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IIl. Mathematik, Physik und Chemie

7.
PLANIMETER FUR GEBROCHENE POTENZEN
FR. DUBOIS

(mit 18 Abbildungen im Text und auf 2 Tafeln)

Die nachstehend beschriebenen Planimeter sind vom Verfasser schon vor
einigen Jahren in franzosischer und englischer Sprache beschrieben worden.
(Génie Civil, 7. Mdrz 1936, und Engineering, 3. Januar und 17. Januar 1936.)
Es fehlte jedoch bisher an einer ausfiihrlichen deutschen Verdffentlichung.
Diese kann an keiner geeigneteren Stelle erscheinen als in den «Mitteilungen»
der Naturforschenden Gesellschaft Schaffhausen, welcher die beiden grossen
Planimeterkonstrukteure, Prof, ]J. Amsler-Laffon und Dr. Alfred Amsler,
immer so reges Interesse entgegengebracht haben. .

Der anschliessende mathematische Anhang dagegen erscheint hier zum
ersten Male.

Bekannt sind die sogenannten Momentenplanimeter oder Inte-
gratoren zur Auswertung von Integralen der Form

Sy“-dx

iiber eine geschlossene Kurve mit rechtwinkligen Koordinaten x, y.
Bei denselben wird von der Eigenschaft Gebrauch gemacht, dass
y" = [I" . sin" @ (I = Fahrarmlidnge)
durch die trigonometrischen sin- und cos-Funktionen des Winkels a
und seines 1-, 2-, ... bis n-fachen ausdriickbar ist *). Das ge-
wiinschte Potenz-Integral kann deshalb durch ein Linear-Mehrfach-
planimeter ermittelt werden, dessen verschiedene Integrierrollen

*).Mat_hematisch héngt diese Eigenschaft mit der Tatsache zusammen,
dass die beiden Reihenentwicklungen

Sin' & — z“n“ll“‘,ﬂ [sin na— " sin (1—2) a4 (1"__2‘1) sin (1—4) &t etc.]

fiir n = ganzzahlig ungerade
n (n—1)

int o o 1 n
e “—W[cosna—Tcos (n—2) a—{———-—-~—1 ")

cos (n—4) « +...etc.]

+ Const.
fiir n = ganzzahlig gerade.

von selber nach einer endlichen Gliederzahl abbrechen.
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durch Zahnrdder mit den Uebersetzungen 1 :1, 1:2, ... usw. bjs
1:n, um das 1, 2 ... bis n-fache des Fahrarmwinkels a gegeniibe
der Ausgangsrichtung gedreht werden.

Diese Eigenschaft liegt den bekannten, von Prof. Dr. Amsler-
Laffon erfundenen Integratoren zugrunde.
Der Exponent
n =1 entspricht dem Fldcheninhalt der Figur;
n =2 entspricht dem statischen Moment der Figur in bezug auf
die x-Axe;
n =3 entspricht dem Trigheitsmoment der Figur in bezug auf di
x-Axe; _
n=4 entspricht dem Moment vierter Ordnung der Figur in bezug
auf die x-Axe.

Die entsprechende Aufgabe fiir gebrochene Potenzen hat in den
letzten Jahrzehnten ebenfalls eine technische Wichtigkeit erlangt,

vor allem die Auswertung von Integralen von der Form \y? dx,

welche alle auf den Exponenten 4 zuriickgehen. Gemdiss dem Aus-

flussgesetz der gasformigen, v =V2g ,:/:'_p, bzw. tropfbaren Fliis-
¥

sigkeiten, v = }/2gh (v = Geschwindigkeit eines Stromfadens im
Ausflussquerschnitt, g = Erdbeschleunigung, Ap = Druckgefille in
Druckeinheiten, y = mittleres spezifisches Gewicht des Gases,
h = Druckgefille in m Fliissigkeitssiule), ist die sekundliche Durch-
flussmenge je nach Konfiguration des ganzen Fliissigkeitsstrahles

proportional einer Funktion der Potenz 5 des Druckgefilles. In
den meisten technisch wichtigen Fillen (Leitung, Miindung, offenes
Gerinne, offener Ueberfall von verschiedenen geometrischen Ge-

stalten) ist diese Funktion eine einfache Potenz von (d4p) *, als0

von der Form (4p) T, Wo m ungerade = 1, 3, 5 etc. Die Kubafur
des wihrend einer endlichen Zeit durchflossenen Fliissigkeitsvohl:
mens an Hand eines Diagrammes des Gefilles in Funktion der Zet
fiihrt somit auf Integrale einer halbzahligen Potenz einer Ordinat
nach einer linearen, bzw. bogenférmigen Abszisse.

Zur mechanischen Auswertung von Integralen der Form S}’T i

(m = 1, 3, 5 etc.) sind in letzter Zeit bei der Firma Amsler ver
schiedene Planimeter entwickelt worden, welche fiir die halbzal
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ligen Potenzen das Analogon der Amslerschen Integratoren fiir die
ganzzahligen Potenzen darstellen *).

1. Einfaches Quadratwurzelplanimeter.

Dieses findet Verwendung bei der Auswertung von Diagrammen
von Fliissigkeitsmessern, welche in Verbindung mit einem Drosse-
lungsorgan in einem geschlossenen Fliissigkeitsstrom (Drossel-
scheibe, Diise, Venturirohr, Pitotrohr) arbeiten und deren sekund-
liche Durchflussmenge einfach proportional ist zur Quadratwurzel
des Druckgefélles am Drosselungsorgan. Bei zeitlicher Registrie-
rung des Druckgefilles in Cartesischen Koordinaten, x = Zeit,
y = Druckgefille, ist das wéihrend eines gegebenen Zeitintervalls

durchflossene Fliissigkeitsquantum das Integral\}/y dx, welches

durch Planimetrieren des ganzen Diagramms ermittelt werden soll.

Bei Darstellung von y als [ (1 — cos a) durch

einen von der Ordinatenrichtung aus ausschlagen-

den Fahrarm, ist die Zuriickfiihrung der Potenz

£ y + (Abb. 1) auf die trigonometrischen Funktionen
Fy, des Winkels 14 o durch die Beziehung

e

Q

)2
Abb. 1. 1—c05a:2(sin—2-) i v o5 m s o= & %1)
a

Vl—COSa: 2-sin;

gegeben und somit die mechanische Bildung des Integrals

S]/fdy = SVIT_ cos a) dx = J/21- Ssin—;—dx, . . x %2

vermittels eines Linearplanimeters moglich, dessen Integrierrolle um

den Winkel % gegeniiber der Ausgangsrichtung gedreht wird.

*) Es verdient erwédhnt zu werden, dass diese Eigenschaft und die sich
daraus ergebende mechanische Konstruktion zum ersten Male von keinem
anderen als Prof. J. Amsler-Laffon in seiner beriihmten Originalabhandlung
«Uber die mechanische Bestimmung des Flidcheninhaltes, der statischen Mo-
mente und der Trégheitsmomente ebener Figuren», Schaffhausen 1856,
Verlag A. Beck & Sohn, angegeben wurde. Da wegen damals noch nicht
bestehender Verwendung von Fliissigkeitsmessern in der Industrie Professor

msler offenbar keine Veranlassung hatte, diesen Gedanken auch auszu-

Haiuen_wie bei seinen Integratoren, begniigte er sich mit einem kurzen
nweis,
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[ ) In sinngemésser Uebertragung

o—TF) —= der Konstruktion der Amslerschen
Integratoren kann dafiir ein Li-
i nearplanimeter verwendet werden,
welches zweli, sich aussen verzah-
nende Zahnrdder tragt. Das klei-
S/2 nere vom Durchmesser d wird
. vom Fahrarm um den Betrag o
3 von der y-Richtung aus mitge-
¥ nommen. Das grossere, mit dem
e dr Durchmesser 2d, tridgt die Inte-
grierrolle, und wird um den Win-

Abb. 2. o
kel 5 gegen die y-Richtung ge-

S e dreht *) (Abb. 2).
Geeigneter fiir die materielle
/ d Verwirklichung hat sich eine fiir
£ das Amslersche Planimeter ge-
wéhlte Variante dieser Anordnung
¢ erwiesen (Abb. 3), bei welcher
¢ die Zweiteilung des Winkels, an-
L statt wie vorstehend, durch ein
& Planetenradsystem erreicht wird.
x ax Vom Fahrarm wird ein grosses,
Abb. 3. die Integrierrolle tragendes Pla-
netenrad vom Durchmesser 2d
mit Innenverzahnung mitgenommen, welches sich mit einem am
Wagen feststehenden, mit dem Fahrarm Kkonzentrischen, kleinen
Zahnrad vom Durchmesser d verzahnt. Infolge dieser Anordnung
wird die Integrierrolle durch Mitnahme durch den Fahrarm um den
Winkel ¢ im direkten Sinne, durch Planetarbewegung relativ um
(4

den Winkel 5
die der Ordinate parallele Ausgangsstellung gedreht (Abb. 3), wo-

im riickldufigen Sinne, somit absolut um—g£ gegen

*) Eine Anwendung dieses Prinzips ist bereits dem Amslerschen Qua-
dratwurzelplanimeter vorausgegangen. Es ist dies das Adler-Ott-Quadrat-
wurzelplanimeter (beschrieben in der Zeitschrift fiir Instrumentkunde, Jul
1932, Seiten 324—326), welches fiir die Halbierung des Winkels o statt Zahn-
radern ein gleichseitiges Dreieck benutzt, eine Konstruktion, die iibrigens nicht
neu ist, sondern schon von Prof. J. Amsler-Laffon angewendet wurde, siehe
die vorstehend zitierte Abhandlung vom Jahre 1856 von Prof. Amsler.
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Abb. 4

Einfaches Quadratwurzelplanimeter

Abb. 13

Dreizweitelpotenz-Planimeter
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durch die gewiinschte Quadratwurzelintegraﬁon entsteht. Das aus-
gefiihrte Planimeter ist auf der Abb. 4, Tafel XVIII, ersichtlich.
In Wirklichkeit ist die mechanische Integration des Differentials

sin%dx nicht unmittelbar, sondern fiihrt, wie im Falle des einfachen

Flichenplanimeters, auf die Summe von 2 Integralen, wovon eines
dem Problem fremd, bei der Riickkehr zur Ausgangslage zu Null
wird, zuriick.

e Wird ndmlich (Abb. 5) wihrend der
Zuriicklegung eines kurzen Bogens ds der
N NG Flichenkontur durch den Fahrstift die
% N\ . Lagendnderung des Fahrarms von der
‘ ds. 19« Lage (x, a) zur unendlich benachbarten
. Lage (x+dx, a+da) in ihre Komponen-

i J_Lf:;_!_g& asa ten zerlegt, so gilt offenbar
Abﬁ. 5. dx =du + lda-cosa . . (3)

Nach Substitution des vorstehenden vollstindigen Wertes fiir das

Differential dx in das ]ntegraig]/— dx, erhilt man den effektiven
Ausdruck

g]/}mdx = S]/Tfsin% (du +!da-cosa) =

=]/Z_ISsin%-du—{—]/z_llgsin%cos«z-da R C))

Wie leicht ersichtlich, nimmt bei Riickkehr des Fahrarmes zu
seiner Ausgangslage nach Figurumfahrung das zweite Integral
rechts den Wert = 0 oder = Konst. an, je nachdem der Fahrarm
keine oder eine volle 360°-Rotation zuriickgelegt hat. Das erste In-

tegral Ssin—g—du hingegen ist eben durch die Abwicklung der Inte-

grierrolle in der Ebene ihrer Schneide dargestellt. Das Planimeter

gibt somit tatsichlich das gesuchte Quadratwurzelintegral der Or-
dinate an.

2. Radial-Quadratwurzelplanimeter.

Dasselbe mechanische Integrationsprinzip lasst sich auch auf
¢in radiales Quadratwurzel-Planimeter iibertragen. Ein solches ist
erforderlich zur Mittelwertbestimmung der Quadratwurzel der ra-
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dialen Ordinaten eines polaren Diagrammes, soll also die Auswer-
tung des polaren Integrals

2T 2T

\yrao={ya=ras

(1] 1]

iiber den ganzen Kreisumfang erlauben. Derartige Diagramme kom-
men vor bei Fliissigkeitsmessern (Drosselscheiben, Venturimetern),
deren dem Geschwindigkeitsquadrat ‘proportionales Druckgefille
auf einem gleichmissig rotierenden runden Diagrammblatt regi-
striert wird, wobei die radialen Ordinaten des runden Diagrammes
von aussen nach innen oder innen nach aussen zunehmen konnen.

Die Abb. 6 stelit ein
derartiges Radial - Qua-
dratwurzelplanimeter fiir
von aussen nach innen
steigende Kreisdiagramme
dar. Mit einem im Dia-
grammzentrum O drehba-
ren  gleichschenkeligen
Kniehebel, dessen freies
dusseres Ende den Fahr-
stift F trigt, wird die zu
radizierende radiale Ordinate y = r, —r als

y=21 (1 —cos a) R ) |
dargestellt, so dass
2 2
S']/fa——m?-dw:S]/?ﬁAsin % ;177 ATSWIRRITYRIS TURMRIE (.
0 0

ist, wobei o die Neigung der Kniehebelseiten gegen den Radius-
vektor bedeutet.

An dem im Diagrammzentrum eingehingten Kniehebelarm ist
eine runde Scheibe drehbar gelagert, welche die Integrierrolle mit
radial gerichteter Ebene tragt, derart, dass die Ebene der lntegrie.r-
rolle um eine mit besagtem Kniehebelarm fest verbundene, d.h. 1t
konstantem Abstand vom Diagrammzentrum verbleibende vertikale
Axe rotieren kann. Am &dussern Kniehebelarm (Fahrarm) ist, kof-
zentrisch mit dem Kniegelenk, ein Zahnrad mit dem Durchmesser @
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angebracht. Ein grosseres Zahnrad mit dem Durchmesser 4d ist
an der Tragscheibe der Integrierrolle befestigt, bzw. bildet einen
Teil derselben. Durch diese beiden sich aussen miteinander ver-
zahnenden Zahnrider wird der Integrierrolle gegeniiber dem Knie-

hebelarm (Polarm) eine Winkeldrehung % erteilt, die sich daraus

ergibt, dass der dussere Spitzenwinkel des gleichschenkligen Drei-
ecks doppelt so gross ist wie der Basiswinkel und somit nach

Vierteilung zu & an der Integrierrolle flihrt.
g 2 g

Die Ausgangslage der Integrierrolle, entsprechend der Streck-
lage von Polarm und Fahrarm (r,— r = 0, « = 0), ist radial gegen
das Diagrammzentrum gerichtet. Die Folge davon ist, dass die Ab-
wicklung der Integrierrolle proportional dem Integral

2T 27
. a -
a sin - d ¢ = proport. ]/ro——r-dcp R
0 [4]

wird, wobei in den Planimeterkonstanten der unverinderliche Ab-
stand a des Rollenmittelpunktes vom Diagrammzentrum enthalten
ist (Abb. 6).

Fiir von innen nach aussen zunehmende Kreisdiagramme wird
der Fahrarm, anstatt mit der Fahrspitze F” der Diagrammkurve ent-
lang gefiihrt zu werden, von einer radialen, durch das Diagramm-
zentrum hindurchgefiihrten geraden Stange angetrieben, deren iiber
das Zentrum hinausragendes freies Ende F die Diagrammlinie um-
fahrt. Dadurch wird erreicht, dass der Endpunkt F” des Fahrarmes
immer nach dem zentral gerichteten Radiusvektor von aussen nach
innen um eine Strecke verschoben wird, gleich der von innen nach
aussen steigenden radialen Ordinate, so dass die obige Konstruktion
auch fiir die letztere Diagrammart anwendbar wird (Abb. 7).

Schliesslich ist eine Verbindung der Ausfiihrungen fiir nach
innen steigende und fiir nach aussen steigende Diagramme moglich,
bei welcher die Fahrspitze F, anstatt fest entweder am Ende des
Fahrarmes oder am freien Ende der radialen Fiihrungsstange zu
sein, der Linge dieser Stange entlang beidseitig vom Diagramm-
zentrum nach Belieben feststellbar ist (F,, F,, F,, F,, Abb. 8), so
fiaSS man mit dem gleichen Instrument ebenso von aussen nach
Innen wie von innen nach aussen steigende Diagramme, von innert
gewissen Grenzen beliebigem Nullkreisdurchmesser auswerten kann.
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Abb. 8.

Die Grenzen des
Ausmasses der mit
einem  Instrument
auswertbaren Dia-
gramme sind durch
die dem Instrument
zugrunde  gelegte
Kniehebel-Armlange
bestimmt.

Diese Universal-
anordnung des Ra-
dial-Quadratwurzel-
planimeters ist fiir
die Ausfithrung ge-
wahlt worden. Abb.
9 stellt die Auswer-
tung eines Diagram-
mes mit Nullkreis
aussen, Abb. 10 mit
Nullkreis innen dar
(Tafel XIX).

Ohne auf Einzel-
heiten einzugehen,
sei darauf hingewie-
sein, dass das Qua-
dratwurzel - Integral
des Radiusvektors
wieder als Summe

von zwei Teilintegralen erscheint. Dies ist die Folge davon, dass
der Uebergang des Fahrstiftes vom Punkt (¢, r) der Flaciten-
umrandung zum unendlich benachbarten Punkt (¢ + dg, r+dr)
die Resultante von 2 Einzelbewegungen darstellt, von denen die
eine eine reine Drehung des ganzen Kniehebelsystems um den
Winkel dp und die andere eine Verzerrung des Kniehebels vom

Betrag da ist.

Das eine der beiden Teilintegrale ist dem Problem fremd und
verschwindet bei Riickkehr des Fahrstiftes zum Ausgangspunkt
Es gelten dhnliche Ableitungen wie die Gleichungen (3) und (4)

auf Seite 263.
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Abb. 9

Radialquadratwurzelplanimeter
Diagramm mit Nullkreis auflen

Abb. 10

Radialquadratwurzelplanimeter
Diagramm mit Nullkreis innen
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3. Dreizweitelpotenz-Pianimeter.

Eine ebenfalls technisch wichtige Anwendung dieses Integra-
tionsprinzips fiir gebrochene Potenzen ist die mechanische Auswer-

3
tung des Integrals Sy 2 dx.

Dieses Integral kommt in Betracht bei der Ermittlung der wih-
rend eines Zeitabschnittes iiber einem rechteckigen Messiiberfall
oder in einem offenen Gerinne konstanter Breite durchfliessenden
Wassermenge durch Planimetrierung eines zeitlichen Diagrammes
der Ueberfallnohe, bzw. Wassertiefe im Gerinne. Bei nicht zu sehr
verdnderlichem Durchflusskoeffizient ist bekanntlich die sekundliche
Durchflusmenge proportional der Potenz 3/2 der Ueberfallhdhe,
bzw. Wassertiefe im Gerinne.

Bei Darstellung der Ordinate y wieder als [ (1—cos a), ldsst
sich das Integral

3 3 3
gy_’“dnglT-(l—COSa)T-dx (8

mit Hilfe der trigonometrischen Beziehungen:

2
1—cosa=2 (sin %)

Y sin 3ﬁ4+ 3sinpB

umformen in:

3
2

2] 32
Sy’dx=I’T[—Ssin37adx+3-85in~g“dx]. ()

3
Demnach kann das Integral \y 2 .dx durch ein Mehrfach-Linear-

planimeter mit zwei Integrierrollen ausgewertet werden, dessen eine
Rolle bei Winkelausschlag « von der y-Richtung aus des Fahr-
armes um den Winkel%i und die andere Rolle um den WinkelsTa
gegen die der Abszisse x parallele Anfangsrichtung gedreht wird.
D}E Ermittlung des Integrals verlangt somit zwei Rollenablesungen,
die in obige Formel passend einzusetzen sind.

Eine brauchbare Verwirklichung eines solchen Linearplanimeters
besteht darin, dass zwei Integrierrollen von zwei Zahnrddern mit
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Durchmessern 2 d, bzw. 3

3

d getragen sind, welche gleichzeitig von

einem, vom Fahrarm in dem Betrage a von der y-Richtung aus mit-

1 ; . o a
genommenen Zahnrad vom Durchmesser d, um die Winkel —- bzw,

2

%ggegen die x-Richtung gedreht werden. Dabei kann die vom Rad

mit 'Winkeldrehung% getragene Integrierrolle zugleich zur Auswer-

Abb. 11.
[ ¥
C; <)
A,
o
da
2
<
t o
% N

dx

Abb. 12.

tung des Quadratwurzelin-
tegrals benutzt werden, so
dass das Planimeter sich
gleichzeitig zur Ermittlung
der beiden Integrale

I |
Sy 2 dx und SV?a dx

eignet (Abb. 11).

Fiir die konstruktive Ge-
staltung besser ausgeglichen
in der Massenverteilung ist
eine etwas abweichende An-
ordnung, bei welcher, dhn-
lich wie beim einfachen Qua-
dratwurzel-Planimeter, die
Winkelbewegung »32—a bzw. g
der Integrierrollen mit einem
Planetenrider-System  be-
werkstelligt wird. Vom Fahr-
arm wird ein grosses, die
eine Integrierrolle tragendes
Planetenrad vom Durchmes-
ser 2d mitgenommen, wel-
ches mit einem am Wagen
feststehenden, mit dem Fahr-
arm konzentrischen kleinen
Zentralrad von Durchmes-
ser d sich aussen verzahnt,
sowie ein zweites gQrosses,
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die andere Integrierrolle tragendes Zahnrad, ebenfalls von Durch-
messer 2d, mit dem ersten grossen Planetenrad sich aussen ver-
zahnend. Dabei wird durch Planetarbewegung das erste grosse
Planetenrad gegeniiber dem es in dem Betrag ¢ mitnehmendem
44

5 im direkten Sinne, das zweite

Fahrarm relativ um den Winkel

grosse Planetenrad relativ. um denselben Winkel % im riick-

laufigen Sinne gedreht, so dass das erste grosse Planetenrad ab-
solut um a 4+ % :%, das zweite grosse Planetenrad absolut um

a — %- = % gegeniiber der x-Richtung gedreht wird, wie es

erforderlich ist. Das Amslersche 3/2-Potenz-Planimeter ist nach
diesem Grundsatz ausgefiihrt (Abb. 12).

Vollstdndigkeitshalber sei auch bei diesem Planimeter wieder
auf die Entstehung des zweiten, an der Grenze verschwindenden
Parasitenintegrals hingewiesen. (Aehnliche Gleichungen wie (3)
und (4) ante.)

Die Abb. 13, Tafel XVIII, stellt das 3/2-Potenz-Planimeter im
Gebrauch dar.

Es wire, wenigstens theoretisch, moglich, nach demselben
Grundsatz ein Planimeter fiir das 5/2-Potenzintegral

L] 5 i
Syz dx=Slz(1—COSa)2dx

welches fiir den offenen Ueberfall mit Dreieckausschnitt in Betracht
kommt, zu entwickeln. Es treten dhnliche Gleichungen wie (8) und
(9) ante auf, nur werden die Formeln jetzt dreigliederig, und die
Konstruktion wiirde ein Planimeter mit 3 Integrierrollen erfordern,
dhnlich wie die grossen Amsler-Integratoren. Wir begniigen uns
mit diesem Hinweis.
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Anhang.

Formeln zum [ustieren der Planimeter fiir gebrochene Potenzen.

Bei den iiblichen Integratoren benutzt man zum Justieren wi#hrend der
Fabrikation, bzw. zur Genauigkeitskontrolle eines vorliegenden Instrumentes
geometrisch einfache Figuren, meistens Rechteck, Quadrat und Kreis, deren
statisches, bzw. Tragheitsmoment in bezug auf eine Tangente oder Symme-
trieaxe formelmédssig bekannt sind. Am h&ufigsten wird der Kreis benutzt,
wegen seiner genauen mechanischen Aufzeichnung mittels des Zirkels.

Fiir die hier beschriebenen Halbpotenzen-Planimeter besteht ein gleiches
Bediirfnis; ausser Rechteck und gleichseitigem rechtwinkligem Dreieck kommt
der Halbkreis in Betracht, und zwar der Halbkreis mit positiven y-Werten,
da negative y auf imagindre Wurzelwerte fithren. Da die auf den Halbkreis
beziiglichen Halbpotenzen-Integrale nicht aus Funktionentabellen zu ent-
nehmen sind, hat der Verfasser dieselben zum Gebrauch in der Firma Amsler
entwickeln miissen. Die Ableitung, die fiir die Allgemeinheit von Interesse
sein diirfte, sei hier mitgeteilt.

1. Einfaches Quadratwurzelplanimeter.

Fiir den positiven Halbkreis (Abb. 14) ist mit

y y=Vr2—X*;-J—f_—§
_mq_ das Quadratwurzel-Integral
+r 1
G ]=S]/Idx=r“}-zs]‘/1?g2dg L0
Abb. 14. —r 0

Dieses nicht durch eine bekannte Funktion ausdriickbare Integral muss
durch eine Reihe dargestellt werden. Durch binomische Entwicklung der
vierten Wurzel und gliedweise Integration entsteht:

g 118 1318 1.3.71 & 1.3.7-11 1 & ]1 1"
=t g an s s w T wag el O
Da die Integralreihe langsam konvergiert, muss sie mit dem Restansatz
benutzt werden.

Eine anschauliche, fiir numerische Rechnungen geeignete angenaherte
Form des Restansatzes *) erhédlt man wie folgt:

*) Da die klassischen Restformen von Lagrange oder Cauchy einen ab-
zuschitzenden Faktor # (0 < # < 1) enthalten und daher fiir eine einiger
massen genaue Restberechnung zu grob sind.
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Aus dem Bildungsgesetz der Glieder
G 1(4=1) 241 .. ([1—1] 4—1) 1 12041
" & n!2n + 1
ergibt sich als Differenz aufeinanderfolgender Glieder:

40,=G,.1— G, =G,(J! —1) =—@, 30+ 13

far gn = 1 G, "4(n+1) 2n+3)
= fiir n gross G —9-
o Bross ~ =5 1

Wird die endliche Differenz AG, nunmehr als Differential dG, und die
Einheit (n + 1)—n ebenso als dn aufgefasst, so gilt anndhernd fiir n gross:

daG, 9
an =",
dG, —9 dn
G,— 4 n
Integriert:
Log. G, =~ Log. C* —Log. n
te
G, =~ Cg
ny

Die Integrationskonstante folgt aus der Giiltigkeit dieser Ndherungsformel
fiir das kte Glied, bei welchem die Reihe aufhért.

Cte
Gk = kg,

4

womit
9
vy
9
[y

G, = G, (12)

Wird die Reihe beim kten Gliede abgebrochen, so kann der Rest R = Z G,
k+1

Summe von um dn =1 abstehenden Elementen, als Integral aufgefasst
werden *)

oo oo kg P n‘_%‘.l 55
R=\G, -dn=\G 5 -dn=G-k* | ¢ |1
s _74“1—1 1
k+1 k41 ket
35 4 1 4
=G-k4(— ._——)—m Go=k . (13
. O+ 5 L 15) Tar & gross O 3 )

_ *) Werden nimlich die einzelnen Elemente der Summe als elementare
Flachenstreifen mit der konst. Breite dn = 1 statt iibereinander (Summe =
esamtfliche) nebeneinander quasi wie Holzstdbchen gleicher Breite und
Veranderlicher Hohe gelegt, so erscheint sofort die Summe als Gesamtinhalt
der dadurch bedeckten Fliche, also als Integral.
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Mit dieser sehr einfachen Ndherungsform fiir den Restansatz ergibt die
numerische Rechnung, wenn die Reihe nur bis zum 8. Gliede (k = 8) ge-
fithrt wird:

Otes Glied = 1 = 1
Jtes 3 = — _1- L l == — 0 083’333
41! 3 ’
1.31 1 ,
2tes  y = 59Tk = — 0,018'750
1-3.% 1.1 :
Jtes 0y = —B 3T = — 0,007'812
4tes » = i = — 0,004’178
Htesn. g et LU e iild R R = — 0,002'563
B8 '3 = ciuiswsmesmmeshs = — 0,001'717
Ttes  » = ... = — 0,001'222
1.3.7-11-15-19-.23-27 1 1 ,
Ktes > o 28 @ 17 = _ 0,000 904
4 , 4 ,
Rest » = 63-3-82—0,000909-3-8 = — 0,005'818

Summe YT—&-d¢ =1 — 0,126'302

|
CL 3"

: = 0,873'698
Somit gesuchtes Wurzelintegral
+ 1

| = S]/idx — ;7.2 0873698 —1,747°396 - r &

-1

* *
*

Der Umstand, dass das gesuchte Wurzelintegral sich auf den Halbkreis
bezieht, legt nahe dasselbe in Polarkoordinaten auszudriicken. Man wird
dabei auf trrgonometrlsche Funktionen gefiihrt, welche die Umwandlung in
ein besser konvergierendes elliptisches Integral gestatten.

Setzen wir also in polarer Schreibweise (Abb. 14)

X=rcosd dx = —r sind? dd
y = r sind,
so wird
+r

+r
]:SV;dezz-S]/;dezz

Yrsind (—rsing dv)

—_r

NHL/WQ

w

2
- %S]/ sindsin¢ds . . . (14
0
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Zur Umwandlung in ein elliptisches Integral machen wir die Substitution:

#=0;w:%
sind = cos? ¢
T
?9—7,(;0—:0
e —2cospsinpdep  — 2cospsingde (15)
cos & Y1 —costy
_ —2cosgpsinpde . —2cospdeo
L 10 . 2 !
V1 costp J1+cos?g ]/;(l—mlz-sinhp)

womit das Integral (5) in

hig
0 2
= 3 4
]=2r%Scos<p-cosz<p > ZCOSTdL_er 42(. w (16)
]/ Vl—— sin? V—)l/l—? sin? @
T 0
3 ‘
iibergeht.

Zur Auswertung des nunmehr elliptischen Integrals rechts wird in iib-
1
licher Weise(] _%sinztp)-?in die Binominalreihe entwickelt, und nach

gliedweiser Multiplikation mit cos*¢ d ¢ ergibt sich:

g
o

]:riﬁ[ COS“(p d(p—[—'l——;—g In2¢COS4q9d§0+
[s]

1:3 1
2.4 n

sind p costp d p+

oc./}m{:}

&)

1:3:5 1

+ 2.4.6 28

sinfpcostepd @ +... etc.] (17)

ot

Durch wiederholte Anwendung von p—2 = m—2 bis p—2 = 0 der Re-

]

p—1
p+4

kursionsformel

sin®x costx dx = sin"—2x cost x dx erhdlt man fiir die

S
CR S TNE|

in obiger Formel auftretenden Einzelintegrale vom Typus \sin" @ cost@ d ¢,

°mN1=i

aligemein (m = Gerade):
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(m—1) (m—3) (m—=5)...1

Oy oy
Om”l""

in™ 4 = 4 .
SN coste A9 = dy (m—2td) (m—d+d) ... (214) )OS
T
2
' 3-1 =
4 _—_
Scos p do = 72 D (18)
[

Damit gelangen wir fiir das gesuchte Wurzelintegral zum Schlussausdruck:

2 4 1 1 /132 1 1 (1-3\¢ 1 1 [1-3:5\2 1 T
— L 2. . — = —akai3 ) L PGl AT VI B Wadiinds PSSt i

I ’2]/2—[1 Y 53+ (2) 673 (2-4) 68772 (2-4-6) 8-10“‘}3’5

(19)

Nachstehend die numerische Ausrechnung. Die hoheren Glieder klingen

rasch ab, da jedes Glied der Grenze - des vorangehenden Gliedes zustrebt,
und ein Restansatz ist iiberfliissig.

1

0tes Glied = 1 (107 — 0,1250000
1 (1) 1
t _ e P N . — ) )
tes > 7 (3) 13 0,005'2083
1 (1:3y 1
t - —_— b - —_ '] 3
2 > = o (53) 8 0,000'7325
1 (1:3:5¢ 1
t = RS ———— e o ’ i}
Stes > = (z16) 510 0,0001526
a5 > = ~ 0,000038
BUS > = il —~ 0,0000113
65 > = i — 0,0000035
y SRR PN — 0,0000012
1 (1:3:5..152 1 ,
t S, = i 4
. & 7 (345-16) 8% R
Summe = = 0,131'1487

Somit gesuchtes Wurzelintegral:

+1
oo + 4 n —_
J=\yy dz=r7=0131'149-3 5 = LT48054 7 7,

)

in guter Uebereinstimmung mit dem aus der algebraischen Reihe gewon-
nenen Wert. Der Wert aus der elliptischen Reihe ist offensichtlich der ge-
nauere *). Die unabhingige Bestimmung des Wurzelintegrals auf 2 verschie-
denen Wegen war aber fiir die erstmalige Berechnung eine willkommene
Kontrolle.

-~ 1

*) Die Abweichung rithrt von der auch nur angeniherten Formel (13)
fiir den Restansatz der algebraischen Reihe her,
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2. Radial-Quadratwurzelplanimeter.

Als praktisch fiir die Justierung des Planimeters hat
sich ein iiber einem Nullkreis vom Radius R als Basis be-
schriebener Halbkreis von gleich grossem Radius (Mond-
sichel) erwiesen (Abb. 15). Die Integrationsgrenzen sind

offenbar ¢ :iﬁ@:i%

Mit
r=2R cos¢—R=R-(2cosd—1)=R- (1—4 sin2%)
Abb. 15. wird das Quadratwurzelintegral
+g +7 +5
J=\yr-dé =yR- S]/l —4 sin“g dd = VP-ZS}/TTsirr‘_?ﬁ de; cng (20)
. i® X .
3 3 6

Dies ist ein reines elliptisches Integral 2. Gattung, aber vom Modul 2
(k* = 4, k = 2), so dass die Legendresche Normalentwicklung ihre Giiltig-
keit (k = 1) verliert. Es ist also eine andere Form des Integrals, welche eine
konvergierende Reihenentwicklung zuldsst, zu benutzen. Dafiir setzen wir:

Tt JT
[ Jf0=+§;w=+7] e
.U ; ., 0
2sin 5 =siny Vl-_4 sin2 - = Cos y
2 l"ﬁ— T n[ 2
cosypdy cosyp dy cosy dy
1 .
COS - —sin? — — - sin2
) Vl sin? 5 ]/1 g Sy
so dass das Wurzelintegral sich nunmehr
™ iy
t3 F o
= 2 o
]ZVRS cos 1;1)dt,u :]/RZS cos 1;’ Y L (22)
— — sin? i B
]/1 7 Sinty g ]/1 g Sty

—r
‘ 2
schreiben ldsst.

Die Binominalreihe ist jetzt unbedingt konvergierend. Durch Entwick-
lung und gliedweise Integration entsteht:

™ T E
2 5 7
F=}R 110\ 1.3 1 (. .
R costy dy 45 o \ sintycosty d+ 5 5 \sintycosty dy
0 0 .
™
2
FEEETY PR, [
(1]
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Fiir das allgemeine, in vorstehender Reihe vorkommende Einzelintegral gilt
dhnlich wie (18): (fiir m gerade)

sin"y cos? dy = (m—1) (m—=3) (m—=>5) . . . 1 .

(m+2) (m—2+2) (m—412) .. . 2+2)

cos2ydy;

SR THE
L TN

T©
2
cos2 dzp:l-f
2 0
0
Setzen wir diese Werte in (13) ein, so ergibt sich, zusammengezogen:
1 1 [1)\21 1 (1-:3)2 1 1 [(1.3-5)2 1 K
— i 2 el o e i — B == e I e _
J=RYR 2[”” 7T (2) F T (2-4) 6T (2-4-6) g o3

Numerische Ausrechnung (ohne Restansatz):

Otes Glied = 0,500°000°00
Ites  » = 0,015’625°00
2tes » = 0,001°464’84
Jtes » = 0,000'190°'73
qtes  » = 0,0000029°21
Htes » = 0,000°004’93
Gtes » = 0,000°000’89
Ttes » = 0,000°000°17
8tes  » = 0,000°000°03
Summe = 0,517’315’80

Endwert des Wurzelintegrals:

T

]=YVR-2 (0,517’315’8- =

) = 1625196 - R

3. 3/2-Potenz-Planimeler.

Die Ableitung hat eine weitgehende Aehnlichkeit mit den Entwicklungen
fiir das einfache Quadratwurzelplanimeter, mit dem einzigen Unterschied,
dass jetzt an Stelle des Bruches %, seiner Vielfachen und Potenzen, der
Bruch % und seine entsprechenden Umwandlungen auftreten. Wir konnen
uns daher ziemlich kurz fassen.

Darstellung durch eine algebraische Reihe:
Fiir den positiven Halbkreis (Abb. 14) gilt, dhnlich wie (10),

+r 1
]:Sy—”_dx:r?-zg(]_.gz)*f.dg TR -

Nach Reihenentwicklung und gliedweiser Integration finden wir, ahn-
lich (11):

& 1 1 & 1 18 _1.51 4 1.5-91;3]125)
’:’22[§_34'ﬁ§“3@'§i3“ s 317 3 g ar o)

w
|
|

w
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Angendherter Grenzwert des nten (liedes (n gross) fiir ein hdheres n als
die Ordnungszahl k des Gliedes, bei welchem die Reihe aufhort, entspre-
chend (12):
11
k_‘
Gﬂ o= Gk'T . . . . . . . . (26)
nt
und mithin Rest der beim kten Gliede abgebrochenen Reihe, anndhernd,
dhnlich (13):

RgGk;k il w o w ow s REA)
Numerische Berechnung:
Otes Glied = 1
]1tes > = s 0,250,000
2 » = — 0,018°750
Jtes  p = — 0,005°580
4tes 5 = — 0,002°441
Htes y = — 0,001°298
Gtes » = — 0,000°778
Ttes 3 = — 0,000°'506
8tes » == . 0,000’349
Rest = Go-28=—0000349-78 = — 0001507
1
3
Summe = S(l—«»§2)4 dé& = 1 — 0,281°299
0 = 0,718'701
. Somit Wurzelintegral:
+r
2 X
]zSyz dx=r?.2.0,718701
g 5

= 1,437402-r?.

Darstellung durch eine trigonometrische Reihe:

. In polarer Darstellung, x =r cos®, y=r sind (Abb. 14).ist, dhn-
lich (14):

+ r
3

sin9sinddd. . . . . . . (28)

B &
Syz de = 2r?

Mittels der Substitution (15): sin® = cos*@ wird (28) in ein elliptisches
Integral transformiert, entsprechend (16) und (17).

E e YN I

5 4 cosbpde
2

— s @ o= & oa o« L)
J 'l/zgl/l——:li-sin“qo
+]




I3
B
e

I-*

1 1-3
8 2 6
cos q:vdgo—{— 55 sin2g cos qucp—}—24

[\

ot/ﬁw'
OL/"JN

-

o

(30
Allgemeiner Ausdruck des Einzelintegrals, dhnlich wie (18), (fiir m gerade):)

-

2
(m—1) (m—23) (m—>5) .

(]

5-3-1

6 = -
costpde=543"7"

ot~y

In (30) eingesetzt, ergibt die Schlussformel:

B
2

4 1\2 1 1(1:3\2 1
b Vf[m 246+21( )468+2_=(§71) 6.8-10

1/1-3-5\2 1 -
+§§(2.4.ﬁ) 810.12° " etc.] 15.§_ )

Numerische Berechnung (ohne Restansatz):

Otes Glied = 0,020'833'33
s » = 0000'651°04
otes  » = 000007324
s » = 0000012'72
dtes 5 = 0000000278
Sts  » = 0.000'000°70
s  » = 0,00000020
Ttes  » = 000000006
Btes » = 0,000000°02
Summe = 0,021'574°09

Endwert des 3/2-Potenz-Integrals:

5
2

J =it Vz

]
(0,021 ’574'09.15 ’;) — 1,437°769-r 2.

;\Sintg cosse d g etc}

—2'
SS‘“’"Q":"SS‘”"’ ) (m2 ) (b S"“)Sﬁ"’d“”

(31

(32)

Dieser letzte trigonometrische Wert ist der genauere. Die zweifache Be-
stimmung auf unabhéngigen Wegen (25) und (32) war aber als gegel-

seitige Kontrolle willkommen.
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