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D. Kurzmitteilungen

Hansjörg Ai.rrf.cher and Hans U. Gerber, Lausanne

On the non-optimality of proportional reinsurance according to the

dividend criterion

In a recent paper in this journal, Beveridge et al. (2008) considered the classical

compound Poisson risk model. They studied the effect of (static) proportional and

excess-of-loss reinsurance on the expected difference between the discounted
dividends until ruin and the discounted penalty at ruin. According to this

criterion, and based on their numerical investigations, they conjecture that no
reinsurance is better than proportional reinsurance. The goal of this note is to give
a theoretical background to this conjecture and to show that it is true in a more
general setting and under fairly general conditions.

Without reinsurance, the surplus of the company at time t is

U(t; u) —u + ct — S(t),

where u is the initial surplus, S(t) the aggregate claims up to time t, and

c > S'(l) is the constant rate at which the premiums are received. The maximal
value function W(u) is defined as follows. For given u, W(u) is the maximal

expected difference between the discounted dividends until ruin and the

discounted penalty at ruin; the maximum is taken with respect to all dividend
strategies.

Proportional reinsurance is available; the retained fraction of the claims is

denoted by a, 0 < a < 1. First we assume that the relative loading contained in

the reinsurance premium is the same as in c. Then, with proportional reinsurance

corresponding to the parameter «, the surplus of the company at time t is

With proportional reinsurance, the maximal expected difference between the

discounted dividends and the discounted penalty is denoted as Wn(u). By a

change of scale, we see that

W„(«)=a-W0.
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As a consequence, Wa(u) can be obtained by the geometnc construction that is
shown in Figuie 1 Suppose now that the function IL(u) satisfies the following
Condition C. foi any x > 0, the ray between the origin and the point (x, VF (a;)) is
below the giaph of the function. Then W„(ii) < W{u) tot all a and it, and we
conclude that lot any it no reinsurance (a 1) is better than any proportional
reinsurance We note that Condition C is tor instance satisfied in the paiticular
case, where the graph of \V(u) is concave (see the recent papet of Loeffen and
Renaud (2010) lot general results on the shape of W(u)) Finally, it the ielative
loading of the reinsuiance piemium exceeds the one contained in r, the
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H. U. Gerber, E. S. W. Shiu and H. Yang, Lausanne, Iowa City, Hong Kong

Crossing Time of Annuities with Exponential Payment Rates

This note is motivated by a question raised by Dr. Olivier Deprez, a pension

consulting actuary in Zurich. In his practice, he examines and compares life
annuities with exponential payment rates.

Consider a continuous annuity to a life age x, where the rate of payment at

time t is

r(t) rect, t > 0. (1)

Here r r(0) is the initial rate, and c can be positive or negative. At the force of
interest b, the net single premium of such an annuity is

A)

where

poo p 00

/ r(b)e~öftPxdt r / e~{ö~c)tfpxdt räx(S - c), (2)
Jo Jo

a
poo

,;(<$) / e~H,p.,dt. (3)
Jo

For the following, it is useful to adapt two notions in the theory of immunization
(which is for deterministic cash flows); see Chapter 3 of Panjer (1998). The

expression

n/r\ d, - /CN
17

°{S) =--jr\n CI,.(6) x (4)
db J0 e Htpxdt

is the Macaulay duration (see Macaulay (1938)), and

rf2, - J7[t~ D(f>)]2e~SttPxdt
V(6) ^a,(l)= C^,itvU

(>)

is what Fong and Vasicek (1983, 1984) would call M2. Actuaries recognize that

D(S) is the mean and V(b) the variance of an Esscher transform of the

probability density function that is proportional to tpx, t > 0. To see this, note
that the function

^ —> lnäj;(6 — z) — lnäc(<5)

is the cumulant generating function.
Now we consider two annuities to the same life with different exponential

payment rates ro(t) and ri(t), given by the pairs (nnQ)) and (ri,ci). We assume
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that the annuities arc actuarially equivalent, that is, that their net single premiums
are the same. Hence, the assumption is that

r0äx(ö - co) riäx(S - c,). (6)

We are interested in the crossing time T T(co,C[) when the payment rates are

equal. From the condition rn(T) r\(T) we obtain

IW, """ (7)
C\ — C()

and, because of (6),

TV,. „ ^
1,1 ~ci)~ ln ~ A))

1 OO, C[J f»J
c i - c0

Thus T(c.'o,ci) can be interpreted as the slope of a secant of the graph of the

(unction z —> In«,.(A — z). It follows that in the limit C[ — c'o, T has the limiting
value

T(cih c0) - ~ In d,.(6 - c0) ü(ti - c0), (9)
do

which is the Macaulay duration at the force of interest 6 — c(j. If cq c is near

Co, we can use the first few terms of the Taylor expansion of /(c) =T(co,c)
around c Co to obtain an approximation. The Taylor series of
In äj.(6 — c) — ln ax(S — Co) around c Co is

°° | ,111

f'tUlx{Ö ~ Q,)1'(C _ C(l)"-
n— I "

After a division by (c - c0) we obtain the Taylor series of /(c) 7'(c0, c):

00 | t

l)"^t lnä*(6 ' '(f: " Co)"~1-

n— I

If we use the first two terms, we obtain the approximation

7'(c„, c) « D(S - co) + ^ V(S - co) (c - c0). (10)

This rule of thumb is a refinement of formula (9). If Co were an inflation rate and ö

a nominal interest rate, the difference 6 - c0 would be the "real" interest rate. Then

D and V would be the duration and M2 with respect to the real interest rate.
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Example. We choose de Moivre's law, so that the reader can reproduce the

results. Thus tpc ——-—Ü < t < lo — x. After some calculations, we find
U! — X

that öt(0) i(w — x), D(0) ^(w — x), V(0) — (w — j;)2, and for b ^ 0,
2 3 18

iii_ e-%-o
a, (S) - — -7 from which D(8) and V{8) can be determined as

o 8* lj — x
derivatives by using Mathematica. For a numerical illustration, we set

x 65, tu 100,6 0.05. For Co between 0.01 and 0.05 and c ci 0 (Table
1), 0.04 (Table 2), 0.08 (Table 3) the estimated values according to formula
(10) are compared to the exact values. We conclude that the approximation (10)
gives excellent results.

D(b - co) V{b - co) T estimated 7 exact E.HÖ1

(0 0 01 9.21864 54 0667 8 94831 8 95429 0 00598

Co 0 0'2 9 77737 57 6809 9 19928 9 22464 002536

fo 0 03 10 3722 61 2694 9 46316 9 50702 0 03386

r0 0 04 11 0024 64 7560 9 70728 9 80136 0 09408

c,i 0 05 11.6667 68.0555 9 96532 10 1074 0 14208

Table 1: Values of D, V, T estimated and T when c 0

D(S - c„) V(6 — f0) T estimated T exact Ei lor

0) 0 01 9 21864 54 0667 10 0296 10 0837 0 05406

c0 0 02 9.77737 57.6809 10 3542 10 3781 0.02393

co 0 03 10 3722 61 2694 10 6786 10 6844 0.00585

fo 0 04 11 0024 64 7560 11 0024 11 0024 0

Co 0 05 11 6667 68 0555 1 1 3264 1 1 3318 0 01538

Table 2: Values of D, V, T estimated and T when c 0.04

D(t> - c„) V{6 - c„) T estimated T exact Erioi

c0 001 9 21864 54 0667 11 1110 11 3967 0.28580

f0 0 02 9 77737 57 6809 11 5078 1 1 7137 0 10600

Co 0 03 10 3722 61 2694 11 9039 12 0421 0 03817

Co 0 04 11.0024 64.7560 12.2975 12 3815 0 08400

co 0 05 11 6667 68 0555 12.6875 12.7314 0 04387

Table 3: Values of D, V, T estimated and T when c — 0.08
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Remark I. There is an unexpected mathematical connection between the time T
and the premium P that is determined by the exponential premium calculation
principle. If S is a random variable (the claim to be paid by the insurer), the

premium according to the exponential premium calculation principle is

where the parameter a > 0 is the constant risk aversion of the insurer; see for
example Chapter 5 of Gerber (1979). For small values of a, we have the

approximation

Now suppose C| > q, and consider a random variable S with probability density
function that is proportional to e '^~''n^ips, t > 0. If we set n c.\ — q>, P
calculated by (1 I) is the same as T according to (8). Furthermore, formulas (10)
and (12) are mathematically equivalent.

Remark 2. The methods and results can be extended to the situation where net

single premiums are determined with time-dependent interest rates. The trick is to
write the force of interest at time t in the form 6 + 7(£), where ö is a parameter and

7(f) is a given function. Thus the discount factor from t to 0 is with

f(t.) e io7(s),'s. To adapt formulas (2)-(10) to this new situation, it suffices to

replace tpj. by f{t)ipx everywhere.

Remark 3. The analysis can be easily adapted to discrete annuities with m-thly
payments in geometric progression. For an annuity-due, the payment at time

k
t —, k 0 I 2,.... is r(t)/m, where r(t) is given by formula (1). It suffices

m
to replace t in the differential dt, by \mt,]/m, where [] denotes the ceiling
function. The resulting integrals are to be understood in the Riemann-Stieltjes
sense and become summations. For example, instead of (3), we have

A:~U

This way, formulas (2)—(10) can be readily adapted. Of course T will not be a

multiple of l/m in general. Nevertheless, it contains the information that the sign
k k

of rL(—)— m(—) changes between k= \jnT\ and k= [rnT\ + I, where M
to m

denotes the floor function.
For an annuity-immediate, the t in <lt would be replaced by [mtj/m.

P -lntf[e"Ä],
a

(11)

P«P[5]+^l/ar[5j. (12)
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Erhard Krbmer, Hamburg

Premium Formulas for general Drop Down Excess of Loss Covers

I The Treaty.

Let the random variables Aj, Xj, X$,... be the claims of a collective of risks and
denote with N the random variable of the number of claims of the collective of
risks.
Now let the claims be ordered in nonincreasing size, what shall be described by
the random variables:

XN\ 1 > Xn-.2 ^ > Jt-N-.N-

Furthermore let (/,, < > 1) be a family of mappings such that the random variable

R J2MXN:i)

can be interpreted as the part of the total claims amount taken by a reinsurer. The

family (/, ,i> 1) defines a reinsurance treaty. In about 20 years the author

developed for this type of treaties a comprehensive risk theory (see for a survey
Kremer (2004)). One such treaty is the socalled Drop-I)own-Excess-of-I,oss (in
short DDXL) cover. For that one has with given priorities 7r;, i > 1:

/;(x) max (a: - 7^,0).

Suppose there exists a sequence 0 i() < t,\ < < t,k < oo in N and

priorities l\ > > I\+l > 0 such that

7T; Pj, for all i e {fj_ 1 + 1,..., tj}
and je { L,..., Ar + 1}.

The R for this cover is denoted by Rnnxi-

Example:
Take the case k 2 (that is of certain practical interest). One gets here:

<i h N

liiwxi. ^2 max(XN:i - P(,0) + ^ max(X/V:i - P<2,0) + ^ mux(XN:i - P:), 0).
i=l i=<[ t 1 N2U

Note that case k I is already in Kremer (2005).

Mitteilungen der Schweiz. Aktuarvereinigimg. Heft 2009
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2 Most Basic Result.

The net premium of the most general DDXL is just:

rn -E(-Rddxl)-

For deriving most elegant results on rn, one can use results of Kremer (2003).
There was considered a mixture between the (classical) excess-of-loss cover and

the (classical) largest claims reinsurance treaty. With a given number t and a

priority 7r > 0 its reinsurers claims amount is defined as:

i

Ri(rr, t) ma\(XN.t - rr, 0).

Denote this treaty in short with XLLC (f,7r) and its net premium by

E(R[(TT, t)).

Now remember the (classical) excess-of-loss cover with given priority 7r > 0 (in
short XL(tt)). Its reinsurers claims amount is defined as:

N

R2(tt) ^max(yY, — 7T, 0).
(=i

Denote its net premium by:

/i( tt) E{R2{rr)).

With certain longer thinking one concludes that it holds true:

k k

ßDDXL, R-i{Pkn) _ Rt-(Pnutj) + y"l RijPnh)-
j-i J i

what is most basic for the present paper, since it implies at once the basic formula:

k k

m n(PkH) -Y^v{Pjn,tj) + Yhl,(Pj'tj">-
j-i j~-1

3 Main Result

In the above context let YJt, i 1,..., Nj be the excess claims {Xt — P,) with
X, > Pj. Nj is the claims number of these excess claims.
Now assume for this section that:

(A) Xi,X2, X-i,... are identically distributed.

(B) N, Xi,X2,... are independent.
(C) Nj, YiUYj2, are independent (for each j).



103

Furthermore suppose that the reinsurer knows

(i) the mean claims number A E(N) of the collective.
(ii) lor a given a £ (0, Pk+i) the probability

q P(Xt > a).

(iii) the distribution function G of the conditional distribution of the Xt, given
the event [Xi > a}:

G(x) P{Xi < x\Xi > a).

It shall hold:

q > 0 and G(l\) < 1.

One has the following result:

Theorem
In the above context with assumptions (A)-(C) and (i)-(iii) one gets for the net

premium of the DDXL:

cr'(i +

h
a rl Mf](i - t./qj)dt +

i. t

with:

qj - 1 - G(Pj)

m (i - 1)!

and the <-th derivative A/]'' of the probability generating function:

00

Mj(t) ^ P(Nj m) tm (j =l,...,k+[).
m=()
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G~l denotes the pseudo-inverse of G:

G~l(u) inf{.T : G(x) > u}.

Proof. It is well-known that

MAu)=(A'«)' f (x-Pk+l)G(dx).
ApkH-°°)

Furthermore one knows from theorem 1 in Kremer (2003) that:

E(^y) ' jf G~l(k ~f) • - t/'hW

One inserts these formulas into the rhs of (1) and gets with routine the statement.

Certainly this result can be specialized easily to the cases k 1 and k 2 etc.

Furthermore one can assume more special that Nj is Poisson-distributed and G is

(generalized) Pareto-distributed (see on this Kremer (1998)). The details are left
to the interested reader (they were given in Kremer (2008)).
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