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Beitrag zur Berechnung von Integralen
mit gebrochenen Potenzen

von FRANCIS DUBOIS, Le Petit Mont s/Lausanne

Die iiber einen positiven Halbkreis genommenen Integrale

+r +r 1
j\/ydx: f y 2 dx

(Halbpotenz-Integral) und

+r _3 +ri
f(\/y)dXZ f y 2 dx

(Dreizweitelpotenz-Integral) spielen bei der Justierung der Qua-
dratwurzel-Planimeter, bzw. Dreizweitelpotenz-Planimeter, eine
praktische Rolle.

Im Band XVIII, Jahrgang 1942—43, S. 270 u. ff. dieser
«Mitteilungen» hat Verfasser fiir die numerische Auswertung
obiger Integrale zwei Methoden angegeben, die eine durch glied-
weise Integration einer schlecht konvergierenden Potenzenreihe
unter Heranziehung einer geeigneten Restformel, die andere durch
Uberfiihrung in viel besser konvergierende elliptische Integrale.

Es ist inzwischen dem Genannten gelungen, eine driite, mathe-
matisch exakte Methode ausfindig zu machen, die direkt auf
bekannte, geschlossene Funktionen (hypergeometrische Funktio-
nen) fithrt. Diese soll nachstehend erldutert werden.
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(2)

1. HALBPOTENZ-INTEGRAL

y

AV

0kx~ X

Fiir den positiven Halbkreis (Fig.) ist mit
Y c— -

y Vr X3 " é

das Quadratwurzel-Integral

+r i 1 4
I = f Vyds=r 22 f V1—32d3
—r 0

Durch binomische Entwicklung der 4. Wurzel und glied-

weise Integration wird vorab fiir das unbestimmte Integral
3

bis auf den konstanten Beiwert r 2 2:

I = E EILL

1! 2!

1 1 1 . 57
+(z><—z+l>(z ) ¥+
3!
Wir betrachten zunéchst die exponentgebundenen Faktoren

der integrierten Potenz von 3 fiir sich allein.
Potenz = 35'; %°; %° %7, . ...

- 1 1 1
Faktor = 1; 35 T g
Diese lassen sich identisch wie folgt darstellen:
Ll 13 s
= E] 3 s 3 s 3 5 . 7 9 s s e 0 e
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Mithin wird, bei Vorklammerung der gemeinsamen Potenz§':
s 4 ) 1) g

Of V1—352d3 =3 1+(v4—)-(§l F—f—

H

2

1\(1 34
i)t et
e

(5)(§*F1><§**2>

In der Summe in der eckigen Klammer rechts erkennt man
sofort die Reihenentwicklung der hypergeometrischen Funk-
tion.’

89 4 bt D-pEEY g
F< 7% q>_1+ 7 T 7(7+1 21t

a((/.—i—l Ne+-2) - 8(B1)B+2) q_
-+ y(y—f—l )y +2) 3!_|_

mit

u‘—l- — _];-1— %. — 2
— 4'7ﬂ#*+27/’#*+27q_3

und mithin ist:
fg (14/1*32 dszs-F(~l’+1»+?’-= V)

Zu diesem Elgebms kann man auf die umgekehrte Art ge-
langen.

Bekanntlich erfiillt die hypergeometrische Funktion F ()
die Differenzialgleichung’

1 Siehe z. B.:

— C. F. GAUSS: Disquisitiones circa seriem infmitan, etc. (1812) und Ges.
Werke, Bd. 3.

— RIEMANN-WEBER: Die partiellen Differentialgleichungen der methema-
tischen Physik. Braunschweig, Friedr. Vieweg & Sohn, Bd. II, 1. Ab-
schnitt, § 4—35.

— A. ANGST: Complément de mathématiques. Paris 1949, Editions de la
Revue d’Optique, Cap. 6, § 2, 11, pag. 282—283.
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(8)

(10)

d*F | dF .
q(l“(ﬂdqz + [7—(“+ﬁ+1)q] dq —upF=0

d. h. mit a, 8, 7, q gemiss (5)
d*F | |3 1 dfF (
00 fr 5 (—itt o ()

d*F 3 1,3

dF 1

Es lasst sich in der Tat zeigen, dass, wegen (6)

Uzé f% JTF dgmits' — g

der Diofferentialgleichung (8) Geniige leistet.
Mit
Szzq;?,:\/g;d%:%%

wird zunachst

U=— l—q5—==q 2 | (1—q* ,2d
vl (I L v~k Bl e '
2

sodann mit der Kurzbezeichnung

1 1
f|----|dq=f(1-q)“ q” dq

2

dU ] ke L g
E:I—:*Eq 2 1[]....|dq+q zai-(f||dq>

ausgerechnet
1
] =5

gt [ledaa) o]
q

1
U d[] 1 -3 [1(1—q)7|l
e 5 el 3 |

und nach Ausrechnung und Zusammenziehung

LY.

4
o 13 —-;—-—2 L (1—q) q l 3 1. -1 l
=155 4 f|----|dq — g 71— 4
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1

Lésst man wieder U fiir q 7] |....|dq auftreten, so ist

U 1 - LI
(D ““dq ——2q Utz0—q
_ 1 & ~
ta *+22 1 Ut50-a?q ["—%—%(1_‘9 lq]

Blldet man aus den mit 2q bzw. 2 q* multiplizierten beiden
Gleichungen (11) und (12)

1
2q.(11) =(13) Zqu = —U+Q0Q—q)*
2q*-(12) = (14) 2¢* SS9 =+ 2 U g)F [mé*_a o q}

die lineare Kombmatlon

[%Jri(lq)“‘q ] L(13)+1-(14)

so entsteht schliesslich nach Wegstreichung sich aufhebender
Elemente und Umgruppierung

(15) Zqiq[gj#—{z—ki(lq) q]2qd + (1—q ' qU=0

Diese mit —— multiplizierte letzte Gleichung (15) ist nichts

29
anderes als die friihere Gleichung (8):
d? U 3 1 3 ldu , 1.
Die auf zweierlei Art abgeleitete Beziehung (6) liefert auf
kiirzestem Wege das gewtinschte Endergebnis.

In unserem Falle ist die obere Integrationsgrenze =1 und
somit

b4 1,1 ,3
].7 i 2 fr— . =T Iere =) =39
()Of V1—3%dz lF( 4—{~2+21>
Fiir die hypergeometrische Funktion mit dem Argument q =
3= gilt die elegante Formel von Gauss®

I'(y) I'(y—a—3)
I'(y—a) I'(y—8)

(16)=(8) q(1— )

(18) F(e,8,7,1)=

* GAUSS: Disquisitiones ..., loc. cit.
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(19)

(20)

wobei I' () die EULER’sche Gammafunktion ist.?
Hier mit den a-, 8-, »-Werten gemiss (5) wird:

s a3 (3) Y
r(43-(-3) (+5-3)

rr(2)er(®

1*(9.1‘(1)

ras)-I(1,25)
" I'(1,75)-I'(Q)

Die 1" ()-Werte sind aus den Funktionstafeln von JAHNKE
und EmpE" direkt abzugreifen. Es ergibt sich nach Wieder-
3

=1

anfiigung des Beiwertes r2.2 nach (1)

3 3
- 0,8862 >< 0,9064 3
S 2 . . 2 2 == 2 .
I =r°.2X1 0.9191 .1 r*.2>0,87396
3
= 1,74792 . r?

in vollkommener Ubereinstimmung mit S. 272 und 274 der
«Mitteilungeny, Bd. XVIII.

2. DREIZWEITELPOTENZ-INTEGRAL

Die Ableitung hat eine weitgehende Ahnlichkeit mit den
Entwicklungen fiir das Halbpotenz-Integral, nur mit dem
Unterschied, dass jetzt anstelle des Bruches 72 und seiner
Kombinationen der Bruch *. und seine entsprechenden Um-
wandlungen auftreten. Wir konnen uns daher ziemlich kurz
fassen.

3 Siehe z. B.:
J. A. SERRET, Lehrbuch der Differential- und Integralrechnung. 5. Aufl,
Leipzig, B. G. Teubner 1911, II. Bd., Kap. 4, S. 196—230.

4 JAHNKE u. EMDE: Funktionstafeln. Leipzig, B. G. Teubner 1908 und fol-
gende Auflagen.
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Der Vergleichbarkeit halber tragen die nachfolgenden Glei-
chungen alle die um 20 erhéhte Numerierung der Vor-
stehenden.

Fiir den positiven Halbkreis gilt dhnlich wie (1)

+r 3
[ = f 2dx——r2 2[(13)‘%3 g—

Nach Reihenentwicklung und gliedweiser Integration ergibt

N|ol

sich, bei Unterdriickung des Beiwertes 2.2,

entsprechend (2)

Postu- b D5+ g

21

+(——>(~—§;><—%+2)—§%+ -----

Die exponentabhingigen Faktoren der integrierten 3 -Poten-
zen sind dieselben wie vorstehend. Wir konnen sie von
Seite 2 fertig iibernehmen und erhalten auf gleiche Art
wie oben

Jromsitas s ()G

d. h. wieder die mit ¥ multiplizierte Reihenentwicklung
einer hypergeometrischen Funktion

.....

7 a(e—+1)-8(B1+1
Flo 8, 7,q9) =1+ ff,+ (Jr/#{ﬁ 'z 7T
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nur hier mit den Parametern

3., 1 3

also

D Y AV T aYav S U N Y AP O B VS U a T T et e Vo W e e g .

Der umgekehrte Beweis, dass der Ausdruck %-(26)

1 1 B 02 it 28 e
5—'(26)V—§ (1—%)*dg mit§° = q

auch der Definitionsgleichung der hypergeometrischen Funk-
tion

27) q(1—q) —+B8-41)q] —'—(/./JFﬁ-O

d. h. hlel mit (25)
d?v 3 [/ 3.3\ |dv , 3
(%)quw@3;+ﬂ;wﬂgﬁ3}455+gv—o

centigt, lasst sich ebenfalls mit Leichtigkeit erbringen.
Ahnliche Entwicklungen wie (9), (10), (11), (12) vor-
stehend, fithren zu (ausgerechnet):

3
(33) 2qi§ V- q)f

3 = 3 3 |
2 e | 8 e - ng S .t . T
d‘, +2V+(1 q) | 5 20 a) g
Die etwas abgednderte lineare Kombination
3 . 3 1
stg 9 q

liefert schliesslich nach Vereinfachungen, Umgruppierung
g
2q

cormim a0 a8 [2 (2] 243y

oder

(34)

-(33)+1-(34)

und Multiplizierung des Ergebnisses mit

3 1 ldv 3

00T (- () v




(39)

(40)
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d. h. tatséchlich die Differentialgleichung (27), welcher der
Ausdruck .(26) fir die a, B, 7, q gemiss (25) gehorchen

soll.
Mit Benutzung der Formel von Gauss® wird jetzt aus (26):

Jasitas v (4 (3

)5 3)
r(3)

o
)
Ay

2
9
riZ).r
4 (1)
'y r I'(1,75)
o 2%)Fu)

i. e. mit den Tabellenwerten von JAHNKE und EmMDE’ und
. . . 5
nach Wiedereinsetzung des Beiwertes r3.2 It. (31):

5 5
5 0,8862 > 0,9191
— 2. J—
I r<-2Xx1- 113301 -2 > 0,71889

5
= 1,43778 - r2

genau wie auf S. 277 und 278 der «Mitteilungen», Band
XVIII, auf andere Art ermittelt.

> GAUSS: Vide S. 279 ante.
® JAHNKE u. EMDE: Vide S. 280 ante.
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