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11.

ÜBER DIE VISKOSITÄT BINÄRER

GASGEMISCHE

von

WILLY SCHUDEL, SCHAFFHAUSEN
i

(mit 3 Figuren und 12 Tabellen)
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Einleitung.
Für die innere Reibung, Zähigkeit oder Viskosität von Gasen

bestehen recht auffallende Gesetzmässigkeiten: Gase werden, im

Gegensatz zu Flüssigkeiten, bei steigender Temperatur zäher,
dickflüssiger; die Gasviskosität ist ferner vom Gasdruck weitgehend
unabhängig. Diese merkwürdigen Erscheinungen sind von der
kinetischen Gastheorie vorausgesagt worden, wobei SUTHERLAND

die Temperaturabhängigkeit und MAXWELL die Druckunabhängigkeit

quantitativ in Formeln erfassen konnten, was eine besonders
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schöne Bestätigung für die grundsätzliche Richtigkeit der dieser
Theorie zugrunde liegenden molekularen Vorstellungen bedeutet.

Die innere Reibung weist aber bei Mischungen noch weitere
Eigentümlichkeiten auf. Bezeichnet« eine physikalische Eigenschaft
eines Gases, wie z. B. spezifisches Gewicht, Temperatur, Wärmeinhalt

oder Heizwert, und mischt man die zwei Volumina v1 und v2
zweier Gase bei gleichem Druck zum Mischvolumen vm, so wird
die physikalische Eigenschaft am des Mischvolumens vm aus der
folgenden einfachen Gleichung bestimmt:

«m • Vm «1 t)l + «2 «2 (1)

wobei Vm vi + vi ist.

Die Mischeigenschaft am verläuft also in Abhängigkeit von vx
oder von v2 linear. Diese sonst allgemein gültige Mischungsgleichung

für physikalische Eigenschaften versagt aber vollkommen,
wenn es sich bei a um die Gasviskosität handelt. Nur in ganz
speziellen Fällen besteht eine geradlinige Abhängigkeit. Im allgemeinen

werden Kurven erhalten, die unterhalb oder oberhalb der
Geraden verlaufen und die auch ein ausgesprochenes Maximum
aufweisen können. Wie ist dies zu begründen, wie lautet die Gleichung
der Mischungskurve und genügen die üblichen Annahmen der
kinetischen Theorie, um diese verwickelten Erscheinungen zu erklären?

Wohl sind, seitdem GRAHAM im Jahre 1846 zum erstenmal ein

Maximum in einer Mischungskurve experimentell erkannte, diese

Fragen immer wieder Gegenstand besonderer physikalischer
Forschung geworden, aber bis heute ist es nicht gelungen, dieselben
restlos zu klären.

SUTHERLAND x) hat eine Gleichungsform aufgestellt, die später,

unabhängig von ihm, auch von THIESEN2) abgeleitet wurde.
Sie hat die Form:

*- —-£5— + (2)
1 +—l + ü*'B

wo Vm> »?2 die Viskositätskoeffizienten der Mischung und der
beiden Einzelgase, x der Raumteil des ersten Gases und ,A und
B zwei Anpassungskonstanten bedeuten. Mit A und B kann die

Gleichung den experimentellen Beobachtungen sehr gut angegli-

') W. Sutherland, Phil. Mag. 40, 421. (1895).
2) M. Thiesen, Verh. d. Deutsch. Phys. Ges. 4, 348 (1902).

8, 236 (1906).
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chen werden. TRAUTZ») hat eine ganz andere Form des

Mischungsgesetzes aufgestellt, kommt aber auch nicht aus ohne

Anpassungskonstanten. Die heutige Viskositätsforschung von
Gasgemischen läuft also eigentlich darauf hinaus, die bisher aus den

Beobachtungen zu bestimmenden Konstanten A und B aus den
Daten der Einzelgase voraus bestimmen zu können. In der
Literatur finden sich darüber geistreiche und verdienstvolle Arbeiten,

aber: entweder entspricht der erzielte Effekt nicht dem grossen
Rechnungsaufwand, oder es ist zwischen Theorie und Wirklichkeit
noch eine zu grosse Divergenz vorhanden. Diese Konstanten
enthalten eben immer noch das, «was man nicht kennt». Interessant
ist der Versuch von JUNG4), GRÜSS und SCHMICK®), die DEBYE-
schen Dipol- und Multipol-Momente der Moleküle zu verwenden,
um die Konstanten zu deuten. Neben guten quantitativen Ueber-
einstimmungen zwischen Theorie und Versuch treten jedoch auch

unzulässig hohe Abweichungen auf, so dass diese schönen Arbeiten

noch keine endgültige Lösung gebracht haben.
Die in der kinetischen Theorie üblichen primitiven Annahmen

über die Form und die Art der Molekülbewegungen in einem Gas

(elastische Kugeln, gerade Flugbahn, ausser dem Stoss keine

Wechselwirkung zwischen den Molekülen) genügen wohl, um die

Zustandsgieichung in einer ersten Annäherung, d. h. in der Form

P • v R • T

P Druck in kg/ms,
v Spezifisches Volumen in kg/m3,

R Gaskonstante —,m
m Moleküla rgeA icht,
T Absolute Temperatur

ableiten zu können. Schon DANIEL BERNOULLI6) hat im Jahre
1738 in seiner Hydrodynamica aus den erwähnten Annahmen das

BOYLEsche Gesetz, d. h. die Zustandsgieichung für konstante
Temperatur abgeleitet. Bei den Feinheiten der Zähigkeit von
Gasmischungen genügen jedoch diese Voraussetzungen nicht mehr.
Hier spielen offenbar die molekularen Eigenschaften der Gase eine

3) M. Trautz, Sitzungsberichte der Heidelberger Akademie der Wissenschaften,

Jahrgang 1929, 12. Abhandlung.
4) G. Jung und H. Schmick, Zeitschrift f. Physikalische Chemie, 7. Band,

Heft 2, Seite 130 (1930).
5) H. Grüss und H. Schmick, Wissenschaftl. Veröffentlichungen aus dem

Siemens-Konzern. 7. Band, 1. Heft, S. 202 (1928).
') Daniel Bernoulli, Hydrodynamica, Argentorati, 1738. Sectio decima.
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einflussreiche Rolle, so dass sie zu beobachtbaren Wirkungen führen.

Es ist verlockend, mit Annahmen über Molekülform und mit
Spekulationen über molekulare Kraftfelder zu versuchen, die
Eigenschaften der innern Reibung in Gasgemischen zu erklären, und dies
ist ja auch gemacht worden; aber die Durchführung solcher
Rechnungen stösst heute doch noch auf grosse Schwierigkeiten.

Nicht nur von der theoretischen, auch von der praktischen Seite
kommt immer mehr die Forderung nach der Aufstellung einer
Mischungsgleichung mit dem Ziel, aus der blossen Kenntnis der

Reibungskoeffizienten der einzelnen Komponenten die Viskosität der
Mischung vorausberechnen zu können. Sind doch die technischen
Gase meist komplizierte Mischungen einfacher Gase, die in
Fernleitungen der nützlichen Verwendung zugeführt werden. Bei diesen

Transportproblemen spielt aber die Viskosität eine wesentliche
Rolle.

Im folgenden soll die SUTHERLAND-THlESENsche Gleichungsform

der Reibung von binären Gasmischungen, d. h. von Mischungen,

welche aus zwei einfachen Gasen bestehen, abgeleitet und
diskutiert werden. Es zeigte sich dabei, dass die Lösung mehrdeutig

ist, und dass es möglich ist, den ganzen Verlauf der Reibungskurve

aus den Viskositätskoeffizienten der Einzelgase vorauszusagen,

wenn nur e i n Punkt der Mischungskurve bekannt ist.

Die gaskinetische Erklärung der Viskosität.
Die Viskosität ist eine Material-Konstante. Sie ist deshalb nicht

von der speziellen Art der Strömung abhängig, so dass ihre
Bestimmung auch an einem besonderen Fall, z. B. einer
Parallelströmung, untersucht werden kann, der für die mathematische

Behandlung am geeignetsten erscheint.

Wir betrachten deshalb eine stationäre Parallelströmung eines

zähen Gases, wobei jede zur xy-Ebene parallele Gasschicht eine

sichtbare, makroskopische Geschwindigkeit u besitzt, welche parallel

zur x-Achse und in jeder Schicht verschieden, aber konstant sei.

Das heisst also: u ist eine Funktion von z. Entwickeln wir diese

Funktion nach MAC LAURIN in eine Reihe und brechen mit dem

zweiten Gliede ab, so gilt in der Nähe der xy-Ebene

wobei u0 die Geschwindigkeit der Schicht z o bedeutet.

(3)
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Wegen der innern Reibung übt die schneller fliessende Schicht
auf die angrenzende langsamere eine beschleunigende Wirkung aus
und umgekehrt wirkt die langsamere auf die schnellere Schicht
verzögernd. Mit andern Worten können wir dies auch so ausdrücken,
dass wir sagen, dass von der einen Schicht auf die andere eine Kraft
übertragen wird. Für diese Kraftwirkung hat schon NEWTON den

grundlegenden Ansatz gemacht. Danach ist in der Nähe der xy-
Ebene, wo also z ^ 0 ist,

das heisst, er nahm an, dass die von der einen auf die andere
Schicht übertragene Kraft dem Flächenelement dF, an der sich die
beiden Schichten berühren, und dem Geschwindigkeitsunterschied
du der beiden Schichten direkt proportional, sowie der senkrechten
Distanz Az der beiden Strömungsebenen umgekehrt proportional
sei. Den konstanten Proportionalitätsfaktor rj nennt man den
Koeffizienten der innern Reibung oder auch die Zähigkeit oder die
Viskosität. Im absoluten Maßsystem hat die Einheit von t] die Dimension

g cm-1 s1 und wird als 1 Poise bezeichnet.
Eine Kraft ist aber, ebenfalls nach NEWTON, dem Produkt von

Masse mal Beschleunigung gleichzusetzen, oder sie ist, was
gleichbedeutend ist, gleich Masse mal Geschwindigkeit pro Zeiteinheit,
also gleich dem Impuls pro Zeiteinheit.

Nach der kinetischen Gastheorie entsteht nun die Kraftwirkung
AK dadurch, dass die Gasmoleküle vermöge ihrer Wärmebewegung
insgesamt auf das Flächenstück dF einen resultierenden Impuls
pro Zeiteinheit übertragen, welcher der Kraft AK entspricht, und
diese soll im folgenden berechnet werden.

Wir betrachten vorerst ein strömungsloses, ruhendes Gas, welches

nicht aus verschiedenen Gasen gemischt, sondern aus einem

einzigen einheitlichen Gas bestehen soll, dessen Moleküle alle gleich
beschaffen seien.

In diesem Gas denken wir uns in 0 ein Flächenelement dF mit
der Normalen z und errichten darüber ein schiefes Prisma, dessen

Kante die Länge c-df und die Richtung ft,cp hat (Fig. 1). c sei die
mittlere Geschwindigkeit der Gasmoleküle.

Alle Moleküle, welche in einem bestimmten Zeitmoment in diesem

Prisma vorhanden sind und deren mittlere Geschwindigkeit c

eine Richtung #, q> besitzen, werden nach der Zeit At das Flächen-
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element dF erreicht haben, wenn die Zeit dt so klein gewählt wird,
dass diese Moleküle keine Zusammenstösse mit andern Molekülen

erleiden. Pro cm3 sind nun-sin & d#-d<p Moleküle vorhanden,
4 jt

welche die angegebene Richtung besitzen7).

Z

Also sind in dem Prisma vom Volumen dF-c-dt-cos #
dF r • dt cos ü • v • sin & • d# • A<p • v

4jt
Moleküle der besprochenen Art vorhanden. Dividiert man noch
durch dt, so erhält man diejenige Anzahl dvon Molekülen,
welche in einer Sekunde von der Richtung #, cp in dF ankommen, zu

dF. c • v- sin d • cos & • • d®
dN^ 4^ " (5)

Wo haben nun, vor dem Eintreffen in dF, die Moleküle ihren letzten

molekularen Zusammenstoss erlitten? Offenbar dort, wo die

7) 1st v die Anzahl Moleküle pro cm3 Gas, so werden die v Moleküle v ver¬
schiedene Geschwindigkeitsrichtungen besitzen, die alle gleich berechtigt
sind und sich gleichmässig über den Raum verteilen. Auf den Raumwinkel

V
1 (Flächeneinheit der Einheitskugel) fallen dann Geschwindigkeits-

4 7t
richtungen. Nimmt man als Spielraum für die Richtung &,<p einen Kegel,
dessen Oeffnungswinkel da> sint?d#-d<p ist, so fallen in diesen Elemen-

V
tarkegel -r— •sintfdtf'dg? Geschwindigkeitsrichtungen. Das ist aber zu-

4 3Z

gleich die Anzahl der Moleküle, deren Geschwindigkeiten die Richtung
&, <p besitzen.
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Richtung $, <p jene Kugelfläche trifft, deren Radius gleich der mittleren

freien Weglänge X ist und deren Zentrum in 0 liegt (Fig. 2).
Alle jene Moleküle, welche auf dieser Kugel zum Zusammenstoss
mit andern Molekülen kommen und deren Geschwindigkeitsrichtungen

nach dem Stoss in die Richtung des zum Zusammenstoss-
Punkt P gehörenden Kugelradius fallen und nach dem Kugelmittelpunkt

zeigen, werden die Kugel mit der mittleren Geschwindigkeit c

Z

radial ohne weitere Zusammenstösse frei durchlaufen, um dann in

dF wieder mit andern Molekülen zusammenzuprallen. Denn die

Kugelradien sollen ja der mittleren freien Weglänge gleich sein, und
die Definition von X besagt eben, dass auf der Strecke X im Mittel
kein Zusammenstoss vorkommen soll.

Jedes dieser in dF eintreffenden Moleküle kommt mit der
mittleren Geschwindigkeit c im Flächenelement an. Jedes bringt also
den Impuls m-c nach dF (m Masse eines Moleküls). Dies gilt
für ein im gesamten ruhendes Gas, welches keine makroskopische,
sichtbare Strömungsgeschwindigkeit besitzt.

Lassen wir jetzt diese bisherige Voraussetzung fallen. Das Gas
besitze also eine sichtbare Strömung, und wir denken uns unsere
Kugel Fig. 2 derart in die am Anfang erwähnte Parallelströmung
hineingelegt, dass dF ein Element der xy-Ebene sei. Wir betrachten

wieder alle diejenigen Moleküle, die auf dieser Kugel zusam-
menstossen und deren Geschwindigkeitsrichtungen nach dem Stoss
in die Richtung des zum Zusammenstoss-Punkt gehörenden Kugelradius

fallen. Diese Radialgeschwindigkeit nach dem Stoss ist aber

jetzt die Resultierende R von 2 Geschwindigkeitskomponenten, näm-
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lieh von der makroskopischen Geschwindigkeit u und von der mittleren

Geschwindigkeit c der Wärmebewegung des Moleküls. In
Fig. 3, die diese Verhältnisse andeutet, ist der Geschwindigkeitsmaßstab

willkürlich so gewählt, dass die Resultierende R gleich
dem Kugelradius der mittleren freien Weglänge wird. Es wird nun
in allen praktischen Fällen die Geschwindigkeit u der makroskopischen

Strömung (höchstens einige Meter pro Sekunde) gegenüber
der Wärmebewegung c (Grössenordnung einige hundert Meter pro

Sekunde) vernachlässigt werden können. Solange dies der Fall ist,
dass also u gegenüber c verschwindet, ist es zulässig, die Gleichung
(5) auch für bewegte Gase, also auch für die von uns betrachtete

Parallelströmung, anzuwenden.
Jedes nach dF kommende Molekül überträgt in das Flächenelement

eine radiale Impulskomponente c-m, wie beim ruhenden
Gas, und eine der Strömung parallele Impulskomponente u-m.
Gleichung (5) gibt die aus einer Richtung &, <p in der Sekunde nach dF
fliegenden Moleküle an. Aus dieser Richtung wird also pro Sekunde
der Impuls

dNftf • (cm + um)

übertragen, wobei das Pluszeichen eine geometrische Addition
der Komponenten bedeutet. Den Gesamtwert erhalten wir durch
eine Integration über alle möglichen Richtungen. Dabei verschwindet

die Summe der cm Komponenten, weil sich je 2 Komponenten
gegenseitig aufheben, wegen der allseitigen Symmetrie der
Radialgeschwindigkeiten c.

Auf das Flächenelement dF wird somit als gesamte Impuls-
grösse pro Sekunde, also als Kraft dK, der Wert des folgenden,
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über die Kugeloberfläche erstreckten Doppelintegrals übertragen

dK ^ ^ dNtp,ß • u m

oder, mit Berücksichtigung der Formeln (3) und (5),
fr 2jr

m

Substituiert man noch z X cos so wird
VI

dF v • c m-2n { a „ a T i * o /da\ "|dK — \ sin $ cos ü d $ |^u0 -f- X cos d 1j
O

5

TT

Da \ sin $ cos#-d# 0 ist, so ist

(®L.dK v c mn ^ ^•171 \sintfcos2$-dtf

jr o

r 2
Weil ferner V sin d cos2 d d9 — ist, wird

O .v m c X „ /d«\dif=__._.dF.y^ (6)

Ein Vergleich mit Gleichung (4) ergibt also

v m • c X

1= 3

Unsere ganze bisherige Rechnung war nur eine ziemlich grobe
Annäherungsrechnung mit teilweisen Voraussetzungen und
Annahmen, die nicht genau der Wirklichkeit entsprechen. Verschiedene

Autoren erhalten deshalb, je nach den verschiedenen speziellen

Annahmen im Ausdruck von r\, andere Konstantenwerte, die aber
alle nicht weit von 1/3 abweichen. Wir schreiben deshalb
allgemeiner statt Vb die Konstante k und erhalten

t) k • v • m- c A (7)

Stosszahl und freie Weglänge im Gasgemisch.
Im Volumen v2 eines Gases 1 seien Nt Moleküle enthalten und

im Volumen v2 eines Gases 2 seien N2 Moleküle vorhanden. Beide
Gase sollen unter demselben Druck stehen und dieselbe Temperatur

haben. Dann gilt für die Anzahl Moleküle pro cm3 im ersten,
bzw. zweiten Gas
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(8)

Mischen wir die beiden Gase zum Mischvolumen v vx-\- v2, so

gilt für die Zahl der Moleküle pro cm3

Nach dem Ergebnis der klassischen Theorie der Gaskinetik (siehe
z. B. BOLTZMANN, Vorlesungen über Gastheorie, Bd. I, Seite 69)
ist die gesamte Zahl der Zusammenstösse, die zwischen den Molekülen

des Gases 1 mit den Molekülen des Gases 2 in der Sekunde
und pro cm3-Gemisch stattfinden, gleich

Dabei sind vx und v2 durch die Gleichungen (9) definiert. Ferner
bedeuten

ö! Durchmesser eines Moleküls (Durchmesser der Wirkungs¬
sphäre) des Gases 1;

a2 Durchmesser eines Moleküls (Durchmesser der Wirkungs¬
sphäre) des Gases 2;

rrij Masse eines Moleküls des Gases 1;

m2 — Masse eines Moleküls des Gases 2;

2 kT 2RT
k -*L
L — Anzahl Moleküle pro Mol, bei 0° C, 760 Torr;
R Gaskonstante;
T absolute Temperatur.
Sind in 1 cm3 Gemisch vx Moleküle des Gases 1 und v2 Moleküle des

Gases 2 vorhanden, so ist Z12 die Gesamtstosszahl zwischen den

Molekülen des Gases 1 und des Gases 2 in der Sekunde. E i n Mole-
Z

kühl des Gases 1 stösst also z,2 — mal mit den Molekülen
vi

des Gases 2 zusammen,

(9)

(10)

(")
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und analog

(12)

Geben wir in (12) dem Molekül 2, welches mit den Molekülen
1 zusammenstösst, die Dimension eines Moleküls 1 und setzen

°2 Ol

und m2 — m1

so erhält man die Einzelstosszahl dieses einen Moleküls des Gases

1 mit den andern gleichartigen Molekülen des Gases 1, also

*Vits; <13>

und analog erhält man

Zn 2vt- <tf.y~ (14)

das heisst also: Sind in der Volumeneinheit der binären
Gasmischung v1 Moleküle dieses Gases vorhanden, so wird nach (13)
ein einzelnes Molekül dieses Gases in der Sekunde z„mal mit den

gleichartigen Molekülen dieses Gases zusammenstossen. Dieses
Einzelmolekül wird aber in derselben Sekunde auch noch mit den
andern Molekülen des Gases 2 zusammentreffen, und die Anzahl
dieser Zusammenstösse z12 wird nach (11) bestimmt.

Die gesamte Stosszahl eines einzelnen Moleküls 1 ist demnach

ZI Zu + Zit (15)
und analog

z2 z82 + Z2i (16)

Die grundlegende Formel (10) ist nun unter der Annahme
berechnet und erhalten worden, dass die Moleküle, ausser beim Zu-
sammenstoss, keine Kräfte aufeinander ausüben. Sind aber
Anziehungskräfte zwischen den Molekülen wirksam, so werden die Stoss-
zahlen offenbar grösser als in den Gleichungen (11) bis (14)
berechnet wurde. Wir multiplizieren deshalb jedes Glied der rechten
Seite der Gleichungen (15) und (16) sinngemäss mit den Faktoren

©in @i2) @22) @2D welche alle grösser als 1 sind. Ueber die Art
und Grösse dieser Faktoren wollen wir hier keine näheren
Voraussetzungen und Untersuchungen machen. Sie werden, je nach der

zugrunde liegenden Theorie, verschieden berechnet. Die Einzelstoss-
zahlen z1 und z2 erhalten so bei Berücksichtigung der molekularen

Anziehungskräfte die Form:
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zi — Zu • On + Zis 0i2 (17)

Z2 Z22 • ©Sä + Z21 ©21 (18)

Verfolgen wir nun ein einzelnes Molekül auf seinem Wege, so
ist, da jeder Zusammenstoss eine freie Weglänge des Moleküls
beendet, der gesamte von einem Molekül des Gases 1 in einer
Sekunde zurückgelegte Weg gleich

/tl Zl — Al • (Zu 011 -(- Zl2 0u)
Diese Wegstrecke pro Sekunde ist aber offenbar nichts anderes

als die mittlere Geschwindigkeit c1 dieses Moleküls;

somit wird

und ähnlich

—

a2 =^=

c 1

Zll ©II + Zl2 012

Cj

Z22 022 + Z2| 021

(19)

Setzen wir in diesen Formeln für die mittlere Geschwindigkeit die
von Maxwell berechneten Beträge

2

C„ :

yn h rtii

2
(20)

"\Jnh- m2

ein und berücksichtigen die Formeln (13) und (11), so wird, wenn
wir noch den Faktor einführen, der noch weitere denkbare
Einflüsse berücksichtigt

kt
Ai

* [V2 -vi • öi2 • 011 + v2 P4Ö2)2. ]/l+g. «9«]

und ähnlich A%
ki

1/2 VJ Ö22 022 + V, p4p)2' ]/!+5' 02lj

(21)

(22)

Darin sind vt und v2 durch die Gleichung (9) bestimmt.

Gehen wir von der Mischung über zum Einzelgas, so ist j>2,

bzw. vlt in den obigen Gleichungen gleich 0 zu setzen, und wir
erhalten für das Einzelgas

kiAn

Ai2

jr 1/2 • vi • öi2 • 0ii
ki

(23)

(24)
JT 1/2 * i'2 • 022 * 022

In diesen letzten Formeln ist vx und v2 durch Gleichung (8) definiert.
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Die Viskosität eines binären Gasgemisches.
Wie wir soeben in Gleichung (21) und (22) dargelegt haben,

hat in einem binären Gasgemisch ein Molekül des Gases 1 eine
andere freie Weglänge als ein Molekül des Gases 2. Befindet sich
die Gasmischung in einem stationären Strömungszustand, so können
wir wieder dieselben Ueberlegungen daran anwenden wie beim
reinen Einzelgas. Wir haben uns jetzt aber um das Flächenelement

dF als Mittelpunkt nicht nur eine Kugel wie in Fig. 2,
sondern zwei Kugeln mit den Radien Ä, und X2 zu denken. Beide
Molekülarten 1 und 2 bringen von verschiedenen Distanzen Xx und X2

Impulse nach dF. Wir rechnen also so, als ob die beiden verschiedenen

Molekülarten mit den mittleren freien Weglängen Xx und X2

im Mischgas ungestört nebeneinander existierten.
Setzen wir wieder an Stelle von 1/3 die Konstante k, so erhält

man in Anlehnung an Gleichung (6) im Mischgas als Kraftwirkung
dKm auf das Flächenelement dF, entsprechend den beiden verschiedenen

Weglängen, den Ausdruck

AKm =kv1mi Ci Xx dF + kv2 m2 c2 dF

Da ferner nach (4) dKm ?ym dF- gesetzt werden muss,
\dZJz o

kann r)m wie folgt dargestellt werden:

t]m== k vx mx cx Xx k v2 m2 c2X2 (25)

Im reinen Einzelgas ist die Viskosität laut Gleichung (7)

Vi k • n mx cx X\\

und % k v2 • m2 c2 X22

In diesen Gleichungen sind v± und v2 nach Gleichung (8) und Xn

und X22 nach Gleichung (23) und (24) einzusetzen, so dass

(26)
71 (/2 Gl2 &11

Und ^ Jkjßc^_ (2?)
TT Ö22 k}22

wird. Setzt man die aus diesen Gleichungen berechneten
eingeklammerten Werte, sowie die Werte für Xx und X2 aus (21) und

(22) in die Gleichung (25) ein, so erhält man für die Mischung,
wenn die Abkürzung

o (28)
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benützt wird,

f\m —
i}i n V2 öi2 0ii vi ki

+

oder

+

kl 7t j^V2 Vi öl2 0a -f- V2 ö2
~J/

7}2 JT \J'l <Jg2

A + 0i.|
m2 J

kl 7t [V2 VS 0gS 022 + Vi 0S~J/'1+ ©Isis

Vi 1

1+S[w©2'V1+
Vi

m2
01.]
0,i J

^rv2[y2\ai) r+/n, ®22 J

(29>

Das Mischvolumen sei gleich 1 cm3 gesetzt. Das Partialvolumen
des ersten Gases sei x. Dann ist das Partialvolumen des zweiten

Gases (1-x). Die Partialvolumina sind der Anzahl der Moleküle

des betreffenden Gases pro cm3 Mischung proportional. Ferner
sind die Molekülmassen den Molekulargewichten M proportional.
Wir können also Gleichung (29) auch schreiben

(30)

in welcher die Konstanten A und B die Abkürzungen sind für

1 /a_>
'
V2 \ °i'

1

V2

Ml 0,8
^Mi'0ii ' ' '

i I
Mg 0^+ Ml

'
022

• '

(31)

(32)

Dividiert man die erste dieser Gleichungen durch die zweite, so

wird
A / gg\2 -j /Ml

^
0(2 022

B \°i/ y Ma ©gl
(33)

Die gaskinetischen Moleküldurchmesser und a2 können aus
den Gleichungen (26) und (27) bestimmt werden. Für die
Geschwindigkeiten und c2 sind die Gleichungen (20) zu verwenden.
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n,2 k'kl' mi 2 2 A: fei Vmi
&xi • t]i \Jn h mi 7i V2 tt h rft 0n

n.2 k-ki-m%.2 2kkt yirit ^7i\j2 rjt • "\Ar h mt n\/2 71 h Vi- 0t2

Durch Division erhält man das Verhältnis

/5LV ~l /HI* .0} 5?. "I /^L ^11

\öl/ |/ ml Vi @ii 'is 1/ Ml 023

welches in (33) einzusetzen ist. Also

A _ J?l -| /Ms 011 /Ml 012 022 % 012 _ Vl /Qg>
B r/2 y Ml 082 J/ Ms 081 011 Vi 021 % ^

Das Verhältnis von A zu B ist also gleich dem Verhältnis von j/t
zu'»/2, multipliziert mit einer vorläufig noch unbekannten Konstan-
tengrösse cp.

Die Frage, wie die Grössen 0 und damit auch <p aus den
molekularen Daten erklärt werden kann, soll offen gelassen werden.

Dagegen ist mir bei der Auswertung von in der Literatur zu findenden

experimentellen Arbeiten über binäre Mischreibung bezüglich
cp eine bemerkenswerte Gesetzmässigkeit aufgefallen. Es kann
einfach

V (37)
•*1

gesetzt werden, wenn unter s2 und sx das spezifische Gewicht der

beiden Gase, bezogen auf Luft, verstanden wird. Damit wird

A Vi «2

B Vi «1
(Konstanten-Formel) (38)

Indem man mit Hilfe dieser Gleichung B durch A ausdrückt und in

(30) einsetzt, erhält man eine Gleichung für die binäre Mischgas-
Reibung, in welcher nur noch eine unbekannte Konstante, nämlich

A, vorkommt:
1 % t-iQ\
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Diskussion der aufgestellten Mischungsgleichung.
a) Bestimmung der Konstanten.

Mit der Abkürzung

1—*
a

x

b
X -ii-

1— x r/i s2

schreibt sich die Gleichung (39)

„ _ V< Vi
Vm

1 + aA + 1-
daraus wird

(40)

1 + bA

rim(l + aA)(\ + bA) Vl(l+bA) + rlt(l+aA)
ab rjmA2-{- [tjm(a + b) — b vi — a%] • A + (rjm — — %) 0

Wir setzen
a ab rjm 1

ß rjm{a + b) — b— arji
y Vm — Vi — Vi J

(41)

dann ist

*+(4) *+(£) »

(42)

Dabei ist

ß
P

rjm a r\mb brjj ai)8 1 1 1_ r^_ 1_

abtim abrjm abrjm abijm~ b ' a a tjm b tjm

p =»(!_*_) +_L(i__2L)
b \ rjm) a \ T]m)

und unter Berücksichtigung der Abkürzungen (40)

x rji Sj V Vm J 1 - x \ tjm ]
(43)

ferner wird

<7
Vm-ni-vt

ab rjm

Vm-(v1 + Vi)
1-JC j£l

1 - X JJ| s2
• Vm

V
Vm- (Vl+Vi)

_
Vi- S8

Vrn Vi Sl
(44)
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Nach (38) ist

B A • — (45)
m «2

Ist also rjm für einen Punkt der Mischungskurve bekannt, so
kann daraus nach (43) und (44) p und q berechnet werden, da rp,
rj2, sly s2 als bekannt vorausgesetzt werden dürfen. Nach (42) ist
damit auch A bestimmt, so dass mit Hilfe von (39) der ganze
Kurvenverlauf berechnet werden kann.

b) Bedingung für Linearität.
Für Linearität müssen die folgenden beiden Bedingungen

gleichzeitig erfüllt sein:

Das ist aber die lineare Mischungsgleichung für das Mischvolumen

1.

Experimentelle Nachprüfung
der aufgestellten Mischungsgleichung.

In zahlreichen experimentellen Arbeiten haben MAX TRAUTZ
und seine Mitarbeiter am Physikalisch-Chemischen Institut der
Universität Heidelberg sich der Aufgabe unterzogen, binäre
Gasmischungen mit exakten Methoden möglichst genau zu vermessen.
Diese Forschungsresultate, die alle in den Annalen der Physik
erschienen sind, sind heute wohl die zuverlässigsten Daten, die wir
über die binäre Mischgasreibung besitzen. Es war deshalb gegeben,

solche Versuchsergebnisse der Nachprüfung der Konstanten-
Formel zugrunde zu legen.

In den Tabellen I bis XI sind die Resultate verzeichnet. Die
Versuchspunkte sind rund, die berechneten Punkte viereckig
eingezeichnet. Die Versuchspunkte wurden durch eine Kurve miteinander

verbunden. Das Mischvolumen ist stets gleich 1 gesetzt, x ist
das Partialvolumen des ersten Gases; 1—x das Partialvolumen

Dann erhält Gleichung (39) die einfache Form

(46)

t]m Vi X + %•(!— X) (45)
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des zweiten Gases. Die spezifischen Gewichte, bezogen auf Luft
1, sind den Deutschen Ingenieur-Normen, DIN 1871, entnommen.

Als Basispunkt ist derjenige Punkt der experimentellen Kurve
bezeichnet, der bei der Berechnung als bekannt vorausgesetzt wird.
Mit den Abszissen und Ordinatenwerten dieses Basispunktes sind
nach den Gleichungen (43) und (44) die Abkürzungen p und q
ermittelt und damit nach (42) die positiven Werte von A und dann
nach (45) B bestimmt worden. Damit ist dann mit (30) für die
dem jeweiligen Versuch entsprechenden Abszissen der Wert
berechnet worden.

Wie die Tabellen I bis XI zeigen, liegen die Differenzen zwischen
den so ermittelten Werten von rjm und den Versuchswerten innerhalb
der Fehlergrenzen, mit denen die Versuche wohl ausgeführt werden
konnten. Unzulässige Abweichungen zwischen Versuch und Berechnung

zeigen sich nur in Tabelle VII bei der Mischung H2—02. Eine

experimentelle Nachprüfung wäre hier wünschenswert; Endgültiges

kann in diesem Fall noch nicht ausgesagt werden. Es ist aber
sonst bemerkenswert, wie gut selbst so eigentümliche Viskositätskurven,

wie sie zum Beispiel bei der Mischung Wasserstoff—Propan
(Tabelle IV) auftreten, die Konstanten-Formel bestätigen.

KARL F. HERZFELD8) hat eine ähnliche Formel9) wie (38)
mathematisch abgeleitet. Da sich aber seine Ableitung einer
Weglängenformel bedient, in welcher sich offensichtlich ein Druckfeh-
der im Fusszeichen der Molekülmasse eingeschlichen hat10), ist der
Beweis nicht haltbar. Ferner hat HERZFELD in den beiden unter

Anmerkung8) angeführten Literaturstellen der Konstanten-Formel
die Gültigkeit abgesprochen. Im Gegensatz dazu habe ich jedoch
eine gute Uebereinstimmung zwischen Theorie und Experiment
erhalten.

8) Müller-Pouillets Lehrbuch d. Phys., 3. Band, 11. Auflage (1925). K. F.
Herzfeld: Kinetische Theorie der Wärme, S. 68.
Hand- und Jahrbuch der Chem. Phys., Band 3, Teil 2, Abschnitt IV,
Artikel K. F. Herzfeld, S. 196 (1939).

9) Herzfeld rechnet mit Verhältnissen von Molekülmassen oder Molekulargewichten.

In Formel (38) sind spezifische Gewichte eingesetzt, was
unwesentlich ist.

10) Die benützte Formel für die freie Weglänge lautet mit den Bezeichnungen
Herzfelds in Müller-Pouillet, Lehrbuch d. Phys., 3. Bd., Seite 46

A"1 f • V2 Ni .dp + nN2. (d4d2)2.]/|Der fettgedruckte Index des im Wurzelzeichen unter dem Bruchstrich
stehenden m sollte nicht eine 1, sondern eine 2 sein. Siehe z. B. sinngemäss
Boltzmann, Gastheorie I, Seite 70, oder Geiger-Scheel, Handb. d. Phys.,
Bd. IX, Artikel Jaeger, S. 399 (1926).
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Und doch ist eine Ablehnung der Konstanten-Formel begreiflich,

wenn man ihr nur die Nachprüfung von KARL SCHMITT11)
zugrunde legt, die in der Literatur gerne zitiert wird. SCHMITT
hat nach der Methode der kleinsten Quadrate die damals zur
Verfügung stehenden Versuchsresultate der unter Prof. DORN am
Physikalischen Institut der Universität Halle ausgeführten Arbeiten
mit der SUTHERLAND-THIESENsehen Gleichung (30) verglichen.
Er fand dabei eine sehr gute Uebereinstimmung zwischen Versuch
und Gleichung; jedoch haben die von ihm gefundenen Konstanten
A und B ganz andere Werte als die von mir nach der Konstanten-
Formel berechneten Ergebnisse. Selbst wenn man berücksichtigt,
dass die von mir benützten und bereits genannten Heidelberger
Versuchsresultate von den ältern Hallensischen Werten gewisse
Abweichungen zeigen und dass auch die den verschieden aufgenommenen

Kurven zugrunde liegenden konstanten Temperaturen nicht
genau miteinander übereinstimmen, so genügen diese Abweichungen
noch nicht, um die Differenz zwischen den verschieden ermittelten
Konstanten A und B zu erklären. Das heisst aber, dass die Lösung
der SUTHERLAND-THIESEN sehen Gleichung bezüglich der
Konstanten A und B mehrdeutig ist. Immerhin sind noch weitere
genauere Nachprüfungen vorzusehen. Eine Zusammenstellung der
verschiedenen Werte zeigt Tabelle XII.

Bei einer so überaus komplizierten Erscheinung, wie es die

Misch-Viskosität darstellt, kann kaum eine bessere Uebereinstimmung

zwischen Theorie und Wirklichkeit erwartet werden, als es

in den Tabellen I bis XI nachgewiesen wird. Dies darf wohl nicht
mehr auf Zufälligkeiten zurückgeführt werden, sondern muss in

Gesetzmässigkeiten seinen Grund haben, welche in weiteren Arbeiten
noch aufgeklärt werden müssen.

Zusammenfassung.
1. Ist in der SUTHERLAND-THIESEN sehen Formel

m
|

m

x l—x
für ein bestimmtes Partialvolumen x des ersten Gases die
Mischviskosität rjm bekannt, so kann, unter Heranziehung der
aufgestellten Konstantenformel

") K. Schmitt, Ann. d. Physik. 30, 393, (1909).
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A _ % Si
B t}z' St

der Konstantenwert A als die positive Wurzel einer quadratischen
Gleichung berechnet werden. Damit ist, durch die Konstantenformel,

auch B bestimmt.
Berechnet man mit den so erhaltenen Werten A und B die

Viskositätskurve für verschiedene Mischungsverhältnisse, so

ergeben sich in 10 nachgerechneten Fällen gute Uebereinstim-

mungen mit den Heidelberger Versuchsresultaten.
Es ist also möglich, die Viskosität einer binären Gasmischung

vorauszuberechnen, wenn nur für ein bestimmtes Mischungsverhältnis

die Mischviskosität bekannt ist.

2. Die nach der aufgestellten Konstanten-Formel bestimmten
Werte A und B sind nicht die einzige Möglichkeit der
SUTHERLAND-THIESENschen Gleichung und damit der Wirklichkeit

zu genügen, da die von K. SCHMITT gefundenen Werte
ebenfalls eine befriedigende Lösung der Gleichung darstellen.
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Tabelle I

Misch-Viskosität der Isotherme 20° C
Wasserstoff - Ammoniak

Hs — NHS

Versuchspunkte nach Trautz u. Heberling, Anm. d. Phys. 10, 155 (1931)

0,2 0,¥ 0,6 0,8 1,0

v,'yolumenanteil an Hz

Vi Vns 877 • 10-7 P 1 Trautz und
Vt Vm, 982 • 10"7 P [ Heberling

51 :

52

sHs =0,0695
Snh„ 0,5967

Basispunkt:

x
i]m

0,7025
1087 • lO"7 P

DIN 1871

aus Versuch
ausgewählt

V ««-.7,6675, ^= 0,1304, L
Sl Vi si

0,4234,

p 0,3136 + 0,4562 0,7698

q -W859 " 7'6675 -5-4455

\—x

A 1,9801

B 0,2582

2,3613

Probe:

X

Versuch
l—*

06
X

ß=T^—
1—*

Vi
1 + 06 A

Vi
1 + ßB

VK • 107

beredinet
Vm • 107

Versuch
Differenz

°/o

1
• _ 877

0,8918 0,1213 8,2421 707,20 313,92 1021,12 1011 + 1,00

0,7761 0,2884 3,4662 558,24 518,23 1076,47 1072 + 0,41

0,7025 0,4234 2,3613 477,07 610,08 1087,15 1087 + 0,01

0,4823 1,0733 0,9316 280,62 791,61 1072,23 1080 — 0,72

0,2913 2,4328 0,4110 150,76 887,80 1038,56 1047 -0,80
0,0995 9,0502 0,1104 46,35 954,78 1001,13 1004 — 0,28

0 — — — — — 982 —
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Tabelle II

Misch -Viskosität der Isotherme 20° C

Helium - Argon
He — Ar

Versuchspunkte nach Trautz u. Binkele Ann. d. Phys. 5, 561, (1930)
Trautz u. Kipphan Ann. d. Phys. 2, 743, (1929)

Tj-107

2300

2200

2100

2000

1900

Hr^ \\\

„-„.-«TO 10-'e| £»0
Vi Vx,— 2211 • 10'7Pj Kipphan

Si sH. 0,1381 1

s2 sAr 1,3799 } DIN 1871

0,2 0> 0,6 0.8 1,0

y, •Ho/umenantei! an He

He Basispunkt:

x 0,5966
2304 • 10 7p}

Aus Versuch
ausgewählt

^ 8,9164, 0,1121, —Vi «l Vi «2 *

p 0,2435 + 0,2125 0,4560

2304 - 4184
2304

8,9164 7,2755

0,6761, ^ 1,4789

A 2,4789

B 0,2778

Probe:

*
Versuch

1 - X
of

X 0= l—x
Vi Vt Vm • 10'

beredinet
9. 107

Versudi
Differenz

°/o1 + of A 1 +/JB

1

0,4906
0,3820
0,3405

0

1,0383
1,6178

1,9368

0,9630
0,6181

0,5163

552,07
393,78
340,10

1744,37
1887,00
1933,70

2296,44
2280,78
2273,80

1973

2296
2291
2278
2211

+ 0,01

— 0,48

-0,18

0,3660 1,7322 0,5773 372,69 1905,54 2278,23 2286 — 0,34
0,5966 0,6761 1,4789 737,32 1567,19 2304,51 2304 + 0,02
0,7565 0,3218 3,1067 1097,51 1186,79 2284,30 2270 + 0,63
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Tabelle III

Misch-Viskosität der Isotherme 20° C

Wasserstoff - Methan
H, - CH,

Versuchspunkte nach Max Trautz und Karl Georg Sorg,
Ann. d. Phys. 10, 81 (1931)

T)-107

I
'

1050

1000

950

900

850

k
s

\\ \Nx\
HZ

ijt »;Hj 876 • 10-7P Trautz und

1ch4= 1087 10'7P f Sorg

0,2 0ß Ofi Oß IQ

r, •VotumenanteH an Hz

Basispunkt:

x =0,4855
Ijm 1098 -10-7 P

aus Versuch
ausgewählt

*-£?- 6,4297, nUL
rji Si m St

-- 0,1555, — 1,0597, *

p 0,0688 + 0,1907 0,2595

q 1098! rös
963

" 6,4297 - 5,0653

1 —x

A 2,1246

B 0,3303

0,9436

Probe:

X

Versuch
_l-x—

X 1—x
ii

1 + <xA 1 + ßß
Vm 107

berechnet
Ilm 107

Versuch
Differenz

°/o

1 __ 876

0,9223 0,0842 11,8700 743,12 220,90 964,02 955 + 0,94

0,6022 0,6605 1,5138 364,51 724,66 1089,17 1086 + 0,29

0,4855 1,0597 0,9436 269,42 828,75 1098,17 1098 + 0,01

0,2808 2,5612 0,3904 135,99 962,88 1098,87 1099 -0,01
0 1087
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Tabelle IV

Misch-Viskosität der Isotherme 26,9° C

Wasserstoff - Propan
H, - C3 H8

Versuchspunkte nach M. Trautz und F. Kurz,
Ann. d. Phys. 9, 992 (1931)

Tj-101

1000

950

900

850

800

/A
/ / \

C)H, / /
IS-

Vl =Vh =891 • 10'7P I Trautz
> und

rji — Ic.h. — 817 • 10* P I Kurz

s> Sh2 0,0695
A? sä sc h 1,562

DIN 1871

0,2 0k Ofi 0,8 10

r,1Ho/umenanto! an Hz

Basispunkt:

x 0,5818
|

Aus Versuch
924 • 10'7P ausgewählt

rh s* 24 5104 ^ Sl

f]2 s, ' ' rjt s2
0,0407, * 0,7188, 1,3912

p 2,0419 + 0,0498 2,0917

924-1708
Q

924
24,5104 - 20,7923

1 —x

A 3,6324

B 0,1478

Probe

*
Versuch

1

X
ß —

l—*
Ii

1 + «A
Ii

l+^B
Vm 10'

beredinet
>?m 10'

Versudi
Differenz

%

1 —, — — — — 891 —
0,9225 0,0840 11,9032 682,70 296,10 978,8 970 + 0,90
0,8750 0,1428 7,0000 586,68 401,55 988,23 987 + 0,12

0,7882 0,2687 3,7214 450,91 527,09 978,00 985 - 0,71

0,5818 0,7188 1,3912 246,75 677,67 924,42 924 + 0,04

0,3704 1,6997 0,5883 124,20 751,67 875,87 873,6 + 0,25

0,1821 4.4914 0,2226 51,45 790,97 842,42 836 + 0,76
0 — — — — — 817 —
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Tabelle V

Misch-Viskosität der Isotherme 19°C
Wasserstoff - Stickstoff

Versuchspunkte nach Trautz u. Baumann, Ann. d. Phys. 2, 733 (1929)

fj-107

1600

MO

1200

1000

600

Ni

\
v \

Hz

0,2 0,V- 0,6 Oß 10

y, • l/olumenanteil art Hi

Vl 874 • 10-7 P

r)2 »7m2 1739 • 10'7P

Sj 0,0695
52 — Sfgg - 0,9673

Basispunkt:

x — 0,5053
1598 • 10'7 P

Trautz und
Baumann

DIN 1871

Aus Versuch
ausgewählt

6,9950,
St

0,1429,
1 * 0,9790,

ri2 s, m s2 x 1 — x
1,0214

p — 0,6040 + 0,4627 0,1413

1598 — 2613
9 1598

6,9950 - 4,4430

A 2,1796
B 0,3114

Probe:

X
Versuch

l-xc*=
X

ß **T^—
' \—x

Vi
1 + <xA

Vi
1 + ßB

10'
beredinet

Vm 10'
Versuch

Differenz
°/o

1 _ 874

0,8077 0,2380 4,2002 575,49 753,49 1328,98 1305 + 1,83

0,6672 0,4988 2,0048 418,76 1070,68 1489,44 1472 + 1,18

0,5053 0,9790 1,0214 278,89 1319,42 1598,31 1598 0,00

0,2021 3,9480 0,2532 90,99 1611,97 1702,96 1703 0,00

0 " 1739



370
Tabelle VI

M i s c h - V i s k o s i t ä t der Isotherme 19°C
Wasserstoff - Kohlenoxyd

Ht —CO

Versuchspunkte nach M. Trautz und Baumann,
Anm. d. Phys. 2, 733 (1929)

% »;Hj 874 10'7P 1 Trautz und

Vt — 1745 • 10'7P J Baumann

0,2 0,k 0.6 OS 1.0

v,• /o/umenan/ei! an Hz

Si s„2 0,0695
Ss Sco 0,9669

Basispunkt:

x 0,4755

ij„ 1610 • 10-7 P

DIN 1871

Aus Versuch
ausgewählt

nx 52 - 6,9680, 0,1435,
1

1,1030,
m «i % s2

0,9065

p — 0,6440 + 0,4144 — 0,2296

1610 — 2619
1610

• 6,9680 —4,3669

A 2,2076
B 0,3167

Probe:

*
Versudi

l-xw - X l—*
Vi

1 + atA
Vi

1 + ßB
Vm-10'

beredinet
Vm 10'

Versudi
Differenz

°/o

1

0,6947 0,4394 2,2754 443,65 1014,18 1457,83

874

1449 + 0,60

0,4755 1,1030 0,9065 254,44 1355,86 1610,30 1610 + 0,01

0,4096 1,4414 0,6937 208,99 1430,79 1639,78 1651 — 0,67

0,1927 4,1894 0,2386 85,28 1622,50 1707,78 1717 — 0,53

0 1745
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Tabelle VIT

Misch-Viskosität der Isotherme 26,9° C

Wasserstoff - Sauerstoff
H, -O,

Versuchspunkte nach Max Trautz und Albert Meister,
Ann. d. Phys. 7, 414, (1930)

Tj-107

Vi V»2~ 889 • 10'7P l Trautz und

Vi Voa 2057

Si sHj 0,0695
«2 s0 1,1053

1900

ieoo

1300

1000

700

• 10-7P 1

10 1 P) Meister

| DIN 1871

Hi

0.2 OJ* 0,6 Oß 1,0

y, •Vo/umenantei! an Hz

Basispunkt:

x 0,6030

r]m 1784 10-7P
Aus Versuch
ausgewählt

Vi st
Vt Si

6,8732,
Vt st

Vi s2
0,1454, 0,6583.

1 —*
1,5188

p — 0,6922 + 0,7619 0,0697

1784 — 2946
q

1784
6,8732 — 4,4768

A 2,0813
B 0,3026

Probe:

X
Versuch

1-*
of

X
ß l — x

Vi Vi Vm-W
beredinet

)?m -10'
Versudi

Differenz
%1 + &A 1 + ßB

1 _ 889

0,9586 0,0434 23,1545 815,82 256,90 1072,72 1053 + 1,87

0,8633 0,1583 6,3152 668,72 706,65 1375,37 1314 + 4,66
0,7808 0,2807 3,5620 561,16 989,98 1551,14 1494 + 3,82
0,6030 0,6583 1,5188 375,09 1409,38 1784,47 1784 + 0,02
0,3945 1,5358 0,6515 211,84 1718,31 1930,15 1925 + 0,26
0,1835 4,4495 0,2247 86,64 1924,33 2010,97 2019 — 0,39

0 — — — — — 2057 —
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Tabelle VIIT

Misch-Viskosität der Isotherme 20° C

Wasserstoff - Helium
Ho - He

Versuchspunkte nach Trautz u. Binkele Ann. d. Phys. 5, 561 (1930)
Trautz u. Kipphan Ann. d. Phys. 2, 743, (1929)

V-107

T rautz
Binkele
Kipphan

Vi Vh, :

V2 VH.

875

1974

• 10'7P)
• 10'7Pj

S1

SB SH, :

0,0695
0,1381

DIN 1871

Hz

Basispunkt:

x 0,6069

tj„ 1252 lO'7 P
Aus Versuch
ausgewählt

0.2 0,6 0.8 10

r, • Ifolumenanteil an H2

^ 0,8807,
Vi Si Vi s'i

1,1353,
1

0,6477,
x

r-^c 6,5438

p — 0,3288 + 0,4649

1252 - 2849
1252

0,1361

0,8807 -1,1233
A
B

0,9940
=1,1284

Probe:

X

Versuch
1—*

tx
X

"CO II TU
X1

-J>i—.
1 + <xÄ

Vi
i + ßB

Vm -10'
beredinet

Vm ' 107

Versudi
Differenz

"l>

1 875

0,6918 0,4455 2,2446 606,45 558,76 1165,21 1166 — 0,06
0,6069 0,6477 1,5438 532,30 719,91 1252,21 1252 + 0,01

0,5520 0,8115 1,2321 484,33 825,83 1310,16 1317 -0,51
0 — — — — — 1974 —

0,2163 3,6232 0,2759 190,15 1505,37 1695,52 1694 + 0,08
0,5130 0,9493 1,0533 450,19 901,98 1352,17 1351 + 0,08
0,8040 0,2437 4,1020 704,39 350,70 1055,09 1061 — 0,55
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Tabelle IX

Misch-Viskosität der Isotherme 26,9" C
Kohlensäure - Propan

COs-C3H8

Versuchspunkte nach Max Trautz u. Friedrich Kurz,
Ann. d. Phys. 9, 992 (1931)

T)-107

1600

MO

1200

1000

800

Ii Ico, 1493 10"7 P 1 Trautz und
V2 1c8h8 817 10'7P J Kurz

COz c._Sl — SCo2

^2 — Sc0H0

: 1,5291
: 1,562

0.2 Oß 0.6 0,8 1,0

v1 • t/ofumenantei/ on CO2

Basispunkt:

x =0,5776
rjm 1174 10'7P

DIN 1871

Aus Versuch
ausgewählt

m S"
1,8667, ---— 0,5356,

Vi H rji s2 --- 0,7313,
x 1 — x

1,3674

p 0,4151 — 0,3715 0,0436

1174 — 2310
1174

1,8667 1,8063

A 1,3223
B 0,7082

Probe:

X
Versuch

1-*
(X

X
ß r^~

1— X
Vi

1 + »A
Vi

1+ßB
Vm • 10'

berechnet
Vm • 107

Versuch
Differenz

%

1 1493

0,7883 0,2685 3,7236 1101,84 224,63 1326,47 1326 + 0,03

0,5776 0,7313 1,3674 759,06 415,07 1174,13 1174 + 0,01

0,4025 1,4844 0,6736 503,91 553,14 1057,05 1058 — 0,08

0,1893 4,2826 0,2334 224,07 701,16 925,23 926,4 — 0,12

0 817
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Tabelle X

Misch-Viskosität der Isotherme 26,9° C

Stickstoff - Sauerstoff
Ns—O,

Versuchspunkte nach M. Trautz und A. Meister

Ann. d. Phys. 7, 409 (1930)
T)t07

\
'

2100

1900

1800

1700

0z

/

s
n2

m m 1781 10-7 P 1 Trautz und

r/2 rjot 2057 10'7 P >

0,2 0,1 0,6 0,8 1,0

Vt '/o/umenanfei! an N2

s'i SN2 — 0,9673

.s'g S02 1,1053

Basispunkt:

x =0,5893
Vm 1894 IQ'7 P

Meister

DIN 1871

Aus Versuch

ausgewählt

m s»

% «1
0,9893, Vi Sl

Vi «2
1,0107, 0,6969,

-0,0592 + 0,0856

1894—3838
1894

0,0264

• 0,9893 -1,0154

1-* 1,4348

A 1,0372

B 1,0482

Die Werte für A und für sind beide a 1, somit wird auch
Vi s2

ß ä 1. Die Kurve der Misch-Viskosität wird also nahezu eine

Gerade.
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Tabelle XI

Misch-Viskosität der Isotherme 20° C

Stickstoff - Stickoxyd
N2—NO

Versuchspunkte nach Max Trautz und Ernst Gabriel,

Ann. d. Phys. 11, 606 (1931)

n-107

I

1900

1800

1700

1600

NO

A\z

Vi rm 1747 • 10'7 P

Vi »Mo 1882 • 10

r7P 1

i-7 P I

0,2 0.4 0,6 0,8 i0
ft 'tb/umenanfei! an N%

Sj sN2 0,9673

s2 — 5mo— 1,0367

Basispunkt:

x =0,4163
Vm 1827 10-7 P

Trautz und

Gabriel

DIN 1871

Aus Versuch

ausgewählt

Vi Sj

Vt si
0,9948,

Vi Si

Vi s2
1,0051,

1—*
1,4021,

l — x
0,7132

p —0,0419 + 0,0312 -0,0107
1827—3629

Q
1827

0,9948 —0,9811

A 0,9958

B 1,0008

Die Werte für A und für ^ sind beide 1, somit wird auch
Vi St

Sgl. Die Kurve der Misch-Viskosität wird also nahezu eine

Gerade.
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Tabelle XII

Gegenüberstellung der verschiedenen ermittelten Konstanten A und B

Mischung
Versuchstemperatur

Nach Schmitt

Versuchstemperatur

Nach Sdiudel

Tabelle

Ar—He

N2-H2

o2-h2

o2-n2

15° C

15° C

15° C

15°C

0,343

0,23

0,373

0,456

2,032

3,57

1,362

2,443

20 °C

19° C

26,9 OC

26,9 "C

0,2778

0,3114

0,3026

1,0482

2,4789

2,1796

2,0813

1,0372

VII

X

Wird in Gleichung (30) Gas 1 als Gas 2 bezeichnet und Gas 2

als Gas 1, so ist statt x der Wert (1-x) zu setzen. Ferner sind

die Konstanten A und B miteinander zu vertauschen. Die

Reihenfolge der Mischgaskomponenten ist in obiger Tabelle nach

K. Schmidt, Ann. d. Phys. 30, 393 (1909), angeschrieben. Diese

Reihenfolge ist gerade umgekehrt als in unsern Tabellen II, V,

VII und X. Deshalb sind in obiger Tabelle XII, zum Vergleich mit

den Schmittschen Konstanten die Werte A und B gegenüber

den Werten der vorangehenden Tabellen vertauscht.
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