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Runiiuan FtNG, Milwaukee

A matrix operator approach to the analysis of ruin-related quantities
in the phase-type renewal risk model

1 Introduction

In classical tenewal nsk models, it is assumed that the incoming cash flows of an

insurance company are solely genetated by continuous premium income collected
at the constant rate c per time unit and the outgoing cash flows ate deteimined by
a sequence ot insuiance claims. On a ptobahihty space (it, J7, P) satisfying usual

conditions, we considei that the at rival times ot individual claims {Tl,T2,Ti, • • }

follow an adapted renewal piocess. In other woids, the inter-claim times
— f'i/f'i — 7;2, } are mutually independent and identically distributed

I he sequence ot claims {Vi.fa, • } is independent of the sequence ot arrival
times and all claims are mutually independent with a common density function

q(ij) with Laplace transfoim <j(s) e""'<i(ij)dy Hence, on (O,./7) together
with a family ot piobabihty measures {Pl,.rR}, we considei the insuier's
suiplus piocess X {X,,l > 0} as the balance of the two opposing cash flows,
i e.

where the numbei ot claims up to time t is given by N(t) inax{n Tn < /}.
Fantheimore, it we impose the condition that the mter-claim times follow the

generalized Erlang-« distilbntion with the Laplace transloim

many interesting lesults were known in the hteratuie about this Eilang-n tenewal
usk model
As a ciucial objective ot nun theoiy is to quantity and measure the nsk ot
insolvency associated with the insuiance business, we are particularly inteiested
m quantities peitaining to the event of nun. One ot such quantities was
introduced by Getber and Shiu (1998) in the context ot classical compound
Poisson risk model It is the expected present value of penalty at nun, often
ieterred to as the Getber-Shtu function, defined by

Xt — x + et — Yt, t > 0,
i i

(1 L)

m(.r) Ex[c "T()m(A"r() |Arr()|)/(r() < oo)], ,r > 0

Mittethingen tier Schwei/ /Vktuurverumgung (left 2009
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where the time of ruin To is determined by tq itif{£ : Xt < ()}, the constant
S > 0 is the force of interest for discounting purpose and the penalty function w is

a functional of both the surplus immediately prior to ruin 2fT()_ and the deficit at

ruin |2fr()|. The function I is an indicator such that 1(A) =1 if A is true and

1(A) 0 otherwise.
An operator known as the Dickson-Hipp operator played an important role in the

Erlang-« renewal risk model. For any s > 0 and function / for which such an

integral exists, the Dickson-Hipp operator is defined by

It was shown in Li and Garrido (2004), Gerber and Shiu (2005) that the

Gerber-Shiu function satisfies the defective renewal equation, known as Li's
renewal equation in the literature,

and the constants pi,---,pn are the n roots with non-negative real parts of the

equation

k(S — c.s)q(s) — 1.

A recent paper by Cai et cd. (2009) studied another quantity with analogy to the

expected present value of penalty at ruin. Cai et al. argued that it is sensible for
an insurer to be able to quantify and control business costs in long term. The

suggested measure of business costs was the expected present value of total
operating costs up to default, defined by

where the time of default r,/ is determined by r(; inf{i : Xt < d} and the cost
function I is a functional of the surplus level Xt. It was shown in the classical

compound Poisson model that the function H encompasses the entire family of
Gerber-Shiu function and furthermore includes a variety of other ruin-related

quantities such as dividends paid up to ruin, etc.

Having seen such a generalization in the classical compound Poisson model, one

may wonder whether a similar defective renewal equation to (1.2) also exists for

m(x)
A'

n

Xn [ m(x - y) [] Tp.q(y) dy + Tp.a(x),
c Jo i=l c i=l

(1.2)

where

x > 0,
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Ihe function // in the Erlang-« renewal risk model. This paper indeed provides an

affirmative answer. However, due to its mathematical tractabiIity, this problem is

best pursued in a more general renewal risk model in which inter-claim times are

phase-type distributed.
The phase-type renewal risk model is a topic of active research in the current
literature, which includes, among others, Asmussen (2000), Jacobsen (2003),
Schmidli (2005), Ren (2007), Li (2008). Albrecher and Boxma (2005) proposed a

more general renewal risk model from which many solutions in this paper can be

retrieved as well. For a more detailed account of phase-type renewal models,
readers are referred to Asmussen (2000).
The phase-type renewal risk model assumes that the inter-claim time is

determined by the time till absorption of a homogenous continuous-time Markov
chain with an absorbing state. Throughout the paper, we shall use 0,1,1 for a

column vector of all 0's, I's and an identity matrix, all of required dimension,

respectively. Suppose the Markov chain denoted by ./= {./t, t > 0} has the

transient state space K= {1,2, with a non-singular sub-intensity matrix
A. Hence, in contrast with (1.1), the Laplace transform of the inter-claim time
distribution in the phase-type renewal risk model is given by

A~(.s) -a1 (A - ,sl) l(j,

where y -Al is the exit rate vector and a is the entrance law vector which

specifies the probability mass distribution of the state in which ,/ starts oft at time
0.

Note that the sojourn time in each transient state of./ is exponentially distributed.
Hence introducing an auxiliary state variable will enable us to work in the

desirable Markovian structure. For this precise reason, Feng (2009) introduced the

expected present value of total operating costs with the state variable, defined by

H(x, i) E('-° fT" e~btl(XhJt)dt
./()

;i.3)

where l(x, i) represents the operating costs incurred when the surplus X is at the

level x and the Markov chain ./ is in the state i. We often denote

EI(x-) (^[[(x, I),•••,//(a-, «)) antl Ha') Hence, if ./

starts at random according to the entrance law a, then the expected present value
of total operating costs in the usual sense is given by

Ff(x) Ex\ Ir'' e-b'l(XhJt)dt
./(}

H(x-). (1.4)

All specific examples of the function II and 1 considered in this paper are
bounded.
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In Section 2, we shall introduce a matrix version of Dickson-Hipp operator T.
The main result is presented in Section 3 that the function H defined in (1.4)
satisfies the defective renewal equation in the phase-type renewal risk model

with the matrix R to be discussed in Section 4. Section 5 is devoted to the

derivation of matrix analytic solutions to many ruin-related quantities through the

defective renewal equation (1.5).
While the main result in Feng (2009) shows that the function H defined in

(1.3) satisfies a unified integro-differential equation in a general piecewise-
deterministic Markov risk model, this paper works out solutions to the function H
from the perspective of defective renewal equations in the smaller class of
phase-type renewal model. Despite their similarities, Feng (2009) provides
solutions through solving systems of differential equations but the solutions in
this paper are direct results of the defective renewal equation. As a result of the

two distinctive approaches, most solutions in Feng (2009) rely solely on roots of
negative real parts of a matrix Lundberg equation whereas all matrix analytic
solutions in this paper depends only on its roots of non-negative real parts.

2 Matrix Dickson-Hipp operator

The Dickson-Hipp operator was introduced by Dickson and Hipp (2001) in the

context of Erlang-2 renewal risk model and later extensively exploited in more
general renewal risk models by Li and Garrido (2004a, 2004b), Gerber and Shiu

(2005), etc. Albrecher et al. (2009) further developed a new operator algebraic
approach involving both the Dickson-Hipp operator and other Green operators in

a general Sparre Andersen model.
As it shall become clear soon, we need a matrix version of the Dickson-Hipp
operator which facilitates an efficient derivation of a general defective renewal

equation.

Definition 2.1 For any function/ the matrix Dickson-Hipp operator is defined by

IX

H(x - y)ar TRq(y)y dy + - a' TRl(a;) (1.5)
c

H(x)

with the matrix S for which the integral exists.

A sufficient condition for the existence of the matrix Dickson-Hipp operator is

that/is bounded and all eigenvalues of S have non-negative real parts.
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Lemma 2.1. If S| and S2 commute and S[ - S2 is invertible, then

Tnjsjix) (Sl - S2) '[TSl/(a) - TsJ\x)\
Proof: Changing the order of integrations, we have

poo poo

Ts[Ts2f(x) es'J' / / ers^f(y)d!jda
J x J u

/oo
plj

e-S2;/ / e-(S! S2)«/(u)d,td.(/

poo

(S, - S2) 'eS|J; / e-s^[e-(Sl"S2)' " e"(S' ^2)i;] d!J

(Si — s2)
r°

*"J. e~s2"d-it-esi'c / e_s'"dii

since Si and S2 commute and so do (Si — S2) S| and S2.

For reasons to be seen later, we need to be cautious about two representations of
the convolution operator for which wc use distinct notations * and *. For

intcgrable functions /, i/ and Q defined on [0, oo), we have

f*Q(x)=[ f(x - y)dQ(y), x > 0,
Jo

f * 'l(x) [ f(x - y)q(y) dy, x > 0.
JoJO

Femilla 2.2 Suppose q is a scalar function and let r/(S) /((° <'~Sl/q{y) d;iy, then

Ts{f *u}(x) q(S)Tsf(x) \-Tsq*f(x).
Proof: For any scalar z > 0 for which zl — S is invertible, we must have

7"*{7"s{/*</}}(<>) (*I- S) '[7s {/*!/}(()) - Tz{f *,/}(<>)]

(zl — S) l[q(S)f(S) - q(z)f(z)}

(zl - S)-1[r/(S)/(S) - q(S)f(z) + q(S)f(z) - q(z)f(z)\

q(S)TzTsm + TzTsq(())j(z).

Taking inverse Laplace transform on both sides, we obtain the desired equality.

Lemma 2.3. Let q(a) J e *'> dQ(y) and B(x) TsQ(x), then

7s{/ * £}(*) q(S)Tsf(x) + f * B(x).

Proof: Recall that f*q f*Q if Q(x) =Taq(x). The desired equality is

obtained from Lemma 2.2 with the fact that U(x) TnTsq(x) TsTaq(x)
T3Q(X).
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3 Defective renewal equation

Theorem 3.1. In the phase-type renewal risk model, the vector function H
defined in (1.3) satisfies a matrix defective renewal equation

H(x) - fL [TRq(y)gar}H(x - y) dy + -TR l(x), (3.1)
c Jo c

where the m x m symmetric matrix R is uniquely determined by

ryaT <*>1 — A — cR. (3-2)

Proof: Let P;y(£) P[./« j\ Jo i] be the probability that ,/ starts off in state i
and happens to be in state j at time t. It is easy to show that

P(y) (P;j(t)) exp(Ai). To fix the initial state of ,/ in state i, we let
a' (0, 1,0) be the unit vector with only i-th element being / and hence the

probability density functions of the time till absorption of./ with JQ i is given
by ki(t) IZjsfi'Pq^Of/j f°r a" t>0. For brevity, we put the density of
inter-claim time for all possible initial states in a matrix form k(t) P(t)g.
We use the law of total probability to consider two scenarios. (1) If there is a

claim, we condition on the time t and size y of the first claim to find the present
value of operating costs to be paid in the future as the surplus restarts at

x + et — y and the Markov chain regenerates itself according to a. (2) If there is

no claim, we still have to count the operating costs at all surplus levels. Then we
arrive at the sum of two integrals

/oo
f rx+ct

e"ft|k (t) J a'H (x + ct-y)dQ(y) + P(ü)l(i + rt)\ dt

/'00 f px+ct
— / / <ya1 H(:c + ct - y) dQ(y) + l(:c + et) \ dt.

Jo [J0 J (3.3)

Since A is non-singular subintensity matrix, all of its eigenvalues are negative
and hence all eigenvalues of <51 - A are positive. Therefore, the matrix S is

positive definite.

Making a change of variables yields

H(x') -Ts{rya' H * Q + l}(ac).
c

(3.4)
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Suppose there is a symmetric matrix R for which '7r H exists. Hence R and S

commute. Applying Lemma 2.1 and 2.3, we obtain

l}(x) Taf/ya' fl * Q h l}(x) - (S - R)TsTh jr/a: H * Q I l}(x)
r/(R)T(1{.(/arH}(x) + Taq*ga1 H(x) t- Tul(x) - (S - R)TRTs(fla' H * Q + l}(x)
(/(RlTalfla1 H}(x-) | TR<,*ga[ H(:r) t- Tr1(x) - c(S - R)T„I[(®)

with the last equality from (3.4).
Note that if we further require that

r/(R)7ii{//a1 H}(x) c(S - R)T[tH(x),

which implies (3.2), we then arrive at the defective renewal equation

H(x) 1 rn q * ya1 H(x) + ^ Tu l(x),

which is exactly (3.1).
Furthermore, under the usual definition (1.4), we arrive at the defective renewal

equation (1.5) which is a generalization of Id's renewal equation.

Theorem 3.2. In the phase-type renewal risk model, the function H defined in

(1.4) satisfies the defective renewal equation

U(x) p r H(x - y) d(Mv) + -a' Tul(x), (3.5)
Jo c

where p (l/c)a1 TnQ(0)y and Q6(y) l/(cp)ar TnQ(y)y. Its explicit
solution is given by the Riemann-Stieltjes integral

Il(x) [' a1 T„l(x - y) dG/,(y),
c\ 1 - P) Jo

where the compound geometric distribution G/, is defined by

00

Gt(x) Y^O~p)pkQlk(x)-
k-o

Proof: Pre-multiplying both sides of (3.1) by a! and letting FI(x) a'H(x)
gives (3.5). The solution follows immediately from the defective renewal
equation (3.5) according to Theorem 2.1 of Lin and Willmot (1999).
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4 Representation of the matrix R

The matrix R was first derived in Ren (2007) and Li (2008) through a different
approach in the analysis of the Gerber-Shiu function. We shall now adopt their

arguments to find an explicit representation of the matrix R.
Suppose the matrix R is diagonalizable, then we shall seek its eigenvectors
$L, • • <5m such that <f> lR$ A diag(pt, • • •, pm), where p{, pm are
the eigenvalues of R and <1> (<!»L, <&„,). Or equivalently, the matrix R can
be represented as

R <5A<f>~1. (4.1)

By the definition of matrix exponential, we can show that

$ 'e^ fA<> diag(p/1'/, •, e'""1').

Hence ePmU are eigenvalues of the matrix exponential eRx corresponding
to the eigenvectors «hm respectively.
Transposing all terms in (3.2) and post-multiply both sides of the equation by <&,

gives

{a(J1 + A + (apt - <5)1}$; 0.

Since $;'s are non-zero vectors, we must have

dct{agvq(p,,) + A + (cpi - A)I} 0. (4.2)

The vector <f>, can be obtained from the eigenvectors of the matrix
{atjrq(pi) + A + (cpi — 0)1} corresponding to eigenvalue 0.

Assuming that the matrix A — (6 — cpi)I is invertible, we obtain

det{agTf/(pj) + A + (cpi - 6)1}

det{ A - (6 - cpi)I}det{I + [A + (cpt - 6)I| 'ayrq{pi)}

det{A - (6 - cp,)I}det{l + ar[A + (cpt - <5)I]_1<7fl(/3;)}

det{ A — (Ä-cpJIKL - k(ö - cpi)q{pi)},

where k is the Laplace transform of the phase-type distribution (a, A). The last

equality is obtained from the determinant identity det{I + XY} det{I + YX}.
Hence the condition (4.2) leads to the generalized Lundberg fundamental

equation k(6 — cpi)q(pi) 1.

In order for the matrix Dickson-Hipp operator 7~r to exist for all bounded
functions involved in the previous derivations, we require all pt's to have
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non-negative real parts. It is shown in Proposition 2.1 of Albrccher and Boxma
(2005) that the generalized Lundberg equation has m roots with non-negative real

parts, the number of which match exactly the required dimension of the matrix
R. Hence we obtain both <f> and pi s which enable us to represent R in the

explicit form (4.1).

5 Applications

5. / Gerber-Shiu functions

It is shown in Lemma 4.1 of Feng (2009) that in the phase-type renewal risk
model the Gerber-Shiu function, defined with the auxiliary state variable by

rn(x, i) E^[e~6T"w(XTn, \XT[)_|)/(r(l < oo)], a; > 0,

is a special case of the function H defined in (1.3) with d 0 and

/OO w(x, y - x)dQ(y). (5.1)

Therefore, the Gerber-Shiu function defined in the usual sense is given by

m(x) Er[e-iT°w(XT„ |Xt„_|)/(t„ < oo)J (5-2)
jeic

Corollary 5.1. In the phase-type renewal risk model, the function in defined in

(5.2) satisfies the defective renewal equation

/X
^

m(x - y) dQs(y) + a TRn(x)y. (5.3)'
Hence, it admits the explicit solution

mix) "rr—7 / a' ~ vh^Gtiy). (5.4)
41 - v)./()

Proof: We can obtain the results by inserting (5.1) into (3.5) in Theorem 3.2.

Lxainple 5.1 Discounted distribution offirst drop in surplus

Since the first drop in surplus below initial level can occur in a continuum of time
which determines different discounted values, we consider the drop size
distribution discounted to time zero from the time at which the drop occurs.
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Owing to space homogeneity, the size of first drop below initial surplus must
have the same distribution as the size of deficit when the surplus starts at level

zero. Therefore, we introduce the discounted density /as

We now use a common technique in probability, see for example Section 3.6 of
Karatzas and Shreve (1998), to treat I(z> 0) f^6(y)dy where ö is a Dirac
delta function. Hence,

which is indeed a special case of the Gerber-Shiu function with the penalty
function w(x,y) S(y — z) with the initial surplus Xq 0. Inserting the

expression for w into (5.1) gives

Since p f f(z) dz, the constant can indeed be interpreted as the discounted

probability with which the first drop in surplus occurs. The function Qg is in fact
the discounted distribution of the size of first drop in surplus given that the drop
does occur, i.e. Qg(y) (1 /p) Jq f(z) dz. Therefore, the first term in renewal

equations (3.5) and (5.3) can now be interpreted as a direct application of the law
of total probability conditioning on the size of the first drop in surplus below its

initial level.

Corollary 5.2. In the phase-type renewal risk model in which the claim sizes are

phase-type distributed with characteristics (b, Q), the distribution Qg is also

phase-type with characteristics (d, Q), where

f(z)=j.tP[e-^I(\XT:,\<z)].

f(z)=E°[e-^S(\X(r0)\-z)}

Letting x 0 and inserting the expression for 1 in (3.5), we obtain

f(z) =-aTruq(z)g.
c

(5.5)

and
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1 ' e-">aTi
CPJa

OC

a e
1 ' r„ Ru

CPJO

Proof: Let q -Ql. Since the claim size distribution Q(y) 1 — b1 e^"l, the

Laplace transform of Qs(y) is given by
/'CO j poo

/ e-"ydQt(y) - / e-'Va'TMydy
Ja cp Ja

^jf°°e"11"b1 eQ(u+")q dttj gdy

poo
11 gb

1 eQfi / e" ,syeQ// dv/q tin
do

_L a' e Il'lgb1 eQ" duj (si - Q) q.

We obtain the expression (5.5) immediately from the fact that the Laplace
transform at zero equals one. We also recognize by the one-to-one

correspondence of distributions and their Laplace transforms that Qt(y) is also

phase-type distributed with characteristics (d, Q).

Example 5.2. Laplace transform of the time of ruin

We may further establish a connection between the compound geometric
distribution Gs and the Laplace transform of the time ot ruin defined by

E'c[e_4T°/(r() < oo)],x > 0.
Since the function 'fs is a special case of the function rn by choosing w(x,y) 1

for all x,y and hence r*(x) Q(x). Inserting the expression tor rv into (5.4) gives
the solution

0 f Qs(x-y)dGt>(y)
1 -pJa

OO

GÄ(®)-£(l-p)pfc«*(*+1)(aO
1 -p k=0

1 -p
V |Gt>(x)-1- [Gb{x) - (1 - p)} J 1 - Gt (x).

Corollary 5.3. In the phase-type renewal risk model in which the claim sizes are

phase-type distributed with characteristics (b,Q), the compound geometric
distribution Gs is also phase-type distributed with (pd, Q + pqdr).

Proof: Since Gs is a compound geometric distribution with characteristics (p, Qs),
it follows immediately from Corollary 5.2 and Lemma 8.3.2 of Rolski et at. (1999)
that Gs(y) is also phase-type distributed with characteristics (/;d, Q I- pqd 1).
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Therefore, in this particular case, the Laplace transform of the time of ruin is

given by

^(i)=pdre(Q+'x,'d):rlI x > 0,

which generalizes formula (8.3.4) of Rolski et at. (1999).

Example 5.3. Expected present value ofpenalty at ruin depending on deficit only

The expected present value of penalty at ruin depending on deficit only is given by

P(x)=Ex[e-^g(\XT0\)}, x > 0.

Hence it is also a special case of the function H with
l(x) oj (j(v-x)dQ{y)-

Corollary 5.4. In the phase-type renewal risk model in which the claim sizes are

phase-type distributed with characteristics (b, Q), the solution to P is given by

'Q pqdr \ \firyx) -yy ,y> ;exp<, ^

where

Q + />qdr J'1 J Vq
P(x) ^(t',Or)expj^

tT J a'e Ru.rybT ^°° dzj eQ" du.

Proof: Since

l(x) (jJ cj(y — :c)b
1

eQ'vq Ay gb
1

g(z)eCiz dzj eQ,;q,

then the Laplace transform of a1 TrI is given by

pCO poo poo / poo \

j e-S!>SirTR\{y)dy j e'^a1' / e^%b[ IJ g{z)eCizdzjeQ("+ff)qd« Ay

"ghT ^ </(z)eQ* dzj eQ"j qAy du
/()

tT(sI-Q)^q.

According to Theorem 3.2, the solution to P is a convolution of a'TRl and

6)5/(1 —p). Hence P is given by ||t||/(l - p) times the convolution of the proper
distributions PH(t/||t||, Q) and PH(pd, Q + pqdr). The desired solution is

obtained from Theorem 8.2.6 of Rolski et al. (1999) together with the fact that

-(Q C pqd r)l (1 -p)q.
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5 2 Expected present value of total claim costs up to nun

Suppose that we measure Ihe actual tost ot each claim by a function

w\{' i ')> ((A j)]> which depends on both the suiplus level and state variable
immediately prioi to the claim payment, <md the surplus level and state
variable attei the claim payment, (tj,j) Then the expected present value of claim
costs up to ruin with an auxiliary state vaiiable is given by

C(/,0=E<"> X> ,5/M(*/t
T=i

where N max {A Tk < r()}
It is shown in Peng (2009) that the function C can be retneved from the function
H by letting d 0 and choosing

r 00

'(m) Yl1h"i / 0. (J -
ie i

It is also known that the function m(t, i) is a special case ot the function C(x, i)
We shall now investigate an example of interest to the analysis of aggregate
claim models

Example 5.4. Expected present value of aggiegate claims

The expected present value of the aggregate claims up to iuin given by

h(t) =E' (f>-^ }=E,{ - X'K) I' ^ °>

U ' J U-' J

(5 6)

is a special case of C with w[(/,«)> (v>2)] x ~ 'J tl)l a" l'J e ^ dntl ,lcnce ,s a

special case of H by taking the cost function

/OO i/1c\Q{ij) fig, (5 7)

where p is the mean ot claim sizes

Corollary 5.5. In the phase-type renewal risk model, the solution to K defined in
(5 6) is given by

K(c)=-^ a'R lc>Gh{x), i >0
c (1 - /;)

Proof: Applying Theoiem 3 2 with 1 given in (5 7) yields the result immediately
Note that the lesult generalizes formula (6 2) of Cai et al (2009)
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5.3 Insiuer's accumulated utilities up to default

The notion ot utility has long been introduced to determine insurance premium in
the literature of risk theoiy, see tor example, Kaas et at (1994), Geibei and
Pafumi (1996), etc. In recent years, there has been glowing inteiest in applying
the concept ot utility as a measure or criterion in the decision making of
ruin-related stochastic control problems. Foi detailed accounts, readers may refer
to Browne (1995) and Young (2004), etc.

Assume that an insurer's perceived value ot its surplus is not necessarily
measured by absolute counts of money but iathei better descnbcd by a utility
function Then we are inteiested in an indicator ot the overall perceived value ot
the insurance business - the accumulated utilities of surplus at all times up to the

time of nun. Such a quantity can be given by the expected present value ot
utilities up to the default ot business

where it is the utility function of the insurer in question

Example 5.5. Accumulated exponential utilities up to tuin

As an illustration, we shall use the exponential utility function u(x) —e~al/a
with a > 0, which is often a favorite in economics and actuarial science due to its
mathematical tractability Even though this example specifically deals with the

exponential utility, the method is general to apply for other choices of utility
functions as long as the existence ot the matrix Dickson-Htpp opetatoi is properly
addressed.

It suffices for us in this example to search a solution to the function given by

The function W is obviously a special case of the function H with the cost
function l(x) e_ail Therefore, a'Tnl(a:) aT(R + al)_1e~ai 1 The geneial
solution to W is given by

u(Xt) dt x > 0.

"
/'i) "1

W{x)=Ex / e~"x' dt V atW(x,i)
L'o J ,L

W{x)=
1

a'(R Hal)-'l P dGs(ij).
C(L -P) Jo
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Corollary 5.6. In the phase-type renewal ttsk model in which claim sizes are

phase-type ciistilhntecl with chaiactenstics (h, Q), the solution to W is given by

Proof': We may treat the exponential utility function e~'" as a multiple of an

exponential density function and hence the solution to W becomes a multiple ot
the convolution ot an exponential distnbution and Q/,.
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Abstract

It is well-known in mm theory that the expected present value ol penalty at ruin satisfies a defective
renewal equation 111 the hiking-» renewal nsk model This paper presents a new matrix operatoi
approach to deuve a parallel detective renewal equation tor the expected present value of total

opeiatmg costs in a phase-type renewal nsk model and hence provides explicit matrix analytic
solutions to a vauety of nun-related quantities

Zusammenfassung

Im Eilang-/! lineueiungsmodell dei Ruin-Theorie ei füllt det diskontierte Erwartungswert einer
Penalty /um Ruin/eitpunkt eine defektive Eineuerungsgleichting Diese Arbeit stellt einen neuen

Matrix-Operator-Ansat/ zur llerleitung einer defektiven Eineueiungsgleichung für den erwarteten
Barweit dei gesamten opcrationellen Kosten in einem Phasen-ryp-Eineuerungsmodell vor. Dies tuhit
/u expliziten Matrix-analytischen Losungen lui eine Reihe von Ruin-be/ogenen Grossen

Resume

Selon la theone de la ruine, la valeui actuelle de la penality en cas de rinne satisfait unc equation de

lenouvellement dans le modüle de usque de renouvellcment Hrlang-n Ce papter presente une

approche nouvelle, utilisant un opeiateui matiiciek pour obtenit line equation de renouvellement pour
la valeui actuelle de la totnlite des couts operationnels dans un modele de usque de lenouvellement de

"phase-type" On obtient alors des solutions matricielles analytiques exphutes pour tine multitude de

quantites liees A la ruine
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