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WERNER HURLIMANN, Ziirich

Case Study on the optimality of reinsurance contracts

1. Introduction

A main goal of reinsurance consists to protect an insurance company, hereafter
called the cedent, against large losses caused either by excessively large claims or
by a large number of claims. A reinsurance contract determines the rules according
to which premium payments and uncarned premium reserves, as well as claim pay-
ments, case reserves and IBNR reserves are split between the ceding and the rein-
surance companies. A fundamental problem is to determine conditions for which a
reinsurance contract (that operates within a specified insurance risk model) pro-
vides a less risky position to the reinsurer and/or to the cedent. It is therefore
important to develop methods that compare the riskiness of different reinsurance
contracts and that select optimal ones. An outline of the case study follows.
Section 2 recalls the definitions of the basic reinsurance contracts, namely quota
share, surplus, excess-of-loss and stop-loss reinsurance and some variants of them.,
We assume that the aggregate claims random variable is compound Poisson distri-
buted.

[n recent years, the analysis of Glineur and Walhin(2006) as well as Lampaert
and Walhin(2005) about the optimality of reinsurance within the class of propor-
tional reinsurance contracts has led to quite interesting results. Our purpose is the
extension of this analysis to a broader class of reinsurance contracts including
some basic non-proportional reinsurance contracts. The optimization of reinsu-
rance is based on the following two accepted criteria:

o the de Finetti criterion, introduced in de Finetti(1940), which consists of
minimizing the variance of the retained risk for fixed expected retained profit
® the RORAC criterion, which maximizes the return on risk adjusted capital

of the retained risk

Without providing a general proof, the detailed analytical and numerical compari-
sons made in Section 3 and 4 lead us to the following main observations:

a) For fixed expected retained aggregate claims, non-proportional reinsurance is
more efficient than proportional reinsurance as measured in terms of the reduction
in the coefficient of variation of the retained aggregate claims. Moreover, for hig-
her fixed expected retained aggregate claims (variable) excess-of-loss may be
more efficient than stop-loss, which contradicts the traditional belief that stop-loss
reinsurance is an optimal form (e.g. Borch(1960), Kahn(1961), Arrow(1963/74),
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Ohlin(1969), Pesonen(1983), Hesselager(1993), Wang(1995)). However, note that
the known proofs of stop-loss optimality assume alternative reinsurance forms,
which are defined in terms of aggregate losses and not in terms of individual los-
ses as for excess-of-loss.

b) For constant expected retained profit and fixed reinsurance loading factor, the
same comparative results hold when maximizing the RORAC measure within an
approximate Gamma distributed model of the retained aggregate claims.

The Appendix offers inequalities about the loading factors of the used expected
value premium principle, which turns out to be very useful in the discussion of
the numerical examples.

2.  Basic Reinsurance Contract Types

The basic reinsurance forms are quota share, surplus, excess-of-loss and stop-loss
contracts and variants of them like variable quota-share, table of lines surplus,
variable excess-of-loss and variable stop-loss. Quota-share and stop-loss provide
some protection against frequency risk if the number of claims is large while sur-
plus and excess-of-loss may protect against severity risk if the claim sizes are lar-
ge. Extreme value reinsurance, which is not considered, is discussed in papers
from Ammeter(1964) and Thépaut(1950) to Silvestrov et al.(2006).

We assume that the aggregate claims of an insurance risk portfolio over some
fixed time period can be represented by a compound Poisson random variable

N

S = ZXh (2.1)

where the number of claims N is Poisson (A) distributed, the non-negative claim
sizes X!s are independent, identically distributed and independent from N. The
identical random variables are denoted X =, X;, ¢ =1,...,N. The reinsured
aggregates claims are denoted by S, while the retained aggregate claims of the
ceding company are denoted by S. and one has the risk decomposition
S = 8S.+ S,. A description follows for each basic reinsurance contract.

Quota Share

The cession rate is the same across the whole insurance portfolio. For each indivi-
dual claim, the reinsurer covers a fixed proportion g, called quota rate. One has
the expressions

Se=(1-¢q)-S, S =q-8. (2.2)
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Surplus

The cession rate is a function of both the sum insured S7; associated to the policy
hit by the i-th individual claim and a quantity called the line of retention. The line
£ is the maximal amount that the insurer is willing to pay in case of a loss (for
each policy in the portfolio). To ensure that the maximal loss will never exceed

the line, the retention rate must be equal to

I
in|1,— 0, 1]. 2.3
mm( ,SL) e [0,1] (2.3)

The reason for the min operator is that when the sum insured is smaller than the
line, i.e. when R exceeds S1;, the retention rate has to be equal to 1. The cession
rate must then be defined as

1 — min 'l,—fz- =[1- {ﬁ 3 (2.4)
;S ] LS[i e

where (), = max(0, x). The risk decomposition of a surplus reinsurance depends

on the individual claims as follows:

N N
J L [])' s T [? (> ¢
Dy =2 E 111111([,—5-,—1-,—) v Xiy Sp= E (l - Sl,:) ,} > 3 (2.5)

=1 i i=1

Excess-of-loss reinsurance

An excess-of-loss or XL contract is determined by the deductible d > (). The rein-
surer pays that part of each claim that exceeds the deductible. The risk decom-
position between the ceding company and the reinsurer is determined by the for-
mulas:

N N

S, = Z min(X;,d), S, = Z (K~ (2.6)

=1 =1

Stop-loss reinsurance
A stop-loss or SL contract is determined by the priority [, > 0. The reinsurer
pays any part of the incurred aggregate claims that exceeds the priority. The risk
decomposition reads

8. =min(8. L), & =(58—1),. (2.7)
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Variable Quota Share

[n a variable quota share the portfolio is partitioned into several segments for
which an individual cession rate applies. Suppose the portfolio is divided into m
segments and in each segment a collective model of risk theory applies such that
the aggregate claims in the segments and portfolio are given by

N;
7 m
Si=% Xpgz J= LBy =Y 8 (2.8)
i=1 j=1
The risk decomposition between cedent and reinsurer is then given by
m m
;S'(: == Z (l — qj) . S'ja 5',. roso Z (I'J D S'J (2.9)
=1 =1

Table of Lines Surplus

[n a table of lines surplus the portfolio is partitioned into segments for which the
same line applies. Under the segmentation (2.8), assume that the sum insured SLj; is
associated to the policy hit by the i-th individual claim Xj; in the j-th segment.
Then one has the decomposition

m . m N ]?
ZZ“( i) K =33 (1-51) X (2.10)

j=1 i=1

Variable Excess-of-loss

Under the segmentation (2.8) and a deductible d; for the j-th segment, one has

m / m N
Z min X-ﬂ, d S, = Z Z (/Yj,; - dj),#- (211)
j=1 i=1 J=1 =1

Variable Stop-loss

Under the segmentation (2.8) and a priority L; for the j-th segment, one has

m m

By = Z min(Sj, Lj), 5 = Z (SJ- - L_,—)VF. (2.12)
=1

j=1

Remark 2.1. There exists a huge of possible variations and combinations of the
above basic contract types, whose optimal properties are not analyzed in the pre-
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sent case study. Among them one may mention excess-of-loss and stop-loss layer
contracts, excess-of-loss layers with aggregate layers, chains of excess-of-loss lay-
ers with stop-loss limits, combination of quota share and surplus with excess-of-
loss, linear combination of quota share and stop-loss, linear combination of stop-
loss in two layers, truncated excess-of-loss and stop-loss, and so on.

3 Optimal Reinsurance

[t is well-known from the literature that non-proportional reinsurance like excess-
of-loss and stop-loss covers are more efficient than proportional covers like quota
share and surplus. Despite this fact, there exist numerous reasons for the persis-
tence of proportional reinsurance in practice like moral hazard behavior after
stop-loss reinsurance, pricing difficulties and high reinsurance loadings in non-
proportional reinsurance. Recently, Glineur and Walhin(2006) as well as Lampa-
ert and Walhin(2005) have considered the optimality of reinsurance within the
class of proportional reinsurance contracts. We extend this analysis to a broader
class including non-proportional reinsurance. Optimization is performed with
respect to the de Finetti and RORAC criteria and the expected value principle for
premium calculation. The mathematical formulation requires the following quan-
tities and definitions:

S, Sp, Se: aggregate claims, reinsured claims, retained claims of cedent
= E[S], u, = E[S,], p. = E[S.]: expected values of S, 5;, S,
By O, loading factors of the reinsurer and cedent

P=1+0)u P.=(1+86)u, P.=P—PF: premium, reinsured premium,
retained premium

(/. = P.— S, retained profit of the cedent
VaR,[X] : value-at-risk of the random variable X to the confidence level o

CVaR,[X] = E[X|X > VaR,[X]]: conditional value-at-risk of the random
variable X (with continuous distribution function) to the confidence level «

RAC,[G.] = CVaR,[—G.] = CVaR,[S:] — P.: risk adjusted capital of the

cedent to the confidence level
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BlG, Pe—pic ; : . .
RORAC,|G.] = S _ ¢ veturn on risk adjusted capital of the cedent
[I)fl(/‘u[(r’(-] H“l(a‘(}:[(r'(;]
The considered optimization criteria translate as follows.

de Finetti criterion

0% = Var[S,] = min . under the constraint E[G | = (0, — 0,)p + Orp1. = const

RORAC criterion
RORAC,|G.] = max. under the constraints E[G.] = const and 0, = const
For each basic reinsurance contract type considered in Section 2, we list below

the required formulas and model assumptions under which these optimization cri-
teria are applied.

Quota Share

E|Ge] — (0 — 0:)pp  Oep — E[G
0,1t - 0,1

g=1- € [0, 1] (3.1)

Surplus

. R . ; . :
We assume that the ratios 7, = —, 4 = 1,..., N, are independent and identically

o Sl . :
log-normally distributed random’variables 7; =4 7 that have location and scale
parameters /i, o, such that

w=E[(l-7),]=% (”’f) ¢’ o D( + ar) (3.2)

o o,
! Iz |“_l
WQ’T:E[(I—T) J——D('LT)—Q " D( +U7~)
o; o
1 urted) (“T + 20 ) (3.3)
o

with ®(z) = 1 — ®(z), ®(x) the standard normal distribution. In practice, this
assumption is justified by the fact that the line of surplus /2 and the variable insu-
red sums S7; are known and consequently it is possible to estimate ji,, o, from
the equations



77

Ly 2
TR] il TR (a2 R .
L{S[J e g TR vu:[S[J ‘-(n ) L[S[J . (3.4)

The (optimal) mean surplus cession coincides with the (optimal) quota cession

I (]

: 1. 3.5
T ™ € [0,1] (3.5)

Variable Quota Share

According to de Finetti(1940) (see also Lampaert and Walhin(2005)) the optimal
quota share rates are given by (notations of Section 2)

1 - q;j = lIliIl{fgr'E-l) 1}‘ pi = E[SJ]’ (I‘j = V(l’i"[SjJ, j=1,...,m,
= ;

J
(3.6)
where £ solves the equation F[G.] = const.
Table of Lines Surplus
Similarly to the preceding result one has
; 1) - -
| = arpy = mm{f(),.‘, l}, F=1,.. .y, (3.7)
J 012_

where ¢ solves the equation F|[G.| = const.

Excess-of-Loss

For the collective model of risk theory (2.1) and an excess-of-loss reinsurance
with deductible ¢, the mean and variance of the retained aggregate claims are
given by

e = pie(d) = X - E[min(X, d)] = X - (px — 7x(d))

: ; , ‘ , (3.8)
of =a*(d) =\ E [min(X\ (i)z] =\ (Wk + 0% — 2dmx(d) - o, x(d))
with
ux = E[X], 0% =Var(X], nx(d)=E[(X-d),],
(3.9)

mﬂ@:ﬁ“X—@ﬂ.

The (optimal) deductible is implicit solution of the equation
(0. — 0. )t + O0-p0(d) = const.
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Stop-Loss

Similarly to excess-of-loss one has for an arbitrary aggregate claims random
variable S:

e = phe(L) = E[min(S, L)] = pg — wg(L)
os =g(L) = [mm (S,L) ] E[min(S, L))?

o | (3.10)
- :U'LZS’ + o‘b». — 2Lmg(d) — mog(L) — (s — WS’(L))J
=05 — 2(L — ps +ws(L)) — o5(L)
with
us = ElS], o% =Varl8], ms(L)=E[(S-1L),],
ma,s(L) = E[(S - L)i]’ 0§(L) = mys(L) - ms(L)*. (3.11)

The (optimal) deductible is implicit solution of the equation
(9(,‘ - 0‘1‘),“* + 01',“(:([/) = C()’TLSt.

Variable Excess-of-Loss

In case a portfolio is divided into m segments, each with variable excess-of-loss
deductible d;, j=1,...,m, the mean and variance of the retained aggregate
claims are given by

e = e (C[[, e lm) = Z /\j : ,E[IIlirl(Xj, CZJ)J = Z /\j i (JLLj — Wj(d.’j))
j=1 j=1

02 = o (dy,. .., dy) = Z’\J . E[min(X_,-, dj)g] (3.12)
Jj=1

- Z Aj- (pf- + or:,‘? — 2d;m; ((lj) — My 4 (dj))
T
with
,LLJ':E[XJ‘}, O'§ = VCL?’[XJ‘], Tl'j(dj) :E[(Xj—dj)#},
m,i(dj) = E[(Xj - dj)i]- (3.13)

To get the optimal deductibles according to the de Finetti criterion, we use the
Lagrange function

(I)(dl) B ) d’:m 'f) = Ug(db EERE dm) - E ' ((0(: - 91')# = H:',U(:(dl: LHE m) F[C D
(3.13)
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The optimal parameters solve the first order conditions
JP oP

O o, 0, d=1,.:.q9m o€ (3.14)
Using the relationships
(‘)ﬂ'gu,‘ ((I!J) ()'ﬂ'J, (d ) &
o PN O e . i 1 - I’ l ] ) t}-.l 0
ad, (), =5 =L Eild)] (3.15)

where F(d;) = P(X; < d;) denotes the probability distribution of the random
variable X, one obtains
®; = M Fy(d;) - (2d; — €6,) =0, j=1,..,m, (3.16)

hence the optimal deductibles
l .
dy = 556’.,. =d, 3= 1.5, d0 (3.17)

are the same in cach segment. The obtained unique deductible d is solution of the
implicit equation

m

0. —60.)u+0, - Z Aje (s — 7;(d)) = const. (3.18)
=1

Variable Stop-Loss

Similarly to the variable excess-of-loss one has for arbitrary (5,...,S,,) the
expressions

I m

e = Pl Bitin ¢ s 4 5.0 ) = Z E [mm S, L Z (;tc, - 7r5 L ))
J=1

=Ly L) =Y E[min(sj, L,,.)Q] ey L) (3.19)
j=1

m

‘ ; 2
= E (ué._ + (IZ5 - 2Lj7T,5'J.(LJ') = WQ,SJ (LJ‘)) - ;L,-(L[, iy Lm)
j=1 4 4
Proceeding as above in the excess-of-loss case, one shows that the optimal priorities

Li= p(Li,...,Ln)+ 50 =0 L Fem ] ne s O (3.20)
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are the same in each segment. The obtained unique priority [ is solution of the
implicit equation

m

(6, — 0 )+ 6, - Z (,u,gj - W,ggj(L)) = const. (3.21)
=1 '

To simplity calculations and for the ease of illustration, we use the following
insurance risk models and mention that similar results can be obtained for any
other risk models. For excess-of-loss, variable excess-of-loss, we use a lognormal
claim size distribution with parameters m;, s; such that

In{d;) — m; — s2 ) L
.Ltf—frj(d,;)—Mj-fb(n((j) ' SJ) +dj'<b(w)

5 5j
. ; : ; In(d;) — m; — 252
,uj?' + rrj — 2dm;(d;) — mp(d;) = (,uj + aj-) - P n(d;) ‘:LJ 5J)
. = (In(d;) —my |
N | e e
- ) (322)

For stop-loss and variable stop-loss, we use two different approximate aggregate
claims distributions, a lognormal model with parameters 115, o such that

ln(L;) — ju; — o Il LY —
—— (Lj) = s, ([)( Il( J) 125 Jj) + L;® (_n_(_J_G)_ﬂ)
' ' ' b

gj

. . ; ; In(L;) — p; — 207
,Ltg-j + CquJ_ — ~2L.}'W5'j (LJ') - W'Z,S‘J'(Lj) = (‘“f"j + (J‘é-})(b( ( J) J J)

Ty
()=

7j (3.23)

2
and a Gamma model with parameters «; = (;sz / O',s'j) , 5 =g 115, such that
ps; — s (L) = ps; - T(BiLgs o+ 1) + Ly - T(BiL55.05),

ps, + 05, = 2Lyms; (Ly) — mas; (Ly) = (Mg,J_ + a@j) - D(BiLy; 05+ 2) + L - T (85 Ly; ;)
(3.24)

with  ['(z; ) = r(l 3 ft‘“'"le“t(it the incomplete Gamma function and
_ X 0

['(z;0) =1-T'(z; ).

The use of a Gamma model of collective risk theory for sufficiently large portfo-
lios can be motivated and justified (e. g. Hiirlimann(2002)). Therefore, if the port-
folio of the cedent is not too small, the calculation of RAC and RORAC of the

retained risk is done in the unified framework of the Gamma model. For a confi-
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dence level o, mean retained risk p,. and coefficient of variation k. = o./p,. of

the retained risk S, one has the formulas
Vol 9] =1 (rv;
CVaRy[S:] = VaR,|S.] + l

= VaR,[S.] + —-i— {'[Lr. . f‘(
|l — o

| .
P) ' A«a Hes

= CE

k2.

4. Comparison Results

B[(S: - VafalS.),]

L .
1+ F) — VaR,[S.] I

s(VaRa[S] 1
3/{;3. *

K2 pie

For concrete calculations and comparison of optimal reinsurance we consider a
fictitious line of business divided into m = 4 segments, whose characteristics are
summarized in the following Table 4.1. The loading factor of the cedent is first

set at 0. = 10%.

Line of Business Total
segment 1 2 3 4 LoB
Input Data
Mean Claim Number 100 200 300 400 1000
Mean Claim Size 20 15 10 5 10
StDev Claim Size 200 120 100 40 102.7
Risk LoB
Mean Aggr Claims 2000 3000 3000 2000 10000
Variance Aggr Claims 4040000 2925000 3030000 650000 10645000
St. Dev. Aggr Claims 2010.0 1710.3 1740.7 806.2 3262.7
Coeff. of Variation 1.005 0.570 0.580 0.403 0.326
VaR(99 %) 9256.6 83223 8439.2 4334.2 19106.8
CVaR(99 %) 11273.5 9531.0 9681.3 4813.8 20882.7
Insurance Premium 2200 3300 3300 2200 11000
ReinsurancPremium 0 0 0 0 0
RORAC 22% 4.8 % 4.7 % 1.7 % 10.12 %
Expected Retaine Profit 200.0 300.0 300.0 200.0 1000.0

Table 4.1: Portfolio data and results without reinsurance, 0. = 10%
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Our comparison is based on a constant expected retained profit #[G.] = 700 and
varying loading factors &, € {7.5%, 857 %, 10%, 12%, 15%, 20 %, 30 %,
60 %}. With the assumption 6. = 10% this yields varying expected retained
aggregate claims. The percentages of the latter to the expected aggregate claims
lie in the set {60 %, 65 %, 70 %, 75 %, 80 %, 85 %, 90 %, 95 %}. Under these
assumptions, the optimal retentions are determined according to the de Finetti cri-
terion as described in Section 3 and listed at the end of the Section in Table 4.6.
The corresponding values of the coefficient of variation are displayed in Table
4.2 and the values of RORAC in Table 4.3.

Expected retained aggregate claims
60 % 65 % 70 % 75 % 80 % 85 % 90 % 95 %

Proportional

quota share 0.3263 03263 03263 0.3263 0.3263 0.3263 0.3263  0.3263
surplus 03288  0.3284 03281 0.3279 0.3277 03275 03274 0.3272
variable

quota share 0.2933  0.2933  0.2933  0.2970 0.3006  0.3039 0.3070 0.3136
table of lines

surplus 0.2952  0.2949 0.2945 0.2981 03015 03047 03076 03138

Non-Proportional

excess-of-loss 0.0792 0.0857 0.0931 0.1021  0.1130  0.1271  0.1467 0.1788
stop-loss model 1 0.0449  0.0613  0.0807 0.1034  0.1297 0.1605 0.1975  0.2447
stop-loss model 2 0.0640  0.0810 0.1004  0.1225 0.1476  0.1766  0.2110  0.2544
variable

excess-of-loss 0.0785 0.0849  0.0924 0.1012  0.1121  0.1261  0.1456  0.1775
variable stop-
loss model | 0.1050  0.1184 0.1333  0.1500 0.1688 0.1906 0.2171  0.2524
variable stop-
loss model 2 0.1404  0.1531  0.1670 0.1823  0.1994 0.2188 0.2420 0.2718

Table 4.2; minimum coefficient of variation for de Finetti's criterion



Reinsurance loading factor
7.5 % 8.57 % 10 % 12 % 15 % 20 % 30 % 60 %

Proportional

quota share 12.01 % 1098% 10.12% 938% 8.74% 8.19% 7.70% 7.26%
surplus 11.88 % 10.89% 10.04% 932% 8.69% 8.15% 7T.66% 7125%
variable

quota share 13.85% 12.65% 11.64% 10.61% 9.73% 898% 832% 7.64%

table of lines
surplus 13.74 % 1256% 11.58% 10.56% 9.69% 8.94% 831% 7.63%

Non-Proportional

excess-of-loss 108.62%  7932% 60.17% 46.62% 36.45% 28.42% 21.74% 15.71%

stop-loss

mol:lel 1 1636.51% 169.56 % 77.71 % 45.68% 29.87% 20.66% 14.70% 10.50%
stop-loss

model 2 187.27%  88.47% 53.07% 3535% 2493% 18.19% 13.49% 9.99%
variable

excess-of-loss 110.68%  80.61% 61.05% 47.24% 36.90 % 28.74 % 21.97 % 15.86 %
variable stop-

loss model 1 62.70%  4545% 3423% 2645% 20.77% 16.45% 13.01% 10.09 %
variable stop-

loss model 2 39.10%  30.89% 24.84% 2024% 16.64% 13.73% 11.31% 9.18%

Table 4.3; maximum RORAC for de Finetti's criterion, 8. = 10%

Besides the main facts a) and b) mentioned in the introduction, additional obser-
vations are made:

a) For proportional reinsurance the minimum coefficient of variation and the
maximum RORAC are here attained for the variable quota share. As shown
recently by Glineur and Walhin(2006) this is however not a general property of
proportional reinsurance.

b) Appendix A shows that for a normal distribution quota share reduces the loss
probability if and only if 6, < .. Table 4.3 shows that quota share increases
RORAC if and only if 6, < 6,.. However, the last property does not hold for the
“optimal” variable quota share: with 6, = 12% > 6. = 10% RORAC is higher
than without reinsurance (10.61 % compared to 10.12 %).

¢) For non-proportional reinsurance the minimum coefficient of variation and the
maximum RORAC are attained either for stop-loss or (variable) excess-of-loss.
For 6, < 6. the stop-loss model | with lognormal retained aggregate claims is
more efficient than (variable) excess-of-loss while for 6, > 6. the stop-loss
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model 2 with Gamma retained aggregate claims is less efficient than (variable)
excess-of-loss. However, in view of the Appendix, the considered non-proportio-
nal contracts are likely to be available on the reinsurance market only if 6, > 0.
This means that (variable) excess-of-loss is more efficient than stop-loss for the
Gamma model and contradicts the traditional belief as already mentioned in the
introduction.

d) There is a small region of parameters 0, > 0., where the stop-loss model 1 is
more efficient' than the (variable) excess-of-loss. This example illustrates clearly
the fact that optimality of reinsurance also depends on the chosen insurance risk
models. Therefore the choice of optimal reinsurance is subject to “model risk”.

e) The optimal variable excess-of-loss with constant deductibles is only slightly
more efficient than excess-of-loss and the difference in deductibles is rather insig-
nificant.

f) The variable stop-loss is always significantly less efficient than stop-loss and
cannot be recommended as optimal non-proportional reinsurance contract. Even
more, for the highest loading factors it produces a RORAC below the level with-
out reinsurance and should be avoided.

To get more insight into the strong dependence of optimal non-proportional rein-
surance upon the loading factors of the cedent and reinsurer, let us analyze the
situation for 6, = 8 % and varying ¢, € {10%, 11.43 %, 13.33 %, 16 %, 20 %,
26.67 %, 40 %, 80 %}. Portfolio data is summarized in Table 4.4. The results on
the minimum coefficient of variation and optimal retentions, which only depend
on the proportion of retained aggregate claims, coincide with Table 4.2 and Table
4.6 while the maximum RORAC, which depends on the choice of 0,, is found in
Table 4.5. For the chosen 0, values, no single proportional reinsurance improves
the original RORAC value of 7.93 % without reinsurance and proportional reinsu-
rance should be avoided. The comparative static conclusions for non-proportional
reinsurance are identical to those made in case 0, = 10%.
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Line of Business Total
segment 1 2 3 4 LoB
Input Data
Mean Claim Number 100 200 300 400 1000
Mean Claim Size 20 5 10 ] 10
StDev Claim Size 200 120 100 40 102.7
Risk LoB
Mean Aggr Claims 2000 3000 3000 2000 10000
Variance Aggr Claims 4040000 2925000 3030000 650000 10645000
StDev Aggr Claims 2010.0 1710.3 1740.7 8006.2 3262.7
Coeff. of Variation 1.005 0.570 0.580 0.403 0.326
VaR(99 %) 9256.6 8322.3 8439.2 4334.2 19106.8
CVaR(99 %) 11273.5 9531.0 9681.3 4813.8 20882.7
Insurance Premium 2160 3240 3240 2160 10800
Reinsurance Premium 0 0 0 0 0
RORAC 1.8 % 3.8% 3.7 % 6.0 % 7.93 %
Expected Gain Insurer 160.0 240.0 240.0 160.0 800.0
Table 4.4: Portfolio data and results without reinsurance, 8, = 8%
Reinsurance loading factor
10% 11.43% 13.33 % 16 % 20 % 26.67 % 40 % 80 %

Proportional

quota share 6.53% 599% 554% 5.15% 482% 452% 426% 4.02%
surplus 6.46% 594% 550% 5.12% 479% 450% 424%  4.03%
variable quota

share 747 % 686% 634% 580% 534% 494% 4.59% 4.23%
table of lines

surplus T741% 681% 630% 577% 532% 492% 4359% 4.22%
Non-Proportional

excess-of-loss 4235% 33.83% 2733% 2220% 18.01% 1448% 11.36% 8.41%
stop-loss model 1 116.69 % 56.11% 33.31% 21.83% 15.13% 1085% 790% 574%
stop-loss model 2 5937 % 36.66 % 24.71% 17.54% 1287% 9.64% 729% 547 %
variable excess-

of-loss 4290% 3424 % 27.65% 22.45% 18.21 % 14.62% 11.47% 8.49 %
variable stop-loss

model | 2824 % 21.74% 17.06% 13.58% 1090% 8.78% 7.04%  553%
variable stop-loss 19.14% 1559% 1283% 10.64% 887% T41% 6.16% 505%
model 2

Table 4.5: maximum RORAC for de Finetti's criterion, . — 8%
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Expected retained aggregate claims

60% 65% T0% 75% 80% 8% 90% 95%
Proportional
quota share 60.0% 650% 700% 750% 80.0% 85.0% 90.0% 950%
surplus
mean cession 60.0% 65.0% 700% 750% 800% 850% 90.0% 950%
secon moment cession  36.6% 428% 49.0% 56.8% 64.6% T28% 81.6% 90.8%
variable quota share
segment | 343% 372% 40.1% 44.1% 48.1% 5S2.01% 56.1% 75.0%
segment 2 605% 65.6% 70.6% 77.7% 847% 91.8% 988% 100.0%
segment 3 595% 644% 694% T63% 83.2% 902% 97.1% 100.0%
segment 4 85.6% 928% 999% 100.0% 100.0% 100.0% 100.0% 100.0%
table of lines surplus
seg. I/mean cession 343% 372% 40.1% 44.1% 48.1% 52.1% 56.1% 75.0%
seg. 1/second moment 120% 141% 163% 197% 233% 274% 317% 56.5%
seg. 2/mean cession 60.5% 65.6% T70.6% T17% 847% 91.8% 98.8% 100.0%
seg. 2/second moment  37.0% 43.4% 502% 60.7% T2.1% 84.6% 97.9% 100.0%
seg. 3/mean cession 595% 644% 694% T763% 83.2% 902% 97.1% 100.0%
seg. 3/second moment  359% 42.0% 48.7% 58.7% 698% 81.8% 947% 100.0%
seg. 4/mean cession 85.6% 92.8% 999% 100.0% 100.0% 100.0% 100.0% 100.0%
seg. 4/second moment 739% 86.7% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0%
Non-Proportional
excess-of-loss 72.0 97.8 1349 1905  279.6 4365 7625 17359
stop-loss model 1 6060.5 66172 72117 78637 86054 9495.6 10663.5 125159
stop-loss model 2 6097.7 6667.1 72740 7936.4 8682.8 9565.7 10698.5 12429.6
variable excess-of-loss 70.8 96.1 132.6  187.5 2753 4300 7523 17175
variable stop-loss
model 1 1697.3 19034 21405 24222 2771.6 32332 39104 5154.8
variable stop-loss _
model 2 17784 19949 2241.2 2529.7 2880.4 33302 3960.1 5023.6

Table 4.6: optimal retentions with de Finetti's criterion
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Appendix: Inequalities for reinsurance loading factors
A. Inequality for the loading factor of a quota share reinsurance

A possible goal of reinsurance is reduction of the probability of technical ruin:
P8, =) < Pils > P) (A1)

In case the aggregate claims random variables S,., S can be well approximated by
normal distributions, the condition (A.1) is equivalent with

O((P —p)/o) < B((P. — p)for) & Plo< Bfo. (A:2)

with ®(x) the standard normal distribution. Now, for a quota share reinsurance
one has S, = ¢S, hence o, = qo. Inserting P, =P — P, P=(1+0.)u, P,
= (1 +80,)(1 — ¢)p into (A.2) one sees that (A.2) is fulfilled if and only if

0, < 0. (A.3)

This inequality means that the reinsurer covers quota share reinsurance at a lower
loading factor than the cedent.

B. Inequality for the loading factor of excess-of-loss
and stop-loss reinsurance

The attention is restricted to stop-loss reinsurance but the arguments also hold for
excess-of-loss. We derive a lower bound for the premium P = (1+40,)
. [a'[(S - [,)_}_], which implies a lower bound for the loading factor. We follow
the stochastic dominance approach, which has been used to bound financial
option prices (Lévy(1985), Henin and Pistre(1997), and the references therein).

. . . . . - o . .
Given S with premium P[S], consider the loss ratio L(.S) = L which describes

the cost per unit of money. Recall the notions of stochastic dominance and stop-loss
order. The loss ratio L(X) precedes L(Y') in stochastic dominance order, written
L(X) <4 L(Y), provided the corresponding distribution functions satisfy the ine-
quality Fyx)(x) > Fpyy(x) for all 2 in the common support of L(X) and L(Y).
The loss ratio L(X) precedes L(Y) in stop-loss order, written L(X) <, L(Y),
provided the stop-loss transforms satisfy the inequality 7 x)(x) < 7y (2) for
all x. We state the hypothesis, which leads to the desired bound.

(H) There exists no relation of stochastic dominance or stop-loss order between
the loss ratios of two different (re)insurance strategies.

Under the assumption of homogeneous premium principles, the cost of two loss
ratios is identical, namely one unit of money. The made hypothesis means that
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neither strategy can precede the other in stochastic dominance or stop-loss order.
In other words the cost for the two strategies should differ. Consider the following
two (re)insurance strategies:

(S1) Sell an insurance contract at price P’ to cover the claim S with loss ratio
Ly =8P,

(S2) Sell a stop-loss reinsurance contract at price P, to cover the claim (S — L),
with loss ratio Ly = (S — L) /P,

The distribution functions of the considered loss ratios are given by

Fi(z) =Fx(P-z), >0 (B.1)
Fy(x) = Fx(P - (L+2z)), z>0. (B.2)

Since P, < P it is not difficult to see that

Fi(z) < Fy(x), z<ec,

Fy(z) > Fy(z), =z >, (B.3)
where ¢ = P, L/(P — P,) satisfies F|(¢) = Fy(c). This shows that the loss ratios
Ly and L, satisfy the once-crossing condition. In this situation, one knows that
L <4 Ly if and only if the means satisfy E[L,| < F[L,]. But, to prevent stop-
loss order in accordance with the hypothesis (H), one must have F[L| > F[Ls],
that is

P> P E[(S-L),]/E[S). (B.A)

Under the expected value principle one has P = (1+10)- F[Y],
P.=(1+4+86,): E[(S — L)_}_]. This implies that the inequality (B.4) is equivalent
with the condition

0, > 6. (B.5)
This inequality means that the reinsurer covers stop-loss reinsurance at a higher
loading factor than the cedent.
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Zusammenfassung

Die grundlegenden Formen der Riickversicherung, namentlich die Quoten, Summenexzedenten,
Excess-of-loss und Stop-loss Vertriige und deren Varianten werden betrachtet. Die Optimalitit der
Riickversicherung beziiglich des Kriteriums von de Finetti und des RORAC Kriteriums unter Anwen-
dung des Erwartungswertprinzips als Primienkalkulationsprinzip wird analysiert. Es werden hinrei-
chende Bedingungen hergeleitet, welche einen konstanten erwarteten Uberschuss des Erstversicherers
ergeben. Numerische Beispiele suggerieren folgende Aussagen. Die nicht-proportionale Riickversiche-
rung ist, fiir einen festen erwarteten Riickbehalt des Gesamtschadens, effizienter als die proportionale
Riickversicherung (gemessen an der Reduktion im Variationskoeffizient des Gesamtschadenriick-
behalts). Zudem kann ein (variabler) Excess-of-loss, fiir einen hoheren festen erwarteten Riickbehalt
des Gesamtschadens, effizienter als einen Stop-loss sein, was den traditionellen Glauben widerspricht,
dass Stop-loss eine optimale Riickversicherungsform ist. Dieselbe Vergleichseigenschaften gelten falls,
fiir einen konstanten erwarteten Riickbehalt des Gesamtschadens und einen festen Zuschlagstaktor der
Riickversicherungspriimie, das RORAC Risikomass fiir ein approximatives Gamma verteiltes Modell
des Gesamtschadenriickbehalts maximiert wird.

Résumé

Les formes de base de la réassurance, a savoir quote-part, excédent de pleins, excess-of-loss et stop-
loss et leurs variantes sont considérées. Nous analysons l'optimalité de la réassurance par rapport au
critere de Finetti et au crittre RORAC en utilisant le principe de I'espérance mathématique comme
principe de calcul des primes. On obtient des conditions suffisantes, qui produisent un profit de réten-
tion espéré constant. Les exemples numériques suggerent les faits suivants. La réassurance non-propor-
tionelle est, pour une rétention espérée constante des sinistres totaux, plus efficace que la réassurance
proportionelle (mesurée a la réduction du coefficient de variation des sinistres totaux retenus). De plus,
un excess-of-loss (variable) peut, pour une rétention espérée constante suffisament élevée des sinistres
totaux, étre plus efficace qu'un stop-loss, ce qui contredit l'opinion traditionelle, qui affirme que stop-
loss est une forme optimale de réassurance. Les mémes propriétés restent valables lorsque la mesure
RORAC est rendue maximale avec une rétention espérée constante des sinistres totaux et un facteur de
surcharge des primes de réassurance constant pour un modele des sinistres totaux retenus ayant une
fonction de répartition approximativement Gamma distribuée.

Summary

The basic forms of reinsurance, namely quota share, surplus, excess-of-loss, stop-loss and some
variants of them are considered. Optimality of reinsurance with respect to the de Finetti and RORAC
criteria using the expected value principle for premium calculation is analyzed. Sufficient conditions
which ensure a constant expected retained profit are derived. The analysis of numerical examples sug-
gests the following statements. For fixed expected retained aggregate claims, non-proportional reinsu-
rance is more efficient than proportional reinsurance (measured in terms of the reduction in the coeffi-
cient of variation of the retained aggregate claims). Moreover, for higher fixed expected retained
aggregate claims (variable) excess-of-loss may be more efficient than stop-loss, which contradicts the
traditional belief that stop-loss reinsurance is an optimal form. For constant expected retained profit
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and fixed reinsurance loading factor, the same comparative properties hold when maximizing the
RORAC measure within an approximate Gamma distributed model of the retained aggregate claims.

Key words

optimal reinsurance, quota share, surplus, excess-of-loss, stop-loss, de Finetti criterion, RORAC criteri-
on, ordering of risks
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