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B. Wissenschaftliche Mitteilungen

JURGEN HARTINGER®, DoMINIK KORTSCHAK

Quasi-Monte Carlo Techniques and Rare Event Sampling*

1 Introduction

In today’s simulation literature a lot of attention is attracted to the estimation of
small probabilities. This in particular plays a role in managing rare event risk in
insurance, but also has applications in areas like queueing theory. Explicit or
easily computable solutions are then typically not available such that simulation
is required even for simple problems. In this article we are concerned with a
standard problem within rare event sampling. Let Y|, Y5, ... be independent,
identically distributed random variables (with generic random variable Y) with
cumulative distribution function /' and tail ' =1 — I, and N an integervalued
random wvariable (independent of the Y;’s) on a suitable probability space
(2, A, P). The goal is the evaluation of

2(u)=P(Sy >u)=PY1+...+ Yy > u). (1)

Observe that lim, . z(u) = 0, such that for large v we have the problem of
simulating a rare event. Even this simple problem has practical relevance, e. g. for
the estimation of the probability of ruin in classical insurance risk models, the
steady state waiting times for queues, see e.g. (AS03), or for the valuation of
catastrophe risk bonds within a collective risk model, e. g. (AHTO3; AHTO04). The
typical magnitude for z(u) in applications ranges from 10~% to 10719,

Let us first recall the behavior of a crude Monte Carlo estimator, namely

Zi(u) = Iig . 7y is Bernoulli distributed with parameter z(u) and variance

N>ut
z(w)(1 — z(u)). Since the goal is to have a competitive relative error, our quantity

of interest is the (squared) coefficient of variation COV?*(Z(u)) :Y”_’_(zf(i_)(’ill
ze(u
= L(—%l For u — oo, we have COV?(Z(u)) ~ z(u)~'. Hence, asymptotically
2\U

the number of paths needed to guarantee a fixed relative Monte Carlo error grows
to infinity and, technically, we face a (nontrivial) variance reduction problem. In
the literature, the following efficiency classes for suitable estimators are
distinguished with respect to the behavior of their squared COV: We say 7 (u)
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° is logarithmically efficient if Ve > 0 : lim,, w < 00,
2—E;
e . , e Var(Z(u)) ()
° has bounded relative error if —(—)— < 00,
2=lu
° has vanishing relative error if lim,,_, ., Vo] . 5,

:2(11)

The design of good estimators heavily depends on the existence of exponential
moments of the random wvariable Y. In the light tail case, (i.e.
3t > 0: Elexp(tY )] < 00), estimators with bounded relative error may be found
by an exponential change of measure, as determined by a saddlepoint method, see
e.g. (SIG76; AS03). For heavy tails, methods for the subclass of subexponential
distributions were intensively studied in the last decade. A distribution function F
is said to be subexponential (¥ € &) if for fixed n > 2:

. P(Y1+---+Y,>u)
lim =n.
U—00 ]P(mux{yl, 8 ‘.[/”} > ’U,)

Hence, the tail of the sum of iid random variables behaves asymptotically like the
tail of maximum of the summands. Important elements of S are

° the Lognormal distribution: Y = e, where X is Gaussian,
° Weibull-type distributions: F' ~ cu'tPe ™ 0< B <1,

° Regularly varying distributions with index o > 0 : F(u) = u " L(u), where
L(u) is slowly varying, (i.e. forall £ > 0 : lim, oo L(tu)/L(u) = 1).

For a thorough introduction to subexponential distributions and modeling with
heavy tails consult the monograph (EKM97).

Good Monte Carlo estimators in this setting are either obtained by importance
sampling through twisting the hazard rate, see e. g. (JS02; HS03; AKROS), or by
conditional Monte Carlo methods, see (AB97; ABH00; AK06).

In the sequel, we are mainly interested in recent work by Asmussen and Kroese
(AK06), who propose the following two estimators for z(u) given in (1):

Zy(u) = N F(max{u — Sy-1, Mn_1}),
and its control variate counterpart in terms of V,
Zs(u) = N F(max{u — Sy-1, Mn_1}) + (E[N] — N)F(u),

where M, = max{Y},...,Y,}. They show that Z,(u) has bounded relative error
for regularly varying Y (under mild conditions on N) and is logarithmically
efficient for Weibull Y, given that 2'*% < 3 and N bounded. In Hartinger and
Kortschak (HK09) it is shown that Zy(u) has bounded relative error for the
lognormal (again under mild conditions on N) and the Weibull case (given
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3 < log(3/2)/log(3) and N bounded). Furthermore, it is shown that under the
same conditions, Z3(u) has vanishing relative error.

Section 2 reviews the quasi-Monte Carlo methodology and shows that
asymptotically the effective dimension of Z, is |. The speed of convergence to
this limit is analyzed for Pareto Y. In Section 3 numerical results comparing
Monte Carlo and randomized quasi-Monte Carlo (QMC) methods (in the sense of
Wang and Fang (WF03)) are given.

2 Rare event sampling and effective dimension

In contrast to Monte Carlo methods, the quasi-Monte Carlo integration error can
be bounded deterministically due to the famous Koksma-Hlawka Theorem
(HL61) by the product of the discrepancy of the used sequences and the
integrand’s variation in the sense of Hardy and Krause, V(f). For a thorough
introduction consult the monograph (NIE92). Let {w,},.,,-,, be a point
sequence in [0, 1)°, Dj,(w,,) denote the star discrepancy of (xy,...,zy) and
V(f) < oo. Then,

. vdr — — FID5 ().
./[(),ll""f T MZf (/) Dy () @)

Since the best known sequences (so-called low discrepancy sequences) have a
discrepancy of order O(log®(M)/ M), QMC techniques are at least asymptotically
superior to Monte Carlo simulation, the probabilistic error of which is known to
be of order O(1/V/M). It was frequently shown empirically that there are
extremely high dimensional problems (s = 360 and more, ¢. g. (PT95)) occurring
in mathematical finance, where QMC methods outperform Monte Carlo
algorithms by far for reasonable M. One way to classify types of integrands that
are particularly well suited for QMC integration is the notion of effective
dimension based on the ANOVA decomposition, e. g. (CMO97; WFO3).
Let f(x) be a function in £*(U*) and v C {l1,...,s} =5, |v| its cardinality,
x, the |v|-dimensional vector having the coordinates of x with the indices of
v and v denoting the correqpon(ling unit cube. Denote the integral value
= Jys f(¥)dx by fy and let f,(x)= [y, f(X)dxs\u = > 1, fy(x). Then
the ANOVA decomposition is defined by f(x) = > ., g fu(x). Let Var(f) be
the variance Var(f(U)), where U denotes a uniformly distributed random
variable on the corresponding unit cube. It is well known that with these
definitions jﬂ fo(x)dz; =0 for all j€ v, [ fi(x)f(x)ds =0 for v# v and
that Var(f) = > ,cq Var(f,).
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This gives the following natural notions of the importance of the coordinates:

° For 0 < p < 1 (typically p close to one), the effective truncation dimension
of the function f is defined by the smallest integer d;, such that there exists
a set v with cardinality d; and Z.’gy Var(fy) > p Var(f).

o The smallest integer d such that 3 o.,., Var(f,) >p Var(f) holds, is
called effective superposition dimension.

2.1  The effective dimension of Zy

Asmussen and Kroese (AK06) remark that the asymptotic behavior of the
subexponential case in (1), indicates that a substantial part of the variability of
7y, may be due to the variability in N, which is their motivation to propose the
estimator Z3. This remark motivates to calculate the effective dimension of 7,
explicitly:

Lemma 2.1 Let F'€ S and E[z"] < oo for some z > 1. The ANOVA term of
Z>(u) corresponding to IV is given by
L

go(n) :=P(S, > u) —P(Sy >u) = F™ (u) — 2(u).

Remark 2.1 Note that go(n) is a deterministic function of the variable n.

Proof. We have
_(}()(IL) = [D‘[N ['A'(A'[,V Y (’U, == SN“.|)) == ]D‘[ZZHN o= 'H,]
= ’ILH[IP(S,, > U, 1"&’[,,, = X”‘]/‘(l, vy .X,,, |)I = E[Z-g]
= I),P(S,, > U, 1'1'[,, - "YH) - P(S.’V = “) == ]P(Sn > 'M) = HD(L‘)‘N > '([,)_
L]
Lemma 2.2 Let /eS8 and E[zV] <oo for some z> 1. The asymptotic
variance of the random variable gy(/V) is given by
lim V(Ll‘i[.(]()(‘[V)]

. = Var|N]|.
=00 ["(u)z V]

Proof. Define P(N = n) = p,.
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- “m* Y 2
lim Vﬂ[[g() Z Pn——= o P(S_{_\f >2U)
1—00 F( ) f’j('ll;)

U n=0

F(u)? woe Fu)?
:an(,}gg; ?k“)) - B[N} )

n=0

= w%p, — [N ()
n=(0

= E[N? — E[N?] = Var[N].

Tk N2
= hm Zp,,F (U) — i KSN >ﬂ

By assumption £[z"] < oo, interchanging 11m1t and summation in (3) is justified
by dominated convergence as (F™* (u)/F(u))* < Kz". Equation (3) follows from
limy, o P(Sy > u)/F(u) = E[N] and Equation (4) by lim, . P(S, >
u)/F(u) = n. L

The asymptotic variance of Z,(u) is obtained by the following theorem:

Theorem 2.3 (HKO09). If either

o Y is regularly varying and E[z"] < oo,
° Y is Lognormal and E[z"] < oo,

° Y is Weibull and N bounded,

then

lim Var [Z,g(u)] V('I.’I‘[NJ
umpww>w E[N]?

Now, it is easy to show that in the limit u — oo the effective dimension of Z;(u)
in both senses converges to | for any choice of p.

Corollary 2.4 Let N be nondegenerate. Under the conditions of Theorem 2.3,
we have

lirn Var(gy(N)]

haoid 11’ (O
u—oo Var(Zy(u)]
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Proof.

lim Mj_@(f_vﬂ  lim V(-”'[.(](](N)J/F‘('U,)z ~ Var[N] L
woo Var(Zy(u)] w0 Var(Zy(w))/ F(u)®  Var(N] 0

In the last part of this section, let us have a look at the convergence speed of the
effective dimension to | for the case that the Y; are regularly varying, fulfilling a
certain regularity condition.

Theorem 2.5 Let F(x) be regularly vcuymg, with index o« > 0 and regularly
varying density f(z). Further let E[N**1U] < oo, for a 6 > 0. Then there
exists a 1y and a constant k, such that for all u > wu:

Var(gy(V)) 2 {ku'l if B[] < 00

0<1-— ,. _
ek kF(u) ifa <1

- Var(Zy(u)] —
Further if o = 1 and FE[Y;] = oo then there exists a slowly varying function
Ly (x) such that
[Jl( )

l N -
I>li[( )

and

0<1- Var(gy(N)] < Ll('u,)’
Var(Zy(u)] u

For the proof, we shall need the following two lemmata:

2
Lemma 2.6 Forallu >0andn > 1,1 — (l—[—(('-l?) < 2(n—1)F(u).

Proof. Consider the inequality

F™(z) = P (Z X = ;,;) > P (U{Xi >, “l_ljél;}{()(j) < :.-:})
; i=1 -

1=1
= ZIP’ (X >x) m(w(X) <z)=nF(z)F(z)"". (5)
From (5), we have
it 40 P (n—1)
P g FP@E@TTR s 2(n — 1) F(u).

L — 5 <
n?F(u)? n?F(u)?
O]
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AL 2 AL Lk
Remark 2.2 Observe that, by 1 — (L—('_‘)) = (1 +£~ﬁ£ﬂ> (l — [—(”)), the
nk(u) nF(u) nk(u)

bound in Lemma 2.6 is closely related to results on the second order tail
behaviour of subordinated regularly varying distributions, see e.g. (OW86;
GL96). However, Lemma 2.6 gives a bound that is appropriate for the whole
range of interest for the parameters u and « and furthermore is uniform in 7.

Lemma 2.7 Let F(z) be regularly varying with index « > 0 and regularly
varying density f(z), then for every § > 0 there exists a 1, and a ky such that for
all u > u

BF(Mya v (u =5, )] _ { bSOyt if B[V < 0o

F(u)(z kz’)’l‘?(a'w)'}"lp(’tt) if a<l1

Further if @ =1 and FE[Y}] = co then there exists a slowly varying function
Ly () such that
Ly(z)

lim —= = 00
x—o0 pH CL)

and

B(F(M,_1 V (u—S.1))°] | < piersyrt Lau)
F(u)? B u
Proof. At first we provide some well known bounds for the functions #'(x) and
f(z). Note that (1 + 2)" F'(x) is slowly varying and bounded away from 0 and oo
for every compact subset of [0,00). We get from (BGT87, Theorem 1.5.6) that
for every 0 > 0 there exists a ¢; such that forall x >y > 0

- - @ - o o . o & a0
Fy) _ (1 +;z:) (L+9)"Fly) _ Cl(l + 11:) (ﬁ) 3 (;l(f) m' "
F(x) l+y) (1+z)"F(z) — I+y v/ T \y

Further we get from (BGT87, Theorem 1.5.6) that for every 6 >0 and ¢y > 0
there exists a wuy such that for all z > y > wuy and

M | E-L'_ a+o+1
f(sv)gc"(z) ' )

From Karamata's Theorem (BGT87, Proposition 1.5.10) we get that there exists
an ug and a c¢g such that for all u > g

f('lb) C3 .
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At last note that from (BGT87, Theorem 1.5.3) it follows that for every wuy >
there exists a ¢y such that for all © > o

sup f(t) < eqf(u).

t>u

(9)

For every u > 0 we have
E[F(My,_V (u— 8y_1))’] -
F(u)®
(7(71“_')] [9‘[[':’(11’[»-[ \ (“ - Sn —-l))z; k=1< A[n--l S kA 2 l)]

B ; F(u)2

u
_ < B
(k | < A/[” 1 kA Z(IL - 1)))

E[F‘(A/[rhl \4 (‘lt — Sn- l)) M, .
2(r zf—l) u
- I[’(M,,ﬁl > __ﬂ)
F(u)? 2(n—1)
Note that it follows from M, | V (u — S, 1) > u/n that

}g’[["(ﬁ-"[“,,[ \Y (‘U - Sn -[))" A[” L= (n 1) ] (“/n’) P (A{[ > u
F(uy S Rwt T 2

+

With Bernoulli inaquality and (6) we get

[f(u/n) u . F(u/n)” P u
F(u)” P(Mn-l g 2(n — l)) <(r=1) F(u)? (2(n - 1)>

Snat. 2ats 8+ Seyak b Wt Bl &
(:132" H)n.Z(u, Fb)(,”‘ - 1)‘ I ('Ub) = (:12(1 H)“S((r ) HP (’lL)

With Taylor formula and (9) we get that there exists an w, such that for u > 2u,

ol .

SF (M1 V (4 — Sn1))’s k=1 < My < kA
; ([[f*(M,,Iv(u ) | 3 T)
uw
P(k- < kA
IP(A 1 < M, Z(n— l)))
2

l"Z(n“-l)] F(u —(n— l)k/\% ”) %p(u)z
: P(""—1<A[ul<k/\

< = -
B k=1 F(U)z

2n — 1) f(u/2)F(u/2)
F(u)?

< C,

u

2(n—1)

)
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{%;—”] U U
kA———P(k—1< M, , <k .
< 3 (ergig)P(s- 1 <t ity

k=1

By (6), (7) and (8) we get that there exists a us such that for u > 2usg
f(u/2)F(u/2) - C3Cp22(t)+1

F(u)” u

Further note that

EEl
2(n—1)

k=1

U U
kA Plk—1< My <kA
( 2(n — 1)) ( L 2(n — L))

[

<(n- l)/?'(”m”(:v + 1) F(2)"  f(z)de < (n— 1) [2(” "l)(::: + 1) f(x)da.
0 Jo
(10)
For E[Y|] < oo the Lemma follows with

(3

20— o0 7
/2( l)(1’; + 1) fz)de < f (z + 1) f(x)de = E[Y; + 1].
Jo 0

In the case o = 1 and E[Y}] = co the Lemma follows from (BGT87, Proposition
1.5.9a). In the case o < 0 the Lemma follows from Karamata' s Theorem
(BGT87, Proposition 1.5.8)

t L

2(n—1) I'2(u~l) = (] - U ‘
v )y e F(x)dx — F +
/0 (x + 1) f(x)dx '/0 (x)dw 2n—1) (2(’”_1)> 1
Cytl = U C5C| atd—1 ’
< F +1< 2(n—1 uk'(: L.
T (1=-a)2(n-1) (Q(n - 1)) dade 1 - a( (n=1)) uB () +

]

Proof of Theorem 2.5. We will only consider the case F[Y]] < oo, since the
proof for the other cases is analogous. Let P(N =n) = p,, A(u)
=5 pan®F(u)? — 2(u)”® and ¢; = 2E[N]. Then,
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Var(gy(N Zp,LF’” u)’ — 2(u)’ = A(u +Zp,,(F” () n.r“)F‘(u)Q)

n=0

= n? F(u)’
2 -’[1(15) — Cl F‘(Tf,)d

Furthermore, for ¢y = ko BE[N3 @+ 1] (ky of Lemma 2.7), we have

Var(Zy(u)] = Zp,mzﬁ'[ﬁ’(M,L_l V (u — Sy 1))2] — 2(w)*

n=0

= A(u +an n L (M V (u— S, 1)) | - n’ [(u))

Xy a E[F(Mya V(u—S,1))
= A(u) + HZ:lpunz[' (u) ( ()’ -1
< A(u) + cou " Flu).

From P(Sy > u) ~ E[N]F(u) and E[N?] — E[N])* = Var[N] > 0 follows the
existence of a constant ¢3 > (0 together with an g > 0 such that for u >

A(u) = ipnngf‘(uf - z(u,) = [Nz][‘(“ ~P(Sy > U) 24 il’(“) :

n=1

Thus,
_VmwﬂNﬂ<lnAUQ—qFMM%wg
Var(Zy(u)] — A(u) + cyu 1P ()
wxi=) b o Bl N B 2
o b aP@FW’
(c3 + eou V) F'(u) ]
3 Numerical results

In this part we present numerical illustrations for the proposed algorithms,
comparing effects for Monte Carlo and QMC techniques.

Observe, that QMC integration of Z(u) and Z3(u) is not directly applicable for
two reasons. Formally, the integrands have infinite dimension as N has infinite
support. For practical purposes, this problem has been solved by cutting off the
integrand after a suitable large number of claims as the contributions of these
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P A(w)  MC  stH  shH  shS  MC  stH  shH sS

0.25 0.01 0.052  0.015 0.016 0.015 0.031 0015 0016 0014

0.25  le-05 0.031  0.0021 0.0026 0.0024 0.0014 0.0012 0.0012 0.0012
0.25  le-08 0.031  0.0018 0.0022 0.0021 3.2¢-05 4.8¢-05 3.0e-05 3.3e-05
0.25 le-1l 0.031  0.0017 0.0023 0.0021 2.6e-07 3.0e-07 1.2e-06 3.6e-07
0.5 0.01 0.077 0.027  0.030 0.029 0.052 0.028 0.029 0.028

0.5 le-05 0.044  0.0026 0.0032 0.0031 0.0015 0.0014 0.0013 0.0013
0.5 le-08 0.044  0.0022 0.0029 0.0026 5.4e-05 5.6e-05 2.7¢-05 0.00013
0.5 le-11 0.044  0.0022  0.0029 0.0026 4.2e-07 3.5¢-07 3.2e-07 2.2e-07
0.75  0.01 0.11 0.055 0.059 0058 0.091 0054 0058 0.057

0.75  le-05 0.054  0.0044 0.0066 0.0062 0.0020 0.0015 0.0015 0.0015
0.75  le-08 0.054  0.0041 0.0063 0.0060 3.7e-05 2.7e-05 2.4e-05 2.3e-05
0.75  le-11 0.054  0.0040 0.0064 0.0060 2.8e-07 3.8e-07 3.2e-07 3.8e-07

Tablel: Half-length of a 95% confidence interval expressed as a
percentage of the estimated value for the estimators Zy (first 4 columns)
and 7 (last 4 columns) for different randomized QMC methods; Y is
Pareto distributed with v = 1.5.

large claim numbers are negligible. Furthermore, the integrands are not of
bounded variation in the sense of Hardy and Krause due to cusps induced by the
max-function, see e.g. (OW05). Here, we propose to apply the Chen-Harker-

Kanzov-Smale function f(u,v,t) = (y/ (v — v)® + 2+ u+ v)/2 widely used in

the literature for approximations of the max-function. Observe, that
limy Lo f(u,v,t) = max{u,v}. For fixed precision one can choose ¢ large enough
such that the error induced by this approximation is negligible, but the variation
of the integrand is bounded. Asymptotically (i.e. for M — o0) this does not lead
to efficient error estimates. (The order obtained by a straight-forward 3-epsilon
argument is O((MY*log M)).) We give a brief numerical illustration (a
thourough numerical analysis for a whole range of randomized QMC methods
and rare event estimators may be found in (KO05)). As in (AK06), we consider
Pareto-distributions  with F'(x) = (1 +x) “,« € {0.5,1.5} for the Y. The
number of summands was chosen geometrically, i.e. P(N =n)=p, =
p"(1 —p),p e {0.250.5,0.75}. The threshold w is picked, such that the
asymptotic approximation A(u) = p/(1 — p)F(u) of P(Sy > u) has the form
z(u) € {107%|k € {2,5,8,11}}. As in (AKO6) we used a variance reduction
technique to avoid realisations with NV = (. For every setting, we compare MC
methods and three randomized QMC methods: Halton (shH) resp. Sobol (sHS)
sequences with random shift, cf. (CP76; TU96), and random start Halton (stH)



67

sequences, cf. (WHO00). For the generation of pseudorandom-numbers we use
Mersenne Twister, see (MN98). In Tablel, 107 iterations for the MC estimates
and 10" random QMC sequences with length 10° were used. Figurel shows a
log-log plot of the length of a 95 %-CI in procentage of the estimated value and
the number of iterations for MC and random start Halton estimators.

We see in Table 1 as well as in the Figure | that the confidence intervals are
significantly smaller in all quasi-Monte Carlo methods compared to MC for the
estimator Z5(u). The effect of QMC in the variance reduction is increasing far
out in the tails. These effects were expected by the results in Section 2.1 For the
estimator Z3(u) in particular for large w, this effect is not as strong as for Zy(u),
but observe that one gets relative errors less than | % with just 100 iterations for
A(u) = 1075,

4 Conclusion

In this paper we have investigated the applicability of Quasi Monte Carlo
techniques to a recently proposed rare event estimator Zy(u) for the tail
probability of aggregate claim distributions. Further we studied its control variate
version Zy(u). We have seen that the effective dimension of the estimator 7 (u)
tends to one as u — oo, which means that asymptotically the variance of the
estimator is determined by the variance of a single dimension, namely the number
of claims N. This gives a strong indication that Quasi Monte Carlo should
perform well for this estimator. On the other hand the estimator Z3(u) uses a
control variate to reduce the variance induced by the number of claims N. The
numerical example shows that especially for the estimator Z»(u), Quasi Monte

1.5 — " e e TR B = S T

T o T
Method Z, und 7,
A)=10 L a=15,p=025

T Method Z; und £
ZystH ===== AW =10% a=15p=025

b=
[

=3
Relative Lengh of the 95 %-Cl
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Figure 1: Log-Log-Plot: Comparison of Monte and quasi-Monte Carlo rare event
techniques; Y; ~ Pareto (1.5), N ~ Geometric (0.25) and A(u) = 102 (left) and
A(u) = 10 (right).
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Carlo improves significantly over Monte Carlo. For the estimator Z3(u), the
improvement is only significant when the value u is moderate, but one should
note that also this case is of relevance in practice and hence one should combine
Quasi Monte Carlo techniques with the estimator Z3(w).
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Abstract

In the last decade considerable practical interest, e.g. in credit and insurance risk applications, as well
as methodological challenges caused intensive research on estimation of rare event probabilities. This
article aims to show that recently developed rare event estimators are especially well-suited for a
quasi-Monte Carlo framework. We establish limit relations for the so-called effective dimension and
propose smoothing methods to overcome problems with cusps of the integrand.
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