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Wirnfr Huri imann, Zurich

Case Study on the optimality of reinsurance contracts

1. Introduction

A main goal ot reinsurance consists to protect an insuiance company, heieatter
called the cedent, against large losses caused either by excessively large claims 01

by a large number ot claims A reinsuiance contract deteimines the iules accouling
to which piemium payments and unearned premium reseives, as well as claim
payments, case reserves and IBNR reseives are split between the ceding and the

reinsuiance companies A fundamental pioblem is to deteimine conditions toi which a

reinsuiance contiact (that operates within a specified insurance nsk model) pio-
vides a less risky position to the reinsutei and/or to the cedent It is theietoie

important to develop methods that compare the riskiness ot ditteient leinsurance
contiacts and that select optimal ones An outline of the case study follows
Section 2 tecalls the definitions of the basic leinsuiance contracts, namely quota
shaie, surplus, excess-ot-loss and stop-loss reinsuiance and some variants of them

We assume that the aggregate claims random variable is compound Poisson distn-
buted
In lecent years, the analysis ot Cilmeui and Walhin(2006) as well as Lampaert
and Walhin(20()5) about the optimality ot reinsuiance within the class ot piopor-
tional leinsuiance contiacts has led to quite interesting lesults Out purpose is the

extension ot this analysis to a hioadei class of reinsuiance contiacts including
some basic non piopoitional leinsuiance contiacts The optimization ot leinsu
ranee is based on the following two accepted cuteiia

• the ile hnetti criterion, mtioduced in de Pinetti( 1940), which consists ot

minimizing the vanance ot the retained nsk tor fixed expected retained profit
• the RORAC criterion, which maximizes the return on nsk adpisted capital

ot the letamed nsk

Without pioviding a general proof, the detailed analytical and numencal compaii-
sons made in Section 3 and 4 lead us to the following mam observations

a) hoi fixed expected retained aggregate claims, non-piopoitional reinsurance is

more efficient than piopoitional reinsurance as measured in terms of the icduction
in the coefficient ot vanation ot the letained aggiegate claims Moieover, toi hig-
hci fixed expected letained aggiegate claims (vanable) excess-ot loss may be

more efficient than stop-loss, which contiadicts the tiaditional belief that stop-loss
leinsuiance is an optimal toi m (e g Hotch( I960), Kahn(l%l), Anow( 1963/74),

Mitteilungen der Schwei/ Aklu irvereiiugung Hell 2010
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Ohlin( 1969), Pesonen(1983), Hesselager(1993), Wang(1995)). However, note that
the known proofs of stop-loss optimality assume alternative reinsurance forms,
which are defined in terms of aggregate losses and not in terms of individual losses

as for excess-of-loss.

b) For constant expected retained profit and fixed reinsurance loading factor, the

same comparative results hold when maximizing the RORAC measure within an

approximate Gamma distributed model of the retained aggregate claims.

The Appendix offers inequalities about the loading factors of the used expected
value premium principle, which turns out to be very useful in the discussion of
the numerical examples.

2. Basic Reinsurance Contract Types

The basic reinsurance forms are quota share, surplus, excess-of-loss and stop-loss
contracts and variants of them like variable quota-share, table of lines surplus,
variable excess-of-loss and variable stop-loss. Quota-share and stop-loss provide
some protection against frequency risk if the number of claims is large while
surplus and excess-of-loss may protect against severity risk if the claim sizes are large.

Extreme value reinsurance, which is not considered, is discussed in papers
from Ammeter( 1964) and Thépaut(1950) to Silvestrov et al.(2006).
We assume that the aggregate claims of an insurance risk portfolio over some
fixed time period can be represented by a compound Poisson random variable

where the number of claims N is Poisson (A) distributed, the non-negative claim
sizes X\s are independent, identically distributed and independent from N. The
identical random variables are denoted X —7Q, i f,..., N. The reinsured

aggregates claims are denoted by Sr while the retained aggregate claims of the

ceding company are denoted by Sc and one has the risk decomposition
S Sc + Sr. A description follows for each basic reinsurance contract.

Quota Share

The cession rate is the same across the whole insurance portfolio. For each individual

claim, the reinsurer covers a fixed proportion q, called quota rate. One has

the expressions

N

(2.i)

Sc (l-q)-S, Sr q S. (2.2)
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Surplus

The cession rate is a function of both the sum insured 67; associated to the policy
hit by the i-th individual claim and a quantity called the line of retention. The line
R is the maximal amount that the insurer is willing to pay in case of a loss (for
each policy in the portfolio). To ensure that the maximal loss will never exceed
the line, the retention rate must be equal to

The reason for the mill operator is that when the sum insured is smaller than the

line, i.e. when II exceeds SIi, the retention rate has to be equal to 1. The cession

rate must then be defined as

('-£),• (2")

where (x)+= max(0,x). The risk decomposition of a surplus reinsurance depends
on the individual claims as follows:

" ' it \ „ it
<2ii)

Excess-of-loss reinsurance

An excess-of-loss or XL contract is determined by the deductible d > 0. The
reinsurer pays that part of each claim that exceeds the deductible. The risk
decomposition between the ceding company and the reinsurer is determined by the
formulas:

N N

Sc Sr (xi - 'Ok (2.0)
i— I i-1

Stop -1oss re insu ranee

A stop-loss or SL contract is determined by the priority L > 0. The reinsurer

pays any part of the incurred aggregate claims that exceeds the priority. The risk
decomposition reads

Sc min(5, L), Sr (S - L)+. (2.7)
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Variable Quota Share

In a variable quota share the portfolio is partitioned into several segments for
which an individual cession rate applies. Suppose the portfolio is divided into m
segments and in each segment a collective model of risk theory applies such that
the aggregate claims in the segments and portfolio are given by

nj
Sj YJXJl, S=Y,Sj. (2.8)

i=L j=L

The risk decomposition between cedent and reinsurer is then given by

m m

s,- Y, (1 - s'- sJ (2-9)
7=1 7=1

Table of Lines Surplus

In a table of lines surplus the portfolio is partitioned into segments for which the

same line applies. Under the segmentation (2.8), assume that the sum insured SLß is

associated to the policy hit by the i-th individual claim Xß in the j-th segment.
Then one has the decomposition

j=l V ÖIJ>/ J -1 i-L k J1/ + (2.10)

Variable Excess-of-loss

Under the segmentation (2.8) and a deductible dj for the j-th segment, one has

m iV7 m N

sc Y^Ylmin(xß>ch). 5v ~cIJ)-f• (2-n)
j~ L i~I j—1 t " I

Variable Stop-loss

Under the segmentation (2.8) and a priority Lj for the j-th segment, one has

m m

Sc "MSJ. LJ)> Sr L') +
(2- l2)

7=1 7=1

Remark 2.1. There exists a huge of possible variations and combinations of the

above basic contract types, whose optimal properties are not analyzed in the pre-
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sent case study. Among them one may mention excess-of-loss and stop-loss layer
contracts, excess-of-loss layers with aggregate layers, chains of excess-of-loss layers

with stop-loss limits, combination of quota share and surplus with excess-of-
loss, linear combination of quota share and stop-loss, linear combination of stop-
loss in two layers, truncated excess-of-loss and stop-loss, and so on.

3. Optimal Reinsurance

It is well-known from the literature that non-proportional reinsurance like excess-
of-loss and stop-loss covers are more efficient than proportional covers like quota
share and surplus. Despite this fact, there exist numerous reasons for the persistence

of proportional reinsurance in practice like moral hazard behavior after
stop-loss reinsurance, pricing difficulties and high reinsurance loadings in non-
proportional reinsurance. Recently, Glineur and Walhin(2006) as well as Lampa-
ert and Walhin(20()5) have considered the optimality of reinsurance within the

class of proportional reinsurance contracts. We extend this analysis to a broader
class including non-proportional reinsurance. Optimization is performed with
respect to the de Finetti and RORAC criteria and the expected value principle for
premium calculation. The mathematical formulation requires the following quantities

and definitions:

S, Sr, Sr : aggregate claims, reinsured claims, retained claims of cedent

/t fi, /7[A'r], fir ^[AV]: expected values of A', Sr, Sc

0"r, 0C : loading factors of the reinsurer and cedent

/'=(!+ P, (1 + Or)fir, Pv P - Pr: premium, reinsured premium,
retained premium

Gr Pr — Sr ' retained profit of the cedent

VciRn[X] : value-at-risk of the random variable X to the confidence level a

CVa.Rn[X\ E[X\X > VaRn[X}]: conditional value-at-risk of the random
variable X (with continuous distribution function) to the confidence level a

PAC„[G,\ CVaRn\-Gc] CVaRn{S,\ - Pr: risk adjusted capital of the
cedent to the confidence level a
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RORACJG,] Pc ßc
: return on risk adjusted capital ot' the cedent

RACa{Gc] RACalGc)

The considered optimization criteria translate as follows.

cle Finetti criterion

cj2c Var[Sc] min under the constraint E[GC} (9C — 9r)fi + 6rpc count

RORAC criterion

RORACa[Gc] max. under the constraints E[GC} const and 9r const

For each basic reinsurance contract type considered in Section 2, we list below
the required formulas and model assumptions under which these optimization
criteria are applied.

Quota Share

<=,_E[Ge]-(^-t>,)„ ^-qGr l6|(u| (;u)
f/,•/£ "rP

Surplus

We assume that the ratios r, —, i= I,.. •, N, are independent and identically
log-normally distributed random'variables r; =jr that have location and scale

parameters pT, oT such that

7TT i?[(l-t),] <1M - eT+TT $ (!± + ar (3.2)

I 0

W2,T E

+ e2('lT+^) $ + 2c7r^j (3.3)

with <l>(x) 1 — ^(x), <ï>(x) the standard normal distribution. In practice, this

assumption is justified by the fact that the line of surplus R and the variable insured

sums 57, are known and consequently it is possible to estimate /tr, oT from
the equations
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E
R

Sli
uT -h-at

e 2 Var
R

SI, (d -1) E
R

SI,
(3-4)

The (optimal) mean surplus cession coincides with the (optimal) quota cession

_
0,.p - E[GC]

0r/t

Variable Quota Share

[0, I] 3.5

According to de Finetti( 1940) (see also Lampaert and Walhin(2005)) the optimal
quota share rates are given by (notations of Section 2)

1 — <ij min 'I' °J Vr°r[S7]. 3 1. • • • :

(3-6)

where £ solves the equation E[GC\ const.

Table of Lines Surplus

Similarly to the preceding result one has

1 - 7rTj niinj^,.^, ij, (3.7)

where £ solves the equation E[GC] const.

Excess-of-L.oss

For the collective model of risk theory (2.1) and an excess-of-loss reinsurance
with deductible d, the mean and variance of the retained aggregate claims are

given by

pc pr(d) A • Z7[min(X, </)] A (px ~ itx{d))

ac — ^ d)2j A • (//.'^ + a\ — 2ditx{d) — tt2.x(d))

with

px E[X\, c'x Var\X\, ttx{d) - d)+],

vr2,x(d) e\{X - d)\ (3.9)

The (optimal) deductible is implicit solution of the equation
{(),. — 0,.)p + Orp,.(d) const.
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Stop-Loss

Similarly to excess-of-loss one has for an arbitrary aggregate claims random
variable S:

Pc Pc{L) £[min(S, L)\ ps ~ tts{L)

a\= a2c(L) — E^min(5, T)2J - £[min(5, L)]2

Ps + °s ~ 2Lns(d) - Tt2,s(L) - (ps - tts(L))2

<4 - 2(L - ps + 7ts(L)) - cr|(L)

Ps E{S], o2s Var[S\, irs(L) E[(S - L)+],

(3.10)

with

7fls(L) E [(5 - L)Xj, crs{L) tr2,s(L) - trs(L)2

The (optimal) deductible is implicit solution of the equation
(0C - 0,-)p + Orpc(L) const.

(3.11)

Variable Excess-of-Loss

In case a portfolio is divided into m segments, each with variable excess-of-loss

deductible dj, j= 1 the mean and variance of the retained aggregate
claims are given by

Pc p,,{du ...,dm) Y xj E[miniX3>dj)\ YXJ' O'j ~ *Âdi))
j= i

o\ a2c(du- -,dm) Y XJ ' E min(^-,rfj)
3= I

(3.12)

m / \Y xr (/'] + aJ " 2djttjip'j) - /t..,('/,.)]
j--i

with

pj E [Xj], cr'j=Var Xj], *j{dj)=E[{Xj-dj)^
(3.13)

To get the optimal deductibles according to the de Finetti criterion, we use the

Lagrange function

<L(f/h dm,0 a2c{du ,,dm) - £ • {(0C - 6r)p + Brp,.{du.. .,(/,„) - E[GC])

(3.13)
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The optimal parameters solve the first order conditions

0< É> <9<I>

aT"' (:u"'

Using the relationships

where Fj(dj) P(Xj < dj) denotes the probability distribution of the random
variable Xj, one obtains

<ï>j XjFj (dj) (2dj - &r) 0, j L,..., m, (3.16)

hence the optimal deductibles

dj=^er d, 1=1,...,.m (3.17)

are the same in each segment. The obtained unique deductible d is solution of the

implicit equation

m

(0C - 0,.)/i + ()r Aj (nj - irj(d)) wtwl. (3. L8)

j t

Variable Stop-Loss

Similarly to the variable excess-of-loss one has for arbitrary (Sy,...,Sm) the

expressions

pc pr(Li,..., Lm) £[min(S,-, L,)} Y (fiSj - tt<,^(Lj))
J I J--1

m r 2l
al Lm) Y L.i) J ~ Lm)2 (3. 19)

j I

"l / \
Y1 [PSj + 4j - 2LJ7rsJ(Lj) - 7T2 ,Sj{Lj)j - Pc(L I,..., Lmf

j i

[Fs, + aSj - - 'n"2,Sj\L'j) - Pc\^ 1, 'an2
J I

Proceeding as above in the excess-of-loss case, one shows that the optimal priorities

L} p(.(Ly,...,Lm)+Yor L, j= l,...,.m (3.20)
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are the same in each segment. The obtained unique priority L is solution of the

implicit equation

m

(0C - 0r)fj + 0r-^2 yßSj ~ 7rAj(^)) const. (3.21)
j=t

To simplify calculations and for the ease of illustration, we use the following
insurance risk models and mention that similar results can be obtained for any
other risk models. For excess-of-loss, variable excess-of-loss, we use a lognormal
claim size distribution with parameters my Sj such that

- ,jM -„ »("lW;;"^) + ä,. zra)

>•'+"] (/'? + «?) —Tj

J I J (3.22)

For stop-loss and variable stop-loss, we use two different approximate aggregate
claims distributions, a lognormal model with parameters f.ij, Oj such that

(r \ .JHLj) ~ N ~ af\ j (HlJ) - M
7j +Lj\—^—)

1% + 4, - -2LjnSj (/,,) - rr,,, (Lj) („*. + 4> ^
+ 3 { *j J

a

(3.23)

and a Gamma model with parameters aj (ykS'j/TSj) > ßj aj/'lls.y such that

ßSj ~ *Sj (Lj) fisj T(ßjLj-, a.j + I) + Lj V(ßjLy aß),

ll\j + — 2Lj^Sj (Lj) — K2,Sj (Lj) fa + c's^j ' L(ßjLyaj + 2) + L'j T(ßjLy aß),

(3.24)
X

with T(x;a)= —— • ßta~le~tdt the incomplete Gamma function and
f(«) o

r(a:; a) 1 — T(a;; a).
The use of a Gamma model of collective risk theory for sufficiently large portfolios

can be motivated and justified (e. g. Hürlimann(2002)). Therefore, if the portfolio

of the cedent is not too small, the calculation of RAC and RORAC of the

retained risk is done in the unified framework of the Gamma model. For a confi-
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dence level rv, mean retained risk ßc and coefficient of variation kt. ac/fir of
the retained risk Sr, one has the formulas

Ka//„[5r] T"'

CVaRn[Sr] Va/infS«.] +-^—E[(Se - l/a«„[5,.])+]

(3.25)

4. Comparison Results

For concrete calculations and comparison of optimal reinsurance we consider a

fictitious line of business divided into m 4 segments, whose characteristics are
summarized in the following Table 4.1. The loading factor of the cedent is first
set at 0,. 10%.

Line of Business Total

segment 1 2 3 4 Col)

Input Data

Mean Claim Number 100 200 300 400 1000

Mean Claim Size 20 15 10 5 10

StDcv Claim Size 200 120 100 40 102.7

Risk Toll

Mean Aggr Claims 2000 3000 3000 2000 10000

Variance Aggr Claims 4040000 2925000 3030000 650000 10645000

St. Dev. Aggr Claims 2010.0 1710.3 1740.7 806.2 3262.7

Coeff. of Variation 1.005 0.570 0.580 0.403 0.326

VaR(99%) 9256.6 8322.3 8439.2 4334.2 19106.8

CVaR(99 %) 1 1273.5 9531.0 9681.3 4813.8 20882.7

Insurance Premium 2200 3300 3300 2200 1 1000

Reinsnranc Premium 0 0 0 0 0

RORAC 2.2% 4.8% 4.7 % 7.7% 10.12%

Kxpected Retaine Profit 200.0 300.0 300.0 200.0 1000.0

Table 4.1: Portfolio data and results without reinsurance, 0C 10%
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Our comparison is based on a constant expected retained profit f?[G(] 700 and

varying loading factors 0r S {7.5%, 8.57%, 10%, 12%, 15%, 20%, 30%,
60%). With the assumption 0C 10% this yields varying expected retained

aggregate claims. The percentages of the latter to the expected aggregate claims
lie in the set (60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%). Under these

assumptions, the optimal retentions are determined according to the de Finetti
criterion as described in Section 3 and listed at the end of the Section in Table 4.6.
The corresponding values of the coefficient of variation are displayed in Table
4.2 and the values of RORAC in Table 4.3.

60% 65%

Expected retained aggregate claims

70 % 75 % 80 % 85 % 90 % 95%

Proportional

quota shate

suiplus

variable
quota share

table ot lines

surplus

Non-Proportional

excess-ol-loss 0 0792 0.0857 0 0931 0 1021 0 1130 0 1271 0 1467 0 1788

stop-loss model 1 0.0449 0.0613 0.0807 0 1034 0 1297 0 1605 0 1975 0 2447

stop-loss model 2 0.0640 0.0810 0 1004 0 1225 0 1476 0 1766 0 2110 0 2544

variable
cxcess-of-loss 0 0785 0 0849 0.0924 0.1012 0.1121 0.1261 0.1456 0.1775

variable stop-
loss model 1 0 1050 0 1184 0 1333 0 1500 0 1688 0 1906 0 2171 0 2524

variable stop-
loss model 2 0 1404 0 1531 0 1670 0 1823 0 1994 02188 0 2420 0 2718

Table 4.2: minimum coefficient of variation for de Finetti's criterion

0 3263

0 3288

0.2933

0 2952

0 3263

0 3284

0.2933

0 2949

0 3263

0 3281

0.2933

0 2945

0 3263

0 3279

0.2970

0 2981

0.3263

0 3277

0.3006

0 3015

0 3263

0 3275

0.3039

0 3047

0 3263

0 3274

0.3070

0 3076

0 3263

0 3272

0.3136

03138
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Reinsurance loading factor

7.5% 8.57 %: 10 % 12% 15% 20% 30% 60%

Proportional

quota share 12 01 % 10 98 91i 10 12% 9 38 % 8 74% 8 19% 7 70% 7 26%

surplus 11 88 % 10 89 91i 10 04% 9 32% 8 69 % 8 15% 7 66% 7.25 %

variable
quota share 13.85 % 12.65 %i 11.64 % 10.61 % 9.73 % 8.98 % 8.32 % 7.64 %

table ot lines

surplus 13 74% 12 56%> 1158% 10 56% 9 69% 8 94 % 8 31% 7 63%

Non-Proportional

excess-ot loss 108 62% 79 32 % 60 17% 46 62 % 36 45 % 28 42 % 21 74% 15 71 %

stop-loss
model 1 1636.51 % 169.56 % 77.71 % 45 68 % 29 87 % 20 66 % 14 70% 10 50%

stop-loss
model 2 187.27 % 88.47 % 53 07 % 35 35 % 24 93 % 18 19% 13 49% 9.99 %

variable
excess-of-loss 110 68% 80 61 % 61.05% 47.24 % 36.90 % 28.74 % 21.97% 15.86 %

vauable stop-
loss model 1 62 70 % 45.45 % 34.23% 26 45 % 20 77 % 16 45% 13 01 % 10 09%

vauable stop-
loss model 2 39 10% 30 89 % 24 84 % 20 24 % 16 64% 13 73% 11 31 % 9 18%

Table 4.3: maximum RORAC for de Finetti's criterion, 0( 10%

Besides the main facts a) and b) mentioned in the introduction, additional
observations are made:

a) For proportional reinsurance the minimum coefficient of variation and the

maximum RORAC are here attained for the variable cpiota .share. As shown

recently by Ghneur and Walhin(2006) this is however not a general property of
proportional reinsurance.

b) Appendix A shows that for a normal distribution quota share reduces the loss

probability if and only if 0, < 0,. Table 4.3 shows that quota share increases
RORAC if and only if 0, < 0(. However, the last propeity does not hold for the

"optimal" variable quota share: with 0, 12% > 0C — 10% RORAC is higher
than without reinsurance (10.61 % compared to 10.12%).

c) For non -proportional reinsurance the minimum coefficient of variation and the

maximum RORAC are attained either tor stop-loss or (variable) excess-of-loss.
For 0r < 0r the stop-loss model 1 with lognormal retained aggregate claims is

more efficient than (variable) excess-of-loss while for 0, > 0, the stop-loss



84

model 2 with Gamma retained aggregate claims is less efficient than (variable)
excess-of-loss. However, in view of the Appendix, the considered non-proportional

contracts are likely to be available on the reinsurance market only i f Br > Bc.

This means that (variable) excess-of-loss is more efficient than stop-loss for the

Gamma model and contradicts the traditional belief as already mentioned in the

introduction.

d) There is a small region of parameters 0r > 6C, where the stop-loss model 1 is

more efficient' than the (variable) excess-of-loss. This example illustrates clearly
the fact that optimality of reinsurance also depends on the chosen insurance risk
models. Therefore the choice of optimal reinsurance is subject to "model risk".

e) The optimal variable excess-of-loss with constant deductibles is only slightly
more efficient than excess-of-loss and the difference in deductibles is rather
insignificant.

t) The variable stop-loss is always significantly less efficient than stop-loss and

cannot be recommended as optimal non-proportional reinsurance contract. Even

more, for the highest loading factors it produces a RORAC below the level without

reinsurance and should be avoided.

To get more insight into the strong dependence of optimal non-proportional
reinsurance upon the loading factors of the cedent and reinsurer, let us analyze the

situation for 0C 8% and varying 0r {10%, 11.43%, 13.33%, 16%, 20%,
26.67%, 40%, 80%). Portfolio data is summarized in Table 4.4. The results on
the minimum coefficient of variation and optimal retentions, which only depend

on the proportion of retained aggregate claims, coincide with Table 4.2 and Table
4.6 while the maximum RORAC, which depends on the choice of 6r, is found in

Table 4.5. For the chosen 0r values, no single proportional reinsurance improves
the original RORAC value of 7.93 % without reinsurance and proportional reinsurance

should be avoided. The comparative static conclusions for non-proportional
reinsurance are identical to those made in case 9C 10%.
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Line of Business 'I ntal

segment 1 2 3 4 l.oll

Input Data

Mean Claim Number 100 200 300 400 1000

Mean Claim Si/e 20 15 10 5 10

StDev Claim Si/e 200 120 100 40 102 7

Risk I.oil
Mean Aggr Claims 2000 3000 3000 2000 10000

Vailance Aggr Claims 4040000 2925000 3030000 650000 10645000

StDev Aggr Claims 2010 0 17103 1740 7 806 2 3262 7

Coeff. of Variation 1 005 0 570 0 580 0 403 (1.326

VaR(99 %) 9250 6 8322 3 8439 2 4334 2 19106 8

C'VaR(99 %) 1 1273.5 9531 0 9681 3 4813 8 20882 7

Insuiance Pienuum 2100 3240 3240 2160 10800

Reinsuiance Premium 0 0 0 0 0

RORAC 1 8% 3 8% 3 7% 6 0% 7.93 %

Mxpected Cain Insurer 160 0 240 0 240 0 160 0 800.0

Table 4.4: Portfolio data and results without reinsurance, 0, 8%

Keiiisiirance load in« factor

10 % 11.43% 13.33 % 16% 20% 26.67 % 40 % 80%

Proportional

quota shaie 6 53 % 5 99 % 5 54 % 5 15% 4 82% 4 52 % 4 26% 4 02 %

suiplus 6 46 % 5 94 % 5 50 % 5 12% 4 79 % 4 50 % 4 24 % 4 03 %

variable quota
share 7.47 % 6.86 % 6.34 % 5.80 % 5.34 % 4.94 % 4.59 % 4.23 %

table ot lines

surplus 7 41 % 6 81 % 6 30 % 5 77 % 5 32 % 4 92 % 4 59 % 4 22%

Non-Proportional

excess-ot-loss 42 35 % 33 83 % 27 33 % 22 20% 18 01 % 14 48% 11 36 % 8 41 %

stop-loss model I 116.69% 56.11 % 33.31 % 21 83% 15 13% 10 85% 7 90% 5 74%

stop-loss model 2 59.37 % 36.66 % 24 71 % 17 54% 12 87% 9 64% 7 29% 5 47%

variable exeess-
of-Ioss 42 90% 34 24 % 27.65 % 22.45 % 18.21 % 14.62 % 11.47% 8.49 %

vaunble stop-loss
model 1 28 24 % 21 74% 17 06% 13 58% 10 90% 8 78 % 7 04% 5 53 %

variable stop-loss 19 14% 15 59% 12 83% 10 64% 8 87% 7 41 % 6 16% 5 05 %

model 2

Table 4.5: maximum RORAC for de Finetti's ctiterion, 9, 8%



86

Expected retained aggregate claims

60% 65% 70% 75% 80 % 85% 90 % 95%

Proportional

quota share 60 0% 65 0% 70 0% 75 0% 80 0% 85 0% 90 0 % 95 0%

surplus

mean cession 60 0% 65 0% 70 0 % 75 0% 80 0% 85 0% 90 0% 95 0%

secon moment cession 36 6% 42 8 % 49 6% 56 8 % 64 6% 72 8% 81 6% 90 8 %

variable quota shaie

segment 1 34 3 % 37 2% 40 1 % 44 1 % 48 1 % 52 1 % 56 1 % 75 0%

segment 2 60 5% 65 6% 70 6 % 77 7% 84 7% 91 8% 98 8 % 100 0%

segment 3 59 5 % 64 4% 69 4 % 76 3% 83 2% 90 2% 97 1 % 100 0%

segment 4 85 6% 92 8 % 99 9 % 1000% 100 0% 1000% 1000% 100 0%
table of lines surplus

seg l/inean cession 34 3 % 37 2% 40 1 % 44 1 % 48 1 % 52 1 % 56 1 % 75 0%

seg 1/second moment 12 0% 14 1 % 16 3% 19 7% 23 3% 27 4% 317% 56 5 %

seg 2/mean cession 60 5 % 65 6 % 70 6% 77 7% 84 7% 91 8% 98 8% 1000%

seg 2/second moment 37 0% 43 4% 50 2 % 60 7 % 72 1 % 84 6% 97 9% 100 0%

seg 3/mean cession 59 5 % 64 4% 69 4% 76 3% 83 2% 90 2% 97 1 % 1000%

seg 3/second moment 35 9% 42 0% 48 7 % 58 7% 69 8 % 818% 94 7% 1000%

seg 4/mean cession 85 6% 92 8 % 99 9% 1000% 100 0% 100 0% 1000% 1000%

seg 4/second moment 73 9% 86 7% 99 8 % 1000% 1000% 1000% 1000% 1000%

Non-Proportional

excess-ot-loss 72 0 97 8 134 9 190 5 279 6 436 5 762 5 1735 9

stop-loss model 1 6060 5 6617 2 7211 7 7863 7 8605 4 9495 6 10663 5 12515 9

stop-loss model 2 6097 7 6667 1 7274 0 7936 4 8682 8 9565 7 10698 5 12429 6

variable excess-ot-loss 70 8 96 1 132 6 187 5 275 3 430 0 752 3 1717 5

vat table stop-loss
model 1 1697 3 1903 4 2140 5 2422 2 2771 6 3233 2 3910 4 51548

variable stop-loss
model 2 1778 4 1994 9 2241 2 2529 7 2880 4 3330 2 3960 1 5023 6

Table 4 6: optimal retentions with de Finetti's criterion
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Appendix: Inequalities for reinsurance loading factors

A Inequality for the loading factor of a quota share reinsurance

A possible goal of reinsurance is reduction of the probability of technical ruin:

Pv{Sr > I>c) < Pi-(S > P) (Al)
In case the aggregate claims random variables Sr, S can be well approximated by
normal distributions, the condition (A.I) is equivalent with

mr-d)/cT)<H(P,.-ßc)At,) P/a<Pc/ac (A. 2)

with <[>(.7:) the standard normal distribution. Now, for a quota share reinsurance

one has Sr qS, hence a,.. qcr. Inserting Pr P — Pr, P (1 4- 0(.)p, Pr
I + 0,.)( I - q)fi, into (A.2) one sees that (A.2) is fulfilled if and only if

Or < Or. (A3)
This inequality means that the reinsurer covers quota share reinsurance at a lower
loading factor than the cedent.

II. Inequality for the loading factor of excess-of-loss
and stopdoss reinsurance

The attention is restricted to stop-loss reinsurance but the arguments also hold for
excess-of-loss. We derive a lower bound for the premium Pr 1 + 0r)

P[(S — T)|], which implies a lower bound for the loading factor. We follow
the stochastic dominance approach, which has been used to bound financial
option prices (Levy(1985), Henin and Pistre( 1997), and the references therein).

Given S with premium P[N], consider the loss ratio L(S) —-, which describes

the cost per unit of money. Recall the notions of stochastic dominance and stop-loss
order. The loss ratio L{X) precedes L(Y) in stochastic dominance order, written

I\X) <sl L{Y), provided the corresponding distribution functions satisfy the

inequality P[,(x){x) > F},{Y)(3:) for all x in the common support of L(X) and L(Y).
The loss ratio L(X) precedes L{Y) in stop-loss order, written L(X) <si L(Y),
provided the stop-loss transforms satisfy the inequality tt[,(x){x) < rriy(Y){x) for
all x. We state the hypothesis, which leads to the desired bound.

(H) There exists no relation of stochastic dominance or stop-loss order between
the loss ratios of two different (re)insurance strategies.
Under the assumption of homogeneous premium principles, the cost of two loss
ratios is identical, namely one unit of money. The made hypothesis means that
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neither strategy can precede the other in stochastic dominance or stop-loss order.
In other words the cost for the two strategies should differ. Consider the following
two (re)insurance strategies:

(51) Sell an insurance contract at price P to cover the claim S with loss ratio

L\ S/P.
(52) Sell a stop-loss reinsurance contract at price Pr to cover the claim (S — L) h

with loss ratio L2 (S — L)+/Pr.

The distribution functions of the considered loss ratios are given by

Fy(x) EX(P-x), at > 0 (BA)

F2(x) Fx{Pr (L + x)), x>0. (D.2)

Since Pr < P it is not difficult to see that

Fi{x) < F2(x), x<c,
F2(x) > Fi(x), x > c, (13.3)

where c PrL/(P — Pr) satisfies Fi(c) F2(c). This shows that the loss ratios
and L2 satisfy the once-crossing condition. In this situation, one knows that

<d L2 if and only if the means satisfy E[Ly] < E[L2\. But, to prevent stop-
loss order in accordance with the hypothesis (H), one must have E[L\] > E[L2\,
that is

Pr>P-E[(S-L)+]/E(S\. (BA)

Under the expected value principle one has P 1 + 0) F[S],
Pr (1 + 0r) F[(5' — i)4 ]. This implies that the inequality (B.4) is equivalent
with the condition

er > ec. (B.5)

This inequality means that the reinsurer covers stop-loss reinsurance at a higher
loading factor than the cedent.
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Zusammenfassung

Die grundlegenden Formen dei Rückversicherung, namentlich die Quoten, Summenex/edenten,
Excess ot loss und Stop loss Vertrage und deren Vananten werden betiachtet Die Optimalitat dei

Rückversicherung bezüglich des Kriteriums von de Finetti und des RORAC Kiitenums unter Anwendung

des Erwaitungsweitprinzips als Pramienkalkulationsprin/ip wird analysteit Es weiden
hinreichende Bedingungen hergeleitet, welche einen konstanten erwarteten Uberschuss des Erstversichereix

ergeben Numerische Beispiele suggeiieren folgende Aussagen Die nicht-pioportionale Ruckversiche-

mng ist, fur einen festen erwarteten Ruckbehalt des Gesamtschadens, etti/ientei als die pioportionale
Ruckversicherung (gemessen an der Reduktion im Vanationskoeffizient des Gesamtschadenmck-
behalts) Zudem kann ein (variable!) Excess-ot-loss, fur einen höheren testen eiwarteten Ruckbehalt
des Gesamtschadens, etfi/ienter als einen Stop-loss sein, was den traditionellen Glauben wideispncht,
dass Stop-loss eine optimale Ruckversicherungxtorm ist Dieselbe Vergleichseigenschatten gelten falls,
fur einen konstanten erwarteten Ruckbehalt des Gesamtschadens und einen testen Zuschlagstaktor der

Ruckveisicherungspramie, das RORAC Risikomass tili ein appioximatives Gamma verteiltes Modell
des Gesamtschadenruckbehalts maxmuert wud

Résumé

Les tonnes de base de la réassurance, à savoir quote-part, excédent de pleins, excess-ot-loss et stop-
loss et leuis vanantes sont considérées Nous analysons l'optimalité de la reaxxuiance pai rappoit au

critère de Finetti et au ci itère RORAC en utilisant le principe de l'espétance mathématique comme

pnncipe de calcul des primes On obtient des conditions suffisantes, qui pioduisent un piotit de léten-

tion espère constant Les exemples numériques suggèrent les taits suivants La léassurance non propm
tionelle est, poui une rétention esperée constante des sinistiex totaux, plus efficace que la léassuiance

proportionelle (mesurée à la réduction du coefficient de variation des xinixties totaux îetenus) De plus,

un excess ot-loss (vanable) peut, pour une rétention espéiee constante sultisament élevée des sinisties

totaux, êtie plus efficace qu un stop-loss, ce qui contiedit l'opinion tiaditionelle, qui aflume que stop-
loss est une forme optimale de réassurance Les mêmes propnétéx testent valables lorsque la mesuie

RORAC est rendue maximale avec une rétention espérée constante des sinistres totaux et un facteur de

surchaige des punies de réassuiance constant pour un modèle des sinistres totaux retenus ayant une

fonction de répartition approximativement Gamma distiibnée

Summary

The basic forms ot reinsurance, namely quota share, surplus, excess ot-loss, stop-loss and some

variants ot them aie considered Optimahty ot reinsurance with respect to the de Finetti and RORAC

enterra using the expected value principle foi premium calculation is analy/ed Sufficient conditions
which ensure a constant expected îetained piotrt aie derived The analysis of numerical examples

suggests the following statements For fixed expected retained aggiegate claims, non-proportional leinxu-

lance is more efficient than proportional reinsurance (measuied in teims ot the induction in the coefficient

ot variation ot the letained aggregate claims) Moieovei, toi highct tixed expected retained

aggregate claims (variable) e\cess-ot loss may be more efficient than stop-loss, which contiadicts the

tiaditional belief that stop-loss reinsurance is an optimal loim Foi constant expected letamed profit
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and fixed reinsurance loading tactoi, the same comparative piopcrties hold when maximizing the

RORAC measure within an approximate Gamma distiibnted model ot the letained aggregate claims

Key words

optimal reinsurance, quota share, surplus, excess-ot-loss, stop-loss, de Finetti criteuon, RORAC entert-
on, 01 denng ot risks
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