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RunHUAN FENG, Milwaukee

A matrix operator approach to the analysis of ruin-related quantities
in the phase-type renewal risk model

1 Introduction

[n classical renewal risk models, it is assumed that the incoming cash flows of an
insurance company are solely generated by continuous premium income collected
at the constant rate ¢ per time unit and the outgoing cash flows are determined by
a sequence of insurance claims. On a probability space (§2, 7, P) satisfying usual
conditions, we consider that the arrival times of individual claims {7},75,7}, -}
follow an adapted renewal process. In other words, the inter-claim times
{1, 1y —T\,Ty —T,,---} are mutually independent and identically distributed.
The sequence of claims {Y}, Y5, } is independent of the sequence of arrival
times and all claims are mutually independent with a common density function
q(y) with Laplace transform ¢(s) = [~ ¢ *q(y)dy. Hence, on (§2, F) together
with a family of probability measures {P*,x € R}, we consider the insurer’s
surplus process X = { X, ¢ > 0} as the balance of the two opposing cash flows,

1.C.
(1)
X, =z+ct - Z Y,, L >0,
=1

where the number of claims up to time 7 is given by N(¢) = max{n : T, < t}.
Furthermore, if we impose the condition that the inter-claim times follow the
generalized Erlang-n distribution with the Laplace transform

/;(s = liI—--—/-\—iiT, (1.1)

many interesting results were known in the literature about this Erlang-n renewal
risk model.

As a crucial objective of ruin theory is to quantify and measure the risk of
insolvency associated with the insurance business, we are particularly interested
in quantities pertaining to the event of ruin. One of such quantities was
introduced by Gerber and Shiu (1998) in the context of classical compound
Poisson risk model. It is the expected present value of penalty at ruin, often
referred to as the Gerber-Shiu function, defined by

m(x) = E*[e " w( Xy, -, | Xy, ) (10 < 00)], @ > 1,
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where the time of ruin 7, is determined by 7y = inf{¢: X; < 0}, the constant
6 > 0 is the force of interest for discounting purpose and the penalty function w is
a functional of both the surplus immediately prior to ruin X7 . and the deficit at
ruin | X7, |. The function 7 is an indicator such that I(A) = 1 if A is true and
I(A) = 0 otherwise.

An operator known as the Dickson-Hipp operator played an important role in the
Erlang-n renewal risk model. For any s > 0 and function f for which such an
integral exists, the Dickson-Hipp operator is defined by

T f(z) =e” / e f(y)dy.

[t was shown in Li and Garrido (2004), Gerber and Shiu (2005) that the
Gerber-Shiu function satisfies the defective renewal equation, known as Li’s
renewal equation in the literature,

)\l REE /\‘n " - /\l tee /\n -
iz = —— i m(x —y) 1_11’1;& q(y) dy + . Ty (),
g : i= : i=1

cO
alx) = / w(x,y — x)q(y) dy
0
and the constants p|,---,p, are the n roots with non-negative real parts of the

equation

k(6 — ¢s)i(s) = 1.
A recent paper by Cai et al. (2009) studied another quantity with analogy to the
expected present value of penalty at ruin. Cai ef al. argued that it is sensible for
an insurer to be able to quantify and control business costs in long term. The
suggested measure of business costs was the expected present value of total
operating costs up to default, defined by

"
H{z) =E* {/ ' e % X,) dt}, x>0,
0
where the time of default 74 is determined by 74 = inf{¢ : X; < d} and the cost
function / is a functional of the surplus level X;. It was shown in the classical
compound Poisson model that the function H encompasses the entire family of
Gerber-Shiu function and furthermore includes a variety of other ruin-related
quantities such as dividends paid up to ruin, etc.

Having seen such a generalization in the classical compound Poisson model, one
may wonder whether a similar defective renewal equation to (1.2) also exists for
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the function f in the Erlang-n renewal risk model. This paper indeed provides an
affirmative answer. However, due to its mathematical tractability, this problem is
best pursued in a more general renewal risk model in which inter-claim times are
phase-type distributed.
The phase-type renewal risk model is a topic of active research in the current
literature, which includes, among others, Asmussen (2000), Jacobsen (2003),
Schmidli (2005), Ren (2007), Li (2008). Albrecher and Boxma (2005) proposed a
more general renewal risk model from which many solutions in this paper can be
retrieved as well. For a more detailed account of phase-type renewal models,
readers are referred to Asmussen (2000).
The phase-type renewal risk model assumes that the inter-claim time is
determined by the time till absorption of a homogenous continuous-time Markov
chain with an absorbing state. Throughout the paper, we shall use 0,1, for a
column vector of all 0’s, I’s and an identity matrix, all of required dimension,
respectively. Suppose the Markov chain denoted by J = {.J;,;t > 0} has the
transient state space £ = {1,2,---,m} with a non-singular sub-intensity matrix
A. Hence, in contrast with (1.1), the Laplace transform of the inter-claim time
distribution in the phase-type renewal risk model is given by

k(s) = —a' (A — sI) g,
where g = — A1 is the exit rate vector and a is the entrance law vector which
specifies the probability mass distribution of the state in which ./ starts off at time

0.
Note that the sojourn time in each transient state of ./ is exponentially distributed.

Hence introducing an auxiliary state variable will enable us to work in the
desirable Markovian structure. For this precise reason, Feng (2009) introduced the
expected present value of total operating costs with the state variable, defined by

Td
H(z,1) = E&Y { / e (X, Jy) dtJ : (1.3)
J0)

where /(x,7) represents the operating costs incurred when the surplus X is at the

level x and the Markov chain .J is in the state 7. We often denote
:

[
H(z) = ([[(:1:, L), -, [[(:Ir,n)) and 1(z) = (l((l?, 1), -,l(:l:,'n,)). Hence, if ./
starts at random according to the entrance law a, then the expected present value
of total operating costs in the usual sense is given by

"Td .
H(z) = IE"'[ / c*"‘z(X,,J,)dt} =a'H(z). (1.4)
JO

All specific examples of the function H and I considered in this paper are

bounded.
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In Section 2, we shall introduce a matrix version of Dickson-Hipp operator 7.
The main result is presented in Section 3 that the function H defined in (1.4)
satisfies the defective renewal equation in the phase-type renewal risk model

- ;
Him) = (E / H(x —y)a' Trq(y)gdy + %a[TRl(;L‘) (1.5)
> Jo >

with the matrix R to be discussed in Section 4. Section 5 is devoted to the
derivation of matrix analytic solutions to many ruin-related quantities through the
defective renewal equation (1.5).

While the main result in Feng (2009) shows that the function H defined in
(1.3) satisfies a unified integro-differential equation in a general piecewise-
deterministic Markov risk model, this paper works out solutions to the function H
from the perspective of defective renewal equations in the smaller class of
phase-type renewal model. Despite their similarities, Feng (2009) provides
solutions through solving systems of differential equations but the solutions in
this paper are direct results of the defective renewal equation. As a result of the
two distinctive approaches, most solutions in Feng (2009) rely solely on roots of
negative real parts of a matrix Lundberg equation whereas all matrix analytic
solutions in this paper depends only on its roots of non-negative real parts.

2 Matrix Dickson-Hipp operator

The Dickson-Hipp operator was introduced by Dickson and Hipp (2001) in the
context of Erlang-2 renewal risk model and later extensively exploited in more
general renewal risk models by Li and Garrido (2004a, 2004b), Gerber and Shiu
(2005), etc. Albrecher et al. (2009) further developed a new operator algebraic
approach involving both the Dickson-Hipp operator and other Green operators in
a general Sparre Andersen model.

As it shall become clear soon, we need a matrix version of the Dickson-Hipp
operator which facilitates an efficient derivation of a general defective renewal
equation.

Definition 2.1 For any function f, the matrix Dickson-Hipp operator is defined by
OO .
Tsflx) = eS"’/ e St f(u) du
T
with the matrix S for which the integral exists.

A sufficient condition for the existence of the matrix Dickson-Hipp operator is
that fis bounded and all eigenvalues of S have non-negative real parts.
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Lemma 2.1. If S; and S; commute and S; — S is invertible, then
T, Ts, f(x) = (S1 — Sa) [Tslf( v) — Ts, f()].

Proof: Changing the order of integrations, we have

7g,7s, f(z) = go1E [ g Rl Bl / e 52 f(y) dy du
Jr

S

o (X) - .'lj -) a} ?
= fzhl"'/ €b2”/ e~ G182 £(4y) du dy
Jr oS

ng:, .
— (S] — SZ) l(gsl"’. / e _S'.Z-U[R '[Sl 'S‘z)-l‘ - f’f_.(Sl __“32)"IJ dy

oo g P00 g
= (S1 —Sz) " [cbz"’ [ e~ 524 dy — €517 / e 1% du
Jr o

) =
since S; and S, commute and so do (S} —S2) , Sy and Ss.
For reasons to be seen later, we need to be cautious about two representations of

the convolution operator for which we use distinct notations * and *. For
integrable functions f q and () defined on [0, 00), we have

[*Qz / flx —vy)dQ(y), z >0,

S xqla / f(x —y)q(y) dy, z = 0.

Lemma 2.2 Suppose ¢ is a scalar function and let G(S) = [;% ¢ 5¥q(y) dy, then
Ts{f * ah(w) = G(S)Ts f(x) + Tsq» f(x).
Proof: For any scalar z > 0 for which zI — S is invertible, we must have
TATs{f xq}}(0) = (1= 8) [Ts{f * a}(0) = T-{f * ¢}(0)]
= (- 8) '[@(8)f(S) - d(2)/(2)]
— (o1 8) [@(S)F(S) — US)F() + AS)F(2) — i) ](2)
— §(S)T.Ts J(0) + T.Tsq(0)/(2).
Taking inverse Laplace transform on both sides, we obtain the desired equality.
Lemma 2.3. Let (s) = [;" ¢ *dQ(y) and B(x) = TsQ(x), then
Ts{f+ Q}(x) = 4(S)Ts f(x) + f* B(x).

Proof: Recall that fxq= f+Q if Q(x) :—']],qﬁ(q:). The desired equality is
obtained from Lemma 2.2 with the fact that B(x) = 77Tsq(x) = TsToq(x)

= TsQ(z).
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£, Defective renewal equation

Theorem 3.1. In the phase-type renewal risk model, the vector function H
defined in (1.3) satisfies a matrix defective renewal equation
[ T | ,
H(z) = - [Trq(y)ga ]H(:L‘ —y)dy + :TRI(LL‘), (3.1)

cJo

where the m x m symmetric matrix R is uniquely determined by

o0
[/ e Rv dQ(y)} ga' =6I— A —cR. (3.2)
0
Proof: Let P;;(t) = P[.J; = j|Jy = ] be the probability that ./ starts off in state 4
and happens to be in state j at time ¢ It is easy to show that
P(t) = (P;;(t)) = exp(At). To fix the initial state of .J in state 7, we let
a' = (0,1,0) be the unit vector with only i-th element being / and hence the
probability density functions of the time till absorption of .J with .Jy = i is given
by ki(t) = ;cpPijt)g; for all £ >0. For brevity, we put the density of
inter-claim time for all possible initial states in a matrix form k(¢) = P(t)g.

We use the law of total probability to consider two scenarios. (1) If there is a
claim, we condition on the time ¢ and size y of the first claim to find the present
value of operating costs to be paid in the future as the surplus restarts at
x + ct —y and the Markov chain regenerates itself according to a. (2) If there is
no claim, we still have to count the operating costs at all surplus levels. Then we
arrive at the sum of two integrals

Hiz) = /Um e "'s‘f{k(t) /--I‘H't a H(z + ct — y)dQ(y) + P(H)1(x + ct)} dt

0

00 x-tet
= / (:(A'"‘S)"{ / ga H(z + ct — y) dQ(y) + L(z + ct)} dt.
Jo Jo : (3.3)
Since A is non-singular subintensity matrix, all of its eigenvalues are negative
and hence all eigenvalues of 6I — A are positive. Therefore, the matrix S is
positive definite.
Making a change of variables yields

¥ = Qi-ffs{ga’ﬂ £ Q +1}(z). (3.4)
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Suppose there is a symmetric matrix R for which 7z H exists. Hence R and S
commute. Applying Lemma 2.1 and 2.3, we obtain

Ts{ga ' H*Q + 1}(z) = Tr{ga " H+Q + 1}(z) — (S — R)TsTr{ga ' H * Q + 1}(x)
= q(R)Tr{ga"H}(z) + Trgx ga"H(z) + Trl(z) — (S — R)TrTs{ga  H+ Q + 1}(z)
= j(R)Tp{ga' H}(x) + Trq ~ ga' H(z) + Trl(x) — ¢(S — R)TrH(z)

with the last equality from (3.4).
Note that if we further require that

R)Tr{ga' H}(z) = (S — R)TgH(2),
which implies (3.2), we then arrive at the defective renewal equation
1 . L
H(z) = ~Trq*xga' H(zx) + - Tgl(x),
&4 C
which is exactly (3.1). o
Furthermore, under the usual definition (1.4), we arrive at the defective renewal

equation (1.5) which is a generalization of Li’s renewal equation.

Theorem 3.2. In the phase-type renewal risk model, the function A defined in
(1.4) satisfies the defective renewal equation

T - .
H(zx) = P/ H(z —y)dQs(y) + ;Ta] Trl(z), (3.5)
0 2

where p = (1/c)a'TrQ(0)g and Qs(y) = 1/(cp)a’ TrQ(y)g. Its explicit
solution is given by the Riemann-Stieltjes integral

Hiz) = v-—‘l-—~-/ a' Trl(z — y) dGs(y),
c(l —p) Jy
where the compound geometric distribution G5 is defined by
(o]
Gis(w Z L —p)p*QiF (x).
k=0

Proof: Pre-multiplying both sides of (3.1) by a' and letting F () = a H(z)
gives (3.5). The solution follows immediately from the defective renewal
equation (3.5) according to Theorem 2.1 of Lin and Willmot (1999).
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- Representation of the matrix R

The matrix R was first derived in Ren (2007) and Li (2008) through a different
approach in the analysis of the Gerber-Shiu function. We shall now adopt their
arguments to find an explicit representation of the matrix R.

Suppose the matrix R is diagonalizable, then we shall seek its eigenvectors
®,, ..., P, such that & 'R® = A = diag(pi, -+, pm), where py, -, p,, are
the eigenvalues of R and ® = (®y,---, ®,,). Or equivalently, the matrix R can
be represented as

R=3AD " (4.1)
By the definition of matrix exponential, we can show that
& R = AV = diag(e”t?, ..., efm¥),

Hence 17, - - e”m¥ are eigenvalues of the matrix exponential e®* corresponding
to the eigenvectors ®, -, P, respectively.

Transposing all terms in (3.2) and post-multiply both sides of the equation by ®;
gives

{ag"q(pi) + A+ (cpi = )1} ®; = 0.
Since ®,’s are non-zero vectors, we must have
det{ag’ {(p;) + A + (cp; — &I} = 0. (4.2)

The vector ®; can be obtained from the eigenvectors of the matrix
{ag"G(pi) + A + (cp; — 6)I} corresponding to eigenvalue 0.
Assuming that the matrix A — (6 — ¢p;)1 is invertible, we obtain

det{ag' G(pi) + A+ (cp; — 6)I}

= det{A — (6 — cp)I}det{I + [A + (cp; — O] 'agq(p;)}

= det{A — (6 — cp)T}det{1 +a' [A + (cp; — 6)T] ' gid(pi)}

= det{A — (6 — ep))I}{1 — k(8 — ep)a(pi)},

where k is the Laplace transtorm of the phase-type distribution (a, A). The last
equality is obtained from the determinant identity det{I + XY} = det{I + Y X}.
Hence the condition (4.2) leads to the generalized Lundberg fundamental
equation k(6 — cp;)q(p;) = 1.

In order for the matrix Dickson-Hipp operator 7g to exist for all bounded
functions involved in the previous derivations, we require all p;’s to have
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non-negative real parts. It is shown in Proposition 2.1 of Albrecher and Boxma
(2005) that the generalized Lundberg equation has m roots with non-negative real
parts, the number of which match exactly the required dimension of the matrix
R. Hence we obtain both @ and p;’s which enable us to represent R in the

explicit form (4.1).
5 Applications

5.1 Gerber-Shiu functions

[t is shown in Lemma 4.1 of Feng (2009) that in the phase-type renewal risk
model the Gerber-Shiu function, defined with the auxiliary state variable by

m(x, 1) = ]I'](:"'")[r% (X

is a special case of the function H defined in (1.3) with = 0 and

X, N(m < 00)], z >0,

OO0
l(z) =3 / w(z,y — x)dQ(y). (5.1)
Therefore, the Gerber-Shiu function defined in the usual sense is given by

m(z) = E*le ™ w(X,, | Xo- (1 < 00)] = Y _ a;m(z, 5). (5.2)

Jek

Corollary 5.1. In the phase-type renewal risk model, the function m defined in
(5.2) satisfies the defective renewal equation

v 1 .
m(xz) =p / m(x — y)dQs(y) + ;a[ Tro(x)g. (5.3)
Jo ‘

Hence, it admits the explicit solution

m(x) = . / a'Trole — y)gdGs(y). (5.4)
0

c(l —p),
Proof: We can obtain the results by inserting (5.1) into (3.5) in Theorem 3.2.

Example 5.1 Discounted distribution of first drop in surplus

Since the first drop in surplus below initial level can occur in a continuum of time
which determines different discounted values, we consider the drop size
distribution discounted to time zero from the time at which the drop occurs.
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Owing to space homogeneity, the size of first drop below initial surplus must
have the same distribution as the size of deficit when the surplus starts at level
zero. Therefore, we introduce the discounted density f as

f(2) = F“[ TRI(1 X5 < 2))-

We now use a common technique in probability, see for example Section 3.6 of
Karatzas and Shreve (1998), to treat [(z > 0) = ]0 y) dy where 6 is a Dirac
delta function. Hence,

f(z) = Ee™"06(| X ()| — 2)],

which is indeed a special case of the Gerber-Shiu function with the penalty
function w(x,y) = 6(y — z) with the initial surplus X, = 0. Inserting the
expression for w into (5.1) gives

le) =g | oly— o+ 214Q) = ga(x +2).
Letting 2 = 0 and inserting the expression for 1 in (3.5), we obtain

f(2) = 2a Tag(2)g.

o

Siee p= [(;)O f(z)dz, the constant can indeed be interpreted as the discounted
probability with which the first drop in surplus occurs. The function ()5 is in fact
the discounted distribution of the size of first drop in surplus given that the drop
does occur, ie. Qs(y) = (1/p) [ f(2) dz. Therefore, the first term in renewal
equations (3.5) and (5.3) can now be interpreted as a direct application of the law
of total probability conditioning on the size of the first drop in surplus below its
initial level.

Corollary 5.2. In the phase-typé renewal risk model in which the claim sizes are
phase-type distributed with characteristics (b, Q), the distribution Qs is also
phase-type with characteristics (d, Q), where

p=1 (/ ale Migb’e® du) 1, 2:8)
C \Jo

LU S (i, S -
d =— a'e Righ e du,
P Jo

and
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Proof: Let q = —Q1. Since the claim size distribution Q(y) = 1 — b e®¥1, the
Laplace transform of (Js(y) is given by

/ e dQs(y) = — e a' Trq(y)gdy
J0 cp Jo
1 * 00 Jo o] N
= — e “’”aT(/ e Rup TR H”q(l’u.)_qdy
cpJo JO
l o ol N ) OO ‘
= — a'e 'R'”gbrrfq“/ e e dyq du
P Jo Jo
L 'DU T —~Ru 1.7 Qu : -1
= — a'e Mgb'e™du |(sI-Q) q.
P \Jo

We obtain the expression (5.5) immediately from the fact that the Laplace
transform at zero equals one. We also recognize by the one-to-one
correspondence of distributions and their Laplace transforms that Qs(y) is also
phase-type distributed with characteristics (d, Q).

Example 5.2. Laplace transform of the time of ruin

We may further establish a connection between the compound geometric
distribution (/s and the Laplace transform of the time of ruin defined by
Vs(x) = Ele ™™ I(1y < 00)],2 > 0.

Since the function )5 is a speudl case of the function m by choosing w(x,y) = 1
for all &,y and hence a(x) = Q(x). Inserting the expression for «v into (5.4) gives

the b()lllll()n

Yi(z) = -1—-_-:—; / Qs(x — ) dGs(y)
. l_ﬁ Y - )fx( *(k-+1)
= 5 [( 5 ; PR ( ):l

I Yo(z) — =[Gs(z) — (1 —p =1 - Gs(x).
- 2w e -a P} =1- Gt

Corollary 5.3. In the phase-type renewal risk model in which the claim sizes are
phase-type distributed with characteristics (b, Q), the compound geometric
distribution (s is also phase-type distributed with (pd, Q + pqd ",

Proof: Since (75 is a compound geometric distribution with characteristics (p, Qs),
it follows immediately from Corollary 5.2 and Lemma 8.3.2 of Rolski et al. (1999)
that G's(y) is also phase-type distributed with characteristics (pd, Q + pqd ).
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Therefore, in this particular case, the Laplace transform of the time of ruin is
given by

: T d)s
Ps(x) = pd TeQFra dag @ 2 0,

which generalizes formula (8.3.4) of Rolski et al. (1999).

Example 5.3. Expected present value of penalty at ruin depending on deficit only

The expected present value of penalty at ruin depending on deficit only is given by
Plw) = F* [e""ST()g(|XTO|)], g = 0.

Hence it is also a special case of the function H with
I(x) =g [, 9y — z) dQ(y).

Corollary 5.4. In the phase-type renewal risk model in which the claim sizes are
phase-type distributed with characteristics (b, Q), the solution to P is given by

g b T o Q pda b4
[(J:)*Z(t 0 )CXP{ (0 Q‘}-pqdr).(}(q)’

where

OO P OO
th = / a’ e Fégh' (/ g(z)e¥ dz) eR" du.
0 Jo

Proof: Since

(z)=g / ‘ gy — )b e¥Wqdy = gb' (] l g(z)e¥ (13) eQq,
Jz 0 ‘

&T

then the Laplace transform of a' 7g1 is given by

[o.0] ) "CO . . [, @] ) OO0
[ e a'Trl(y)dy = / e ¥a' / e Righ! (/ g(z)e¥ (lZ) ) g du dy
Jo Jo 0

J0)

"00 . 0 [.¢]
= / aTF:R“.ObT(/ .Q’(Z)(iQZ(lz) eQn / e e dydu
Jo Jo Jo
= t'(sI- Q)ﬁlq.

According to Theorem 3.2, the solution to P is a convolution of aTTRI and
G's/(1 — p). Hence P is given by ||t||/(1 — p) times the convolution of the proper
distributions PH(t/||t|, Q) and PH(pd,Q + pqd'). The desired solution is
obtained from Theorem 8.2.6 of Rolski et al. (1999) together with the fact that
—(Q+pad")1 = (1 -p)q.
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3.2 Expected present value of total claim costs up to ruin

Suppose that we measure the actual cost of each claim by a function
w|(x,4), (y,7)], which depends on both the surplus level and state variable
immediately prior to the claim payment, (x,), and the surplus level and state
variable after the claim payment, (y, 7). Then the expected present value of claim
costs up to ruin with an auxiliary state variable is given by

N
C(z,i) = E®H Z e "‘S'I‘Afw[(qu_ o = Vs (s Jr )| x =0,
k=1
where N = max{k: T} < 1}.
[t is shown in Feng (2009) that the function (' can be retrieved from the function
H by letting d = 0 and choosing
00
(i) = 3y [l i)y (o - 0.0 400
jew <0
[t is also known that the function mn(x, ) is a special case of the function C'(x, 7).
We shall now investigate an example of interest to the analysis of aggregate
claim models.

Example 5.4, Expected present value of aggregate claims

The expected present value of the aggregate claims up to ruin given by

N N .
K(z)=FE" Z(r "”'ka} = II'I"'{ZC‘”*‘(XTA: ; = X'lk)}’ x>0,

o o (5.6)

is a special case of C' with w|(x,1), (y, )] =« — y for all 4,j € IV and hence is a
special case of H by taking the cost function
o0
1=ga' / y1dQ(y) = g, (5.7)
Jo

where g is the mean of claim sizes.

Corollary 5.5. In the phase-type renewal risk model, the solution to K defined in
(5.6) is given by

H r Y P
K(z) =———a R '¢gGs(x), x> 0.
(1) (7([""?)) g /’( )
Proof: Applying Theorem 3.2 with 1 given in (5.7) yields the result immediately.
Note that the result generalizes formula (6.2) of Cai et al. (2009).
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5.3 Insurer’s accumulated utilities up to default

The notion of utility has long been introduced to determine insurance premium in
the literature of risk theory, see for example, Kaas et al. (1994), Gerber and
Pafumi (1996), etc. In recent years, there has been growing interest in applying
the concept of utility as a measure or criterion in the decision making of
ruin-related stochastic control problems. For detailed accounts, readers may refer
to Browne (1995) and Young (2004), etc.

Assume that an insurer’s perceived value of its surplus is not necessarily
measured by absolute counts of money but rather better described by a utility
function. Then we are interested in an indicator of the overall perceived value of
the insurance business - the accumulated utilities of surplus at all times up to the
time of ruin. Such a quantity can be given by the expected present value of
utilities up to the default of business

Ule) =E* l / | w(X}) clt}, o=ty
Jo

where u is the utility function of the insurer in question.

Example 5.5. Accumulated exponential utilities up to ruin

As an illustration, we shall use the exponential utility function u(z) = —e “/a
with @ > 0, which is often a favorite in economics and actuarial science due to its
mathematical tractability. Even though this example specifically deals with the
exponential utility, the method is general to apply for other choices of utility
functions as long as the existence of the matrix Dickson-Hipp operator is properly
addressed.

It suffices for us in this example to search a solution to the function given by

W(x) :1[c=‘f[ 4 g dt} = Za-ﬂ/V(:c,i).
: : el

The function W is obviously a special case of the function H with the cost
function 1(z) = ¢ “1. Therefore, a' Tgl(z) = a' (R + al) 'e “*1. The general
solution to W'is given by

W(z) =——a'" (R + al 41/ e =) dGs (y).
( ) (','(l _p) ( ) : r’)(J)



85

Corollary 5.6. In the phase-type renewal risk model in which claim sizes are
phase-type distributed with characteristics (b, Q), the solution to W is given by

r | _ - apd’ a
W(x) = ”—{a[ (R +al) '(1,0' )cxp{ ( 0 Q4+ pgd )‘"} (q)

Proof: We may treat the exponential utility function e “" as a multiple of an
exponential density function and hence the solution to W becomes a multiple of
the convolution of an exponential distribution and Q)s.
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Abstract

[t is well-known in ruin theory that the expected present value of penalty at ruin satisfies a defective
renewal equation in the Erlang-n renewal risk model. This paper presents a new matrix operator
approach to derive a parallel defective renewal equation for the expected present value of total
operating costs in a phase-type renewal risk model and hence provides explicit matrix analytic
solutions to a variety of ruin-related quantities.

Zusammenfassung

Im  Erlang-n-Erneuerungsmodell der Ruin-Theorie erfiillt der diskontierte Erwartungswert einer
Penalty zum Ruinzeitpunkt eine defektive Erneuerungsgleichung. Diese Arbeit stellt einen neuen
Matrix-Operator-Ansatz zur Herleitung einer defektiven Erneuerungsgleichung fiir den erwarteten
Barwert der gesamten operationellen Kosten in einem Phasen-Typ-Erneuerungsmodell vor. Dies fiihrt
zu expliziten Matrix-analytischen Losungen fiir eine Reihe von Ruin-bezogenen Grossen.

Résumé

Selon la théorie de la ruine, la valeur actuelle de la pénalité en cas de ruine satisfait une équation de
renouvellement dans le modele de risque de renouvellement Erlang-n. Ce papier présente une
approche nouvelle, utilisant un opérateur matriciel, pour obtenir une équation de renouvellement pour
la valeur actuelle de la totalité des coiits opérationnels dans un modele de risque de rcnouvellc.mcnt de
“phase-type”. On obtient alors des solutions matricielles analytiques explicites pour une multitude de

quantités lices a la ruine.
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