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III. Mathematik, Physik und Chemie

7.

PLANIMETER FÜR GEBROCHENE POTENZEN
von

FR. DUBOIS

(mit 15 Abbildungen im Text und auf 2 Tafeln)

Die nachstehend beschriebenen Planimeter sind vom Verfasser schon vor
einigen Jahren in französischer und englischer Sprache beschrieben worden.
(Genie Civil, 7. März 1936, und Engineering, 3. Januar und 17. Januar 1936.)
Es fehlte jedoch bisher an einer ausführlichen deutschen Veröffentlichung.
Diese kann an keiner geeigneteren Stelle erscheinen als in den «Mitteilungen»
der Naturforschenden Gesellschaft Schaffhausen, welcher die beiden grossen
Planimeterkonstrukteure, Prof. J. Amsler-Laffon und Dr. Alfred Amsler,
immer so reges Interesse entgegengebracht haben.

Der anschliessende mathematische Anhang dagegen erscheint hier zum
ersten Maie.

Bekannt sind die sogenannten Momentenplanimeter oder
Integratoren zur Auswertung von Integralen der Form

y" dx

über eine geschlossene Kurve mit rechtwinkligen Koordinaten x, y.
Bei denselben wird von der Eigenschaft Gebrauch gemacht, dass

y" /». sin" « (/ Fahrarmlänge)
durch die trigonometrischen sin- und cos-Funktionen des Winkels a
und seines 1-, 2-, bis n-fachen ausdrückbar ist*). Das
gewünschte Potenz-Integral kann deshalb durch ein Linear-Mehrfach-
planimeter ermittelt werden, dessen verschiedene Integrierrollen

*) Mathematisch hängt diese Eigenschaft mit der Tatsache zusammen,
dass die beiden Reihenentwicklungen

sm" « __I__ j^sin n a — y sin (n—2) a -f-" ^ ^ sin (n-4) a+... etc.J

für n — ganzzahlig ungerade

Sln" ° Ty J^cosna—j- cos (n—2) a-f-n cos (n—4) a-{-...etc.J

-|- Const,
für n ganzzahlig gerade.

von selber nach einer endlichen Gliederzahl abbrechen.
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durch Zahnräder mit den Uebersetzungen 1:1,1:2,... usw. bis

1 : n, um das 1, 2 bis «-fache des Fahrarmwinkels a gegenüber
der Ausgangsrichtung gedreht werden.

Diese Eigenschaft liegt den bekannten, von Prof. Dr. Amsler-

Laffon erfundenen Integratoren zugrunde.
Der Exponent

n 1 entspricht dem Flächeninhalt der Figur;
n 2 entspricht dem statischen Moment der Figur in bezug auf

die x-Axe;
n — 3 entspricht dem Trägheitsmoment der Figur in bezug auf die

x-Axe;
n 4 entspricht dem Moment vierter Ordnung der Figur in bezug

auf die x-Axe.

Die entsprechende Aufgabe für gebrochene Potenzen hat in den

letzten Jahrzehnten ebenfalls eine technische Wichtigkeit erlangt,
/» m

vor allem die Auswertung von Integralen von der Form V/* dx,

welche alle auf den Exponenten ^ zurückgehen. Gemäss dem

Ausflussgesetz der gasförmigen, v V 2s • —' ^zw- tropfbaren Flüs-

r
sigkeiten, v |/2g h (v Geschwindigkeit eines Stromfadens im

Ausflussquerschnitt, g Erdbeschleunigung, Ap Druckgefälle in

Druckeinheiten, y — mittleres spezifisches Gewicht des Gases,

h Druckgefälle in m Flüssigkeitssäule), ist die sekundliche
Durchflussmenge je nach Konfiguration des ganzen Flüssigkeitsstrahies

proportional einer Funktion der Potenz "T des Druckgefälles. In

den meisten technisch wichtigen Fällen (Leitung, Mündung, offenes

Gerinne, offener Ueberfall von verschiedenen geometrischen

Gestalten) ist diese Funktion eine einfache Potenz von (Ap) T, a's0

von der Form (Ap) f, wo m ungerade 1, 3, 5 etc. Die Kubatur

des während einer endlichen Zeit durchflossenen Flüssigkeitsvolumens

an Hand eines Diagrammes des Gefälles in Funktion der Zeit

führt somit auf Integrale einer halbzahligen Potenz einer Ordinate

nach einer linearen, bzw. bogenförmigen Abszisse.
/* m

Zur mechanischen Auswertung von Integralen der Form \ y' ^

(m — 1, 3, 5 etc.) sind in letzter Zeit bei der Firmai Amsler

verschiedene Planimeter entwickelt worden, welche für die halbzah-



261

ligen Potenzen das Analogon der Amslerschen Integratoren für die

ganzzahligen Potenzen darstellen *).

1. Einfaches Quadratwurzelplanimeter.

Dieses findet Verwendung bei der Auswertung von Diagrammen
von Flüssigkeitsmessern, welche in Verbindung mit einem

Drosselungsorgan in einem geschlossenen Flüssigkeitsstrom (Drosselscheibe,

Düse, Venturirohr, Pitotrohr) arbeiten und deren sekundliche

Durchflussmenge einfach proportional ist zur Quadratwurzel
des Druckgefälles am Drosselungsorgan. Bei zeitlicher Registrierung

des Druckgefälles in Cartesischen Koordinaten, x Zeit,
y Druckgefälle, ist das während eines gegebenen Zeitintervalls

durchflossene Flüssigkeitsquantum das Integral dx, welches

durch Planimetrieren des ganzen Diagramms ermittelt werden soll.
Bei Darstellung von y als / (1 — cos a) durch

einen von der Ordinatenrichtung aus ausschlagenden

Fahrarm, ist die Zurückführung der Potenz

y ^ (Abb. 1) auf die trigonometrischen Funktionen
-j, des Winkels y2 a durch die Beziehung

Abb. 1.
1 — cos a 2 ^sin -0 (1)

"j/l — cos a j/2" sin 77

gegeben und somit die mechanische Bildung des Integrals

dy ^j// (1—cos «) dx j/2 / • ^sin-j dx, (2)

vermittels eines Linearplanimeters möglich, dessen Integrierrolle um

den Winkel ^ gegenüber der Ausgangsrichtung gedreht wird.

*) Es verdient erwähnt zu werden, dass diese Eigenschaft und die sich
daraus ergebende mechanische Konstruktion zum ersten Male von keinem
anderen als Prof. J. Amsler-Laffon in seiner berühmten Originalabhandlung
«Uber die mechanische Bestimmung des Flächeninhaltes, der statischen
Momente und der Trägheitsmomente ebener Figuren», Schaffhausen 1856,
Verlag A. Beck & Sohn, angegeben wurde. Da wegen damals noch nicht
bestehender Verwendung von Flüssigkeitsmessern in der Industrie Professor
Amsler offenbar keine Veranlassung hatte, diesen Gedanken auch auszubauen

wie bei seinen Integratoren, begnügte er sich mit einem kurzen
Hinweis.



262

In sinngemässer Uebertragung
der Konstruktion der Amslerschen

Integratoren kann dafür ein Li-

nearplanimeter verwendet werden,
welches zwei, sich aussen verzahnende

Zahnräder trägt. Das
kleinere vom Durchmesser d wird

vom Fahrarm um den Betrag a

von der y-Richtung aus
mitgenommen. Das grössere, mit dem

Durchmesser 2d, trägt die
Integrierrolle, und wird um den Winkel

gegen die y-Richtung

gedreht *) (Abb. 2).

Geeigneter für die materielle

Verwirklichung hat sich eine für

das Amslersche Planimeter
gewählte Variante dieser Anordnung
erwiesen (Abb. 3), bei welcher

die Zweiteilung des Winkels,
anstatt wie vorstehend, durch ein

Planetenradsystem erreicht wird.

Vom Fahrarm wird ein grosses,

die Integrierrolle tragendes
Planetenrad vom Durchmesser 2d

mit Innenverzahnung mitgenommen, welches sich mit einem am

Wagen feststehenden, mit dem Fahrarm konzentrischen, kleinen

Zahnrad vom Durchmesser d verzahnt. Infolge dieser Anordnung

wird die Integrierrolle durch Mitnahme durch den Fahrarm um den

Winkel a im direkten Sinne, durch Planetarbewegung relativ um

den Winkel ~ im rückläufigen Sinne, somit absolut um ~ gegen

die der Ordinate parallele Ausgangsstellung gedreht (Abb. 3), wo-

*) Eine Anwendung dieses Prinzips ist bereits dem Amslerschen Qua-

dratwurzelplanimeter vorausgegangen. Es ist dies das Adler-Ott-Quadrat;
wurzelplanimeter (beschrieben in der Zeitschrift für Instrumentkunde, Juli

1932, Seiten 324—326), welches für die Halbierung des Winkels a statt
Zahnrädern ein gleichseitiges Dreieck benutzt, eine Konstruktion, die übrigens nicht

neu ist, sondern schon von Prof. J. Amsler-Laffon angewendet wurde, siehe

die vorstehend zitierte Abhandlung vom Jahre 1856 von Prof. Amsler.
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Tafel XVIII

Abb. 4

Einfaches Quadratwurzelplanimeter

Abb 13

Dreizweitelpotenz-Planimeter
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durch die gewünschte Quadratwurzelintegration entsteht. Das

ausgeführte Planimeter ist auf der Abb. 4, Tafel XVIII, ersichtlich.
In Wirklichkeit ist die mechanische Integration des Differentials

sin ~dx nicht unmittelbar, sondern führt, wie im Falle des einfachen

Flächenplanimeters, auf die Summe von 2 Integralen, wovon eines
dem Problem fremd, bei der Rückkehr zur Ausgangslage zu Null
wird, zurück.

Wird nämlich (Abb. 5) während der

Zurücklegung eines kurzen Bogens ds der
Flächenkontur durch den Fahrstift die

Lagenänderung des Fahrarms von der

Lage (x, a) zur unendlich benachbarten
Lage (x+dx, a+da) in ihre Komponenten

zerlegt, so gilt offenbar

Abb. 5. dx du + / da • cos o- (3)

Nach Substitution des vorstehenden vollständigen Wertes für das

Differential dx in das Integral ^j/y • dx, erhält man den effektiven

Ausdruck

dx ^J/21 sin ^ (du + l d o

]/2 l ^sin 2
• du + ^2 11 ^ sin ^

cos o)

cos o-d a (4)

Wie leicht ersichtlich, nimmt bei Rückkehr des Fahrarmes zu
seiner Ausgangslage nach Figurumfahrung das zweite Integral
rechts den Wert 0 oder Konst. an, je nachdem der Fahrarm
keine oder eine volle 360°-Rotation zurückgelegt hat. Das erste

Integral ^sin y du hingegen ist eben durch die Abwicklung der

Integrierrolle in der Ebene ihrer Schneide dargestellt. Das Planimeter
gibt somit tatsächlich das gesuchte Quadratwurzelintegral der
Ordinate an.

2. Radial-Quadratwurzelplanimeter.
Dasselbe mechanische Integrationsprinzip lässt sich auch auf

ln radiales Quadratwurzel-Planimeter übertragen. Ein solches ist
erforderlich zur Mittelwertbestimmung der Quadratwurzel der ra-
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dialen Ordinaten eines polaren Diagrammes, soll also die Auswertung

des polaren Integrals

27T 27T

^ d(f ^J/r0 - d <p

über den ganzen Kreisumfang erlauben. Derartige Diagramme kommen

vor bei Flüssigkeitsmessern (Drosselscheiben, Venturimetern),
deren dem Geschwindigkeitsquadrat proportionales Druckgefälle
auf einem gleichmässig rotierenden runden Diagrammblatt
registriert wird, wobei die radialen Ordinaten des runden Diagrammes
von aussen nach innen oder innen nach aussen zunehmen können.

Die Abb. 6 stellt ein

derartiges Radial - Qua-

dratwurzelplanimeter für

von aussen nach innen

steigende Kreisdiagramme
dar. Mit einem im

Diagrammzentrum 0 drehbaren

gleichschenkligen
Kniehebel, dessen freies

äusseres Ende den Fahrstift

F trägt, wird die zu

r als

Abb. 6.

radizierende radiale Ordinate y r(

y — 2 l (1 — cos a)

dargestellt, so dass

2ir 2ir

^ |/r0 — r d <p ^j/4 / sin y • d <

(5)

(6)

ist, wobei a die Neigung der Kniehebelseiten gegen den Radiusvektor

bedeutet.

An dem im Diagrammzentrum eingehängten Kniehebelarm ist

eine runde Scheibe drehbar gelagert, welche die Integrierrolle mit

radial gerichteter Ebene trägt, derart, dass die Ebene der Integrierrolle

um eine mit besagtem Kniehebelarm fest verbundene, d. h. in

konstantem Abstand vom Diagrammzentrum verbleibende vertikale

Axe rotieren kann. Am äussern Kniehebelarm (Fahrarm) ist,

konzentrisch mit dem Kniegelenk, ein Zahnrad mit dem Durchmesser d
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angebracht. Ein grösseres Zahnrad mit dem Durchmesser Ad ist
an der Tragscheibe der Integrierrolle befestigt, bzw. bildet einen

Teil derselben. Durch diese beiden sich aussen miteinander
verzahnenden Zahnräder wird der Integrierrolle gegenüber dem

Kniehebelarm (Polarm) eine Winkeldrehung ~ erteilt, die sich daraus

ergibt, dass der äussere Spitzenwinkel des gleichschenkligen Dreiecks

doppelt so gross ist wie der Basiswinkel und somit nach
cc

Vierteilung zu - - an der Integrierrolle führt.

Die Ausgangslage der Integrierrolle, entsprechend der Strecklage

von Polarm und Fahrarm (r0 — r 0, a — 0), ist radial gegen
das Diagrammzentrum gerichtet. Die Folge davon ist, dass die

Abwicklung der Integrierrolle proportional dem Integral

2 TT 27T

a sin ~2
• d <p proport. — r-d<p (7)

0 0

wird, wobei in den Planimeterkonstanten der unveränderliche
Abstand a des Rollenmittelpunktes vom Diagrammzentrum enthalten
ist (Abb. 6).

Für von innen nach aussen zunehmende Kreisdiagramme wird
der Fahrarm, anstatt mit der Fahrspitze F' der Diagrammkurve entlang

geführt zu werden, von einer radialen, durch das Diagrammzentrum

hindurchgeführten geraden Stange angetrieben, deren über
das Zentrum hinausragendes freies Ende F die Diagrammlinie
umfährt. Dadurch wird erreicht, dass der Endpunkt F' des Fahrarmes
immer nach dem zentral gerichteten Radiusvektor von aussen nach
innen um eine Strecke verschoben wird, gleich der von innen nach
aussen steigenden radialen Ordinate, so dass die obige Konstruktion
auch für die letztere Diagrammart anwendbar wird (Abb. 7).

Schliesslich ist eine Verbindung der Ausführungen für nach
innen steigende und für nach aussen steigende Diagramme möglich,
bei welcher die Fahrspitze F, anstatt fest entweder am Ende des
Fahrarmes oder am freien Ende der radialen Führungsstange zu
sein, der Länge dieser Stange entlang beidseitig vom Diagrammzentrum

nach Belieben feststellbar ist (Flt F2, Fs, Fit Abb. 8), so
bass man mit dem gleichen Instrument ebenso von aussen nach
innen wie von innen nach aussen steigende Diagramme, von innert
gewissen Grenzen beliebigem Nullkreisdurchmesser auswerten kann.
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Abb. 7.

Die Grenzen des

Ausmasses der mit

einem Instrument
auswertbaren

Diagramme sind durch

die dem Instrument

zugrunde gelegte

Kniehebel-Armlänge
bestimmt.

Diese
Universalanordnung des Ra-

dial-Quadratwurzel-
planimeters ist für

die Ausführung
gewählt worden. Abb.

9 stellt die Auswertung

eines Diagram-
mes mit Nullkreis

aussen, Abb. 10 mit

Nullkreis innen dar

(Tafel XIX).
Ohne auf

Einzelheiten einzugehen,

sei darauf hingewiesein,

dass das

Quadratwurzel-Integral

des Radiusvektors

wieder als Summe

von zwei Teilintegralen erscheint. Dies ist die Folge davon, dass

der Uebergang des Fahrstiftes vom Punkt (cp, r) der Fläclfen-

umrandung zum unendlich benachbarten Punkt (<p + dq>, r + dr)

die Resultante von 2 Einzelbewegungen darstellt, von denen die

eine eine reine Drehung des ganzen Kniehebelsystems um den

Winkel dq> und die andere eine Verzerrung des Kniehebels vom

Betrag da ist.
Das eine der beiden Teilintegrale ist dem Problem fremd und

verschwindet bei Rückkehr des Fahrstiftes zum Ausgangspunkt.

Es gelten ähnliche Ableitungen wie die Gleichungen (3) und (4)

auf Seite 263.

Abb. 8.
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"V

\

Abb. 9

Radialquadratwurzelplanimeter
Diagramm mit Nulikreis außen

Abb 10

Radialquadratwurzelplanimeter
Diagramm mit Nullkreis innen





267

3. Dreizweitelpotenz-Pianimeter.

Eine ebenfalls technisch wichtige Anwendung dieses

Integrationsprinzips für gebrochene Potenzen ist die mechanische Auswertung

des Integrals ^y 2 dx.

Dieses Integral kommt in Betracht bei der Ermittlung der während

eines Zeitabschnittes über einem rechteckigen Messüberfall
oder in einem offenen Gerinne konstanter Breite durchfliessenden

Wassermenge durch Planimetrierung eines zeitlichen Diagrammes
der Ueberfallhöhe, bzw. Wassertiefe im Gerinne. Bei nicht zu sehr
veränderlichem Durchflusskoeffizient ist bekanntlich die sekundliche
Durchflusmenge proportional der Potenz 3/2 der Ueberfallhöhe,
bzw. Wassertiefe im Gerinne.

Bei Darstellung der Ordinate y wieder als / (1—cos«), lässt
sich das Integral

3 C 3 3

\ y 2 dx \l1 (1 — cos a) 2
• dx (8)

mit Hilfe der trigonometrischen Beziehungen:

1 — cos a — 2 ^sin

'

s.n3^ -sin3^+3sirLd
umformen in:

3 O 1

dx /T^-
3« v •

sin ~2~ dx + 3 * \sin dx^siny (9)

Demnach kann das Integral ^y 2 - dx durch ein Mehrfach-Linear-

planimeter mit zwei Integrierrollen ausgewertet werden, dessen eine
Rolle bei Winkelausschlag a von der y-Richtung aus des Fahr-

3 cc
armes um den Winkel ~ und die andere Rolle um den Winkel -

gegen die der Abszisse x parallele Anfangsrichtung gedreht wird.
Die Ermittlung des Integrals verlangt somit zwei Rollenablesungen,
die in obige Formel passend einzusetzen sind.

Eine brauchbare Verwirklichung eines solchen Linearplanimeters
besteht darin, dass zwei Integrierrollen von zwei Zahnrädern mit
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Durchmessern 2 d, bzw. d getragen sind, welche gleichzeitig von

einem, vom Fahrarm in dem Betrage a von der ^-Richtung aus

mitgenommenen Zahnrad vom Durchmesser d, um die Winkel ^ bzw.

3 a
gegen die x-Richtung gedreht werden. Dabei kann die vom Rad

mit Winkeldrehung y getragene Integrierrolle zugleich zur Auswer¬

tung des Quadratwurzelintegrals

benutzt werden, so

dass das Planimeter sich

gleichzeitig zur Ermittlung
der beiden Integrale

Abb. 11.

2 dx und ^J/y « dx

Abb. 12.

eignet (Abb. 11).
Für die konstruktive

Gestaltung besser ausgeglichen
in der Massenverteilung ist

eine etwas abweichende

Anordnung, bei welcher, ähnlich

wie beim einfachen Qua-

dratwurzel-Planimeter, die

Winkelbewegung ^ bzw.^

der Integrierrollen mit einem

Planetenräder-System
bewerkstelligt wird. Vom Fahrarm

wird ein grosses, die

eine Integrierrolle tragendes

Planetenrad vom Durchmesser

2d mitgenommen,
welches mit einem am Wagen

feststehenden, mit dem Fahrarm

konzentrischen kleinen

Zentralrad von Durchmesser

d sich aussen verzahnt,

sowie ein zweites grosses,
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die andere Integrierrolle tragendes Zahnrad, ebenfalls von Durchmesser

2d, mit dem ersten grossen Planetenrad sich aussen
verzahnend. Dabei wird durch Planetarbewegung das erste grosse
Planetenrad gegenüber dem es in dem Betrag a mitnehmendem

Fahrarm relativ um den Winkel ^ im direkten Sinne, das zweite

Cl

grosse Planetenrad relativ um denselben Winkel — im

rückläufigen Sinne gedreht, so dass das erste grosse Planetenrad

absolut um a + y das zweite grosse Planetenrad absolut um

a JL gegenüber der x-Richtung gedreht wird, wie es

erforderlich ist. Das Amslersche 3/2-Potenz-Planimeter ist nach
diesem Grundsatz ausgeführt (Abb. 12).

Vollständigkeitshalber sei auch bei diesem Planimeter wieder
auf die Entstehung des zweiten, an der Grenze verschwindenden
Parasitenintegrals hingewiesen. (Aehnliche Gleichungen wie (3)
und (4) ante.)

Die Abb. 13, Tafel XVIII, stellt das 3/2-Potenz-Planimeter im
Gebrauch dar.

Es wäre, wenigstens theoretisch, möglich, nach demselben
Grundsatz ein Planimeter für das 5/2-Potenzintegral

JL C — —
yY dx y 2 (1 — cosa) 2 dx

welches für den offenen Ueberfall mit Dreieckausschnitt in Betracht
kommt, zu entwickeln. Es treten ähnliche Gleichungen wie (8) und
(9) ante auf, nur werden die Formeln jetzt dreigliederig, und die
Konstruktion würde ein Planimeter mit 3 Integrierrollen erfordern,
ähnlich wie die grossen Amsler-Integratoren. Wir begnügen uns
mit diesem Hinweis.
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Anhang.
Formeln zum Justieren der Planimeter für gebrochene Potenzen.

Bei den üblichen Integratoren benutzt man zum Justieren während der

Fabrikation, bzw. zur Genauigkeitskontrolle eines vorliegenden Instrumentes
geometrisch einfache Figuren, meistens Rechteck, Quadrat und Kreis, deren
statisches, bzw. Trägheitsmoment in bezug auf eine Tangente oder Symme-
trieaxe formelmässig bekannt sind. Am häufigsten wird der Kreis benutzt,
wegen seiner genauen mechanischen Aufzeichnung mittels des Zirkels.

Für die hier beschriebenen Halbpotenzen-Planimeter besteht ein gleiches
Bedürfnis; ausser Rechteck und gleichseitigem rechtwinkligem Dreieck kommt
der Halbkreis in Betracht, und zwar der Halbkreis mit positiven y-Werten,
da negative y auf imaginäre Wurzelwerte führen. Da die auf den Halbkreis
bezüglichen Halbpotenzen-Integrale nicht aus Funktionentabellen zu
entnehmen sind, hat der Verfasser dieselben zum Gebrauch in der Firma Amsler
entwickeln müssen. Die Ableitung, die für die Allgemeinheit von Interesse
sein dürfte, sei hier mitgeteilt.

1. Einjaches Quadratwurzelplanimeter.

Für den positiven Halbkreis (Abb. 14) ist mit

Abb. 14.

y= yr>-x*;
das Quadratwurzel-Integral

+ r 1

/ ^y dx rv 2^r (10)

Dieses nicht durch eine bekannte Funktion ausdrückbare Integral muss

durch eine Reihe dargestellt werden. Durch binomische Entwicklung der

vierten Wurzel und gliedweise Integration entsteht:

J r'' 5 4 113
1-3 1 p
42 2! 5

1-3-7 1 1-3-7-11 1

48 3 7 4* 419
etc. OD

Da die Integralreihe langsam konvergiert, muss sie mit dem Restansatz

benutzt werden.

Eine anschauliche, für numerische Rechnungen geeignete angenäherte
Form des Restansatzes *) erhält man wie folgt:

*) Da die klassischen Restformen von Lagrange oder Cauchy einen
abzuschätzenden Faktor & (0 < # < 1) enthalten und daher für eine einiger-

massen genaue Restberechnung zu grob sind.
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Aus dem Bildungsgesetz der Glieder

G, _
1 (4-1) (2.4—1) ([n—1] 4-1) 1 12-+l

4" n! 2n + 1

ergibt sich als Differenz aufeinanderfolgender Glieder:

JG. G„., - Gn G.fe - l) -G l_8 " + 13

far jn — l \ G, / 4 (n-\- 1) (2n-)-3)
9

für n gross ~ — G. -j—4n

Wird die endliche Differenz AGn nunmehr als Differential dG„ und die
Einheit (n + 1)—n ebenso als dn aufgefasst, so gilt annähernd für n gross:

dG„ _r _9_
dn "4 n

dGn
_ —9 dn

G. ~ 4 n

Integriert:

Log. G„ s Log. C" • — -jj Log. n

r C"
G. gi —5"

Die Integrationskonstante folgt aus der Gültigkeit dieser Näherungsformel
für das Glied, bei welchem die Reihe aufhört.

rGy TIC'kT
womit

G^GM (12)
nT

oo

Wird die Reihe beim kien Gliede abgebrochen, so kann der Rest R ^ G„,
*+t

Summe von um dn 1 abstehenden Elementen, als Integral aufgefasst
werden *)

* 4

M-l fc+1

\oA
J n<

Rat\G,- dn» \Gk^f • dn « Gk • k !+ t
*+i

Gk./cT(_0 + 1— >Gk~^ • (13)
V 5 (it+l für/r gross 5

*) Werden nämlich die einzelnen Elemente der Summe als elementare
rlächenstreifen mit der konst. Breite dn 1 statt übereinander (Summe
Lesamtfläche) nebeneinander quasi wie Holzstäbchen gleicher Breite und
veränderlicher Höhe gelegt, so erscheint sofort die Summe als Gesamtinhalt
der dadurch bedeckten Fläche, also als Integral.
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Mit dieser sehr einfachen Näherungsform für den Restansatz ergibt die
numerische Rechnung, wenn die Reihe nur bis zum 8. Gliede (k 8)
geführt wird:

0*» Glied =1 =1
lies j, — I _L i. — 0,083'333

2tes » — ITJTT — O,O18'750

1.8.7 1 1

3tes * - ~ 0,007812

4»es » _ 0,004'178

5tes » — 0,002'563

6** » - 0,001'717

7tes » _ 0,001722
1 -3-7-11 -15-19-23-27 1 1

8 » 4i gl 17 - O,000'909

Rest » Ga y • 8 — 0,000'909 • ~ • 8 — 0,005'818

l

Summe ^1 — • d £ 1 — 0,126*302

0,873'698
Somit gesuchtes Wurzelintegral

+ l

] dx r T • 2 • 0,873-698 f ,747'396 • r T.

* *
*

Der Umstand, dass das gesuchte Wurzelintegral sich auf den Halbkreis
bezieht, legt nahe, dasselbe in Polarkoordinaten auszudrücken. Man wird
dabei auf trigonometrische Funktionen geführt, welche die Umwandlung in

ein besser konvergierendes elliptisches Integral gestatten.

Setzen wir also in polarer Schreibweise (Abb. 14)

x r cos d dx — r sin d ß

y r sin #,
so wird

+ r + r o

/ dx 2 - dx 2 ^-|/r sin (— r sin i? d d)

— r 0 TT

1
ff
2

2 • nW sin i? sin <9 d $ ('0
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Zur Umwandlung in ein elliptisches Integral machen wir die Substitution:

sin 0 cos2 <p •

— 2 cos (p sin <p d <p — 2 cos tp sin <p d cp

0 0 ; 9>=y

'

Y'<P= o

d0:
COS 0

2 cos <p sin <p d <p

•j/ 1 — cos4 <p

— 2 cos <p Afp

yi-Cos'*>-yi+co8*,, •

womit das Integral (5) in

(15)

] 2nA cos <p cos2 <p

übergeht.

2 cosa) dm I 4 f cos4<pd®—— — r'—y — (16)

sin21p

Zur Auswertung des nunmehr elliptischen Integrals rechts wird in

üblicher Weise ^1—l_sjn2^ 2 in die Binominalreihe entwickelt, und nach

gliedweiser Multiplikation mit cosK<pd<p ergibt sich:

TT

~2

J r2~F=
|/2

cos4<p d^+y ^^sin2?) cos4<p d tp + ^^sin4tpcos*cpd<p-\-

0 0

7T

2

+ 2^6 2»
^ si"6C0S''fp d ?+••• etcj (17)

Durch wiederholte Anwendung von p—2 m—2 bis p—2 0 der Re-
7T 7T

~2 T

kursionsformeIX sinp * cos4 * d* 1 \ sinp—2* cos4* d* erhält man für die
3 p+4)
0 0

TT

T
in obiger Formel auftretenden Einzelintegrale vom Typus ^sinm9> cos4<p d <pt

allgemein (m Gerade):
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$sisin" <p cos4 95 d <p
(m—1) (m—3) (m—5) 1 f

_4+4) (2—4) j
cos y d y;(m-[-4) (m—2-f-4) (m-

cos4<p dtp
3-1 JT

T2 T

Damit gelangen wir für das gesuchte Wurzelintegral zum Schlussausdruck;

-I- 4 T,/,» 1 1 flV 1
1

1 /l-3\2 1 1 /1-3-5V 1

tr j/2"l. 2-4 2' (2) 4-6 2s (2 4) 6-8+2» V2-4-6)8-10 3^

(19)

Nachstehend die numerische Ausrechnung. Die höheren Glieder klingen
rasch ab, da jedes Glied der Grenze -J- des vorangehenden Gliedes zustrebt,
und ein Restansatz ist überflüssig.

0t<* Glied 1 (1)2
1

2-4

ftes »

2tes »

3tes j,

4tes 3>

5tes »

ßtes »

7tes s,

8tes

HtN
($
/I-3-5\2 1

\2-4-6; 8-1

6

1 -3\2
6-8

1

28
/I •3-5....15\2
\2-4-6....16/

1

18-20

0,125'000'0

0,005'208'3

0,000'732'5

0,000'152'6

0,000'038'9

- 0,000'011'3

0,000'003'5

0,000'001,2

0,000'000'4

Summe

Somit gesuchtes Wurzelintegral:

+1

/ Wy dx r

0,131'148'7

- 1

j4=0.131'149-3y 1,748*054-r '

in guter Uebereinstimmung mit dem aus der algebraischen Reihe gewonnenen

Wert. Der Wert aus der elliptischen Reihe ist offensichtlich der
genauere *). Die unabhängige Bestimmung des Wurzelintegrals auf 2 verschiedenen

Wegen war aber für die erstmalige Berechnung eine willkommene
Kontrolle.

*) Die Abweichung rührt von der auch nur angenäherten Formel (13)

für den Restansatz der algebraischen Reihe her.



275

Abb. 15.

2. Radial-Quadratwurzelplanimeter.
Als praktisch für die Justierung des Planimeters hat

sich ein über einem Nullkreis vom Radius R als Basis
beschriebener Halbkreis von gleich grossem Radius (Mondsichel)

erwiesen (Abb. 15). Die Integrationsgrenzen sind

offenbar d + 60° + 4^-

Mit:

r 2R cos ö — R R (2 cos & — 1)

wird das Quadratwurzelintegral

R (l-Asin^-)

+ -* 3

/=Wr- dtf : 1 —4 sin" ^ d d j//?-2^/i- 4 sin2 <p d<p<p=~2 (20)

Dies ist ein reines elliptisches Integral 2. Gattung, aber vom Modul 2
(k? 4, k 2), so dass die Legendresche Normalentwicklung ihre Gültigkeit

(k^* 1) verliert. Es ist also eine andere Form des Integrals, welche eine
konvergierende Reihenentwicklung zulässt, zu benutzen. Dafür setzen wir:

2 sin y sin ip

Q I

JT
|

-TTtf- + 3-, V- + y
„ n« -T; v

-4 sin2 - cos »p

dtf cosip d ip cosip dip cosip dip

cos - j/l—sin2— j/l—— sin2V2 |/ —- 2

so dass das Wurzelintegral sich nunmehr

TT

+ "

(21)

<-v» cos2ip dip
1

1/R2\
sin2y

cos2ip dip
'

1 —sin2 ip4 r
(22)

schreiben lässt.

Die Binominalreihe ist jetzt unbedingt konvergierend. Durch Entwicklung
und gliedweise Integration entsteht:

J J/7?-2

l 2 i
^ cos2 ipdip-\-^-~ ^ sin2 ip cos2 ip d -f ^ sin4 ip cos2 ip dip

z

1-3-5 1 f
2-4-6 26j

sin6 ip cos2 ip d ip -}- etc. (23)
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Für das allgemeine, in vorstehender Reihe vorkommende Einzelintegral gilt
ähnlich wie (18): (für m gerade)

(m—1) (m—3) (m—5) 1 f
)S1" ^ C0S d ^ (m+2) (m—2+2) (m—-4-[-2) (2+2)

" C0S' V d VI

yos2V dV=y-y.
0

Setzen wir diese Werte in (13) ein, so ergibt sich, zusammengezogen:

/ [.0)4+1 (i)'i+i (if i+i (gff-H?
Numerische Ausrechnung (ohne Restansatz):

Otes Glied 0,500'000'00
ltes » 0,015'625'00
2tes » 0,001'464'84
3tes » 0,000'190'73
4tes » 0,000'029'21
5tes » 0,000'004'93
6tes » 0,000'000'89
7tes » 0,000'000' 17
8tes » 0,000'000'03

Summe 0,517'315'80

Endwert des Wurzelintegrals:

/ ]/ff • 2 (o,517'315'8~|) 1,625'196 • |/7?

3. 3/2-Potenz-Planimeter.

Die Ableitung hat eine weitgehende Aehnlichkeit mit den Entwicklungen
für das einfache Quadratwurzelplanimeter, mit dem einzigen Unterschied,
dass jetzt an Stelle des Bruches Vi, seiner Vielfachen und Potenzen, der

Bruch % und seine entsprechenden Umwandlungen auftreten. Wir können

uns daher ziemlich kurz fassen.

Darstellung durch eine algebraische Reihe:
Für den positiven Halbkreis (Abb. 14) gilt, ähnlich wie (10),

+ r
a R (* a

(24)/ ^d* r"-2^1-,«)*.d£
— r o

Nach Reihenentwicklung und gliedweiser Integration finden wir,
ähnlich (11):

r _ ,4 2 r £ 3
1 1 ^ 3

1 1 & 31'5 1 $ 31'5'9 1 ^etc lt (25)/-r!2[i-3TIT3 ~3 45"2T 5" ~4»~"3! T-3^T~"4T 9
CtC

J5
1
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Angenäherter Grenzwert des nten Gliedes (n gross) für ein höheres n als
die Ordnungszahl k des Gliedes, bei welchem die Reihe aufhört, entsprechend

(12):

G„s G,k -iL
n 4

(26)

und mithin Rest der beim kten Gliede abgebrochenen Reihe, annähernd,
ähnlich (13):

Numerische Berechnung:

0tes Glied
l'es »
2'es »
3tes »
4tes » =s

5tes »
6tea »
7tes >

Rat G.-^k

Rest G8 • — 8 — 0,000'349 •

(27)

— 0,250'000
— 0,018750
— 0,005'580
— 0,002'441
— 0,001'298
— 0,000*778
— 0,000*506
— 0,000'349

— 0,001*597

Summe

Somit Wurzelintegral:

1 — 0,281*299

0,718*701

+'
J y2 d* r2 • 2 • 0,718*701

- r _L

1,437*402-r2-

Darstellung durch eine trigonometrische Reihe:

In polarer Darstellung, x r cos#, v r sin# (Abb. 14) ist, ähnlich

(14):
TT

+ ' T

i sin2 # sin # d # (28)2 d* 2r2 ^ s

Mittels der Substitution (15): sin# cos2<p wird (28) in ein elliptisches
Integral transformiert, entsprechend (16) und (17).

I f' i2
cos6 <p d <p

\ 1
• »1 —=- sin2 q>

of *

(29)
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r^cos6^+T-i$siq> + -y • sin8 (p cos6 <p d <p -f^ • -^yirVip cosV d <p-\- etc.

0 0 0
(30)

Allgemeiner Ausdruck des Einzelintegrals, ähnlich wie (18), (für m gerade):

TT

2

^ sin ip cos6 cp d <p
(m—1) (m—3) (m—5)... 1

(m-j-6) (m—2+6)(m—4-)-6)... (2—(-6)
i cos6y) dp;

cos6 <p d <p
5-3-1 tt
6-4-2 2' (31)

In (30) eingesetzt, ergibt die Schlussformel:

/ 1 \2 1 1/1-3y 1

2i\2/ 4-6-8 + 2*V2-4J 6-8-
— 4 1 1

/=r2vr[1(1)22^6' 10

1 /I-3-5\2 1 1 n+ 28\2-4-6) 8-10-12 ' "" J 2

Numerische Berechnung (ohne Restansatz):

Otes QHed 0,020'833'33
1 tes » 0,000'651'04
2tes » 0,000'073'24
3tes » 0,000'012'72
4tes » 0,000'002'78
5t«6 » 0,000'000'70
6te6 » 0,000'000'20
7tes » 0,000'000'06
8«»» » 0,000*000'02

Summe 0,021 *574'09

Endwert des 3/2-Potenz-Integrals:

|o,021'574mi5 : 1,437*769-

(32)

/= r2 —=1
]/2

Dieser letzte trigonometrische Wert ist der genauere. Die zweifache
Bestimmung auf unabhängigen Wegen (25) und (32) war aber als
gegenseitige Kontrolle willkommen.
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