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B. Wissenschaftliche Mitteilungen

Jürgen Hartinger", Dominik KoRTSCHAKb

Quasi-Monte Carlo Techniques and Rare Event Sampling*

1 Introduction

In today's simulation literature a lot of attention is attracted to the estimation of
small probabilities. This in particular plays a role in managing rare event risk in
insurance, but also has applications in areas like queueing theory. Explicit or
easily computable solutions are then typically not available such that simulation
is required even for simple problems. In this article we are concerned with a

standard problem within rare event sampling. Let be independent,
identically distributed random variables (with generic random variable Y) with
cumulative distribution function /' and tail F 1 — /«', and iV an integervalued
random variable (independent of the F,'s) on a suitable probability space
(0, A, P). The goal is the evaluation of

z(u) P(6'/v > u) P(Yi + • + Y,y > a). (1)

Observe that lim„_tooz(u) 0, such that for large u we have the problem of
simulating a rare event. Even this simple problem has practical relevance, e.g. for
the estimation of the probability of ruin in classical insurance risk models, the

steady state waiting times for queues, see e.g. (AS03), or for the valuation of
catastrophe risk bonds within a collective risk model, e.g. (AHT03; AHT04). The

typical magnitude forz(tt) in applications ranges from I0"2 to 10

Let us first recall the behavior of a crude Monte Carlo estimator, namely

Z\{u) I{sN>a}- Zy 's Bernoulli distributed with parameter z(u) and variance

z(rt)(l — z('u)). Since the goal is to have a competitive relative error, our quantity

of interest is the (squared) coefficient of variation COV1{Z\{u))
>

_ i-3(")
^ pQr u ^ we ^ave çoy2(2!i(u)) ~ z(u)~l. Hence, asymptotically

z(u)

the number of paths needed to guarantee a fixed relative Monte Carlo error grows
to infinity and, technically, we face a (nontrivial) variance reduction problem. In
the literature, the following efficiency classes for suitable estimators are

distinguished with respect to the behavior of their squared COV: We say Z(u)

' This work was supported by the Austrian Science Hund P-I8392-MAT and the Swiss National
Science Foundation Project 200021 -124635/1.
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• is logarithmically efficient if Ve > 0 : liin,1_,00 < 00j
zJ~e(u)

• has hounded relative error if v"'(z(")) < ^r («)

• has vanishing relative error if liin,,_>00 Va''f^ 0.
z2(u)

The design of good estimators heavily depends on the existence of exponential
moments of the random variable Y. In the light tail case, (i.e.
3 t, > 0 : /([exp(tY|)| < oo), estimators with bounded relative error may be found

by an exponential change of measure, as determined by a saddlepoint method, see

e.g. (SIG76; AS03). For heavy tails, methods for the subclass of subexponential
distributions were intensively studied in the last decade. A distribution function F
is said to be subexponential (F S) it for fixed n > 2:

P(V1 + • • • + Yn > u)
hm r n.
ii-.ooP(max{y1,..., Yn} > u)

Hence, the tail of the sum of iid random variables behaves asymptotically like the

tail of maximum of the summands. Important elements ot S are

• the Lognormal distribution: Y ex, where X is Gaussian,

• Weibull-type distributions: F ~ cul 0 < /T < 1,

• Regularly varying distributions with index n > 0 : F(u) iraL(u), where

L(u) is slowly varying, (i.e. for all t, > 0 : lim„_00 L(tu)/L(u) 1).

For a thorough introduction to subexponential distributions and modeling with

heavy tails consult the monograph (HKM97).
Good Monte Carlo estimators in this setting are either obtained by importance

sampling through twisting the hazard rate, see e.g. (JS02; HS03; AKR05), or by

conditional Monte Carlo methods, see (AB97; ABII00; AK.06).

In the sequel, we are mainly interested in recent work by Asmussen and Kroese

(AK.06), who propose the following two estimators for z{u) given in (I):

Z2(u) N f'(max{tt - 6V-t> Mn-t})>

and its control variate counterpart in terms ot N,

Z;i(u) N /'"(maxjti — S,\t- i, AT/v-t}) + (Av'[7V] — N)F(u),

where Mn — maxjyi,..., Yn}. They show that Z2{u) has bounded relative error
for regularly varying Y (under mild conditions on N) and is logarithmically
efficient for Weibull Y, given that 21 + < 3 and N bounded. In Hartinger and

Kortschak (HK09) it is shown that Zffin) has bounded relative error for the

lognormal (again under mild conditions on N) and the Weibull case (given
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ß < log(3/2)/log(3) and N bounded). Furthermore, it is shown that under the

same conditions, Z2(n.) has vanishing relative error.
Section 2 reviews the quasi-Monte Carlo methodology and shows that

asymptotically the effective dimension of Z2 is 1. The speed of convergence to

this limit is analyzed for Pareto Y. In Section 3 numerical results comparing
Monte Carlo and randomized quasi-Monte Carlo (QMC) methods (in the sense of
Wang and Fang (WF03)) are given.

2 Rare event sampling and effective dimension

In contrast to Monte Carlo methods, the quasi-Monte Carlo integration error can
be bounded deterministically due to the famous Koksma-Hlawka Theorem

(HL61) by the product of the discrepancy of the used sequences and the

integrand's variation in the sense of Hardy and Krause, V(f). For a thorough
introduction consult the monograph (NIE92). Let be a point

sequence in [0, I)'9, D*M{;xm) denote the star discrepancy of (a'l,...,x,u) and

V(f) < oo. Then,

Since the best known sequences (so-called low discrepancy sequences) have a

discrepancy of order C(log3(A/)/A/), QMC techniques are at least asymptotically
superior to Monte Carlo simulation, the probabilistic error of which is known to

be of order C(l/>/M). It was frequently shown empirically that there are

extremely high dimensional problems (s 360 and more, e.g. (PT95)) occurring
in mathematical finance, where QMC methods outperform Monte Carlo

algorithms by far for reasonable M. One way to classify types of integrands that

are particularly well suited for QMC integration is the notion of effective
dimension based on the ANOVA decomposition, e.g. (CM097; WF03).
Let /(x) be a function in Û{Ua) and v Ç {1, 5,\u\ its cardinality,

x„ the |;/|-dimensional vector having the coordinates of x with the indices of
v and V denoting the corresponding unit cube. Denote the integral value

[(f) Ju* /(x)flx by h and let /"(x)= Jc/SV ^(x)'/x's> 7 £70 AM- Then

the ANOVA decomposition is defined by /(x) Yl^vc.s /"(x)- Let Var(f) be

the variance Var(f(U)), where U denotes a uniformly distributed random

variable on the corresponding unit cube. It is well known that with these

definitions fv(x)dxj 0 for all j 6 v, f[/s fl/(x)f7(x)ilx 0 for tz ^ 7 and

that Var(f) Var(A)-
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This gives the following natural notions of the importance of the coordinates:

• For ()</;< 1 (typically p close to one), the effective truncation dimension

of the function / is defined by the smallest integer dt, such that there exists

a set v with cardinality dt and Va,'Ui) > P Var(f).

• The smallest integer d„ such that Varifv) > P Var(f) holds, is

called effective superposition dimension.

2.1 The effective dimension of Z2

Asmussen and Kroese (AK06) remark that the asymptotic behavior of the

subexponential case in (I), indicates that a substantial part of the variability of
Z2, may be due to the variability in N, which is their motivation to propose the

estimator Z;j. This remark motivates to calculate the effective dimension of Z2

explicitly:

Lemma 2.1 Let F £ S and F[zN] < oo for some z> L The ANOVA term of
Z2(u) corresponding to N is given by

</o(«) := P(Sn > u) - P{S,\ > u) F"*(«) - z{u).

Remark 2.1 Note that tja(rt) is a deterministic function of the variable n.

Proof. We have

flb(tt) F[N F{Mn .[ V (h - SN-i)) - E[Z2]\N n]

nF[P(Sn > u, Mn Xn\Xlt. - E[Z2\

nP(Sn > u, M„ X„) - P(5/v > u) P(Sn > it) — P(.S1,v > u).

Lemma 2.2 Let FeS and E[zN\ < oo for some z>\. The asymptotic
variance of the random variable go{N) is given by

|.„ r„r[w(iV)| Var[Nl
F (a)

Proof. Define P(iV n) p„-
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(3)

GO

^n2Rl-ß[iY]2 (4)

E[N2} - E\N2} Var[N}.

By assumption E[zN] < oo, interchanging limit and summation in (3) is justified
by dominated convergence as (Fn* (u)/F(u))2 < Kz11. Equation (3) follows from

\hn,tz>œP{SN > u)/F{u) E[N] and Equation (4) by lim,,-,«,P(S„ >
u)/F(u) n.

The asymptotic variance of Z2(u) is obtained by the following theorem:

Theorem 2.3 (HK09). If either

• Y is regularly varying and E[zN] < oo,

• Y is Lognormal and E[zN] < oo,

• Y is Weibull and N bounded,

then

Now, it is easy to show that in the limit u —> oo the effective dimension of Z2{u)
in both senses converges to 1 for any choice of p.

Corollary 2.4 Let N be nondegenerate. Under the conditions of Theorem 2.3,

Var[Z2{u))
_

VarjlV]

P(SN > u)2 E[N}2
'

we have

For[Z,(«)]
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Proof.

lini Var[flü(N)} lhn
Var[g0(N)\/F(u)2 Var[N\

y

V«r[Z2(u)] Var[Z2(u)}/F(u)2 Var[N]
'

In the last part of this section, let us have a look at the convergence speed of the
effective dimension to 1 for the case that the Y, are regularly varying, fulfilling a

certain regularity condition.

Theorem 2.5 Let F(x) be regularly varying with index rv > 0 and regularly
varying density f(x). Further let E[N^"vtl f l^] < oo, for a b > 0. Then there
exists a i/o and a constant k, such that for all a > «y:

(XI Vnr^N)\ < ifE[Y^]<oo
Var[Z2(u)\ ~ \k,F{u) ifn<l

Further if « I and E\Y{\ oo then there exists a slowly varying function
//1 (x) such that

L\{x)hin —— oo
x-*oc xr (X)

and

< [ _
^«r[/y,)(Af)]

< Li(u)
~~ Var{Z2{u)\ ~ u

F'or the proof, we shall need the following two lemmata:

Lemma 2.6 F'or all u > 0 and // > 1, I — ^ ~ " ~

Proof. Consider the inequality

F'lt{x) - P(Ü^A'' > x>n^Xi) ^

n

Y P(/Y, > x-)P(max(Xj) < x) nF(x)F(x)"~l. (5)tr &
From (5), we have

.-Ä < 2.» - on«).
n2I' (a) nzl (u)
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Remark 2.2 Observe that, by 1 —
*

_
^ 1 + ^ I —

f'
_
^ the

V "G») J V J V "G") /
bound in Lemma 2.6 is closely related to results on the second order tail
behaviour of subordinated regularly varying distributions, see e.g. (OW86;
GL96). However, Lemma 2.6 gives a bound that is appropriate for the whole

range of interest for the parameters u and a and furthermore is uniform in n.

Lemma 2.7 Let F(x) be regularly varying with index a > 0 and regularly
varying density f{x), then for every 6 > 0 there exists a m and a fc2 such that for
all u> u i

E[F(Mn-i V (u - S1,,-]))2]
_ < fk2n3^+lu~l if E[Y{] < oo

F{ii)2 -\h2nHa+s)+lF(u) if oi < 1

Further if a 1 and E[Yi] — oo then there exists a slowly varying function

Li(x) such that

Lx{x)
hm -, oo

cF(x)

and

E[F(Mn-i V (u - 5»_i))2]
_ 1 < r?;i((,+6) n

F(uf ~ '
«

Proof. At first we provide some well known bounds for the functions F(x) and

f(x). Note that (1 + x)"F(x) is slowly varying and bounded away from and oo
for every compact subset of [0,oo). We get from (BGT87, Theorem 1.5.6) that

for every 6 > 0 there exists a c\ such that for all x > y > 0

m _(l+*y a+vtm < Ci (A6 < Ci(fV+\ (6)
f(x) \i + yj (i + x)"i;i(x) Vl + y/ \yJ \y.

Further we get from (BGT87, Theorem 1.5.6) that for every 6 > 0 and c2 > 0

there exists a rj2 such that for all x > y > u2 and

(7)
f(x) \y.

From Karamata's Theorem (BGT87, Proposition 1.5.10) we get that there exists

an -U;j and a C3 such that for all u > «3

m
F(u) u
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At last note that front (BGT87, Theorem 1.5.3) it follows that for every w.( > 0
there exists a e.| such that for all u > t«2

sup/(f) < c.|/(It). (9)
t>U

F''or every u > 0 we have

F\F{Mn^ V (u - g„_i))2]

F(uf - I

12(^1)I /K[F(Mn.i\/{u-Sn.i))2]k- 1 < A/„_i < A;A —-—)
_ / 2(n~l)

fl \ Huf
-p(k - I < A/„-i < kA- "

2(rt — 1),

ï[/'(Af„.., V (« - 6'„-,))2; Mn-X >
+ — P( A/„_[ > - "

F(uf V 2{n - 1

Note that it follows from AIn \ V (u - S„. i) > u/n that

A;[F(A/,., V (a - Sn i))2; A/„ >
^ F(u/nfr(^

^ >
F{uf F{uY V 2(rt — 1)

With Bernoulli inaqtiality anil (6) we get

/TFPl"" l>5(^T))i(" " «»f U»-n)
< rrf2""-4rt2(,,,-4)(n- L)"+e+lF(u) < c?2" ^n:i{a+^+l F{u)

With Taylor formula and (9) we get that there exists an u.( such that for a > 2tt.1

1^1)1

E yF[F(MH„1 V (u - Sn-1))2; A: - 1 < A/„_, < k A 2(^3Yj]
u

-P A: - I < Mn < A'A-
2(tt — t)

it —(n— l)A;A—-—) — F(u)2

< E ~ fTT^- ffk-KMn-^kA-JL
kl f(«) V 2(t(-

2(n-l)f(u/2)F(u/2)
F(u)2
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By (6), (7) and (8) we get that there exists a rt5 such that for u > 2u$

f(u/2)F(u/2) <
C3C222("-^)+'

F(u)2 ~ u

Further note that

^ 1 < ~

a a

< (n- 1) [3{"~l\x+l)F(x)n-2f(x)dx < (n- L) [2{n~l)(x + l)f(x)dx.
Jo Jo

(to)

For E\Y\\ < oo the Lemma follows with

/I — /»00

/ 2("~'l)
{x + I )f(x)dx < / (x + I)f(x)dx E[Yi + 1].

J0 Jo

In the case a 1 and E[Y\} oo the Lemma follows from (BGT87, Proposition
1.5.9a). In the case a < 0 the Lemma follows from Karamata' s Theorem

(BGT87, Proposition 1.5.8)

+.),<»)* - Jf* ^ f(^rij) + >

s +1 s (2(" " +1

Proof of Theorem 2.5. We will only consider the case i?[Yi] < oo, since the

proof for the other cases is analogous. Let P(N 7i) pn, A(n,)
Pn""-2E{u)2 — z(u)2 and C\ 2E[Ni], Then,
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00 CO

Var[gt)(N)} ~ M* ^(«) + £>< (/'*>) - n2 F{uf)
N-0 11— 1

£1 \n*F(u) J

> A(u) — eiF(u)2.

Furthermore, for c2 k2E[N'^n ,"<i f l'] (k2 of Lemma 2.7), we have

00

Var[Z2(u)\ ^ pnn2E[F(Mn-, V (u - 5„_i))2] - z{af
n-0

00

A(u) + Y^pn(n2B[F(Mn-( V (« - Sn -0)2] - n2F(u)2)
n~ 1

w \ 2 fu \2 fE[F(Mn-i V (u — Sn -i))2] \
^(") +LP»« *(») 77-^2

1

^ \ f(") /
< /l(«) + c2u~l F(u)2.

From P(SN > a) ~ /i7[A^]/''('«) and E[N2] - F[Nf Vriz-fA/"] > 0 follows the

existence of a constant c;j > 0 together with an it0 > 0 such that for u > u(j

00

/t((i) ^/J|in2F(H)2 - z(u)2 E[N2]F(uj2 - P(5W > u)2 > (,iF(ii)'2.
n I

Thus,

Var[gn(N)} ^ {
A(u) - c, F(u) F(uf

Var\Z2(u)\~ A{u)+o2u 1 F(u)2

(c2u
1 +ciF(u))F(u)2 1

~ (C3+C2U-1)P(U)2 - '

3 Numerical results

In this part we present numerical illustrations for the proposed algorithms,
comparing effects for Monte Carlo and QMC techniques.
Observe, that QMC integration of Z2(u) and Z2(u) is not directly applicable for
two reasons. Formally, the integrands have infinite dimension as N has infinite
support. For practical purposes, this problem has been solved by cutting off the

integrand after a suitable large number of claims as the contributions of these
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p zl(u) MC stH shH shS MC stH shH sS

0 25 0 01 0 052 0 015 0 016 0 015 0 031 0 015 0 016 0 014

0 25 le-05 0 031 0 0021 0 0026 0 0024 0 0014 0 0012 0.0012 0 0012

0 25 le-08 0 031 0.0018 0 0022 0 0021 3 2e-05 4 8e-05 3 0e-05 3 3e-05

0 25 le-11 0 031 0 0017 0 0023 0 0021 2 6e-07 3 0e-07 1 2e-06 3 6e-07

05 0 01 0 077 0 027 0 030 0 029 0 052 0 028 0 029 0 028

05 le-05 0 044 0 0026 0 0032 0 0031 0 0015 0 0014 0 0013 0 0013

0 5 le-08 0 044 0 0022 0 0029 0 0026 5.4e-05 5 6c-05 2.7e-05 0 00013

0 5 le-l 1 0 044 0 0022 0 0029 0 0026 4 2e-07 3 5e-07 3.2e-07 2 2e-07

0 75 0 01 0 11 0.055 0 059 0 058 0 091 0 054 0 058 0 057

0 75 le-05 0 054 0 0044 0 0066 0 0062 0 0020 0 0015 0 0015 0 0015

0 75 le-08 0 054 0 0041 0 0063 0 0060 3 7e-05 2 7e-05 2 4e-05 2 3e-05

0 75 le-l 1 0 054 0 0040 0 0064 0 0060 2 8e-07 3 8e-07 3 2e-07 3 8e-07

Table 1: Half-length of a 95% confidence interval expressed as a

percentage of the estimated value for the estimators Z-i (first 4 columns)
and Z-i (last 4 columns) for different randomized QMC methods; Y is

Pareto distributed with a — 1.5.

large claim numbers are negligible. Furthermore, the integrands are not of
bounded variation in the sense of Hardy and Krause due to cusps induced by the

max-function, see e.g. (OW05). Here, we propose to apply the Chen-Harker-

Kanzov-Smale function f(u,v,t) v)2 + t2 -(- it + v)/2 widely used in

the literature for approximations of the max-function. Observe, that

linif_o f(u,v,t) max{tt,n}. For fixed precision one can choose t large enough
such that the error induced by this approximation is negligible, but the variation
of the integrand is bounded. Asymptotically (i.e. for M —> oo) this does not lead

to efficient error estimates. (The order obtained by a straight-forward 3-epsilon
argument is 0{{M l^log M)).) We give a brief numerical illustration (a

thourough numerical analysis for a whole range of randomized QMC methods

and rare event estimators may be found in (K05)). As in (AK06), we consider
Pareto-distributions with I'\x) (1 + x) a {0.5, 1.5} for the Y. The
number of summands was chosen geometrically, i.e. P(N n) pn

p"( 1 — p), p G {0.25,0.5,0.75}. The threshold u is picked, such that the

asymptotic approximation A(u) p/(l — p)F(u) of P(S,v > u) has the form

e {10—A-|A: {2,5,8, LL}}. As in (AK06) we used a variance reduction

technique to avoid realisations with N — 0. For every setting, we compare MC
methods and three randomized QMC methods: Halton (shH) resp. Sobol (sHS)

sequences with random shift, cf. (CP76; TU96), and random start Halton (stH)
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sequences, cf. (WHOO). For the generation of pseudorandom-numbers we use
Mersenne Twister, see (MN98). In Table I, 1()7 iterations for the MC estimates
and 10 ' random QMC sequences with length 10'! were used. Figure 1 shows a

log-log plot of the length of a 95 %-CI in procentage of the estimated value and
the number of iterations for MC and random start Halton estimators.
We see in Table 1 as well as in the Figure I that the confidence intervals are

significantly smaller in all quasi-Monte Carlo methods compared to MC for the

estimator Z2{u). The effect of QMC in the variance reduction is increasing far
out in the tails. These effects were expected by the results in Section 2.1 For the

estimator Z3(u) in particular for large u, this effect is not as strong as for Z2(u),
but observe that one gets relative errors less than I % with just 100 iterations for

/l(tt) io-\

4 Conclusion

In this paper we have investigated the applicability of Quasi Monte Carlo
techniques to a recently proposed rare event estimator Z2(u) for the tail
probability of aggregate claim distributions. Further we studied its control variate
version Z3(u). We have seen that the effective dimension of the estimator Z\{u)
tends to one as u —> oo, which means that asymptotically the variance of the

estimator is determined by the variance of a single dimension, namely the number
of claims /V. This gives a strong indication that Quasi Monte Carlo should

perform well for this estimator. On the other hand the estimator Z3(u) uses a

control variate to reduce the variance induced by the number of claims N. The
numerical example shows that especially for the estimator Z2(u), Quasi Monte

Iterations Itérations

Figure I: Log-Log-Plot: Comparison of Monte and quasi-Monte Carlo rare event
techniques; Y, ~ Pareto (1.5), IV ~ Geometric (0.25) and A(n) 10 2 (left) and

A(u) 10 "5 (right).
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Carlo improves significantly over Monte Carlo For the estimator Zj(tt), the

improvement is only significant when the value u is moderate, but one should

note that also this case is of relevance in practice and hence one should combine

Quasi Monte Carlo techniques with the estimator Z^u)

References

[AHT04I H Albrecher, J Hartinger and R F Tichy QMC techniques tor CAT bond pricing, Monte
Cm lo Method!, Appl 10 (3-4), 197-211 2004

[AHT03] H Albrecher, J Hartinger and R F Tichy Multivariate Approximation Methods tor the

Pi icing of Catastrophe-Linked Bonds, Internat Ser Nitmei Moth 145,21-39,2003

[AS03| S Asinussen Applied piobability and queues. Second edition, Sponger, New Yoik, 2003

[AB971 S Asmussen and K Binswanger Simulation ot ruin probabilities toi subexponential claims,
Astin Bulletin 27 (2), 297-318 1997

[ABH00I S Asmussen K Binswanger and B HOjgaard Rare events simulation toi heavy tailed
distributions Bernoulli 6(2), 303-322, 2000

[AK06| S Asmussen and D P Krocse Improved algorithms tor raie event simulation with heavy

tails, Adv Appl Probab 38(2), 545-558, 2006

[AKR05| S Asmussen, D P Kroese and R Y Rubinstein Heavy tails, importance sampling and

cross entropy. Stock Models 21(0,57-76,2005

[BGT87| Bingham, N H Goldie, C M and Teugels, J I 1989 Régulai vanatwn Encyclopedia ot
Mathematics and its Applications, vol 27 Cambridge University Piess, Cambridge

[CM097| R E Catlisch, W Moiokott and A B Owen Valuation ot moitgage backed securities

using brownian budges to reduce effective dimension Journal of Computational f mante 1,

27-46 1997

[CP76) R Cranley and T N L Patterson Randomisation ot numbei theoretic methods toi multiple
integration, SIAM Journal of Numerical Analysis 13(6), 904-914 1976

[EKM971 P Pmbrechts, C Kluppelberg and T Mikosch Modeling fxtiemal Events for Finance and

Insurance, Springer, Heidelberg, 1997

[GL96| J t Geluk Pails ot subordinated laws The regular varying case, Stochastic 1'iocess Appl
61(1), 147-161, 1996

[HK09| J Hartinger and D Kortschak On the efficiency ot the Asmussen Kioese estimatoi and its

application to stop-loss transforms, submitted, 2009

[HL6I| 6 Hlawka Punktionen von beschiankter Variation in der Theoue dei Gleichveiteilung, Ann

Mat Put a Appl 54,325-333, 1961

[HS031 Z Etuang and P Shahabuddin New simulation methodology toi risk analysis lare event,

heavy tailed simulations using hazard function transformations, with applications to value-at usk,

in WSC '03 Pioceedtngs of the 35th conference on Winter simulation 276-284, 2003

[JS02| S Juneja and P Shahabuddin Simulating heavy tailed processes using delayed hazard rate

twisting ACM rrans Model Comput Siinul 12 (2), 94-118, 2002

[K05| D Kortschak Zufallige Quasi-Monte Cmlo Methoden zui Simulation seltener Ereignisse,
Diploma Thesis, TU Graz 2005



69

INIE92) H Niederreiter Random number generation and quasi-Monte Carlo methods, SIAM, 1992

|MN98| M Matsumoto and I Nishimura Mersenne twister A 623-dimensionally etjindis-titbuted
uniform pseudorandom numbei generator ACM Irans on Modeling and Computet Simulation
8, 3-30, 1998

[OW86| F, Omey and k Willekens Second order behaviour of the tail of a subordinated probability
distnbutions. Stochastic Piotess Appl 21(2), 339-333 1986

[OVV05I A B Owen Multidimensional variation lor Quasi-Monte Carlo, in J Fan and G Li, editors,
Inteinational Conleiente on Statistics in Honour of Piotessor Kai Tai I ang's 63th Buthday, 2005

IPT93| S H Paskov and J Traub Faster Valuation of Financial Derivatives, Journal of Portfolio
Management 22, 113-120, 1995

[SIG76| D Siegmund Importance sampling in the Monte Carlo study ol sequential tests, Ann Statut
4(4), 673-684, 1976

[IU96| B *1 tillm Bruno On the use of low discrepancy sequences in Monte Carlo methods, Monte
Catlo Methods Appl 2(4), 295-320, 1996

[WH(M)| X Wang and F J Ilickemell Randonu/ed Halton sequences. Math Comput Modeling
32(7 8), 887-899, 2000

|WP03| X Wang and K I Fang The effective dimension and quasi monte carlo integration, Journal
of Complexity 19, 101-124,2003

Jürgen Hartinger
Karntnei Landesvet Sicherung auf Gegenseitigkeit
Faculty of Buisness and Economics

Domgas.se 21

A-9020 Klagentuit

Juergen Haitingei @klv at

Dominik Kol tschak

Depaitment ot Actual nil Science

Faculty of Buisness and Economics

Univeisity of Lausanne

dominik kortschak@unil ch



70

Abstract

In the last decade considerable practical inteiest, e g in ciedit and insurance risk applications, as well

as methodological challenges caused intensive research on estimation of uire event probabilities This
article aims to show that tecently developed raie event estimatois are especially well suited tor a

quasi Monte Carlo framework We establish limit telations tor the so called effective dimension and

purpose smoothing methods to overcome ptoblems with cusps of the integrand
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