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11.
(IBER DIE VISKOSITAT BINARER
GASGEMISCHE

WILLY SCHUDEL, SCHAFFHAUSEN
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Einleitung.

Fiir die innere Reibung, Zihigkeit oder Viskositat von Gasen
bestehen recht auffallende Gesetzmissigkeiten: Gase werden, im
Gegensatz zu Fliissigkeiten, bei steigender Temperatur ziher, dick-
fliissiger; die Gasviskositit ist ferner vom Gasdruck weitgehend
unabhingig. Diese merkwiirdigen Erscheinungen sind von der
kinetischen Gastheorie vorausgesagt worden, wobei SUTHERLAND
die Temperaturabhingigkeit und MAXWELL die Druckunabhéngig-
keit quantitativ in Formeln erfassen konnten, was eine besonders
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schone Bestidtigung fiir die grundsitzliche Richtigkeit der dieser
Theorie zugrunde liegenden molekularen Vorstellungen bedeutet.

Die innere Reibung weist aber bei Mischungen noch weitere
Eigentiimlichkeiten auf. Bezeichnet « eine physikalische Eigenschaft
eines Gases, wie z. B. spezifisches Gewicht, Temperatur, Warme-
inhalt oder Heizwert, und mischt man die zwei Volumina », und v,
zweier Gase bei gleichem Druck zum Mischvolumen v, so wird
die physikalische Eigenschaft o, des Mischvolumens v, aus der fol-
genden einfachen Gleichung bestimmt:

AQm-vm =@ vy +aveg . . . . . . . . . . (1)

wobeli vm = v1 + vg ist.

Die Mischeigenschaft a, verlduft also in Abhédngigkeit von v,
oder von v, linear. Diese sonst allgemein giiltige Mischungsglei-
chung fiir physikalische Eigenschaften versagt aber vollkommen,
wenn es sich bei ¢ um die Gasviskositidt handelt. Nur in ganz spe-
ziellen Fallen besteht eine geradlinige Abhingigkeit. Im allgemei-
nen werden Kurven erhalten, die unterhalb oder oberhalb der Ge-
raden verlaufen und die auch ein ausgesprochenes Maximum auf-
weisen konnen. Wie ist dies zu begriinden, wie lautet die Gleichung
der Mischungskurve und geniigen die iiblichen Annahmen der
kinetischen Theorie, um diese verwickelten Erscheinungen zu erkla-
ren? Wohl sind, seitdem GRAHAM im Jahre 1846 zum erstenmal ein
Maximum in einer Mischungskurve experimentell erkannte, diese
Fragen immer wieder Gegenstand besonderer physikalischer For-
schung geworden, aber bis heute ist es nicht gelungen, dieselben
restlos zu kldren.

SUTHERLAND 1) hat eine Gleichungsform aufgestellt, die spi-
ter, unabhingig von ihm, auch von THIESEN 2) abgeleitet wurde.
Sie hat die Form:

o = ——— e - —— 2 -
l+—=4 1458

WO 7, 71, %, die Viskositdtskoeffizienten der Mischung und der
beiden Einzelgase, x der Raumteil des ersten Gases und .A und
B zwei Anpassungskonstanten bedeuten. Mit A und B kann die
Gleichung den experimentellen Beobachtungen sehr gut angegli-
1) W. Sutherland, Phil. Mag. 40, 421. (1895).

) M. Thiesen, Verh. d. Deutsch. Phys. Ges. 4, 348 (1902).
8, 236 (1906).
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chen werden. TRAUTZ3) hat eine ganz andere Form des Mi-
schungsgesetzes aufgestellt, kommt aber auch nicht aus ohne An-
passungskonstanten. Die heutige Viskositdtsforschung von Gas-
gemischen lauft also eigentlich darauf hinaus, die bisher aus den
Beobachtungen zu bestimmenden Konstanten A und B aus den
Daten der Einzelgase voraus bestimmen zu konnen. In der
Literatur finden sich dariiber geistreiche und verdienstvolle Arbei-
ten, aber: entweder entspricht der erzielte Effekt nicht dem grossen
Rechnungsaufwand, oder es ist zwischen Theorie und Wirklichkeit
noch eine zu grosse Divergenz vorhanden. Diese Konstanten ent-
halten eben immer noch das, «was man nicht kennt». Interessant
ist der Versuch von JUNG4%), GRUSS und SCHMICK?), die DEBYE-
schen Dipol- und Multipol-Momente der Molekiile zu verwenden,
um die Konstanten zu deuten. Neben guten quantitativen Ueber-
einstimmungen zwischen Theorie und Versuch treten jedoch auch
unzuldssig hohe Abweichungen auf, so dass diese schénen Arbei-
ten noch keine endgiiltige Losung gebracht haben.

Die in der kinetischen Theorie iiblichen primitiven Annahmen
iiber die Form und die Art der Molekiilbewegungen in einem Gas
(elastische Kugeln, gerade Flugbahn, ausser dem Stoss keine
Wechselwirkung zwischen den Molekiilen) geniigen wohl, um die
Zustandsgleichung in einer ersten Anniherung, d.h. in der Form

P-v=R-T

P = Druck in kg/ms3,
v = Spezifisches Volumen in kg/m3,

R = Gaskonstante = 8;:18,

m = Molekulargewicht,

T = Absolute Temperatur
ableiten zu konnen. Schon DANIEL BERNOULLI®) hat im Jahre
1738 in seiner Hydrodynamica aus den erwdhnten Annahmen das
BOYLEsche Gesetz, d. h. die Zustandsgleichung fiir konstante Tem-
peratur abgeleitet. Bei den Feinheiten der Zihigkeit von Gas-
mischungen geniigen jedoch diese Voraussetzungen nicht mehr.
Hier spielen offenbar die molekularen Eigenschaften der Gase eine

3) M. Trautz, Sitzungsberichte der Heidelberger Akademie der Wissenschaf-
ten, Jahrgang 1929, 12. Abhandlung.

4) G. Jung und H. Schmick, Zeitschrift f. Physikalische Chemie, 7. Band,
Heft 2, Seite 130 (1930).

8) H. Griiss und H. Schmick, Wissenschaftl. Veroffentlichungen aus dem
Siemens-Konzern. 7. Band, 1. Heft, S. 202 (1928).

¢) Daniel Bernoulli, Hydrodynamica, Argentorati, 1738. Sectio decima.
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einflussreiche Rolle, so dass sie zu beobachtbaren Wirkungen fiih-
ren. Es ist verlockend, mit Annahmen iiber Molekiilform und mit
Spekulationen iiber molekulare Kraftfelder zu versuchen, die Eigen-
schaften der innern Reibung in Gasgemischen zu erkldren, und dies
ist ja auch gemacht worden; aber die Durchfiihrung solcher Rech-
nungen stosst heute doch noch auf grosse Schwierigkeiten.

Nicht nur von der theoretischen, auch von der praktischen Seite
kommt immer mehr die Forderung nach der Aufstellung einer Mi-
schungsgleichung mit dem Ziel, aus der blossen Kenntnis der Rei-
bungskoeffizienten der einzelnen Komponenten die Viskositit der
Mischung vorausberechnen zu koénnen. Sind doch die technischen
Gase meist komplizierte Mischungen einfacher Gase, die in Fern-
leitungen der niitzlichen Verwendung zugefiihrt werden. Bei diesen
Transportproblemen spielt aber die Viskositit eine wesentliche
Rolle. JETRRPL I T

Im folgenden soll' die SUTHERLAND-THIESENsche Gleichungs-
form der Reibung von binidren Gasmischungen, d. h. von Mischun-
gen, welche aus zwei einfachen Gasen bestehen, abgeleitet und
diskutiert werden. Es zeigte sich dabei, dass die Losung mehrdeu-
tig ist, und dass es moglich ist, den ganzen Verlauf der Reibungs-
kurve aus den Viskositdtskoeffizienten der Einzelgase vorauszu-
sagen, wenn nur ein Punkt der Mischungskurve bekannt ist.

Die gaskinetische Erkldarung der Viskositdt.

Die Viskositit ist eine Material-Konstante. Sie ist deshalb nicht
von der speziellen Art der Stromung abhingig, so dass ihre Be-
stimmung auch an einem besonderen Fall, z. B. einer Parallel-
stromung, untersucht werden kann, der fiir die mathematische Be-
handlung am geeignetsten erscheint.

Wir betrachten deshalb eine stationdre Parallelstromung eines
zihen Gases, wobei jede zur xy-Ebene parallele Gasschicht eine
sichtbare, makroskopische Geschwindigkeit u besitzt, welche paral-
lel zur x-Achse und in jeder Schicht verschieden, aber konstant sei.
Das heisst also: u ist eine Funktion von 2. Entwickeln wir diese
Funktion nach MAC LAURIN in eine Reihe und brechen mit dem
zweiten Gliede ab, so gilt in der Ndhe der xy-Ebene

p=uta () 3)

wobei u, die Geschwindigkeit. der Schicht z = o bedeutet.
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Wegen der innern Reibung iibt die schneller. fliessende Schicht
auf die angrenzende langsamere eine beschleunigende Wirkung aus
und umgekehrt wirkt die langsamere auf die schnellere Schicht ver-
zogernd. Mit andern Worten kénnen wir dies auch so ausdriicken,
dass wir sagen, dass von der einen Schicht auf die andere eine Kraft
iibertragen wird. Fiir diese Kraftwirkung hat schon NEWTON den
grundlegenden Ansatz gemacht. Danach ist in der Nadhe der xy-
Ebene, wo also z == 0 ist,

dK::r;-dF-(g—g)zzo .......... (4)
das heisst, er nahm an, dass die von der einen auf die andere
Schicht iibertragene Kraft dem Flichenelement dF, an der sich die
beiden Schichten beriihren, und dem Geschwindigkeitsunterschied
du der beiden Schichten direkt proportional, sowie der senkrechten
Distanz dz der beiden Stromungsebenen umgekehrt proportional
sei. Den konstanten Proportionalitdtsfaktor » nennt man den Koef-
fizienten der innern Reibung oder auch die Zihigkeit oder die Vis-
kositit. Im absoluten MaBsystem hat die Einheit von # die Dimen-
sion g cm-! s-1 und wird als 1 Poise bezeichnet.

Eine Kraft ist aber, ebenfalls nach NEWTON, dem Produkt von
Masse mal Beschleunigung gleichzusetzen, oder sie ist, was gleich-
bedeutend ist, gleich Masse mal Geschwindigkeit pro Zeiteinheit,
also gleich dem Impuls pro Zeiteinheit.

Nach der kinetischen Gastheorie ‘entsteht nun die Kraftwirkung
dK dadurch, dass die Gasmolekiile vermdge ihrer Warmebewegung
insgesamt auf das Flidchenstiick dF einen resultierenden Impuls
pro Zeiteinheit iibertragen, welcher der Kraft dK entspricht, und
diese soll im folgenden berechnet werden.

Wir betrachten vorerst ein stromungsloses, ruhendes Gas, wel-
ches nicht aus verschiedenen Gasen gemischt, sondern aus einem
einzigen einheitlichen Gas bestehen soll, dessen Molekiile alle gleich
beschaffen seien.

In diesem Gas denken wir uns in O ein Fldchenelement dF mit
der Normalen 2z und errichten dariiber ein schiefes Prisma, dessen
Kante die Linge c-df und die Richtung 9, ¢ hat (Fig. 1). ¢ sei die
mittlere Geschwindigkeit der Gasmolekiile.

Alle Molekiile, welche in einem bestimmten Zeitmoment in die-
sem Prisma vorhanden sind und deren mittlere Geschwindigkeit ¢
eine Richtung ¥, ¢ besitzen, werden nach der Zeit df das Fldchen-



350

element dF erreicht haben, wenn die Zeit df so klein gewihlt wird,
dass diese Molekiile keine Zusammenstosse mit andern Molekiilen

erleiden. Pro cm? sind nun41 -sin ¢ dé-dep Molekiile vorhanden,
JT

welche die angegebene Richtung besitzen 7).

Fig. 1.

Also sind in dem Prisma vom Volumen dF-c-dt-cos ¢
dF-c-dtcosd-v.sind-dd-dp-»
47
Molekiile der besprochenen Art vorhanden. Dividiert man noch
durch dif, so erhidlt man diejenige Anzahl dNy, von Molekiilen,
welche in einer Sekunde von der Richtung &, ¢ in dF ankommen, zu

dN&y):dF-c-v-st;ﬂcosﬂ-dﬂ-qu ...... (5)

Wo haben nun, vor dem Eintreffen in dF, die Molekiile ihren letz-
ten molekularen Zusammenstoss erlitten? Offenbar dort, wo die

7) Ist » die Anzahl Molekiile pro cm?® Gas, so werden die » Molekiile » ver-
schiedene Geschwindigkeitsrichtungen besitzen, die alle gleich berechtigt
sind und sich gleichmdssig iiber den Raum verteilen. Auf den Raumwinkel

v

4

richtungen. Nimmt man als Spielraum fiir die Richtung ¥, ¢ einen Kegel,

dessen Oeffnungswinkel dw = sin #d¥#-de ist, so fallen in diesen Elemen-

1 (Flacheneinheit der Einheitskugel) fallen dann Geschwindigkeits-

tarkegel fg——t ‘sin #d¥-dep Geschwindigkeitsrichtungen. Das ist aber zu-

gleich die Anzahl der Molekiile, deren Geschwindigkeiten die Richtung
¥, ¢ besitzen.
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Richtung 3, ¢ jene Kugelflache trifft, deren Radius gleich der mitt-
leren freien Wegldnge A ist und deren Zentrum in O liegt (Fig. 2).
Alle jene Molekiile, welche auf dieser Kugel zum Zusammenstoss
mit andern Molekiilen kommen und deren Geschwindigkeitsrich-
tungen nach dem Stoss in die Richtung des zum Zusammenstoss-
Punkt P gehorenden Kugelradius fallen und nach dem Kugelmittel-
punkt zeigen, werden die Kugel mit der mittleren Geschwindigkeit ¢

Fig. 2.

radial ohne weitere Zusammenstosse frei durchlaufen, um dann in
dF wieder mit andern Molekiilen zusammenzuprallen. Denn die
Kugelradien sollen ja der mittleren freien Wegldnge gleich sein, und
die Definition von A besagt eben, dass auf der Strecke 4 im Mittel
kein Zusammenstoss vorkommen soll.

Jedes dieser in dF eintreffenden Molekiile kommt mit der mitt-
leren Geschwindigkeit ¢ im Fliachenelement an. Jedes bringt also
den Impuls m-c nach dF (m = Masse eines Molekiils). Dies gilt
fiir ein im gesamten ruhendes Gas, welches keine makroskopische,
sichtbare Stromungsgeschwindigkeit besitzt.

Lassen wir jetzt diese bisherige Voraussetzung fallen. Das Gas
besitze also eine sichtbare Stromung, und wir denken uns unsere
Kugel Fig. 2 derart in die am Anfang erwéhnte Parallelstromung
hineingelegt, dass dF ein Element der xy-Ebene sei. Wir betrach-
ten wieder alle diejenigen Molekiile, die auf dieser Kugel zusam-
menstossen und deren Geschwindigkeitsrichtungen nach dem Stoss
in die Richtung des zum Zusammenstoss-Punkt gehdrenden Kugel-
radius fallen. Diese Radialgeschwindigkeit nach dem Stoss ist aber
jetzt die Resultierende R von 2 Geschwindigkeitskomponenten, nim-
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lich von der makroskopischen Geschwindigkeit # und von der mitt-
leren Geschwindigkeit ¢ der Warmebewegung des Molekiils. In
Fig. 3, die diese Verhiltnisse andeutet, ist der Geschwindigkeits-
maBstab willkiirlich so gewdihlt, dass die Resultierende R gleich
dem Kugelradius der mittleren freien Wegldnge wird. Es wird nun
in allen praktischen Féllen die Geschwindigkeit u der makroskopi-
schen Stromung (hochstens einige Meter pro Sekunde) gegeniiber
der Wirmebewegung ¢ (Grossenordnung einige hundert Meter pro

|

a

I

|

I

I
S | —
Fig. 3.

|
|
I
|
|
|
I
|
h,
[

Sekunde) vernachlédssigt werden kénnen. Solange dies der Fall ist,
dass also u gegeniiber ¢ verschwindet, ist es zuldssig, die Gleichung
(5) auch fiir bewegte Gase, also auch fiir die von uns betrachtete
Parallelstromung, anzuwenden.

Jedes nach dF kommende Molekiil iibertrdgt in das Fldchen-
element eine radiale Impulskomponente c¢-m, wie beim ruhenden
Gas, und eine der Stromung parallele Impulskomponente u-m. Glei-
chung (5) gibt die aus einer Richtung #, ¢ in der Sekunde nach dF
fliegenden Molekiile an. Aus dieser Richtung wird also pro Sekunde

der Impuls
dNgg - (c m + u m)

iibertragen, wobei das Pluszeichen eine geometrische Addition
der Komponenten bedeutet. Den Gesamtwert erhalten wir durch
eine Integration iiber alle moglichen Richtungen. Dabei verschwin-
det die Summe der ¢m Komponenten, weil sich je 2 Komponenten
gegenseitig. aufheben, wegen der allseitigen Symmetrie der Radial-
geschwindigkeiten c.

Auf das Fldchenelement dF wird somit als gesamte Impuls-
grosse pro Sekunde, also als Kraft dK, der Wert des folgenden,
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iiber die Kugeloberfliche erstreckten Doppelintegrals iibertragen
'dK=SS dNgpg - um

oder, mit Beriicksichtigung der Formeln (3) und (5),

w27 :
_ dF-.v.c.sindcosd-de.dd du
dK—S S in "—[H()—*—Z('a})z:o]m
o o

Substituiert man noch z = 1 cos &, so wird

sind cos ¥ d ¥ [uo—{—ﬂcosﬁ ((-iE) ]
dz)z—o0

dK

w
_dF.-v.c-m-2m
-H 47
(4]

T
Da S sin 9 cos ¢-d¢d = 0 ist, so ist
(¢}

Vi
dK=""C'”‘""'dF.(d") -Ssinﬂcosb?-dﬂ
Z=0
(4]

2 dz

T
2
Weil ferner Ssin ¥ cos? ¥ dd = 3 ist, wird
0

vem-c-A4 du
aie = L2 gp (d—z)z=o ......... 6)
Ein Vergleich mit Gleichung (4) ergibt also
v.m-c-A
=3

Unsere ganze bisherige Rechnung war nur eine ziemlich grobe
Annidherungsrechnung mit teilweisen Voraussetzungen und An-
nahmen, die nicht genau der Wirklichkeit entsprechen. Verschie-
dene Autoren erhalten deshalb, je nach den verschiedenen speziel-
len Annahmen im Ausdruck von %, andere Konstantenwerte, die aber
alle nicht weit von 1/3 abweichen. Wir schreiben deshalb allge-
meiner statt 1/3 die Konstante k£ und erhalten

ge=Kiysmeesd V 4 ¢ s & 8 % 8 3 % v 8 (7

Stosszahl und freie Wegldnge im Gasgemisch.

Im Volumen v, eines Gases 1 seien N, Molekiile enthalten und
im Volumen v, eines Gases 2 seien N, Molekiile vorhanden. Beide
Gase sollen unter demselben Druck stehen und dieselbe Tempera-
tur haben. Dann gilt fiir die Anzahl Molekiile pro cm3 im ersten,
bzw. zweiten Gas
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Mischen wir die beiden Gase zum Mischvolumen v = v, 4 v,, so
gilt fiir die Zahl der Molekiile pro cm?

N;t Nl

vy = o S
v 4+ v s i m oz o (9)

_ N _ M

2—01—]—02“ v

Nach dem Ergebnis der klassischen Theorie der Gaskinetik (siehe
z. B. BOLTZMANN, Vorlesungen iiber Gastheorie, Bd. I, Seite 69)
ist die gesamte Zahl der Zusammenstosse, die zwischen den Mole-
kiilen des Gases 1 mit den Molekiilen des Gases 2 in der Sekunde
und pro cm3-Gemisch stattfinden, gleich

Zig=2vv (°‘ 42' 62)2- ]/hf (m% —1—-—,;—2—) ...... (10)

Dabei sind », und », durch die Gleichungen (9) definiert. Ferner
bedeuten

o, = Durchmesser eines Molekiils (Durchmesser der Wirkungs-
sphire) des Gases 1;

o, = Durchmesser eines Molekiils (Durchmesser der Wirkungs-
sphére) des Gases 2;

m, = Masse eines Molekiils des Gases 1;

m, = Masse eines Molekiils des Gases 2;

B o= 1 L
2kT 2RT
K =R
L
L = Anzahl Molekiile pro Mol, bei 0° C, 760 Torr;
R = Gaskonstante;
T = absolute Temperatur.

Sind in 1 cm3 Gemisch », Molekiile des Gases 1 und », Molekiile des

Gases 2 vorhanden, so ist Z,, die Gesamtstosszahl zwischen den

Molekiilen des Gases 1 und des Gases 2 in der Sekunde. E i n Mole-

kiihl des Gases 1 stosst also z,, = Zv—m mal mit den Molekiilen
1

des Gases 2 zusammen,

Z1z=2v2(91—;_"ﬂ)2°]/77(7;—1+—n11—2) T § 8 )
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und analog

20 = 2 (“‘ ‘;: °2)2- ]/g (—n];; L ngz) ...... (12)

Geben wir in (12) dem Molekiil 2, welches mit den Molekiilen
1 zusammenstdsst, die Dimension eines Molekiils 1 und setzen
0 = 0,
und m, = m,
so erhdlt man die Einzelstosszahl dieses einen Molekiils des Ga-
ses 1 mit den andern gleichartigen Molekiilen des Gases 1, also

: 2
211z2v1-012--|/h:1 ......... (13)
und analog erhilt man
2
299 = 2y - 032-.] e :2 ......... (19

das heisst also: Sind in der Volumeneinheit der biniren Gas-
mischung », Molekiile dieses Gases vorhanden, so wird nach (13)
ein einzelnes Molekiil dieses Gases in der Sekunde z,,mal mit den
gleichartigen Molekiilen dieses Gases zusammenstossen. Dieses
Einzelmolekiil wird aber in derselben Sekunde auch noch mit den an-
dern Molekiilen des Gases 2 zusammentreffen, und die Anzahl
dieser Zusammenstdsse z,, wird nach (11) bestimmt.

Die gesamte Stosszahl eines einzelnen Molekiils 1 ist demnach

21 =21 + Y (15)
und analog

Zg == Zgo = T (16)

Die grundlegende Formel (10) ist nun unter der Annahme be-
rechnet und erhalten worden, dass die Molekiile, ausser beim Zu-
sammenstoss, keine Krifte aufeinander ausiiben. Sind aber Anzie-
hungskrifte zwischen den Molekiilen wirksam, so werden die Stoss-
zahlen offenbar grosser als in den Gleichungen (11) bis (14) be-
rechnet wurde. Wir multiplizieren deshalb jedes Glied der rechten
Seite der Gleichungen (15) und (16) sinngemdss mit den Faktoren
O,y O 6., O, welche alle grosser als 1 sind. Ueber die Art
und Groésse dieser Faktoren wollen wir hier keine nidheren Voraus-
setzungen und Untersuchungen machen. Sie werden, je nach der
zugrunde liegenden Theorie, verschieden berechnet. Die Einzelstoss-
zahlen z, und z, erhalten so bei Beriicksichtigung der molekularen
Anziehungskrifte die Form:
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2H1=2z1n1-601+ 212612 . . . . .. A § V)

29 == 299+ O9g + 291 Ogy . . PEEEE R (18)

Verfolgen wir nun ein einzelnes Molekiil auf seinem Wege, so

ist, da jeder Zusammenstoss eine freie Weglinge des Molekiils be-

endet, der gesamte von einem Molekiil des Gases 1 in einer Se-
kunde zuriickgelegte Weg gleich

2121 = A1+ (211 611 + 212 Oy3)

Diese Wegstrecke pro Sekunde ist aber offenbar nichts anderes
als die mittlere Geschwindigkeit ¢, dieses Molekiils;

211 O11 + 212 O13

— C2
~ 228 Oz + 231 Oy

somit wird Ay

und dhnlich Ag

Setzen wir in diesen Formeln fiir die mittlere Geschwindigkeit die
von Maxwell berechneten Betrdge

2
YT Vmhm
e T (20)
L2
* V.TL' h. My

ein und beriicksichtigen die Formeln (13) und (11), so wird, wenn
wir noch den Faktor k, einfiihren, der noch weitere denkbare Ein-

fliisse beriicksichtigt
ky

2 i =
Jr [’\/2_ V- 612 . 911 +'1f'z (61;-02) . VI —l— % @12J
! . I{l
Jt ['\/E—- Iz x 022 . 922 —|— (41 (61 -562)2' Vl -I— % . @31]

Darin sind », und », durch die Gleichung (9) bestimmt.

Gehen wir von der Mischung iiber zum Einzelgas, so ist »,,
bzw. »,, in den obigen Gleichungen gleich 0 zu setzen, und wir er-
halten fiir das Einzelgas '

Ay = .. @)

und dhnlich 23 =

(22)

In diesen letzten Formeln ist », und », durch Gleichung (8) definiert.
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Die Viskositdt eines bindren Gasgemisches.

Wie wir soeben in Gleichung (21) und (22) dargelegt haben,
hat in einem bindren Gasgemisch ein Molekiil des Gases 1 eine
andere freie Weglinge als ein Molekiil des Gases 2. Befindet sich
die Gasmischung in einem stationiren Stromungszustand, so kénnen
wir wieder dieselben Ueberlegungen daran anwenden wie beim
reinen Einzelgas. Wir haben uns jetzt aber um das Fldchenele-
ment dF als Mittelpunkt nicht nur eine Kugel wie in Fig. 2, son-
dern zwei Kugeln mit den Radien 2, und 4, zu denken. Beide
Molekiilarten 1 und 2 bringen von verschiedenen Distanzen 1, und 4,
Impulse nach dF. Wir rechnen also so, als ob die beiden verschie-
denen Molekiilarten mit den mittleren freien Wegldngen 1, und 2,
im Mischgas ungestort nebeneinander. existierten.

Setzen wir wieder an Stelle von 1/3 die Konstante &, so erhilt
man in Anlehnung an Gleichung' (6) im Mischgas als Kraftwirkung
dK,, auf das Flichenelement dF, entsprechend den beiden verschie-
denen Weglingen, den Ausdruck

du ' du |
dKm=kvymycy Ay - dF (dz)z=. —{-kv: ms g Ag dF (dZ)z=o

Da ferner nach (4) dK, = 5, dF- (d_”

dz
kann 7, wie folgt dargestellt werden:

) gesetzt werden muss,
=0

Mm=kvimciza+kvemgcsde . . . . . . .. (25)
Im reinen Einzelgas ist die Viskositdt laut Gleichung (7)
mo=k.vi.mcre A
und ne=~kK.va.mg.cy- Ag2
In diesen Gleichungen sind », und », nach Gleichung (8) und 4,
und 1,, nach Gleichung (23) und (24) einzusetzen, so dass
- (k my c1) ky
11 VQ_O]Z . Oy
und R L L 27
f 7?2 T V2 OoZ . Ggg ‘ ( )
wird. Setzt man die aus diesen Gleichungen berechneten einge-
klammerten Werte, sowie die Werte fiir 4, und 4, aus (21) und
(22) in die Gleichung (25) em so erhilt man fiir die Mlschung,

‘wenn d:e Abkurzung

............
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beniitzt wird,
n V2642 Oy v Ky

fim = P
kl T ‘\/2 vy 612 64 + v; 62 Vl + k. (O30

+ 1 - 7t V2 032 Bgs vy Ky
k’l T VZ_ Vg 63 @gg -I— V1 Grl/l + ‘—-- Oq,

oder

. 1+v1[V2()V+—"g%]
RN T

Das Mischvolumen sei gleich 1 cm3 gesetzt. Das Partialvolumen
des ersten Gases sei x. Dann ist das Partialvolumen des zwei-
ten Gases (1-x). Die Partialvolumina sind der Anzahl der Mole-
kiile des betreffenden Gases pro cm3 Mischung proportional. Ferner
sind die Molekiilmassen den Molekulargewichten M proportional.
Wir kénnen also Gleichung (29) auch schreiben

L ... (29)

7 o
I = ———— + e IR (30)

L4+ A 1-1-1%

in welcher die Konstanten A und B die Abkiirzungen sind fiir

(%Y
01 V + Oy S

1 (o O3
e T 2
’\/2 ( 2) V +M1 Ogo =)
Dividiert man die erste dieser Gleichungen durch die zweite, so
wird
A oz \? My O3 Oy
s==) V55— ... . (33
B (01) ]/Mz 651 On o )

Die gaskinetischen Molekiildurchmesser ¢, und o, kOnnen aus
den Gleichungen (26) und (27) bestimmt werden. Fiir die Ge-
schwindigkeiten ¢, und ¢, sind die Gleichungen (20) zu verwenden.
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op—  Kem-2  2kk Vm 34)
:n:\/Z—@n vV hmy x\/2axh n Oy
0y? — k.kl.mz-Z _ 2kk1 .Vm_g . . (35)
:rr’\/:?_@gg-ng-‘\/nhmg mV2xh ng- O
Durch Division erhilt man das Verhiltnis
(E&)zx my m On _m 4 /My On
oy my ne G 1 My O
welches in (33) einzusetzen ist. Also
A_mq /My Ou /M Op On_m On_ M (36)
B /M 6y |/ M, 0y 0 g 0y %~

Das Verhiltnis von A zu B ist also gleich dem Verhiltnis von #,
zu’ 9, multipliziert mit einer vorldufig noch unbekannten Konstan-
tengrosse .

Die Frage, wie die Grossen @ und damit auch ¢ aus den mole-
kularen Daten erkldart werden kann, soll offen gelassen werden.
Dagegen ist mir bei der Auswertung von in der Literatur zu finden-
den experimentellen Arbeiten iiber bindre Mischreibung beziiglich
@ eine bemerkenswerte Gesetzméssigkeit aufgefallen. Es kann ein-
fach

1
P=G e (37)
gesetzt werden, wenn unter s, und s, das spezifische Gewicht der

beiden Gase, bezogen auf Luft, verstanden wird. Damit wird

A m s
= = L .2 | (Konstanten-Formel) . . . (38
B N S ( ) ( )

Indem man mit Hilfe dieser Gleichung B durch A ausdriickt und in
(30) einsetzt, erhilt man eine Gleichung fiir die binire Mischgas-
Reibung, in welcher nur noch eine unbekannte Konstante, nim-
lich A, vorkommt:

= ———+ B e (39)
1+—"A 1+ 2.3
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Diskussion der aufgestellten Mischungsgleichung.

a) Bestimmung der Konstanten.

Mit der Abkiirzung

1—x
=
* (40)
L " o [
1—x N Sz
schreibt sich die Gleichung (39)
_ il N2
"m=Trad T 11b4
daraus wird
Mm(l14+aA)(Q4+0A)=n(14+0A) 4 (14 ad)
ab"?mAz"l" [ﬂm(a‘i‘ b)—'b?h—‘-‘a'ﬂz] -A +(77m—7]1'— ’72):0
Wir setzen
J [ A ab nm
ﬁ:nm(a-}-b)—-—-bnl—-am ........ (41)
‘ Y= Nm— N — 7
dann ist
A2+(£—) A+ (%) —0
p P \*
A_—»—zm—i]/(T)—q ....... (42)
Dabei ist

p ~ @ abym ' abym abym  abym

1 1]2) 1 ( m)
= — [1— & — (1l
p b ( Nm + a Nm

und unter Beriicksichtigung der Abkiirzungen (40)

B Wma | Nmb b an, 1 1 1y 1

_l—x oy Ss( "72) x ( m)
s LY | P P .. (43
P x N2 Si Nm +l—x Nm )
ferner wird '
_ Y Mm—m—Ne m— (1 + 7e) _
= ab nm l-x x5 5

g = fm— (pt7e) | mese | (44)
Nm T2 * 1
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Nach (38) ist

B—aA. " .St
m Sg

Ist also #, fiir einen Punkt der Mischungskurve bekannt, so
kann daraus nach (43) und (44) p und g berechnet werden, da ,,
72 Sy, S, als bekannt vorausgesetzt werden diirfen. Nach (42) ist
damit auch A bestimmt, so dass mit Hilfe von (39) der ganze Kur-
venverlauf berechnet werden kann.

b) Bedingung fiir Linearitit.
Fiir Linearitdt miissen die folgenden beiden Bedingungen
gleichzeitig erfiillt sein:
A=1
WS _ [ (46)

M Sz

Dann erhdlt Gleichung (39) die einfache Form

m 2
1 1-x + 1 x
T M
M =1 x40 (1—x) . . ... .. o (4D)
Das ist aber die lineare Mischungsgleichung fiir das Mischvolu-
men 1. '

m =

Experimentelle Nachpriifung
der aufgestellten Mischungsgleichung.

In zahlreichen experimentellen Arbeiten haben MAX TRAUTZ
und seine Mitarbeiter am Physikalisch-Chemischen Institut der Uni-
versitdit Heidelberg sich der Aufgabe unterzogen, bindre Gas-
mischungen mit exakten Methoden mdglichst genau zu vermessen.
Diese Forschungsresultate, die alle in den Annalen der Physik er-
schienen sind, sind heute wohl die zuverlidssigsten Daten, die wir
iiber die binire Mischgasreibung besitzen. Es war deshalb gege-
ben, solche Versuchsergebnisse der Nachpriifung der Konstanten-
Formel zugrunde zu legen. ‘

In den Tabellen I bis XI sind die Resultate verzeichnet. Die
Versuchspunkte sind rund, die berechneten Punkte viereckig ein-
gezeichnet. Die Versuchspunkte wurden durch eine Kurve miteinan-
der verbunden. Das Mischvolumen ist stets gleich 1 gesetzt. x ist
das Partialvolumen des ersten Gases; 1-—x das Partialvolumen
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des zweiten Gases. Die spezifischen Gewichte, bezogen auf Luft =
1, sind den Deutschen Ingenieur-Normen, DIN 1871, entnommen.

Als Basispunkt ist derjenige Punkt der experimentellen Kurve
bezeichnet, der bei der Berechnung als bekannt vorausgesetzt wird.
Mit den Abszissen und Ordinatenwerten dieses Basispunktes sind
nach den Gleichungen (43) und (44) die Abkiirzungen p und gq
ermittelt und damit nach (42) die positiven Werte von A und dann
nach (45) B bestimmt worden. Damit ist dann mit (30) fiir die
dem jeweiligen Versuch entsprechenden Abszissen der Wert 5,
berechnet worden.

Wie die Tabellen I bis XI zeigen, liegen die Differenzen zwischen
den so ermittelten Werten von 5, und den Versuchswerten innerhalb
der Fehlergrenzen, mit denen die Versuche wohl ausgefiihrt werden
konnten. Unzuldssige Abweichungen zwischen Versuch und Berech-
nung zeigen sich nur in Tabelle VII bei der Mischung H,—O,. Eine
experimentelle Nachpriifung wére hier wiinschenswert; Endgiilti-
ges kann in diesem Fall noch nicht ausgesagt werden. Es ist aber
sonst bemerkenswert, wie gut selbst so eigentiimliche Viskositats-
kurven, wie sie zum Beispiel bei der Mischung Wasserstoff—Propan
(Tabelle IV) auftreten, die Konstanten-Formel bestétigen.

KARL F. HERZFELD 8) hat eine dhnliche Formel ?) wie (38)
mathematisch abgeleitet. Da sich aber seine Ableitung einer Weg-
lingenformel bedient, in welcher sich offensichtlich ein Druckfeh-
der im Fusszeichen der Molekiilmasse eingeschlichen hat 10), ist der
Beweis nicht haltbar. Ferner hat HERZFELD in den beiden unter
Anmerkung 8) angefiihrten Literaturstellen der Konstanten-Formel
die Giiltigkeit abgesprochen. Im Gegensatz dazu habe ich jedoch
eine gute Uebereinstimmung zwischen Theorie und Experiment
erhalten.

8) Miiller-Pouillets Lehrbuch d. Phys., 3. Band, 11. Auflage (1925). K. F.
Herzfeld: Kinetische Theorie der Warme, S. 68.

Hand- und Jahrbuch der Chem. Phys., Band 3, Teil 2, Abschnitt IV,
Artikel K. F. Herzfeld, S. 196 (1939).

9) Herzfeld rechnet mit Verhiltnissen von Molekiilmassen oder Molekular-
gewichten. In Formel (38) sind spezifische Gewichte eingesetzt, was un-
wesentlich ist.

10) Die beniitzte Formel fiir die freie Wegldnge lautet mit den Bezeichnungen
Herzfelds in Miiller-Pouillet, Lehrbuch d. Phys., 3. Bd., Seite 46

5 di+de\* 1/ m + ms| 1
A-l={n-v2-N1-d12+nN2-(‘“§ 2)]/ 1t 2}7
Der fettgedruckte Index des im Wurzelzeichen unter dem Bruchstrich
stehenden m sollte nicht eine 1, sondern eine 2 sein. Siehe z. B. sinngemaiss

Boltzmann, Gastheorie I, Seite 70, oder Geiger-Scheel, Handb. d. Phys.,
Bd. IX, Artikel Jaeger, S. 399 (1926).




363

Und doch ist eine Ablehnung der Konstanten-Formel begreif-
lich, wenn man ihr nur die Nachpriifung von KARL SCHMITT 1)
zugrunde legt, die in der Literatur gerne zitiert wird. SCHMITT
hat nach der Methode der kleinsten Quadrate die damals zur Ver-
fiigung stehenden Versuchsresultate der unter Prof. DORN am Phy-
sikalischen Institut der Universitdt Halle ausgefiihrten Arbeiten
mit der SUTHERLAND-THIESENschen Gleichung (30) verglichen.
Er fand dabei eine sehr gute Uebereinstimmung zwischen Versuch
und Gleichung; jedoch haben die von ihm gefundenen Konstanten
A und B ganz andere Werte als die von mir nach der Konstanten-
Formel berechneten Ergebnisse. Selbst wenn man beriicksichtigt,
dass die von mir beniitzten und bereits genannten Heidelberger Ver-
suchsresultate von den &ltern Hallensischen Werten gewisse Abwei-
chungen zeigen und dass auch die den verschieden aufgenomme-
nen Kurven zugrunde liegenden konstanten Temperaturen nicht ge-
nau miteinander iibereinstimmen, so geniigen diese Abweichungen
noch nicht, um die Differenz zwischen den verschieden ermittelten
Konstanten A und B zu erkldren. Das heisst aber, dass die Lésung
der SUTHERLAND-THIESENschen Gleichung beziiglich der Kon-
stanten A und B mehrdeutig ist. Immerhin sind noch weitere ge-
nauere Nachpriifungen vorzusehen. Eine Zusammenstellung der
verschiedenen Werte zeigt Tabelle XII.

Bei einer so iiberaus komplizierten Erscheinung, wie es die
Misch-Viskositit darstellt, kann kaum eine bessere Uebereinstim-
mung zwischen Theorie und Wirklichkeit erwartet werden, als es
in den Tabellen I bis XI nachgewiesen wird. Dies darf wohl nicht
mehr auf Zufilligkeiten zuriickgefiihrt werden, sondern muss in
Gesetzmissigkeiten seinen Grund haben, welche in weiteren Arbeiten
noch aufgekldrt werden miissen. -

Zusammenfassung.
1. Ist in der SUTHERLAND-THIESENschen Formel
™ N2
._I_
Nm = l—x x
I+—=A 14+;—B

fiir ein bestimmtes Partialvolumen x des ersten Gases die Misch-
viskositdt %, bekannt, so kann, unter Heranziehung der auf-
gestellten Konstantenformel

1) K. Schmitt, Ann. d. Physik. 30, 393, (1909).
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der Konstantenwert A als die positive Wurzel einer quadratischen
- Gleichung berechnet werden. Damit ist, durch die Konstanten-
formel, auch B bestimmt.

Berechnet man mit den so erhaltenen Werten A und B die
Viskositdtskurve fiir verschiedene Mischungsverhiltnisse, so
ergeben sich in 10 nachgerechneten Fillen gute Uebereinstim-
mungen mit den Heidelberger Versuchsresultaten.

Es ist also moglich, die Viskositét einer bindren Gasmischung
vorauszuberechnen, wenn nur fiir ein bestimmtes Mischungsver-
hiltnis die Mischviskositdt bekannt ist.

2. Die nach der aufgestellten Konstanten-Formel bestimmten
Werte A und B sind nicht die einzige Moglichkeit der
SUTHERLAND-THIESENschen Gleichung und damit der Wirklich-
keit zu geniigen, da die von K. SCHMITT gefundenen Werte
ebenfalls eine befriedigende Losung der Gleichung darstellen.
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Tabelle I

Misch-Viskositdt der Isotherme 20°C

Hs — NH
Wasserstoff - Ammoniak ? i

Versuchspunkte nach Trautz u. Heberling, Anm. d. Phys. 10, 155 (1931)

7.;07
I N = 1w, = 877-107 P | Trautz und
1100 N2 = Tan, = 082.107 P [ Heberling
- T
P N\ s; = sy, = 0,0695
1000 s DIN 1871
Q\‘\ S2 i sNH - 015967
NHJ [ L
800 H
- . Basi§punkt:
x =0,7025 } aus Versuch
700 Nm = 1087 - 107 P ausgewdahlt
02 04 06 08 10
v *Volumenanteil an M
oSz g e675, T SU 01304, LX 04234, X — 23613
M2 St nm Sz 1—x
p =0,3136 4 0,4562 = 0,7698 A —1,9801
1087 — 1859 B B
e 7,6675 — — 5,4455 ] B = 0,2582
Probe:
x _1—x 8= x M 72 7m » 107 7m - 107 | Differenz
Versuch | ¥~ x Tl—x | 14«4 1+ BB | berechnet | Versuch 0o
1 - - o == 877 | —
0,8918 | 0,1213 | 82421 | 707,20 | 313,92 | 1021,12 | 1011 | + 1,00
0,7761 | 0,2884 | 34662 | 55824 | 51823 | 107647 | 1072 | + 041
07025 | 04234 | 2,3613 | 477,07 | 610,08 | 1087,15 | 1087 | + 0,01
0,4823 1,0733 0,9316 280,62 791,61 1072,23 1080 | — 0,72
0,2013 | 2,4328 0,4110 150,76 887,80 1038,56 1047 | — 0,80
0,0995 | 9,0502 0,1104 46,35 054,78 | 1001,13 | 1004 | — 0,28
0 — — — e — 082 —
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Tabelle II
Misch-Viskositdt der Isotherme 20°C
; He — Ar
Helium - Argon
Versuchspunkte nach Trautz u. Binkele Ann. d. Phys. 5, 561, (1930)
Trautz u. Kipphan Ann. d. Phys. 2, 743, (1929)
907
t = P, = . 10-7 Trautz
N = Yue = 1973 - 10-7P :
2300 - o = tja = 2211 - 107P | Dinkele
A Il 2 C Kipphan
2200 < \\
RN $y = Sy, = 0,1381
2100 - s =5, — 13709 | DIN 1871
2000 .
He Basispunkt:
1900 x = 0,5966 } Aus Versuch
0z O+ 06 08 10 , —2304 - 107Pf ausgewihlt
v, =Volumenanteil an He
M goies, MU o1121, 1=X — 0,6761, —X— — 1,4789
N2 S1 7 Sg X 1—x
p = 0,2435 + 0,2125 = 0,4560
A = 2,4789
__ 2304 — 4184 _ B = 0,2778
9= "5308 8,0164 = — 7,2755
Probe:

x o LEE | g ¥ 71 e 7im+ 107 | 7m-107 | Differenz
Versuch | ¥ = Tx T l—x| 14 xA 1+ BB | berechnet | Versuch %%

1 — = — = — 1973 —
0,4906 1,0383 0,9630 552,07 1744,37 | 2296,44 2296 |+ 0,01
0,3820 | 1,6178 0,6181 393,78 | 1887,00 | 2280,78 | 2291 |—0,48
0,3405 | 1,9368 0,5163 340,10 | 1933,70 | 2273,80 | 2278 |— 0,18

0 — — — — — 2211 —
0,3660 1,7322 0,5773 372,69 1005,54 | 2278,23 2286 |— 0,34
0,5966 0,6761 1,4789 737,32 1567,19 | 2304,51 2304 |+ 0,02
0,7565 | 0,3218 | 3,1067 | 1097,51 | 1186,79 | 2284,30 | 2270 | +0,63
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Tabelle 11

Misch-Viskositdt der Isotherme 20°C

Wasserstoff - Methan Hp — CH,

Versuchspunkte nach Max Trautz und Karl Georg Sorg,
Ann. d. Phys. 10, 81 (1931)

nw0’
! <CHs T N =1w, = 876.107P | Trautz und
1050 N2 = Nen, = 1087 - 107P ( Sorg
\ \\ 0,0695 '
81 = 8y =V,

1000 \ \ Sy == Sc:‘z 0,5545 } DIN 1871
950 N
900 \ Basispunkt:

N, x =048 } aus Versuch
L yim = 1008 - 107 P ausgewshlt

02 0+ 05 08 19
y *Volumenanter! an H;

M2 64007, 5L 01555, L% — 10507, —*_ — 0,0436
Nz S M Sg 1—x
p = 0,0688 4 0,1907 = 0,2595 A =2,1246
1098 — 1963
= —09% 6,4297 = — 5,0653 B = 0,3303
Probe:
x _l=x . 7 W 7m - 107 7m -107 | Differenz
Versuch | ¥~ x e 1+ 4 1+ 3B berechnet | Versudh %,
1 o .- - o - 876 | —

0,9223 | 0,0842 | 11,8700 743,12 220,90 064,02 955 | +0,94

0,6022 | 0,6605 1,5138 364,51 724,66 | 1089,17 | 1086 | + 0,29

0,4855 | 1,0597 | 0,9436 269,42 828,75 | 1098,17 | 1098 | 40,01

0,2808 | 2,5612 0,3904 135,99 062,88 | 1098,87 | 1099 | — 0,01
0 — — . — — 1087 —
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Tabelle IV
Misch-Viskositdt der Isotherme 269°C
Hs — C3 Hg
Wasserstoff - Propan
Versuchspunkte nach M. Trautz und F. Kurz,
Ann. d. Phys. 9, 992 (1931)
7107
t m o= 1y, =801 - 107P } Trautz
. und
1000 /E'\ N2 = Tegn, = 817 - 10 p Kurz
950 7
/| L 5= S = 00095 4 e
A0 T T se= sop, = 1562 8
8 c"’f‘ 38
ys =
800 L Basispunkt:
v, = Volumenanteil an H N =924 - 107P [ ausgewdhlt
M Sg Ns S 1—x x
- = 24,5104, -——— = 0,0407, = (), ; = ],
s 51 0 S 0,0407 pe 0,7188 i 1,3912
p = 2,0419 4+ 0,0408 = 2,0917
A = 3,6324
g = 241708 o) 5104 — — 20,7923 B = 0,1478
0924
Probe:
x '= 1—x 8= x m N2 B + 107 7m - 107 | Differenz
Versudh | ¥ = “x T1—x| l4+a«A | 1+ 4B berechnet | Versuch %,
1 —_ — — — — 891 —
10,9225 | 0,0840 | 11,9032 | 682,70 206,10 978,8 970 + 0,90
0,8750 | 0,1428 7,0000 | 586,68 401,55 088,23 087 + 0,12
0,7882 | 10,2687 3,7214 | 450,91 527,09 978,00 985 |- 0,71
0,5818 | 0,7188 1,3012 | 246,75 677,67 024,42 024 + 0,04
0,3704 1,6997 0,5883 124,20 751,67 875,87 873,6 | +0,25
0,1821 | 4.4914 0,2226 51,45 790,97 842,42 836 + 0,76
0 - — — — — 817 —
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Tabelle V

Misch-Viskositdt der Isotherme 10°C

Wasserstoif - Stickstoff H; —Ns

Versuchspunkte nach Trautz u. Baumann, Ann. d. Phys. 2, 733 (1929)

7—/07

= v

!WL\ M = N, = 874-107 P | Trautz und
1600 | —T] ne = nn, =1739-107P [ Baumann
2
1400 \ \ §1 = Sy, = 0,0695 } DIN 1871
" \W\ 32 — SN2 =] 0)9673

1200
1000 § Basispunkt:
80 H2z  x =0,5053 Aus Versuch

‘ = 1508+ 107 P } dhlt

02 0+ 06 08 10 Nm = 1508 ausgew
v, *Volumenanter! an fi>

S _ 6o950, St _ 01420, 1% — 09700, —* — 1,0214
N2 31 N1 Sg x 1l —x

= — 0,6040 + 0,4627 = — 0,1413
¥ ’ A = 2,1796

_ 1508 —2613 _ B == 03114

=508 6,9950 = — 4,4430

Probe:

x _1-x x m 2 fm - 107 7im - 107 | Differenz
Versuh | ¥~ x fo I—x | 1+o4 1+ 3B berechnet | Versuch %

1 - - - - — 874 | — |
0,8077 | 0,2380 4,2002 575,49 753,49 | 1328,98 1305 | 41,83
0,6672 | 0,4988 2,0048 418,76 | 1070,68 | 1480,44 1472 | 41,18
0,5053 | 0,9790 1,0214 278,89 | 1319,42 | 1598,31 1598 0,00
0,2021 | 3,9480 0,2532 00,09 | 1611,97 | 1702,96 1703 0,00

| o — — — — — 1739 —
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Tabelle VI
Misch-Viskositdt der Isotherme 19°C H, — CO
Wasserstoff - Kohlenoxyd .
Versuchspunkte nach M. Trautz und Baumann,
Anm. d. Phys. 2, 733 (1929)
7;-107 :
] it = 1w, = 874 - 10'7P} Trautz und
%00 \ d >~..\ Ng = Heo= 1745 - 10-7P ) Baumann
P INLN % ==
1 = Sy, = 0,0695 }
1400 \ N o — Scz= 0,0669 DIN 1871
1200 \
\ \ Basispunkt:
1000
“ Hy *= 0,4755 } Aus Versuch
800 flm = 1610 - 107 P ausgewihlt
02 0+ 06 08 10
v, = Volumenanter! an Hz
N2 _ 06,9680, 21 — (,1435, ——> = 1,1030, —— = 0,0065
Nz §1 M Sg x 1—
= — 0,6440 + 0,4144 = — 00,2296
d a0 A = 2,2076
_ 1610—2619 — B = 0,3167
= 1610 6,9680 = — 4,3669
Probe:
x _1-x B * M M3 7m 107 7m 107 | Difierenz
Versuh | ¥~ x 1—x 1+ ol 1+ 3B berechnet | Versuch /o
1 — — — — — 874 —
0,6947 | 0,4394 2,2754 443,65 | 1014,18 | 1457,83 | 1449 | 4 0,60
0,4755 | 1,1030 | 0,9065 254,44 | 1355,86 | 1610,30 | 1610 | - 0,01
0,4096 | 1,4414 0,6937 208.99 | 1430,79 | 1639,78 1651 | — 0,67
0,1927 | 4,1804 0,2386 85,28 | 1622,50 | 1707,78 1717 | —0,53
0 - — - - - 1745 | —
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Tabelle VII

Misch-Viskositdt der Isotherme 269°C He— O
Wasserstoff - Sauerstoff 2 ?

Versuchspunkte nach Max Trautz und Albert Melster,
Ann. d. Phys. 7, 414, (1930)

107
b o M=, = 889 - 107P } Trautz und
,goolg'\‘ ,,__\1 N2 = o, = 2057 - 107 P}  Melster
\ §1 = SH == 0,0695
1600 q S o — 11083 } DIN 1871
1300 . \f
1000 \\ Basispunkt:
o “YHe x = 0,6030 } Aus Versuch
e = 1784 - 107 P ausgewdhlt
02 o+ 06 08 10
v *Volumenanter! an H>
M 68739, B2 o ga5s, LE o 06583, ~E- = 15188
N2 $1 M Sz x 1—x
p = —0,6022 + 0,7619 = 0,0697 P
= 2,0813
1784 — 2046
st - B = 0,302
q 1784 6,8732 4,4768 6
Probe:
& _1—x o n ) Nm - 107 7m -107 | Differenz
Versuh | ¥~ x T1l—x 14+ oA 1+ 3B berechnet | Versuch o
i — s — 889

0,9586 | 0,0434 | 23,1545 | 815,82 256,90 | 1072,72 | 1053 | 41,87

0,8633 | 0,1583 | 6,3152 068,72 706,65 | 1375,37 | 1314 | 4-4,66

0,7808 | 0,2807 | 3,5620 | 561,16 | 989,98 | 1551,14 | 1494 | 4 3,82

0,6030 | 0,6583 1,5188 | 375,09 | 1400,38 | 1784,47 | 1784 | + 0,02

0,3945 | 1,5358 | 0,6515 211,84 | 1718,31 | 1930,15 | 1925 | 4 0,26

0,1835 | 4,4495 0,2247 86,64 | 1924,33 | 2010,97 | 2019 | —0,39
0 s s — —_ — 2057 -
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Tabelle VIIT

Wasserstoff - Helium

Misch-Viskositdt der Isotherme 20°C

Hg— He

Versuchspunkte nach Trautz u. Binkele Ann. d. Phys. 5, 561 (1930)

Trautz u. Kipphan Ann. d. Phys. 2, 743, (1929)

107
T He T
— - . 10-7P rautz
1800 N =, = 875 - 10 Binkele
\\ Mg = ne = 1974 - 107P | Kjpphan
g N s 0y 0,0695
1 — 9y, — Y
100 NS Sa= Su — 0,1381 } DIN 1871
AN
AN

g Basispunkt:

1000 \\ x = 0,6069 } Aus Versuch

800 H2  9,=1252 - 107 P ausgewihlt

02 0% 06 08 10
v *Volumenanteil an Hp

My 0807, MBS 11353, L% — 06477, —— — 6,5438

N2 $1 m Se X 1 —x

p = — 0,3288 + 0,4649 — 0,1361

1252 — 2849 = 09940
... B A T =1,1284
1952 0,8807 1,1233
Probe:

x _l=x 5—L " /7 Zm - 107 7im +107 | Differenz
Versuh | ¥~ x T1—x 1+ a4 14+ 3B | berechnet | Versuch o

1 - - - - - 875 | —
0,6018 | 0,4455 2,2446 606,45 558,76 | 1165,21 1166 | — 0,06
0,6069 | 0,6477 1,5438 532,30 719,91 1252.21 1252 | 40,01
0,5520 | 0,8115 1,2321 484,33 825,83 | 1310,16 1317 | — 0,51

0 — | e s e . 1974 | —
0,2163 | 3,6232 0,2759 190,15 | 1505,37 | 1695,52 1694 | + 0,08
0,5130 | 0,9493 1.0533 450,19 001,98 | 1352,17 1351 | 4 0,08
0,8040 | 0,2437 4,1020 704,39 350,70 | 1055,00 1061 | —0,55
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Tabelle IX

Misch-Viskositdat der Isotherme 269°C
Kohlensdure - Propan

COg s Cg Hs

Versuchspunkte nach Max Trautz u. Friedrich Kurz,

Ann. d. Phys. 9, 992 (1931)

77.707
l m = 'ﬂcoz =1493.107 P
1600 M2 = Neghg = 817.107P
1400 A2 5 — 50, =15201
7 )

’200 / 32 = SCSHS _ 1,562

1000 /// / Basispunkt:

800 A x = 05776

02 o+ 06 08 10  Wm=1174.107P

¥ = Volumenanteif an C0;

Trautz und
Kurz

} DIN

Aus Versuch
ausgewahlt

1871

M St 8667, 2 51— 05356, |
M2 S1 m S

p =0,4151 — 0,3715 = 0,0436

=X 07313, —— — 1,3674
x 1—x

1174 — 2310 g ——
= A 1,8667 = —1,8063 B = 10,7082
1174
Probe:

x _1—x l 3= x 0 2 Nm - 107 Im 107 | Differenz
Versuh | &~ «x M l—x 14+ x4 1+73B berechinet | Versuch %,

1 - o - - — | 1493 | —
0,7883 0,2685 3,7236 | 1101,84 224,63 1326,47 1326 -+ 0,03
0,5776 0,7313 1.3674 759,06 415,07 1174,13 1174 -+ 0,01
0,4025 | 1,4844 0,6736 503,91 553,14 | 1057,056 | 1058 | — 0,08
0,1893 4,2826 0,2334 224,07 701,16 025,23 026,4 | — 0,12

0 — s = — — 817 s




374

Tabelle X
Misch-Viskositdt der Isotherme 269°C "No—O
Stickstoff - Sauerstoff 2 2
Versuchspunkte nach M. Trautz und A. Melster
Ann. d. Phys. 7, 409 (1930)
07
2,[,)0 0, N = yng = 1781 . 107 P } Trautz und
4 W2 = 703 = 2057 . 107 P | Melster
2000
N s1 = Sng = 0,9673 }
’ DIN 1871

1900 \\ S5 = Soa = 1,1053
1800 [ Basispunkt :
1700 Ne x = 0,5803 } Aus Versuch

02 04 06 08 10 nm = 1894 . 107 P ausgewdhlt

¥ *Volumenanter! an N
M o893, S _ 10107, 1% = 0,6060, > — 1,4348
Ne St M Sg x 1—x
p = —0,0592 + 0,0856 = 0,0264 A = 1,0372
1894—3838 _

Die Werte fiir A und fiir Z’—zi sind beide ~ 1, somit wird auch
1 92
B ~ 1. Die Kurve der Misch-Viskositit wird also nahezu eine

Gerade.
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Tabelle X1
Misch-Viskositdt der Isotherme 20° C N.—NO
Stickstoff - Stickoxyd 5
Versuchspunkte nach Max Trautz und Ernst Gabriel,
Ann. d. Phys. 11, 606 (1931)
n107
' NO nm = nng = 1747 - 107 P } Trautz und
1900 ¥ ys = mno= 1882 . 107 P | Gabriel
800 | — |
— ==\, 67
Ty, ST S =090 } DIN 1671
1700 Se = Sno= 1,0367
1600 Basispunkt :
02 o+ 06 08 10 x =0,4163 } Aus Versuch
vy *Volumenantei! on N> Nm = 1827 . 107 P ausgewéhlt
S _ o948, S _ 0051, =% — 14021, X — 07132
e S1 m Se X l—x
p = —0,0419 + 0,0312 = —0,0107 A = 0,9958
1827—3629 . —
qg = & 0,9948 = —0,9811 B = 1,0008
Die Werte fiir A und fiir 22—::1 sind beide ~ 1, somit wird auch
1 Sg
B =~ 1. Die Kurve der Misch-Viskositdt wird also nahezu eine
Gerade.
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Tabelle XII

Gegeniiberstellung der verschiedenen ermittelten Konstanten A und B

Mistune t:;r:::;_r Nach Schmitt tZ;’::f’mf“ Nach Schudel _
A B A B

Ar—He | 15°C 0,343 2,032 200C 0,2778 2,4789 I1

Nngg 150C 0,23 3,57 19°C 0,3114 2,1796 | \Y

Os—Hs | 15°C 0,373 1,362 |26,9°C | 0,3026 2,0813 | VII

O;—Ns | 15°C 0,456 2,443 26,9°C | 1,0482 1,0372 X

Wird in Gleichung (30) Gas1 als Gas 2 bezeichnet und Gas 2
als Gas 1, so ist statt x der Wert (1-x) zu setzen. Ferner sind
die Konstanten A und B miteinander zu vertauschen. Die Rei-
henfolge der Mischgaskomponenten ist in obiger Tabelle nach
K. Schmidt, Ann. d. Phys. 30, 393 (1909), angeschrieben. Diese
Reihenfolge ist gerade umgekehrt als in unsern Tabellen II, V,
VII und X. Deshalb sind in obiger Tabelle XII, zum Vergleich mit
den Schmittschen Konstanten die Werte A und B gegeniiber

den Werten der vorangehenden Tabellen vertauscht.
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