a

v§ ^1 vl

2^2 fe-r*P(t')dt' =2^2 [,Q(*') e~*'A +2^2M [P(t')] fermât
0 "00Mais cette dernière expression est une fonction bornée de s.

On a donc bien

fe-** En (t)dt 0(1),
t, cq. f.d.

Conséquence.

lim - fe-*Endt 0.
(ï->oo) ff J
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§ 5. Valeurs moyennes gaussiennes des polynômes P,(0-

Théorème. — Les valeurs moyennes gaussiennes de tous les

polynômes P*(0 (i l, 2...) sont nulles.

Démonstration. — On a M [Pi(0]==0 en vertu de la
formule 3) du § 2 de ce chapitre.

Mrp/,Vl_l-% 5.3.1 2-7W31

en faisant usage de la même formule.

Supposons que la propriété soit vraie de P (t) P„_i(/).

Montrons qu'elle est encore vraie de P„(£) •

Partons à cet effet du développement de y suivant les

puissances de -considéré dans le chapitre précédent.

r,, - e~* fi j_ piC) j_ p2^> x y p"-i(^) i p*(0 i E« \9 ~ ffTs V + T"+ -?-+ • ¦.+ ~^=^ ' -?" + ^)
Multiplions tous les termes de ce développement par Gndl

et intégrons entre les limites — X + X Il vient

cr" / ydl
—x

,_ / e-*dl + ,- e~t2 PM)dl +a\j2*J ay/2xJ '
—A —A

1 ' /*/•-« P (t\dl 1 1 r~a P Mrf/1

ffv/SJ **-lWM 1

5V/2^./ "()
—X —i

+ *_ fe-KEndl^ g2s/2t J

Bemplaçons dans toutes les intégrales du second membre
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l par y/2 ot. Il vient

X -. -.

" fydl -£ fc-» rf.* + ^ï fe-» Px(<)d< +.' \tJ \l% J

+ -jz fer-BP.^itydt +^ fe-*Pn(t)dt

+ -^1= fe-*2 E„ dt

Faisons maintenant tendre s vers l'infini.
En vertu des propriétés établies au § 3, chapitre III, et

au § 3, chapitre V, on a

x -

lim c» J fydl — ~ fe~t2dt ï 0

—X —T

De même, en vertu des hypothèses faites sur les valeurs

moyennes gaussiennes des polynômes P,(0> (i 1, 2, n — 1)
et en vertu de la propriété 1, § 2 de ce chapitre

lim ~ fe-*Pi(t)dt 0 (i=l,2, ...,n — 1)

Enfin

Hm —^rrrrrr /V'2 E„ dt 0

comme on l'a vu dans le § 4 de ce chapitre.
Donc

lim 4= fer-*Pn(t)dl 0
(S->-oo) y/7T .'



110 MÉMOIRES DE LA SOC VAUD. DES SCIENCES NATURELLES

el, par conséquent, M [P„ (t) ] 0, en vertu de la propriété 2),
§ 2 dc ce chapitre, c. q. f. d.

Cette propriété des polynômes P,-(0 va certainement
permettre d'approfondir l'étude des courbes binomiales et peut-
être même de faire un rapprochement entre le développement
envisagé dans ce chapitre et l'une des séries de M. Charlier.
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