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Uber ein Kurvenintegral aus der Theorie
der Planimeter

von ERWIN KREYSZIG, Universität Karlsruhe

Anlässlich der wohlgelungenen 147. Jahresversammlung der
Schweizerischen Naturforschenden Gesellschaft vom 29. Septem-
her bis 1. Oktober 1967 in Schaffhausen wurde ich auf eine
Arbeit von Herrn Francis Dubois über Integrale mit gebrochenen
Potenzen aufmerksam, die in Band XXVIII (Jahrgang 1963j67)
der Mitteilungen der Naturforschenden Gesellschaft Schaffhausen
erschienen ist.

Die nachstehenden Ausführungen wurden durch diese Arbeit
angeregt und betreffen eine etwas einfachere Auswertung der

genannten Integrale und deren Verallgemeinerung.

Herr Dubois betrachtet die Kurvenintegrale

(1) F./, f y'/* dx und F= f dx,
C C

die bei der Justierung gewisser Planimeter eine Rolle spielen.
Integriert wird dabei von -r nach r längs des Halbkreises x^ +

>
y2 j-2_ y=0, in der oberen xy-Halbebene. Diese Integrale sind
Sonderfälle des Integrals

(2) Fa f y » dx (a 0)
C

mit C wie zuvor.
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Insbesondere gilt also für die von Herrn Dubois [1] betrach-
teten Integrale

(5) Fv> rV= ,/« Lüi25)

und

(6) Fv. - r*/'
| (2,25)

Wegen v/•' | (0,5) 2| (1,5) ist dies identisch mit (19), (20)
bzw. (39), (40) in [1],

Zahlenwerte von Fa gewinnt man aus (4) mit Hilfe einer Ta-
fei der Gammafunktion (vgl. [2] oder [3]).

Für a 2n -j- 1, n 0, 1,..., lässt sieb Fa sogar elementar
berechnen. Es ist nämlich gemäss (4)

F2» + i - r*»+v« r / F (n—(—2).

Mit f(s +1) s|~(s) folgt
i—/ 2n + 3 \ (2n+l) (2n—1) ...3.1 /„I (-2—) V*.

Wegen |~(n —)— 2) (n —|— 1) gilt also

(7) F2n +1 1-3-5 • • • (2n+l) *r*»+2 / 2»+i (n-fl)

L iterator

[1] F. Dubois, Beitrag zur Berechnung von Integralen mit ge-
brochenen Potenzen. Mitt. Naturforsch. Ges. Schaffhausen
XXVIII (1963|67), 275—283

[2] E. Kreyszig, Advanced Engineering Mathematics, 3rd. ed.,
J. Wiley, New York, 1972

[3] Jahnke — Emde — Lösch, Tafeln höherer Funktionen,
7. Aufl., B. G. Teubner, Stuttgart, 1966
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Um (2) auszuwerten, setzen wir x — r cos p und y — r sin p.
Dann wird dx -r sin p dp auf C, und wir erhalten

,0 »TFa —r® + ' | sin®** p dp — r*+' |" sin*+' p dp.
* rc 'o

Setzen wir weiterhin p q also q p — so ergibt
sich sin p cos q und

Fa r*+' cos* + ' q dq — 2r°+' f"^ cos*+' q dq.
.-t/2 U

Das verbleibende Integral lässt sich mit Hilfe der Euler-
sehen Betafunktion B (s;t) auswerten (vgl. z. B. [2], Seite 830) :

Es ist

B (s; t) f' u»-* (1 — u) ' du
"0 | s + t

und B(s; t) B(t; s). Setzen wir u suAj, so folgt 1— u
cos^q und du 2 sin u cos u du.

Demnach erhalten wir

B (s; t) 2 | sin^-' q cos^'"' q dq.
*0

Für 2s — 1 b und 2t — 1 =0 ergibt sich speziell

(3) r'* sin'' q dq - (1/2) B (0,5; 0,5b + 0,5).
"0

Mit b a + 1 folgt hieraus

Fa r" + ' B (0,5; 0,5a + 1)

oder wegen f~ (0,5) - y'u auch

F - ra + l r(0.5)r(0^ + I) _ ^.a +, /„ F(0-5a + ])^ - *
F(0.5a + 1.5) - * ^ F(0,5a + 1,5)

Damit ist Integral (2) ausgewertet.
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